JP2020128520A - Fluororesin particle and method for producing the same - Google Patents

Fluororesin particle and method for producing the same Download PDF

Info

Publication number
JP2020128520A
JP2020128520A JP2019171553A JP2019171553A JP2020128520A JP 2020128520 A JP2020128520 A JP 2020128520A JP 2019171553 A JP2019171553 A JP 2019171553A JP 2019171553 A JP2019171553 A JP 2019171553A JP 2020128520 A JP2020128520 A JP 2020128520A
Authority
JP
Japan
Prior art keywords
resin
resin particles
general formula
organic solvent
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019171553A
Other languages
Japanese (ja)
Other versions
JP7339830B2 (en
Inventor
翔平 弓野
Shohei Yumino
翔平 弓野
智弥 下野
Tomoya Shimono
智弥 下野
田靡 正雄
Masao Tanabiki
正雄 田靡
亨 土井
Toru Doi
亨 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to US17/280,624 priority Critical patent/US11807702B2/en
Priority to EP19864320.7A priority patent/EP3858873A4/en
Priority to CN202311186045.8A priority patent/CN117447634A/en
Priority to CN202311186369.1A priority patent/CN117447635A/en
Priority to PCT/JP2019/038144 priority patent/WO2020067421A1/en
Priority to CN201980064085.0A priority patent/CN112771086B/en
Publication of JP2020128520A publication Critical patent/JP2020128520A/en
Priority to JP2023073965A priority patent/JP2023099114A/en
Priority to JP2023134648A priority patent/JP2023159307A/en
Application granted granted Critical
Publication of JP7339830B2 publication Critical patent/JP7339830B2/en
Priority to US18/471,482 priority patent/US20240059809A1/en
Priority to US18/471,794 priority patent/US20240076426A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

To provide a fluororesin particle having excellent flowing and filling properties and a method for producing a fluororesin particle.SOLUTION: A resin particle has a residue unit represented by general formula (1) and has a volume average particle size of 5 μm or more and 2000 μm or less. In formula (1), Rf, Rf, Rf, and Rfindependently represent one selected from the group consisting of a fluorine atom, a C1-7 linear perfluoroalkyl group, a C3-7 branched perfluoroalkyl group or a C3-7 cyclic perfluoroalkyl group. The perfluoroalkyl group may have ether oxygen. Rf, Rf, Rf, and Rfmay be mutually coupled to form a C4-8 ring.SELECTED DRAWING: None

Description

本発明は、流動性および充填性に優れるフッ素樹脂粒子およびその製造方法に関する。 The present invention relates to a fluororesin particle having excellent fluidity and filling property and a method for producing the same.

フッ素系樹脂は、電気特性、耐薬品性、防水性および撥液發油性に優れるため半導体をはじめとする電子部品の保護膜、インクジェットプリンタヘッドの撥水膜、フィルタの水防油コートなどに用いられている。 Fluorine-based resins have excellent electrical properties, chemical resistance, waterproofness, and liquid/oil repellency, so they are used as protective films for electronic components such as semiconductors, water-repellent films for inkjet printer heads, and water- and oil-proof coatings for filters. ing.

なかでもオキソラン環を含むフッ素樹脂は嵩高い環構造を有するため非晶質で高い透明性および高い耐熱性を有する。また炭素、フッ素、酸素からのみ構成されることで高い電気特性、耐薬品性、防水性および撥液發油性を有する。さらに非晶性であることから溶融成形加工が可能である。 Among them, a fluororesin containing an oxolane ring has a bulky ring structure and thus is amorphous and has high transparency and high heat resistance. Further, since it is composed only of carbon, fluorine and oxygen, it has high electrical properties, chemical resistance, waterproofness and liquid repellency and oil repellency. Furthermore, since it is amorphous, melt molding is possible.

特許文献1にはオキソラン環を含むフッ素樹脂としてパーフルオロ(2−メチレン−4−メチル−1,3−ジオキソラン(PFMMD)のポリマーおよびその製造方法に関する記載がある。特許文献1の実施例2には、ガラス製封管内でフッ化窒素(N22)の共存下でパーフルオロ(2−メチレン−4−メチル−1,3−ジオキソランのポリマーを重合した例の記載がある。この実施例では溶媒は用いられておらず、得られたポリマーの具体的な形態については記述はない。非特許文献1にはオキソラン環を含むフッ素樹脂としてPFMMDをバルク重合又は溶液重合してそのポリマーを得ることが記載されている。尚、本明細書において、特に断らない限り、樹脂とポリマーとは同義として記載する。 Patent Document 1 describes a polymer of perfluoro(2-methylene-4-methyl-1,3-dioxolane (PFMMD)) as a fluororesin containing an oxolane ring and a method for producing the same. Is a description of an example in which a polymer of perfluoro(2-methylene-4-methyl-1,3-dioxolane) was polymerized in the presence of nitrogen fluoride (N 2 F 2 ) in a glass sealed tube. No solvent is used and no specific form of the obtained polymer is described in Non-Patent Document 1. PFMMD as a fluororesin containing an oxolane ring is bulk-polymerized or solution-polymerized to obtain the polymer. In the present specification, unless otherwise specified, a resin and a polymer are described as synonymous.

米国特許第3308107号US Patent No. 3308107

Macromolecules 2005, 38, 4237Macromolecules 2005, 38, 4237

非特許文献1には、バルク重合の場合は重合後に精製を行わないと、本樹脂の光学特性および耐熱性が低下するが、精製することでこれらの低下は低減することが記載されている。溶液重合では、フッ素系の2種類の溶媒のいずれかを用いて重合した後にクロロホルムを添加して沈殿させている。バルク重合の精製後の本樹脂およびクロロホルムを添加して沈殿させて得られた樹脂の具体的な形態についての記載はない。 Non-Patent Document 1 describes that in the case of bulk polymerization, if the purification is not performed after the polymerization, the optical characteristics and heat resistance of the resin are deteriorated, but the purification reduces such deterioration. In solution polymerization, chloroform is added and precipitated after polymerizing using either of two types of fluorine-based solvents. There is no description of the specific form of the resin obtained by purification of bulk polymerization and the resin obtained by adding chloroform to cause precipitation.

本発明者らによる検討の結果、特許文献1および非特許文献1に記載の方法で得られた樹脂は、不定形の非粒子状の形態を有していた。そのため、樹脂の流動性に課題があった。たとえば樹脂を溶融成形する際、成形加工機内部への樹脂の連続した供給が困難になるなどの取り扱いに問題が生じることが分かった。さらに、特許文献1および非特許文献1に記載の樹脂は、上記形態を有するため、たとえば樹脂を成形加工機内に充填する際、所定の体積に対して所望の重量の樹脂が充填できない、すなわち充填性が低いという問題があることも判明した。この点は、樹脂重量に対して体積の大きな容器を要するため、当該物品を輸送する際の経済性が低くなる問題もあった。 As a result of a study by the present inventors, the resin obtained by the method described in Patent Document 1 and Non-Patent Document 1 had an amorphous non-particulate morphology. Therefore, there is a problem in the fluidity of the resin. For example, when melt-molding a resin, it has been found that there is a problem in handling such that it becomes difficult to continuously supply the resin into the molding machine. Further, since the resins described in Patent Document 1 and Non-Patent Document 1 have the above-described forms, when the resin is filled in a molding machine, for example, a desired weight of the resin cannot be filled in a predetermined volume, that is, the filling is performed. It was also found that there is a problem of low sex. In this respect, since a container having a large volume with respect to the weight of the resin is required, there is a problem that the economical efficiency in transporting the article is lowered.

そこで本発明は、上記課題を解決するために、流動性および充填性に優れた、一般式(1)で表される残基単位を含む樹脂粒子およびその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a resin particle containing a residue unit represented by the general formula (1), which is excellent in fluidity and filling property, and a method for producing the same, in order to solve the above problems. ..

また、本発明者らのさらなる検討の結果、特許文献1および非特許文献に記載された方法で製造された樹脂は、不定形の非粒子状の形態を有しているため、樹脂の内部に取り込まれた溶媒を除去することが困難である。樹脂中に溶媒が残存すると加熱時の重量減少量が大きく、成形加工時に発泡等が生じたり、成形加工時の作業環境を悪化させるという問題もあった。 Further, as a result of further study by the present inventors, the resin produced by the method described in Patent Document 1 and the non-patent document has an amorphous non-particulate morphology, so that It is difficult to remove the entrapped solvent. When the solvent remains in the resin, there is a problem that the amount of weight loss during heating is large, foaming occurs during molding, and the working environment during molding is deteriorated.

そこで本発明は、流動性および充填性に優れるばかりでなく、加熱重量減少量が小さい、一般式(1)で表される残基単位を含む樹脂粒子およびその製造方法を提供することも目的とする。 Therefore, an object of the present invention is to provide a resin particle containing a residue unit represented by the general formula (1), which has not only excellent fluidity and filling property but also a small heating weight loss amount, and a method for producing the same. To do.

加えて、フッ素樹脂の製造においては、一般に、乳化重合、懸濁重合等の手段により樹脂粒子を得ることが可能である。しかしこれらの方法においては、重合助剤として乳化剤または分散剤が用いられる。しかし、用いた乳化剤または分散剤は、樹脂粒子の内部に残存することで、異物となり、さらには樹脂を加熱した際の着色の原因となり、透明性および耐熱性を損なう可能性がある。近年の半導体周辺部材に求められる厳しいクリーン性を満足できない可能性があった。 In addition, in producing a fluororesin, it is generally possible to obtain resin particles by means of emulsion polymerization, suspension polymerization, or the like. However, in these methods, an emulsifier or a dispersant is used as a polymerization aid. However, the emulsifier or dispersant used remains inside the resin particles to become a foreign substance, and further causes coloring when the resin is heated, possibly impairing transparency and heat resistance. There has been a possibility that the strict cleanness required for recent semiconductor peripheral members may not be satisfied.

そこで、本発明は、流動性および充填性に優れる、一般式(1)で表される残基単位を含む樹脂粒子を乳化剤および/または分散剤を用いることなく製造する方法、並びに乳化剤および/または分散剤を含有しない、一般式(1)で表される残基単位を含む樹脂粒子を提供することも目的とする。 Therefore, the present invention provides a method for producing resin particles containing a residue unit represented by the general formula (1) having excellent fluidity and filling properties without using an emulsifier and/or a dispersant, and an emulsifier and/or It is also an object to provide a resin particle containing a residue unit represented by the general formula (1), which does not contain a dispersant.

さらに、本発明は、流動性および充填性に優れるばかりでなく、熱重量減少量が小さく、乳化剤および/または分散剤を含有しない、一般式(1)で表される残基単位を含む樹脂粒子およびその製造方法を提供することを目的とする。 Further, the present invention is a resin particle containing a residue unit represented by the general formula (1), which has not only excellent fluidity and filling property but also small thermal weight loss and does not contain an emulsifier and/or a dispersant. And its manufacturing method.

本発明者らは、下記一般式(1)で表される残基単位を含み、体積平均粒子径が5μm以上2000μm以下であることを特徴とする新規な樹脂粒子が流動性および充填性に優れることを見出し、本発明の完成に至った。 The present inventors have found that novel resin particles containing a residue unit represented by the following general formula (1) and having a volume average particle size of 5 μm or more and 2000 μm or less are excellent in fluidity and filling property. This has led to the completion of the present invention.

式(1)中、Rf1、Rf2、Rf3およびRf4はそれぞれ独立してフッ素原子、炭素数1〜7の直鎖状のパーフルオロアルキル基、炭素数3〜7の分岐状のパーフルオロアルキル基または、炭素数3〜7の環状のパーフルオロアルキル基からなる群の1種を示す。前記パーフルオロアルキル基はエーテル性酸素原子を有していてもよい。また、Rf1、Rf2、Rf3およびRf4は互いに連結して炭素数4以上8以下の環を形成してもよく、該環はエーテル性酸素原子を含む環であってもよい。 In the formula (1), Rf 1 , Rf 2 , Rf 3 and Rf 4 are each independently a fluorine atom, a linear perfluoroalkyl group having 1 to 7 carbon atoms, or a branched perfluoroalkyl group having 3 to 7 carbon atoms. 1 type of the group which consists of a fluoroalkyl group or a C3-C7 cyclic perfluoroalkyl group is shown. The perfluoroalkyl group may have an etheric oxygen atom. Rf 1 , Rf 2 , Rf 3 and Rf 4 may be linked to each other to form a ring having 4 to 8 carbon atoms, and the ring may be a ring containing an etheric oxygen atom.

さらに、本発明者らは、特定の有機溶媒を用いた沈殿重合法を用いることで、乳化剤または分散剤を用いることなく樹脂粒子を得ることができ、乳化剤および分散剤を用いることなく得られた樹脂粒子は乳化剤および分散剤を含有せず、樹脂本来の透明性および耐熱性を保持した樹脂粒子であること、さらには、樹脂粒子内部に溶媒が残存することなく、加熱重量減少量が小さい樹脂粒子を得られることを見いだし、本発明の好ましい態様に至った。 Furthermore, the present inventors were able to obtain resin particles without using an emulsifier or dispersant by using a precipitation polymerization method using a specific organic solvent, and obtained without using an emulsifier and a dispersant. The resin particles do not contain an emulsifier and a dispersant, are resin particles that retain the original transparency and heat resistance of the resin, and further, the solvent does not remain inside the resin particles, and the heating weight reduction amount is small. It has been found that particles can be obtained, leading to a preferred embodiment of the present invention.

本発明は、以下の通りである。
[1]
下記一般式(1)で表される残基単位を含み、体積平均粒子径が5μm以上2000μm以下であることを特徴とする樹脂粒子。
(式(1)中、Rf1、Rf2、Rf3、Rf4はそれぞれ独立してフッ素原子、炭素数1〜7の直鎖状のパーフルオロアルキル基、炭素数3〜7の分岐状のパーフルオロアルキル基または炭素数3〜7の環状のパーフルオロアルキル基からなる群の1種を示す。前記パーフルオロアルキル基はエーテル性酸素原子を有していてもよい。また、Rf1、Rf2、Rf3、Rf4は互いに連結して炭素数4以上8以下の環を形成してもよく、該環はエーテル性酸素原子を含む環であってもよい。)
[2]
前記体積平均粒子径が5μm以上500μm以下である、[1]に記載の樹脂粒子。
[3]
安息角が5°以上60°以下である、[1]または[2]に記載の樹脂粒子。
[4]
前記樹脂粒子は、沈殿重合物である、[1]乃至[3]のいずれか一項に記載の樹脂粒子。
[5]
嵩密度が0.2g/mL以上1.5g/mL以下である、[1]乃至[4]のいずれか一項に記載の樹脂粒子。
[6]
250℃加熱時の重量減少量が1重量%以下である、[1]乃至[5]のいずれか一項に記載の樹脂粒子。
[7]
前記樹脂粒子は、乳化剤および/または分散剤を含有しない、[1]乃至[6]のいずれか一項に記載の樹脂粒子。
[8]
一般式(1)で表される残基単位が一般式(2)で表されるパーフルオロ(4−メチル−2−メチレン−1,3−ジオキソラン)残基単位である、[1]乃至[7]いずれか一項に記載の粒子。
[9]
ラジカル重合開始剤、下記一般式(3)で表される単量体および有機溶媒の混合物を重合条件下に置いて、一般式(4)で表される残基単位を含む樹脂を得る工程を有し、
前記有機溶媒は、少なくとも前記単量体は溶解し、かつ重合により生じた樹脂の少なくとも一部は溶解せず、樹脂の沈殿を生じる溶媒であり、
前記重合により生じた樹脂は粒子として有機溶媒中に沈殿する、[1]乃至[7]いずれか一項に記載の樹脂粒子の製造方法。
(式(3)中、Rf5、Rf6、Rf6、およびRf7はそれぞれ独立してフッ素原子、炭素数1〜7の直鎖状のパーフルオロアルキル基、炭素数3〜7の分岐状のパーフルオロアルキル基または炭素数3〜7の環状のパーフルオロアルキル基からなる群の1種を示す。前記パーフルオロアルキル基はエーテル性酸素原子を有していてもよい。また、Rf5、Rf6、Rf6、およびRf7は互いに連結して炭素数4以上8以下の環を形成してもよく、該環はエーテル性酸素原子を含む環であってもよい。)
(式(4)中のRf5、Rf6、Rf6、およびRf7の定義は、それぞれ式(3)中のRf5、Rf6、Rf6、およびRf7の定義と同じである。)
[10]
前記有機溶媒は、一般式(3)で表される単量体を溶解し、かつ一般式(4)で表される残基単位を含む樹脂を溶解しない有機溶媒である、[9]に記載の製造方法。
[11]
前記有機溶媒は、一般式(4)で表される残基単位を含む量平均分子量Mwが5×104〜70×104の樹脂粒子をこの樹脂粒子に対して10倍量(w/w)の有機溶媒に50℃で5時間以上浸漬した後に、有機溶媒中に肉眼で樹脂粒子の残存が確認できる有機溶媒である、[10]に記載の製造方法。
[12]
前記有機溶媒は、一般式(4)で表される残基単位を含む量平均分子量Mwが5×104〜70×104の樹脂粒子をこの樹脂粒子に対して10倍量(w/w)の有機溶媒に50℃で5時間以上浸漬した後に前記溶液を25℃に冷却後に、固体状態として残存する樹脂試料を回収し、樹脂試料の重量減少率が20重量%未満である有機溶媒である、[10]または[11]に記載の製造方法。
[13]
分子内にフッ素原子と水素原子を含む有機溶媒を用いることを特徴とする[9]乃至[12]のいずれか一項に記載の製造方法。
[14]
溶媒分子内の水素原子の含有量が1重量%以上である有機溶媒を用いることを特徴とする請求項13に記載の製造方法。
[15]
一般式(3)で表される単量体が一般式(5)で表されるパーフルオロ(4−メチル−2−メチレン−1,3−ジオキソラン)であり、一般式(4)で表される残基単位が一般式(6)で表されるパーフルオロ(4−メチル−2−メチレン−1,3−ジオキソラン)残基単位である、[9]乃至[13]いずれか一項に記載の製造方法。
The present invention is as follows.
[1]
A resin particle comprising a residue unit represented by the following general formula (1) and having a volume average particle diameter of 5 μm or more and 2000 μm or less.
(In the formula (1), Rf 1 , Rf 2 , Rf 3 and Rf 4 are each independently a fluorine atom, a linear perfluoroalkyl group having 1 to 7 carbon atoms, or a branched perfluoroalkyl group having 3 to 7 carbon atoms. 1 represents one of a group consisting of a perfluoroalkyl group or a cyclic perfluoroalkyl group having a carbon number of 3 to 7. The perfluoroalkyl group may have an etheric oxygen atom, and Rf 1 and Rf. 2 , Rf 3 and Rf 4 may be linked to each other to form a ring having 4 to 8 carbon atoms, and the ring may be a ring containing an etheric oxygen atom.)
[2]
The resin particles according to [1], wherein the volume average particle diameter is 5 μm or more and 500 μm or less.
[3]
The resin particle according to [1] or [2], which has an angle of repose of 5° or more and 60° or less.
[4]
The resin particles according to any one of [1] to [3], which are precipitation polymerized products.
[5]
The resin particles according to any one of [1] to [4], which have a bulk density of 0.2 g/mL or more and 1.5 g/mL or less.
[6]
The resin particles according to any one of [1] to [5], which have a weight loss of 1% by weight or less when heated at 250°C.
[7]
The resin particles according to any one of [1] to [6], wherein the resin particles do not contain an emulsifier and/or a dispersant.
[8]
[1] to [wherein the residue unit represented by the general formula (1) is a perfluoro(4-methyl-2-methylene-1,3-dioxolane) residue unit represented by the general formula (2). 7] The particle according to any one of items.
[9]
A step of subjecting a mixture of a radical polymerization initiator, a monomer represented by the following general formula (3) and an organic solvent to polymerization conditions to obtain a resin containing a residue unit represented by the general formula (4). Have,
The organic solvent, at least the monomer is dissolved, and at least a part of the resin produced by the polymerization is not dissolved, is a solvent that causes precipitation of the resin,
The method for producing resin particles according to any one of [1] to [7], wherein the resin produced by the polymerization is precipitated as particles in an organic solvent.
(In the formula (3), Rf 5 , Rf 6 , Rf 6 , and Rf 7 are each independently a fluorine atom, a linear perfluoroalkyl group having 1 to 7 carbon atoms, or a branched chain having 3 to 7 carbon atoms. Represents a perfluoroalkyl group or a cyclic perfluoroalkyl group having 3 to 7 carbon atoms, wherein the perfluoroalkyl group may have an etheric oxygen atom, and Rf 5 , (Rf 6 , Rf 6 and Rf 7 may be linked to each other to form a ring having 4 to 8 carbon atoms, and the ring may be a ring containing an etheric oxygen atom.)
(Definition of Rf 5, Rf 6, Rf 6 , and Rf 7 in the formula (4) are the same as defined formula (3) Rf 5, Rf 6 , Rf 6, and Rf 7 definitions in.)
[10]
The organic solvent is an organic solvent that dissolves the monomer represented by the general formula (3) and does not dissolve the resin containing the residue unit represented by the general formula (4), [9] Manufacturing method.
[11]
The organic solvent contains resin particles having a weight average molecular weight Mw of 5×10 4 to 70×10 4 including a residue unit represented by the general formula (4), which is 10 times (w/w) the resin particles. The production method according to [10], which is an organic solvent in which resin particles can be visually confirmed to remain in the organic solvent after being immersed in the organic solvent at 50° C. for 5 hours or more.
[12]
The organic solvent contains resin particles having a weight average molecular weight Mw of 5×10 4 to 70×10 4 including a residue unit represented by the general formula (4), which is 10 times (w/w) the resin particles. After immersing in the organic solvent at 50° C. for 5 hours or more, the solution is cooled to 25° C., and the resin sample remaining as a solid state is recovered. The manufacturing method according to [10] or [11].
[13]
The production method according to any one of [9] to [12], which uses an organic solvent containing a fluorine atom and a hydrogen atom in the molecule.
[14]
The method according to claim 13, wherein an organic solvent having a hydrogen atom content in the solvent molecule of 1% by weight or more is used.
[15]
The monomer represented by the general formula (3) is perfluoro(4-methyl-2-methylene-1,3-dioxolane) represented by the general formula (5), and is represented by the general formula (4). [9] to [13], wherein the residue unit is a perfluoro(4-methyl-2-methylene-1,3-dioxolane) residue unit represented by the general formula (6). Manufacturing method.

本発明によれば、流動性および充填性に優れるフッ素樹脂粒子およびフッ素樹脂粒子の製造方法を提供することができる。 According to the present invention, it is possible to provide fluororesin particles having excellent fluidity and filling properties, and a method for producing fluororesin particles.

さらに本発明によれば、流動性および充填性に優れるばかりでなく、乳化剤および分散剤を含有しない樹脂粒子およびその製造方法、並びに流動性および充填性に優れるばかりでなく、加熱重量減少量が小さい樹脂粒子およびその製造方法をそれぞれ提供するができる。 Further, according to the present invention, not only is the resin particles not only excellent in fluidity and filling property but also containing no emulsifier and dispersant and a method for producing the same, and the fluidity and filling property are excellent, and the heating weight loss is small. A resin particle and a method for manufacturing the same can be provided.

;実施例1で製造した樹脂粒子の粒度分布を示す図である。FIG. 3 is a diagram showing a particle size distribution of resin particles produced in Example 1. ;実施例4で製造した樹脂粒子の粒度分布を示す図である。FIG. 5 is a diagram showing a particle size distribution of resin particles produced in Example 4.

以下に本発明を詳細に説明する。 The present invention will be described in detail below.

本発明は、一般式(1)で表される残基単位を含む樹脂粒子である。そして、本発明のフッ素樹脂粒子は一般式(1)に含まれる嵩高い環構造を有するため非晶質で高い透明性および高い耐熱性を有する。また炭素、フッ素および酸素からのみ構成されることで高い電気特性、耐薬品性、防水性および撥液發油性を有する。 The present invention is a resin particle containing a residue unit represented by the general formula (1). Since the fluororesin particles of the present invention have the bulky ring structure contained in the general formula (1), they are amorphous and have high transparency and high heat resistance. Further, since it is composed only of carbon, fluorine and oxygen, it has high electrical properties, chemical resistance, waterproofness and liquid repellency and oil repellency.

本発明における一般式(1)で表される残基単位中のRf1、Rf2、Rf3およびRf4基はそれぞれ独立してフッ素原子、炭素数1〜7の直鎖状のパーフルオロアルキル基、炭素数3〜7の分岐状のパーフルオロアルキル基、または炭素数3〜7の環状のパーフルオロアルキル基からなる群の1種を示す。前記パーフルオロアルキル基はエーテル性酸素原子を有していてもよい。また、Rf1、Rf2、Rf3およびRf4は互いに連結して炭素数4以上8以下の環を形成してもよく、該環はエーテル性酸素原子を含む環であってもよい。 The Rf 1 , Rf 2 , Rf 3 and Rf 4 groups in the residue unit represented by the general formula (1) in the present invention are each independently a fluorine atom or a linear perfluoroalkyl group having 1 to 7 carbon atoms. Group, a branched perfluoroalkyl group having 3 to 7 carbon atoms, or a cyclic perfluoroalkyl group having 3 to 7 carbon atoms. The perfluoroalkyl group may have an etheric oxygen atom. Rf 1 , Rf 2 , Rf 3 and Rf 4 may be linked to each other to form a ring having 4 to 8 carbon atoms, and the ring may be a ring containing an etheric oxygen atom.

炭素数1〜7の直鎖状パーフルオロアルキル基としては、例えば、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基、ウンデカフルオロペンチル基、トリデカフルオロヘキシル基、ペンタデカフルオロヘプチル基等が挙げられ、炭素数3〜7の分岐状パーフルオロアルキル基としては、例えば、ヘプタフルオロイソプロピル基、ノナフルオロイソブチル基、ノナフルオロsec−ブチル基、ノナフルオロtert−ブチル基等が挙げられ、炭素数3〜7の環状パーフルオロアルキル基としては、例えば、ヘプタフルオロシクロプロピル基、ノナフルオロシクロブチル基、トリデカフルオロシクロヘキシル基等が挙げられる。炭素数1〜7のエーテル性酸素原子を有していてもよい直鎖状パーフルオロアルキル基としては、例えば、−CF2OCF3基、−(CF22OCF3基、−(CF22OCF2CF3基、炭素数3〜7のエーテル性酸素原子を有していてもよい環状パーフルオロアルキル基としては、例えば、2−(2,3,3,4,4,5,5,6,6−デカフルオロ)−ピリニル基、4−(2,3,3,4,4,5,5,6,6−デカフルオロ)−ピリニル基、2−(2,3,3,4,4,5,5−ヘプタフルオロ)−フラニル基等が挙げられる。 Examples of the linear perfluoroalkyl group having 1 to 7 carbon atoms include a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, a nonafluorobutyl group, an undecafluoropentyl group, a tridecafluorohexyl group, Examples thereof include a pentadecafluoroheptyl group, and examples of the branched perfluoroalkyl group having 3 to 7 carbon atoms include a heptafluoroisopropyl group, a nonafluoroisobutyl group, a nonafluorosec-butyl group, a nonafluorotert-butyl group, and the like. Examples of the cyclic perfluoroalkyl group having 3 to 7 carbon atoms include a heptafluorocyclopropyl group, a nonafluorocyclobutyl group, a tridecafluorocyclohexyl group, and the like. Examples of the linear perfluoroalkyl group which may have an etheric oxygen atom having 1 to 7 carbon atoms include, for example, —CF 2 OCF 3 group, —(CF 2 ) 2 OCF 3 group, and —(CF 2 ) 2 OCF 2 CF 3 groups and cyclic perfluoroalkyl groups having 3 to 7 carbon atoms and optionally having an etheric oxygen atom include, for example, 2-(2,3,3,4,4,5,5). 5,6,6-decafluoro)-pyrinyl group, 4-(2,3,3,4,4,5,5,6,6-decafluoro)-pyrinyl group, 2-(2,3,3,3) 4,4,5,5-heptafluoro)-furanyl group and the like.

優れた耐熱性となるため、Rf1、Rf2、Rf3およびRf4の少なくともいずれか1種が炭素数1〜7の直鎖状のパーフルオロアルキル基、炭素数3〜7の分岐状のパーフルオロアルキル基および炭素数3〜7環状のパーフルオロアルキル基からなる群の1種であることが好ましい。 Because of excellent heat resistance, at least one of Rf 1 , Rf 2 , Rf 3 and Rf 4 is a linear perfluoroalkyl group having 1 to 7 carbon atoms, or a branched perfluoroalkyl group having 3 to 7 carbon atoms. It is preferably one member of the group consisting of a perfluoroalkyl group and a C3-7 cyclic perfluoroalkyl group.

一般式(1)で表される残基単位としては、例えば以下の残基単位が挙げられる。 Examples of the residue unit represented by the general formula (1) include the following residue units.

これらの中でも、耐熱性および成型加工性に優れるため以下の残基単位を含む樹脂粒子が好ましく、一般式(2)で表されるパーフルオロ(4−メチル−2−メチレン−1,3−ジオキソラン)残基単位を含む樹脂がより好ましい。 Of these, perfluoro(4-methyl-2-methylene-1,3-dioxolane) represented by the general formula (2) is preferable because resin particles containing the following residue units are preferable because they are excellent in heat resistance and molding processability. ) Resins containing residue units are more preferred.

本発明の樹脂粒子は、体積平均粒子径が5μm以上2000μm以下であることで流動性が高く、成型加工機等に対する連続した供給が可能となる。体積平均粒子径は、5μm以上1000μm以下であることが好ましい。さらに、体積平均粒子径が上記範囲であることで、樹脂粒子への溶媒の残留が抑制できることから、加熱重量減少量が小さいものとなる。尚、樹脂粒子への溶媒の残留は、後述する、沈殿重合法により樹脂粒子を得ることでも得られる。 Since the resin particles of the present invention have a volume average particle diameter of 5 μm or more and 2000 μm or less, they have high fluidity and can be continuously supplied to a molding machine or the like. The volume average particle diameter is preferably 5 μm or more and 1000 μm or less. Further, when the volume average particle diameter is within the above range, the solvent can be prevented from remaining on the resin particles, so that the heating weight reduction amount becomes small. The residual solvent on the resin particles can also be obtained by obtaining resin particles by a precipitation polymerization method described later.

本発明の樹脂粒子は、体積平均粒子径が5μm以上500μm以下であることがより好ましい。体積平均粒子径がこの範囲であることで、より流動性が高く、成型加工機等に対する連続した供給が容易となり、加熱重量減少量も小さいものとなる。さらに、非特許文献1に記載の方法で得られた樹脂に比べ充填性が増加し、効率的に容器に収納することが可能となる。体積平均粒子径が5μm以上であることにより気流により飛散しにくく、本発明の樹脂粒子の取り扱い性が向上する。また体積平均粒子径が500μm以下である場合、より短時間で樹脂粒子を溶融させることができ成型加工の効率性が向上するため好ましい。 The volume average particle diameter of the resin particles of the present invention is more preferably 5 μm or more and 500 μm or less. When the volume average particle diameter is within this range, the fluidity is higher, continuous feeding to a molding machine or the like is facilitated, and the heating weight reduction amount is also small. Furthermore, the filling property is increased as compared with the resin obtained by the method described in Non-Patent Document 1, and it becomes possible to efficiently store the resin in a container. When the volume average particle diameter is 5 μm or more, the resin particles of the present invention are less likely to be scattered by the air flow, and the handleability of the resin particles of the present invention is improved. Further, when the volume average particle diameter is 500 μm or less, the resin particles can be melted in a shorter time, and the efficiency of molding is improved, which is preferable.

本発明の樹脂粒子は、その90%粒子径が2500μm以下、さらには2000μm以下、またさらには1000μm以下であることが好ましい。これにより、本発明の樹脂粒子において、粗大な粒子の含有量が低くなり、流動性・成形性がより向上する。 The 90% particle diameter of the resin particles of the present invention is preferably 2500 μm or less, more preferably 2000 μm or less, and further preferably 1000 μm or less. Thereby, in the resin particles of the present invention, the content of coarse particles is reduced, and the fluidity and moldability are further improved.

また、本発明の樹脂粒子は、その10%粒子径が3μm以上であることが好ましい。これにより、本発明の樹脂粒子において、微細な粒子の含有量が低くなり、粉塵化がより防止され、流動性がより向上する。 The 10% particle diameter of the resin particles of the present invention is preferably 3 μm or more. Thereby, in the resin particles of the present invention, the content of fine particles is reduced, dusting is further prevented, and fluidity is further improved.

本発明の樹脂粒子の体積平均粒子径、90%粒子径、10%粒子径および粒子径分布は、レーザー回折散乱法による粒子径分布測定(体積分布)で評価することができる。レーザー回折散乱法による粒子径分布は、樹脂粒子を水中又はメタノール等の有機溶媒中に分散させて、必要に応じて超音波式ホモジナイザーで粒子の分散状態を均一化にする処理を施した後に測定することで、再現性良く定量化することができる。レーザー散乱計として、マイクロトラック・ベル株式会社製のマイクロトラックを例示することができる。 The volume average particle size, 90% particle size, 10% particle size and particle size distribution of the resin particles of the present invention can be evaluated by particle size distribution measurement (volume distribution) by a laser diffraction scattering method. Particle size distribution by laser diffraction scattering method is measured after dispersing resin particles in water or an organic solvent such as methanol, and subjecting the particles to a uniform state with an ultrasonic homogenizer if necessary. By doing so, it is possible to quantify with good reproducibility. As the laser scatterometer, Microtrac manufactured by Microtrac Bell Co. can be exemplified.

体積平均粒子径とは、Mean Volume Diameterとも言われ、体積基準で表した平均粒子径であり、粒子径分布を各粒径チャンネルごとに区切り、各粒径チャンネルの代表粒径値をd、各粒径チャンネルごとの体積基準のパーセントをvとした時に、Σ(vd)/Σ(v)で表される。 The volume average particle diameter is also referred to as the Mean Volume Diameter and is an average particle diameter expressed on a volume basis. The particle diameter distribution is divided for each particle diameter channel, and the representative particle diameter value of each particle diameter channel is d. It is represented by Σ(vd)/Σ(v), where v is the volume-based percentage for each particle size channel.

10%粒子径とは、その粉体の集団の全体積を100%として累積量を求めた時、その累積量が10%となる点の粒子径を表す。90%粒子径とは、その粉体の集団の全体積を100%として累積量を求めた時、その累積量が90%となる点の粒子径を表す。 The 10% particle size means the particle size at the point where the cumulative amount is 10% when the cumulative amount is calculated with the total volume of the powder group as 100%. The 90% particle size represents the particle size at a point where the cumulative amount is 90% when the cumulative amount is calculated with the total volume of the powder group as 100%.

本発明の樹脂粒子は、好ましくは、乳化剤および/または分散剤を含まない。乳化剤および/または分散剤を含まないことで透明性、耐熱性に優れた樹脂および樹脂粒子となる。乳化剤および/または分散剤を含まない樹脂粒子は、後述する沈殿重合法を用いて製造できる。従って本発明の樹脂粒子は、沈殿重合物であることが好ましい。ここで、分散剤は、樹脂粒子を溶媒中で分散させる働きを有する剤であり、その例としては、ポリビニルアルコール、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース等が挙げられる。乳化剤は、樹脂粒子を溶媒中で乳化させる働きを有する剤であり、その例としては、パーフルオロオクタン酸ナトリウム、パーフルオロオクタンスルホン酸ナトリウム、パーフルオロオクタン酸アンモニウム塩等の含フッ素界面活性剤;ラウリル硫酸ナトリウム、エチレングリコール系重合体等の非フッ素界面活性剤等が挙げられる。 The resin particles of the present invention preferably contain no emulsifier and/or dispersant. By not containing an emulsifier and/or a dispersant, a resin and resin particles having excellent transparency and heat resistance can be obtained. The resin particles containing no emulsifier and/or dispersant can be produced by the precipitation polymerization method described below. Therefore, the resin particles of the present invention are preferably a precipitation polymer. Here, the dispersant is an agent having a function of dispersing the resin particles in a solvent, and examples thereof include polyvinyl alcohol, methyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl methyl cellulose and the like. The emulsifier is an agent having a function of emulsifying resin particles in a solvent, and examples thereof include a fluorine-containing surfactant such as sodium perfluorooctanoate, sodium perfluorooctanesulfonate, and ammonium perfluorooctanoate salt; Examples include non-fluorine surfactants such as sodium lauryl sulfate and ethylene glycol-based polymers.

本発明の樹脂粒子の嵩密度は充填性の観点から0.2g/cm3以上1.5g/cm3以下であることが好ましい。嵩密度は後述する実施例に記載の方法で測定することができる。 The bulk density of the resin particles of the present invention is preferably 0.2 g/cm 3 or more and 1.5 g/cm 3 or less from the viewpoint of filling property. The bulk density can be measured by the method described in Examples below.

本発明の樹脂粒子には他の単量体残基単位が含まれていても良く、他の単量体残基単位としては、テトラフルオロエチレン(TFE)、ヘキサフルオロプロピレン(HFP)、クロロトリフルオロエチレン(CTFE)、トリフルオロエチレン、ヘキサフルオロイソブチレン、パーフルオロアルキルエチレン、フルオロビニルエーテル、フッ化ビニル(VF)、フッ化ビニリデン(VDF)、パーフルオロ−2,2−ジメチル−1,3−ジオキソール(PDD)、パーフルオロ(アリルビニルエーテル)およびペルフルオロ(ブテニルビニルエーテル)などが挙げられる。 The resin particles of the present invention may contain other monomer residue units, and examples of the other monomer residue units include tetrafluoroethylene (TFE), hexafluoropropylene (HFP), and chlorotriene. Fluoroethylene (CTFE), trifluoroethylene, hexafluoroisobutylene, perfluoroalkylethylene, fluorovinyl ether, vinyl fluoride (VF), vinylidene fluoride (VDF), perfluoro-2,2-dimethyl-1,3-dioxole (PDD), perfluoro(allyl vinyl ether) and perfluoro(butenyl vinyl ether).

本発明の樹脂粒子は、安息角が5°以上60°以下であることが好ましい。これにより、樹脂粒子の流動性がより高くなり、成型加工機等に対する連続した供給が容易となる。安息角は5°以上40°以下であることがより好ましく、10°以上40°以下であることがさらに好ましい。 The resin particles of the present invention preferably have an angle of repose of 5° or more and 60° or less. As a result, the fluidity of the resin particles becomes higher, and continuous supply to a molding machine or the like becomes easy. The angle of repose is more preferably 5° or more and 40° or less, further preferably 10° or more and 40° or less.

ここで、安息角とは平面に樹脂粉末を堆積させたときに平面と粉末の稜線の作る角度のことをいう。安息角は、容器に樹脂粉末を充填し、自然落下させ、水平面に堆積させたときに山になった樹脂粉末の作る角度を測定することで評価可能である。安息角の具体的な測定方法は、後述する実施例に記載する。 Here, the angle of repose refers to an angle formed by the ridgeline of the powder and the flat surface when the resin powder is deposited on the flat surface. The angle of repose can be evaluated by filling the container with the resin powder, allowing the resin powder to fall naturally, and measuring the angle formed by the resin powder that becomes a mountain when the resin powder is deposited on a horizontal surface. A specific method of measuring the angle of repose will be described in Examples below.

本発明において、樹脂粒子の分子量には何ら制限はなく、例えば、ゲルパーミエイションクロマトグラフィー(GPC)で測定される重量平均分子量が2,500〜2,000,000等が挙げられる。樹脂の溶融粘度、および機械強度の観点から10,000〜1,000,000(g/モル)であることが好ましい。測定の際は、標準試料としてポリメタクリル酸メチルを用い、樹脂粒子と標準試料の溶出時間からポリメタクリル酸メチル換算の重量平均分子量を算出する。 In the present invention, the molecular weight of the resin particles is not particularly limited, and examples thereof include a weight average molecular weight measured by gel permeation chromatography (GPC) of 2,500 to 2,000,000. From the viewpoint of melt viscosity and mechanical strength of the resin, it is preferably 10,000 to 1,000,000 (g/mol). At the time of measurement, polymethylmethacrylate is used as a standard sample, and the weight average molecular weight in terms of polymethylmethacrylate is calculated from the elution time of the resin particles and the standard sample.

次に本発明の樹脂粒子の製造方法について説明する。 Next, the method for producing the resin particles of the present invention will be described.

本発明の樹脂粒子は、例えば、ラジカル重合開始剤、下記一般式(3)で表される単量体および有機溶媒の混合物を重合条件下に置いて、一般式(3)で表される残基単位を含む樹脂を得る工程を含む方法により製造することができる。 The resin particles of the present invention can be obtained, for example, by leaving a mixture of a radical polymerization initiator, a monomer represented by the following general formula (3) and an organic solvent under polymerization conditions to obtain a residue represented by the general formula (3). It can be produced by a method including a step of obtaining a resin containing a base unit.

式(3)中、Rf5、Rf6、Rf7およびRf8は、それぞれ式(1)中のRf1、Rf2、Rf3、およびRf4と同義である。 In the formula (3), Rf 5 , Rf 6 , Rf 7 and Rf 8 have the same meanings as Rf 1 , Rf 2 , Rf 3 and Rf 4 in the formula (1), respectively.

式(4)中、Rf5、Rf6、Rf7、およびRf8は、それぞれ式(1)中のRf1、Rf2、Rf3、およびRf4と同義である。 In the formula (4), Rf 5 , Rf 6 , Rf 7 and Rf 8 have the same meanings as Rf 1 , Rf 2 , Rf 3 and Rf 4 in the formula (1), respectively.

本発明の樹脂粒子の製造方法において、前記有機溶媒は、少なくとも一般式(3)で表される単量体は溶解し、かつ重合により生じた一般式(4)で表される残基単位を含む樹脂の少なくとも一部は溶解せず、樹脂の沈殿を生じる溶媒であり、前記重合により生じた樹脂は粒子として有機溶媒中に沈殿する。本発明の樹脂粒子の製造方法において用いる前記有機溶媒を「沈殿重合溶媒」と記載することがある。沈殿重合溶媒は、より具体的には一般式(3)で表される単量体を溶解し、かつ一般式(4)で表される残基単位を含む樹脂を溶解しない有機溶媒であることができ、この沈殿重合溶媒を以下、沈殿重合溶媒Aと呼ぶ。本発明では沈殿重合溶媒を用いることにより、重合反応によって生成した樹脂を、特定の体積平均粒子径を有する粒子として析出させることができ、結果として成形性および充填性に優れる樹脂粒子を製造することができる。また、乳化剤および分散剤などの重合助剤を用いることがないため、透明性や耐熱性を損なう原因となる乳化剤および分散剤を含まない樹脂粒子を製造することができる。 In the method for producing resin particles of the present invention, the organic solvent has at least a monomer represented by the general formula (3) dissolved therein and a residue unit represented by the general formula (4) generated by polymerization. At least part of the contained resin is a solvent that does not dissolve and causes precipitation of the resin, and the resin generated by the above-described polymerization is precipitated as particles in the organic solvent. The organic solvent used in the method for producing resin particles of the present invention may be referred to as "precipitation polymerization solvent". More specifically, the precipitation polymerization solvent is an organic solvent that dissolves the monomer represented by the general formula (3) and does not dissolve the resin containing the residue unit represented by the general formula (4). This precipitation polymerization solvent is hereinafter referred to as precipitation polymerization solvent A. In the present invention, by using the precipitation polymerization solvent, the resin produced by the polymerization reaction can be precipitated as particles having a specific volume average particle diameter, and as a result, it is possible to produce resin particles having excellent moldability and filling properties. You can In addition, since no polymerization aid such as an emulsifier and a dispersant is used, it is possible to produce resin particles that do not contain an emulsifier and a dispersant that cause deterioration of transparency and heat resistance.

ここで、沈殿重合溶媒Aとは、一般式(4)で表される残基単位を含む樹脂粒子を当該有機溶媒に長時間浸漬した後に樹脂粒子が残存する溶媒を意味する。具体的には一般式(4)で表される残基単位を含む重量平均分子量Mwが5×104〜70×104の樹脂粒子をこの樹脂粒子に対して10倍量(w/w)の有機溶媒に50℃で5時間以上浸漬した後に、有機溶媒中に肉眼で樹脂粒子の残存が確認できる場合に、当該有機溶媒を沈殿重合溶媒Aとして見なすことができる。沈殿重合溶媒Aは、50℃で5時間以上浸漬した後に前記溶液を25℃に冷却後に、固体状態として残存する樹脂試料を回収し、樹脂試料の重量減少率が20重量%未満である有機溶媒であることが好ましい。樹脂試料の重量減少率は、より好ましくは12重量%未満、さらに好ましくは10重量%未満である。 Here, the precipitation polymerization solvent A means a solvent in which the resin particles remain after the resin particles containing the residue unit represented by the general formula (4) are immersed in the organic solvent for a long time. Specifically, the resin particles having a weight average molecular weight Mw of 5×10 4 to 70×10 4 containing a residue unit represented by the general formula (4) are 10 times as much as the resin particles (w/w). When the resin particles can be visually confirmed to remain in the organic solvent after being immersed in the organic solvent at 50° C. for 5 hours or more, the organic solvent can be regarded as the precipitation polymerization solvent A. The precipitation polymerization solvent A is an organic solvent in which the resin sample remaining as a solid state is recovered after the solution is cooled to 25° C. after being immersed at 50° C. for 5 hours or more, and the weight reduction rate of the resin sample is less than 20% by weight. Is preferred. The weight loss rate of the resin sample is more preferably less than 12% by weight, further preferably less than 10% by weight.

樹脂重量の減少率は以下の方法により計測できる。上記の冷却後の溶液をフィルターろ過後、フィルター上の固体を該溶媒でリンス洗浄し、アセトンで複数回洗浄後に乾燥し、フィルター上の樹脂試料を回収する。回収した樹脂の重量を計測し、当該有機溶媒に浸漬させた樹脂量から回収樹脂重量を引いた値を、当該有機溶媒に浸漬させた樹脂量で除した値の100分率を樹脂減少率とする。 The resin weight reduction rate can be measured by the following method. After the above-mentioned cooled solution is filtered with a filter, the solid on the filter is rinsed with the solvent, washed with acetone several times and then dried to recover the resin sample on the filter. The weight of the recovered resin was measured, and the value obtained by subtracting the recovered resin weight from the amount of the resin immersed in the organic solvent was divided by the amount of the resin immersed in the organic solvent. To do.

沈殿重合溶媒としては、アセトン、メチルエチルケトン、ヘキサン、酢酸ブチル等の非ハロゲン系有機溶媒、ジクロロメタン、クロロホルム等の塩素系有機溶媒のほか、分子内にフッ素原子を含む有機溶媒が挙げられる。 Examples of the precipitation polymerization solvent include non-halogen organic solvents such as acetone, methyl ethyl ketone, hexane and butyl acetate, chlorine organic solvents such as dichloromethane and chloroform, and organic solvents containing a fluorine atom in the molecule.

さらに、沈殿重合溶媒としてはラジカル重合において連鎖移動反応が生じにくく、重合収率に優れ、高分子量体を得やすいことから分子内にフッ素原子と水素原子を含む有機溶媒が好ましい。具体的な、分子内にフッ素原子と水素原子を含む沈殿重合溶媒としては、1,1,2,2−テトラフルオロエチル−2,2,2−トリフルオロエチルエーテル、2,2,2−トリフルオロエタノール、1,1,1,3,3,3−ヘキサフルオロイソプロパノール、1,2,2,3,3,4,4−ヘプタフルオロシクロペンタン、1H,1H−ペンタフルオロプロパノール、1H,1H−ヘプタフルオロブタノール、2−パーフルオロブチルエタノール、4,4,4−トリフルオロブタノール、1H,1H,3H−テトラフルオロプロパノール、1H,1H,5H−オクタフルオロプロパノール、1H,1H,7H−ドデカフルオロヘプタノール、1H,1H,3H−ヘキサフルオロブタノール、2,2,3,3,3−ペンタフルオロプロピルジフルオロメチルエーテル、2,2,3,3,3−ペンタフルオロプロピル−1,1,2,2−テトラフルオロエチルエーテル、1,1,2,2−テトラフルオロエチルエチルエーテル、1,1,2,2−テトラフルオロエチル−2,2,3,3−テトラフルオロプロピルエーテル、ヘキサフルオロイソプロピルメチルエーテル、1,1,3,3,3−ペンタフルオロ−2−トリフルオロメチルプロピルメチルエーテル、1,1,2,3,3,3−ヘキサフルオロプロピルメチルエーテル、1,1,2,3,3,3−ヘキサフルオロプロピルエチルエーテル、2,2,3,4,4,4−ヘキサフルオロブチルジフルオロメチルエーテルなどが挙げられる。 Further, as the precipitation polymerization solvent, an organic solvent containing a fluorine atom and a hydrogen atom in the molecule is preferable because a chain transfer reaction does not easily occur in radical polymerization, the polymerization yield is excellent, and a high molecular weight polymer is easily obtained. Specific precipitation polymerization solvents containing a fluorine atom and a hydrogen atom in the molecule include 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether and 2,2,2-trifluoroethyl ether. Fluoroethanol, 1,1,1,3,3,3-hexafluoroisopropanol, 1,2,2,3,3,4,4-heptafluorocyclopentane, 1H,1H-pentafluoropropanol, 1H,1H- Heptafluorobutanol, 2-perfluorobutylethanol, 4,4,4-trifluorobutanol, 1H,1H,3H-tetrafluoropropanol, 1H,1H,5H-octafluoropropanol, 1H,1H,7H-dodecafluorohepta Nol, 1H,1H,3H-hexafluorobutanol, 2,2,3,3,3-pentafluoropropyl difluoromethyl ether, 2,2,3,3,3-pentafluoropropyl-1,1,2,2 -Tetrafluoroethyl ether, 1,1,2,2-tetrafluoroethyl ethyl ether, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether, hexafluoroisopropyl methyl ether , 1,1,3,3,3-pentafluoro-2-trifluoromethylpropyl methyl ether, 1,1,2,3,3,3-hexafluoropropyl methyl ether, 1,1,2,3,3 , 3-hexafluoropropyl ethyl ether, 2,2,3,4,4,4-hexafluorobutyl difluoromethyl ether and the like.

なかでも、1,1,2,2−テトラフルオロエチル−2,2,2−トリフルオロエチルエーテル、2,2,2−トリフルオロエタノール、1,1,1,3,3,3−ヘキサフルオロイソプロパノール、1,2,2,3,3,4,4−ヘプタフルオロシクロペンタンが好ましく、重合収率に優れ、高分子量体を得やすいことから、1,2,2,3,3,4,4−ヘプタフルオロシクロペンタンが好ましい。沈殿重合溶媒の分子内のフッ素原子と水素原子の比率としては、重合収率に優れることから原子の個数比でフッ素原子:水素原子=1:9〜9:1であることが好ましく、1:9〜7:3であることが更に好ましく、4:6〜7:3であることが更に好ましい。 Among them, 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, 2,2,2-trifluoroethanol, 1,1,1,3,3,3-hexafluoro Isopropanol and 1,2,2,3,3,4,4-heptafluorocyclopentane are preferable, because they are excellent in polymerization yield and easy to obtain a high molecular weight substance, 1,2,2,3,3,4, 4-heptafluorocyclopentane is preferred. The ratio of fluorine atom to hydrogen atom in the molecule of the precipitation polymerization solvent is preferably fluorine atom:hydrogen atom=1:9 to 9:1 in terms of the number ratio of atoms, since the polymerization yield is excellent, and 1: It is more preferably 9 to 7:3, further preferably 4:6 to 7:3.

沈殿重合溶媒としては、重合収率に優れることから分子内にフッ素原子と水素原子を含み、該溶媒中の水素原子の含有量が該溶媒分子の重量に対し1重量%以上が好ましく、1.5重量%以上が更に好ましい。また、重合収率に優れ、高分子量体を得やすいことから1重量%以上5重量%以下が好ましく、1.5重量%以上4重量%以下が好ましい。また、沈殿重合溶媒としては、重合収率に優れ、高分子量体を得やすいことから分子内に塩素原子を含まないものが好ましい。 As the precipitation polymerization solvent, a fluorine atom and a hydrogen atom are contained in the molecule because the polymerization yield is excellent, and the content of hydrogen atoms in the solvent is preferably 1% by weight or more based on the weight of the solvent molecule. It is more preferably 5% by weight or more. In addition, it is preferably 1% by weight or more and 5% by weight or less, and more preferably 1.5% by weight or more and 4% by weight or less, because the polymerization yield is excellent and a high molecular weight polymer is easily obtained. Further, as the precipitation polymerization solvent, those which do not contain a chlorine atom in the molecule are preferable because they are excellent in polymerization yield and can easily obtain a high molecular weight product.

一般式(3)で表される単量体と沈殿重合溶媒の比率としては、生産性に優れ、流動特性に優れる粒子が得られることから、重量比で単量体:沈殿重合溶媒=1:99〜50:50であることが好ましく、5:95〜40:60であることが更に好ましく、5:95〜30:70であることが更に好ましい。 Regarding the ratio of the monomer represented by the general formula (3) and the precipitation polymerization solvent, since particles having excellent productivity and excellent flow characteristics can be obtained, the weight ratio of monomer:precipitation polymerization solvent=1: It is preferably from 99 to 50:50, more preferably from 5:95 to 40:60, even more preferably from 5:95 to 30:70.

ラジカル重合を行う際のラジカル重合開始剤としては、例えば、ベンゾイルパーオキサイド、ラウリルパーオキサイド、オクタノイルパーオキサイド、アセチルパーオキサイド、ジ−tetr−ブチルパーオキサイド、tetr−ブチルクミルパーオキサイド、ジクミルパーオキサイド、tetr−ブチルパーオキシアセテート、パーフルオロ(ジ−tetr−ブチルパーオキサイド)、ビス(2,3,4,5,6−ペンタフルオロベンゾイル)パーオキサイド、tetr−ブチルパーオキシベンゾエート、tetr−ブチルパーピバレート等の有機過酸化物;2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2−ブチロニトリル)、2,2’−アゾビスイソブチロニトリル、ジメチル−2,2’−アゾビスイソブチレート、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)等のアゾ系開始剤等が挙げられる。 Examples of the radical polymerization initiator when performing radical polymerization include, for example, benzoyl peroxide, lauryl peroxide, octanoyl peroxide, acetyl peroxide, di-tetr-butyl peroxide, tetr-butyl cumyl peroxide, dicumyl peroxide. Oxide, tetr-butylperoxyacetate, perfluoro(di-tetr-butylperoxide), bis(2,3,4,5,6-pentafluorobenzoyl)peroxide, tetr-butylperoxybenzoate, tetr-butyl Organic peroxides such as perpivalate; 2,2′-azobis(2,4-dimethylvaleronitrile), 2,2′-azobis(2-butyronitrile), 2,2′-azobisisobutyronitrile, Examples thereof include azo initiators such as dimethyl-2,2'-azobisisobutyrate and 1,1'-azobis(cyclohexane-1-carbonitrile).

本発明の製造方法は、一般式(3)で表される単量体が一般式(5)で表されるパーフルオロ(4−メチル−2−メチレン−1,3−ジオキソラン)であり、一般式(4)で表される残基単位が一般式(6)で表されるパーフルオロ(4−メチル−2−メチレン−1,3−ジオキソラン)残基単位であることが好ましい。 In the production method of the present invention, the monomer represented by the general formula (3) is perfluoro(4-methyl-2-methylene-1,3-dioxolane) represented by the general formula (5), The residue unit represented by the formula (4) is preferably a perfluoro(4-methyl-2-methylene-1,3-dioxolane) residue unit represented by the general formula (6).

本発明の樹脂粒子は、成形加工時に発泡しにくい樹脂粒子となることから、250℃加熱時の重量減少量が1重量%以下であることが好ましく、0.5重量%以下であることが好ましい。また、250℃加熱時の重量減少量の最小量については特に限定は無いが、例えば、0.001重量%以上を例示できる。また、本発明の樹脂粒子は、成形加工時に発泡しにくい樹脂粒子となることから、樹脂中に含まれる残存溶媒量が1重量%以下であることが好ましく、0.5重量%以下であることが好ましい。ここで、250℃加熱時の重量減少量とは、TG−DTAを用いて、エアー気流下で10℃/minで40℃から昇温した際の250℃における重量減少量を示し、(1−(250℃におけるサンプル重量)/(秤量したサンプル重量))×100)から求められる。 Since the resin particles of the present invention are resin particles that are less likely to foam during molding, the weight loss upon heating at 250° C. is preferably 1% by weight or less, more preferably 0.5% by weight or less. .. The minimum amount of weight loss when heated at 250° C. is not particularly limited, but may be 0.001% by weight or more, for example. Further, since the resin particles of the present invention are resin particles that are less likely to foam during molding, the residual solvent content in the resin is preferably 1% by weight or less, and 0.5% by weight or less. Is preferred. Here, the weight reduction amount at the time of heating at 250° C. refers to the weight reduction amount at 250° C. when the temperature is raised from 40° C. at 10° C./min in an air stream using TG-DTA, and (1- (Sample weight at 250° C.)/(weighed sample weight))×100).

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.


<体積平均粒子径>
マイクロトラック社製MT3000を用い、分散媒としてメタノ−ルを使用して体積平均粒子径(単位:μm)を測定した。

<Volume average particle size>
The volume average particle diameter (unit: μm) was measured using MT3000 manufactured by Microtrac Co., Ltd., using methanol as a dispersion medium.

<10%粒子径>
マイクロトラック社製MT3000を用い、分散媒としてメタノ−ルを使用して10%粒子径(単位:μm)を測定した。
<10% particle size>
A 10% particle size (unit: μm) was measured using MT3000 manufactured by Microtrac and using methanol as a dispersion medium.

<90%粒子径>
マイクロトラック社製MT3000を用い、分散媒としてメタノ−ルを使用して90%粒子径(単位:μm)を測定した。
<90% particle size>
90% particle size (unit: μm) was measured using MT3000 manufactured by Microtrac Co., Ltd., using methanol as a dispersion medium.

<流動性>
樹脂の形状が粒子状であった場合を良好(〇)、粒子状ではなかった場合を不良(×)とした。
<Liquidity>
When the shape of the resin was particulate, it was evaluated as good (◯), and when it was not particulate, it was evaluated as bad (x).

<嵩密度>
メスシリンダーにおける50mLの標線まで、メスシリンダーに衝撃を加えずに、樹脂粒子を落下させ充填した。この体積50mLあたりの樹脂粒子の重量(g)を計量した。樹脂粒子の重量を体積で除して、嵩密度(g/mL)を算出した。
<bulk density>
The resin particles were dropped and filled up to the mark line of 50 mL in the graduated cylinder without impacting the graduated cylinder. The weight (g) of the resin particles per 50 mL of this volume was measured. The bulk density (g/mL) was calculated by dividing the weight of the resin particles by the volume.

<充填性>
嵩密度が0.2g/mL以上を良好(〇)、0.2g/mL未満を不良(×)とした。
<Fillability>
A bulk density of 0.2 g/mL or more was rated as good (◯), and a bulk density of less than 0.2 g/mL was rated as poor (x).

<重量平均分子量Mw>
東ソー(株)製のカラムTSKgel SuperHZM−M、RI検出器を備えたゲルパーミッションクロマトグラフィーを用いて測定を行った。溶離液としてアサヒクリンAK−225(旭硝子株式会社製)に、AK−225に対して10wt%の1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール(和光純薬工業製)を添加したものを用いた。標準試料としてAgilent製の標準ポリメタクリル酸メチルを用い、試料と標準試料の溶出時間からポリメタクリル酸メチル換算の重量平均分子量Mwを算出した。
<Weight average molecular weight Mw>
The measurement was performed using a column TSKgel SuperHZM-M manufactured by Tosoh Corporation and gel permeation chromatography equipped with an RI detector. Asahi Klin AK-225 (manufactured by Asahi Glass Co., Ltd.) as an eluent, and 10 wt% of 1,1,1,3,3,3-hexafluoro-2-propanol (manufactured by Wako Pure Chemical Industries, Ltd.) with respect to AK-225. Was used. A standard polymethylmethacrylate manufactured by Agilent was used as a standard sample, and the weight average molecular weight Mw in terms of polymethylmethacrylate was calculated from the elution time of the sample and the standard sample.

<250℃加熱重量減少量>
アルミ製サンプルパン(株式会社日立ハイテクサイエンス社製SSC000E030)にサンプル約10〜15mgを秤量し、TG/DTA装置(株式会社日立ハイテクサイエンス社製TG/DTA6200AST2)にて、計装エアー気流下(160mL/min)で40℃から300℃まで10℃/minで昇温し、250℃における重量減少量(1−(250℃におけるサンプル重量)/(秤量したサンプル重量))×100)を求め、250℃加熱重量減少量とした。
<250°C heating weight loss>
About 10 to 15 mg of the sample is weighed in an aluminum sample pan (SSC000E030 manufactured by Hitachi High-Tech Science Co., Ltd.) and is measured by a TG/DTA device (TG/DTA6200AST2 manufactured by Hitachi High-Tech Science Co., Ltd.) under an instrument air flow (160 mL). /Min), the temperature is increased from 40°C to 300°C at 10°C/min, and the weight loss amount at 250°C (1-(sample weight at 250°C)/(weighed sample weight)) x 100) is calculated to obtain 250 The weight loss by heating at ℃ was used.

<安息角>
サンプル瓶に樹脂粉末を7ml充填し、直径4cmの円形の台(ガラス製)の上に、ガラス製粉末漏斗(アズワン株式会社製、漏斗上部の口径50mm、漏斗下部の口径10mm、漏斗全長100mm、漏斗足部分の高さ40mm)を粉末漏斗の下端が円形の台から4cmの高さとなるよう固定し、漏斗を用い、樹脂粉末を漏斗の上端の高さから落下させ、堆積したときにできる山の斜面の角度(°)を分度器で測定した(比較例については樹脂粉末の流動性が悪いため、粉末漏斗を使用せず樹脂粉末を落下させた。)
<Angle of repose>
A sample bottle was filled with 7 ml of resin powder, and on a circular base (made of glass) having a diameter of 4 cm, a glass powder funnel (manufactured by AS ONE Co., Ltd., the diameter of the upper part of the funnel was 50 mm, the diameter of the lower part of the funnel was 10 mm, and the total length of the funnel was 100 mm, The height of the funnel foot (40 mm) is fixed so that the lower end of the powder funnel is 4 cm above the circular base, and the funnel is used to drop the resin powder from the height of the upper end of the funnel. The angle (°) of the slope was measured by a protractor (in the comparative example, the resin powder was not flowable, so the resin powder was dropped without using a powder funnel).

(実施例1)パーフルオロ(4−メチル−2−メチレン−1,3−ジオキソラン)樹脂粒子の製造
アンカー型攪拌翼、窒素導入管および温度計を備えた1LのSUS316製オートクレーブの内部を窒素置換した。開始剤としてビス(2,3,4,5,6−ペンタフルオロベンゾイル)パーオキサイド1.288g(0.00305モル)、単量体としてパーフルオロ(4−メチル−2−メチレン−1,3−ジオキソラン)150.0g(0.615モル)、沈殿重合溶媒としてアサヒクリンAE−3000(旭硝子製、1,1,2,2−テトラフルオロエチル−2,2,2−トリフルオロエチルエーテル、溶媒分子中の水素原子の含有量:1.51重量%、溶媒分子中のフッ素原子:水素原子=7:3(個数比))を1340g加え、攪拌下55℃で24時間保持することで沈殿重合を行った。室温まで冷却し、精製した樹脂粒子を含む液を濾別し、アセトンで洗浄し、真空乾燥することよりパーフルオロ(4−メチル−2−メチレン−1,3−ジオキソラン)樹脂粒子(樹脂A)を得た(収率:56%)。得られた樹脂粒子の形状、体積平均粒子径、10%粒子径、90%粒子径および嵩密度、安息角を表1に示す。得られた樹脂粒子は流動性、充填性に優れるものであった。得られた樹脂Aの重量平均分子量Mwは4.4×105であった。
(Example 1) Production of perfluoro(4-methyl-2-methylene-1,3-dioxolane) resin particles The inside of a 1 L SUS316 autoclave equipped with an anchor-type stirring blade, a nitrogen introduction tube and a thermometer was replaced with nitrogen. did. 1.288 g (0.00305 mol) of bis(2,3,4,5,6-pentafluorobenzoyl)peroxide as an initiator and perfluoro(4-methyl-2-methylene-1,3-) as a monomer Dioxolane) 150.0 g (0.615 mol), Asahi Klin AE-3000 (manufactured by Asahi Glass, 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, solvent molecule as a precipitation polymerization solvent) The content of hydrogen atoms in the solvent was 1.51% by weight, and 1340 g of fluorine atoms:hydrogen atoms in the solvent molecule=7:3 (number ratio) was added, and precipitation polymerization was carried out by maintaining the mixture at 55° C. for 24 hours while stirring. went. After cooling to room temperature, the liquid containing the purified resin particles is filtered off, washed with acetone, and vacuum dried to obtain perfluoro(4-methyl-2-methylene-1,3-dioxolane) resin particles (Resin A). Was obtained (yield: 56%). Table 1 shows the shape, volume average particle diameter, 10% particle diameter, 90% particle diameter, bulk density, and angle of repose of the obtained resin particles. The resin particles obtained were excellent in fluidity and filling property. The weight average molecular weight Mw of Resin A thus obtained was 4.4×10 5 .

(比較例1)パーフルオロ(4−メチル−2−メチレン−1,3−ジオキソラン)樹脂の製造
容量75mLのガラスアンプルに開始剤としてビス(2,3,4,5,6−ペンタフルオロベンゾイル)パーオキサイド0.017g(0.0000407モル)、単量体としてパーフルオロ(4−メチル−2−メチレン−1,3−ジオキソラン)5.0g(0.0205モル)、重合溶媒としてヘキサフルオロベンゼン(溶媒分子中の水素原子の含有量:0重量%、溶媒分子中のフッ素原子:水素原子=10:0(個数比))8.2gを入れ、窒素置換と抜圧を繰り返したのち減圧状態で熔封した。このアンプルを55℃の恒温槽に入れ、24時間保持することによりラジカル溶液重合を行ったところ、樹脂が溶解した粘稠な液が得られた。室温まで冷却後アンプルを開封し、粘度調整のため樹脂溶液をヘキサフルオロベンゼン36gで希釈して樹脂希釈溶液を作成した。アンカー翼を備えたビーカー中にクロロホルム1Lを加え、攪拌下、前記の樹脂希釈溶液を前記クロロホルム中に加えることで樹脂を析出させ、真空乾燥することにより、パーフルオロ(4−メチル−2−メチレン−1,3−ジオキソラン)樹脂(樹脂D)を得た(収率:61%)。得られた樹脂Dの重量平均分子量Mwは3.5×105であった。得られた樹脂の形状、嵩密度、安息角を表1に示す。樹脂が不定形であるため、体積平均粒子径は測定できなかった。場合は得られた樹脂は流動性、充填性に課題があるものであった。
(Comparative Example 1) Production of perfluoro(4-methyl-2-methylene-1,3-dioxolane) resin Bis(2,3,4,5,6-pentafluorobenzoyl) was used as an initiator in a glass ampoule having a volume of 75 mL. 0.017 g (0.0000407 mol) of peroxide, 5.0 g (0.0205 mol) of perfluoro(4-methyl-2-methylene-1,3-dioxolane) as a monomer, hexafluorobenzene( Content of hydrogen atom in solvent molecule: 0% by weight, fluorine atom in solvent molecule: hydrogen atom = 10:0 (number ratio)) 8.2 g was added, and nitrogen substitution and depressurization were repeated, and then under reduced pressure. It was sealed. This ampoule was placed in a constant temperature bath at 55° C. and held for 24 hours for radical solution polymerization, whereby a viscous liquid in which a resin was dissolved was obtained. After cooling to room temperature, the ampoule was opened and the resin solution was diluted with 36 g of hexafluorobenzene to adjust the viscosity to prepare a resin diluted solution. 1 L of chloroform was added to a beaker equipped with an anchor blade, and the resin was diluted by adding the resin diluted solution to the chloroform under stirring to precipitate the resin, followed by vacuum drying to obtain perfluoro(4-methyl-2-methylene). -1,3-Dioxolane) resin (Resin D) was obtained (yield: 61%). The weight average molecular weight Mw of the obtained resin D was 3.5×10 5 . Table 1 shows the shape, bulk density, and angle of repose of the obtained resin. The volume average particle diameter could not be measured because the resin was amorphous. In some cases, the obtained resin had problems in fluidity and filling property.

(実施例2)パーフルオロ(4−メチル−2−メチレン−1,3−ジオキソラン)樹脂粒子の製造
アンカー型攪拌翼、窒素導入管および温度計を備えた1LのSUS316製オートクレーブの内部を窒素置換した。開始剤としてビス(2,3,4,5,6−ペンタフルオロベンゾイル)パーオキサイド0.346g(0.000820モル)、単量体としてパーフルオロ(4−メチル−2−メチレン−1,3−ジオキソラン)100.0g(0.410モル)、沈殿重合溶媒として2,2,2−トリフルオロエタノール(溶媒分子中の水素原子の含有量:3.03重量%、溶媒分子中のフッ素原子:水素原子=5:5(個数比)を890g加え、攪拌下55℃で24時間保持することで沈殿重合を行った。室温まで冷却し、精製した樹脂粒子を含む液を濾別し、アセトンで洗浄し、真空乾燥することよりパーフルオロ(4−メチル−2−メチレン−1,3−ジオキソラン)樹脂粒子(樹脂B)を得た(収率:78%)。得られた樹脂粒子の形状、体積平均粒子径、10%粒子径、90%粒子径および嵩密度、安息角を表1に示す。得られた樹脂粒子は流動性、充填性に優れるものであった。得られた樹脂Bの重量平均分子量Mwは1.1×105であった。
(Example 2) Production of perfluoro(4-methyl-2-methylene-1,3-dioxolane) resin particles A 1 L SUS316 autoclave equipped with an anchor type stirring blade, a nitrogen introducing tube and a thermometer was replaced with nitrogen. did. 0.346 g (0.000820 mol) of bis(2,3,4,5,6-pentafluorobenzoyl)peroxide as an initiator and perfluoro(4-methyl-2-methylene-1,3-) as a monomer. Dioxolane) 100.0 g (0.410 mol), 2,2,2-trifluoroethanol as a precipitation polymerization solvent (hydrogen atom content in solvent molecule: 3.03% by weight, fluorine atom in solvent molecule: hydrogen) 890 g of atoms=5:5 (number ratio) were added, and precipitation polymerization was carried out by stirring and holding at 55° C. for 24 hours.Cooling to room temperature, filtering the liquid containing purified resin particles and washing with acetone Then, vacuum drying was performed to obtain perfluoro(4-methyl-2-methylene-1,3-dioxolane) resin particles (resin B) (yield: 78%). The average particle size, 10% particle size, 90% particle size, bulk density, and angle of repose are shown in Table 1. The resin particles obtained were excellent in fluidity and filling property. The average molecular weight Mw was 1.1×10 5 .

(実施例3)パーフルオロ(4−メチル−2−メチレン−1,3−ジオキソラン)樹脂粒子の製造
アンカー型攪拌翼、窒素導入管および温度計を備えた1LのSUS316製オートクレーブの内部を窒素置換した。開始剤としてビス(2,3,4,5,6−ペンタフルオロベンゾイル)パーオキサイド0.519g(0.00123モル)、単量体としてパーフルオロ(4−メチル−2−メチレン−1,3−ジオキソラン)150.0g(0.615モル)、沈殿重合溶媒としてクロロホルムを1150g加え、攪拌下55℃で24時間保持することで沈殿重合を行った。室温まで冷却し、精製した樹脂粒子を含む液を濾別し、アセトンで洗浄し、真空乾燥することよりパーフルオロ(4−メチル−2−メチレン−1,3−ジオキソラン)樹脂粒子(樹脂C)を得た(収率:19%)。得られた樹脂粒子の形状、体積平均粒子径、10%粒子径、90%粒子径および嵩密度、安息角を表1に示す。得られた樹脂粒子は流動性、充填性に優れるものであった。得られた樹脂Cの重量平均分子量Mwは7.0×103であった。
(Example 3) Production of perfluoro(4-methyl-2-methylene-1,3-dioxolane) resin particles The inside of a 1 L SUS316 autoclave equipped with an anchor type stirring blade, a nitrogen introducing tube and a thermometer was replaced with nitrogen. did. 0.519 g (0.00123 mol) of bis(2,3,4,5,6-pentafluorobenzoyl)peroxide as an initiator and perfluoro(4-methyl-2-methylene-1,3-) as a monomer. Dioxolane) (150.0 g, 0.615 mol) and chloroform (1150 g) as a precipitation polymerization solvent were added, and the mixture was maintained at 55° C. for 24 hours with stirring to carry out precipitation polymerization. After cooling to room temperature, the liquid containing the purified resin particles is filtered off, washed with acetone, and vacuum dried to obtain perfluoro(4-methyl-2-methylene-1,3-dioxolane) resin particles (Resin C). Was obtained (yield: 19%). Table 1 shows the shape, volume average particle diameter, 10% particle diameter, 90% particle diameter, bulk density, and angle of repose of the obtained resin particles. The resin particles obtained were excellent in fluidity and filling property. The weight average molecular weight Mw of the obtained resin C was 7.0×10 3 .

(実施例4)パーフルオロ(4−メチル−2−メチレン−1,3−ジオキソラン)樹脂粒子の製造
アンカー型攪拌翼、窒素導入管および温度計を備えた1LのSUS316製オートクレーブの内部を窒素置換した。開始剤としてビス(2,3,4,5,6−ペンタフルオロベンゾイル)パーオキサイド1.038g(0.00246モル)、単量体としてパーフルオロ(4−メチル−2−メチレン−1,3−ジオキソラン)300.0g(1.23モル)、沈殿重合溶媒としてゼオローラ−H(日本ゼオン製、1,2,2,3,3,4,4−ヘプタフルオロシクロペンタン、溶媒分子中の水素原子の含有量:1.55重量%、溶媒分子中のフッ素原子:水素原子=7:3(個数比))を1200g加え、攪拌下55℃で24時間保持することで沈殿重合を行った。室温まで冷却し、精製した樹脂粒子を含む液を濾別し、アセトンで洗浄し、真空乾燥することよりパーフルオロ(4−メチル−2−メチレン−1,3−ジオキソラン)樹脂粒子(樹脂E)を得た(収率:86%)。得られた樹脂粒子の形状、体積平均粒子径、10%粒子径、90%粒子径および嵩密度、安息角を表2に示す。得られた樹脂粒子は流動性、充填性に優れるものであった。得られた樹脂Eの重量平均分子量Mwは4.9×105であった。
(Example 4) Production of perfluoro(4-methyl-2-methylene-1,3-dioxolane) resin particles A 1 L SUS316 autoclave equipped with an anchor type stirring blade, a nitrogen introducing tube and a thermometer was replaced with nitrogen. did. 1.038 g (0.00246 mol) of bis(2,3,4,5,6-pentafluorobenzoyl)peroxide as an initiator and perfluoro(4-methyl-2-methylene-1,3-) as a monomer. Dioxolane) 300.0 g (1.23 mol), Zeorora-H (manufactured by Zeon Corporation, 1,2,2,3,3,4,4-heptafluorocyclopentane as a precipitation polymerization solvent, hydrogen atom in the solvent molecule) Content: 1.55% by weight, 1200 g of fluorine atom:hydrogen atom in solvent molecule=7:3 (number ratio) was added, and precipitation polymerization was carried out by maintaining the mixture at 55° C. for 24 hours with stirring. After cooling to room temperature, the liquid containing the purified resin particles was filtered off, washed with acetone, and dried in vacuum to obtain perfluoro(4-methyl-2-methylene-1,3-dioxolane) resin particles (Resin E). Was obtained (yield: 86%). Table 2 shows the shape, volume average particle diameter, 10% particle diameter, 90% particle diameter, bulk density, and angle of repose of the obtained resin particles. The resin particles obtained were excellent in fluidity and filling property. The weight average molecular weight Mw of the obtained resin E was 4.9×10 5 .

(実施例5)パーフルオロ(4−メチル−2−メチレン−1,3−ジオキソラン)樹脂粒子の製造
アンカー型攪拌翼、窒素導入管および温度計を備えた1LのSUS316製オートクレーブの内部を窒素置換した。開始剤としてビス(2,3,4,5,6−ペンタフルオロベンゾイル)パーオキサイド0.519g(0.00123モル)、単量体としてパーフルオロ(4−メチル−2−メチレン−1,3−ジオキソラン)150.0g(0.615モル)、沈殿重合溶媒として1,1,1,3,3,3−ヘキサフルオロイソプロパノール(溶媒分子中の水素原子の含有量:1.82重量%、溶媒分子中のフッ素原子:水素原子=6:4(個数比))を1340g加え、攪拌下55℃で24時間保持することで沈殿重合を行った。室温まで冷却し、精製した樹脂粒子を含む液を濾別し、アセトンで洗浄し、真空乾燥することよりパーフルオロ(4−メチル−2−メチレン−1,3−ジオキソラン)樹脂粒子(樹脂F)を得た(収率:59%)。得られた樹脂粒子の形状、体積平均粒子径、10%粒子径、90%粒子径および嵩密度、安息角を表2に示す。得られた樹脂粒子は流動性、充填性に優れるものであった。得られた樹脂Fの重量平均分子量Mwは7.9×105であった。
(Example 5) Production of perfluoro(4-methyl-2-methylene-1,3-dioxolane) resin particles The inside of a 1 L SUS316 autoclave equipped with an anchor type stirring blade, a nitrogen introducing tube and a thermometer was replaced with nitrogen. did. 0.519 g (0.00123 mol) of bis(2,3,4,5,6-pentafluorobenzoyl)peroxide as an initiator and perfluoro(4-methyl-2-methylene-1,3-) as a monomer. Dioxolane) 150.0 g (0.615 mol), 1,1,1,3,3,3-hexafluoroisopropanol as a precipitation polymerization solvent (content of hydrogen atoms in solvent molecule: 1.82% by weight, solvent molecule) 1340 g of fluorine atom:hydrogen atom=6:4 (number ratio) therein was added, and precipitation polymerization was carried out by maintaining the mixture at 55° C. for 24 hours with stirring. After cooling to room temperature, the liquid containing the purified resin particles was filtered off, washed with acetone, and dried in vacuum to obtain perfluoro(4-methyl-2-methylene-1,3-dioxolane) resin particles (resin F). Was obtained (yield: 59%). Table 2 shows the shape, volume average particle diameter, 10% particle diameter, 90% particle diameter, bulk density, and angle of repose of the obtained resin particles. The resin particles obtained were excellent in fluidity and filling property. The weight average molecular weight Mw of the obtained resin F was 7.9×10 5 .

(参考例1)
実施例1で得られた樹脂粒子を10倍量の各種溶媒に50℃で5時間浸漬し、樹脂粒子が残存するかを肉眼で観察した。
(Reference example 1)
The resin particles obtained in Example 1 were immersed in 10 times the amount of various solvents at 50° C. for 5 hours, and it was visually observed whether the resin particles remained.

・樹脂粒子の残存が肉眼で確認された有機溶媒は以下の通りである:
1,1,2,2−テトラフルオロエチル−2,2,2−トリフルオロエチルエーテル、2,2,2−トリフルオロエタノール、1,1,1,3,3,3−ヘキサフルオロイソプロパノール、1,2,2,3,3,4,4−ヘプタフルオロシクロペンタン、クロロホルム。
-The organic solvents in which residual resin particles were visually confirmed are as follows:
1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, 2,2,2-trifluoroethanol, 1,1,1,3,3,3-hexafluoroisopropanol, 1 , 2,2,3,3,4,4-heptafluorocyclopentane, chloroform.

その後、25℃に冷却し、フィルターろ過後、該溶媒によりリンス洗浄することにより樹脂粒子を取出した後、樹脂粒子を10倍量のアセトンで2回洗浄し、真空乾燥し、乾燥重量から回収率を求めたところ、いずれも回収率は90%以上であった。また、上記で得られたろ液を留去し、ろ液中の固形分量を求めたところ、用いた樹脂粒子に対しろ液中の固形分量は10%未満であった。上記の結果より、樹脂重量の重量減少率は10重量%未満であることが確認された。 Then, after cooling to 25° C. and filtering with a filter, the resin particles were taken out by rinsing and washing with the solvent, and then the resin particles were washed twice with 10 times the amount of acetone, vacuum dried, and the recovery rate from the dry weight. Was found to be 90% or more. When the filtrate obtained above was distilled off and the solid content in the filtrate was determined, the solid content in the filtrate was less than 10% based on the resin particles used. From the above results, it was confirmed that the weight reduction rate of the resin weight was less than 10% by weight.

(参考例2)
実施例1で得られた樹脂粒子を10倍量の以下に記す各種溶媒に50℃で5時間浸漬し、樹脂粒子が残存するかを肉眼で観察した。
(Reference example 2)
The resin particles obtained in Example 1 were immersed in a 10-fold amount of the various solvents described below at 50° C. for 5 hours, and it was visually observed whether the resin particles remained.

・樹脂粒子の残存が肉眼でされなかった有機溶媒は以下の通りである:
ヘキサフルオロベンゼン、CF3CF2CHCl2(溶媒分子中の水素原子の含有量:0.55重量%、溶媒分子中のフッ素原子:水素原子=8:2(個数比))
50℃における肉眼観察の結果、いずれの溶液も透明であり、濁りも殆ど確認されなかった。その後、25℃に冷却し、フィルターろ過後、該溶媒によりリンス洗浄し、フィルターを真空乾燥し、フィルターの重量増加量から回収率を計算した結果、いずれも5重量%未満であった。上記の結果より、溶媒への浸漬後の樹脂の重量減少率は95重量%以上であることが確認された。
The organic solvents in which the resin particles were not visually observed to remain are as follows:
Hexafluorobenzene, CF 3 CF 2 CHCl 2 (hydrogen atom content in solvent molecule: 0.55% by weight, fluorine atom: hydrogen atom in solvent molecule=8:2 (number ratio))
As a result of visual observation at 50° C., all the solutions were transparent, and turbidity was hardly confirmed. Then, the mixture was cooled to 25° C., filtered with a filter, rinsed with the solvent, the filter was vacuum dried, and the recovery rate was calculated from the weight increase of the filter. As a result, all were less than 5% by weight. From the above results, it was confirmed that the weight loss rate of the resin after immersion in the solvent was 95% by weight or more.

本発明は、流動性、充填性に優れ、加熱重量減少量が小さいフッ素樹脂粒子およびフッ素樹脂粒子の製造方法を提供する。 The present invention provides fluororesin particles which are excellent in fluidity and filling property and have a small heating weight reduction amount, and a method for producing fluororesin particles.

Claims (15)

下記一般式(1)で表される残基単位を含み、体積平均粒子径が5μm以上2000μm以下であることを特徴とする樹脂粒子。
(式(1)中、Rf1、Rf2、Rf3、Rf4はそれぞれ独立してフッ素原子、炭素数1〜7の直鎖状のパーフルオロアルキル基、炭素数3〜7の分岐状のパーフルオロアルキル基または炭素数3〜7の環状のパーフルオロアルキル基からなる群の1種を示す。前記パーフルオロアルキル基はエーテル性酸素原子を有していてもよい。また、Rf1、Rf2、Rf3、Rf4は互いに連結して炭素数4以上8以下の環を形成してもよく、該環はエーテル性酸素原子を含む環であってもよい。)
A resin particle comprising a residue unit represented by the following general formula (1) and having a volume average particle diameter of 5 μm or more and 2000 μm or less.
(In the formula (1), Rf 1 , Rf 2 , Rf 3 and Rf 4 are each independently a fluorine atom, a linear perfluoroalkyl group having 1 to 7 carbon atoms, or a branched perfluoroalkyl group having 3 to 7 carbon atoms. 1 represents one of a group consisting of a perfluoroalkyl group or a cyclic perfluoroalkyl group having a carbon number of 3 to 7. The perfluoroalkyl group may have an etheric oxygen atom, and Rf 1 and Rf. 2 , Rf 3 and Rf 4 may be linked to each other to form a ring having 4 to 8 carbon atoms, and the ring may be a ring containing an etheric oxygen atom.)
前記体積平均粒子径が5μm以上500μm以下である、請求項1に記載の樹脂粒子。 The resin particles according to claim 1, wherein the volume average particle diameter is 5 μm or more and 500 μm or less. 安息角が5°以上60°以下である、請求項1または2に記載の樹脂粒子。 The resin particle according to claim 1 or 2, which has an angle of repose of 5° or more and 60° or less. 前記樹脂粒子は、沈殿重合物である、請求項1乃至3のいずれか一項に記載の樹脂粒子。 The resin particle according to any one of claims 1 to 3, wherein the resin particle is a precipitation polymer. 嵩密度が0.2g/mL以上1.5g/mL以下である、請求項1乃至4のいずれか一項に記載の樹脂粒子。 The resin particle according to any one of claims 1 to 4, which has a bulk density of 0.2 g/mL or more and 1.5 g/mL or less. 250℃加熱時の重量減少量が1重量%以下である、請求項1乃至5のいずれか一項に記載の樹脂粒子。 The resin particles according to any one of claims 1 to 5, wherein the weight loss upon heating at 250°C is 1% by weight or less. 前記樹脂粒子は、乳化剤および/または分散剤を含有しない、請求項1乃至6のいずれか一項に記載の樹脂粒子。 The resin particles according to claim 1, wherein the resin particles do not contain an emulsifier and/or a dispersant. 一般式(1)で表される残基単位が一般式(2)で表されるパーフルオロ(4−メチル−2−メチレン−1,3−ジオキソラン)残基単位である、請求項1乃至7いずれか一項に記載の粒子。
The residue unit represented by the general formula (1) is a perfluoro(4-methyl-2-methylene-1,3-dioxolane) residue unit represented by the general formula (2). The particle according to any one of claims.
ラジカル重合開始剤、下記一般式(3)で表される単量体および有機溶媒の混合物を重合条件下に置いて、一般式(4)で表される残基単位を含む樹脂を得る工程を有し、
前記有機溶媒は、少なくとも前記単量体は溶解し、かつ重合により生じた樹脂の少なくとも一部は溶解せず、樹脂の沈殿を生じる溶媒であり、
前記重合により生じた樹脂は粒子として有機溶媒中に沈殿する、請求項1乃至7いずれか一項に記載の樹脂粒子の製造方法。
(式(3)中、Rf5、Rf6、Rf6、およびRf7はそれぞれ独立してフッ素原子、炭素数1〜7の直鎖状のパーフルオロアルキル基、炭素数3〜7の分岐状のパーフルオロアルキル基または炭素数3〜7の環状のパーフルオロアルキル基からなる群の1種を示す。前記パーフルオロアルキル基はエーテル性酸素原子を有していてもよい。また、Rf5、Rf6、Rf6、およびRf7は互いに連結して炭素数4以上8以下の環を形成してもよく、該環はエーテル性酸素原子を含む環であってもよい。)
(式(4)中のRf5、Rf6、Rf6、およびRf7の定義は、それぞれ式(3)中のRf5、Rf6、Rf6、およびRf7の定義と同じである。)
A step of subjecting a mixture of a radical polymerization initiator, a monomer represented by the following general formula (3) and an organic solvent to polymerization conditions to obtain a resin containing a residue unit represented by the general formula (4). Have,
The organic solvent, at least the monomer is dissolved, and at least a part of the resin produced by the polymerization is not dissolved, is a solvent that causes precipitation of the resin,
The method for producing resin particles according to claim 1, wherein the resin produced by the polymerization is precipitated as particles in an organic solvent.
(In the formula (3), Rf 5 , Rf 6 , Rf 6 , and Rf 7 are each independently a fluorine atom, a linear perfluoroalkyl group having 1 to 7 carbon atoms, or a branched chain having 3 to 7 carbon atoms. Represents a perfluoroalkyl group or a cyclic perfluoroalkyl group having 3 to 7 carbon atoms, wherein the perfluoroalkyl group may have an etheric oxygen atom, and Rf 5 , (Rf 6 , Rf 6 and Rf 7 may be linked to each other to form a ring having 4 to 8 carbon atoms, and the ring may be a ring containing an etheric oxygen atom.)
(Definition of Rf 5, Rf 6, Rf 6 , and Rf 7 in the formula (4) are the same as defined formula (3) Rf 5, Rf 6 , Rf 6, and Rf 7 definitions in.)
前記有機溶媒は、一般式(3)で表される単量体を溶解し、かつ一般式(4)で表される残基単位を含む樹脂を溶解しない有機溶媒である、請求項9に記載の製造方法。 The said organic solvent is an organic solvent which melt|dissolves the monomer represented by General formula (3), but does not dissolve the resin containing the residue unit represented by General formula (4). Manufacturing method. 前記有機溶媒は、一般式(4)で表される残基単位を含む量平均分子量Mwが5×104〜70×104の樹脂粒子をこの樹脂粒子に対して10倍量(w/w)の有機溶媒に50℃で5時間以上浸漬した後に、有機溶媒中に肉眼で樹脂粒子の残存が確認できる有機溶媒である、請求項10に記載の製造方法。 The organic solvent contains resin particles having a weight average molecular weight Mw of 5×10 4 to 70×10 4 including a residue unit represented by the general formula (4), which is 10 times (w/w) the resin particles. 11. The production method according to claim 10, wherein the organic solvent is capable of visually confirming that the resin particles remain in the organic solvent after being immersed in the organic solvent at 50° C. for 5 hours or more. 前記有機溶媒は、一般式(4)で表される残基単位を含む量平均分子量Mwが5×104〜70×104の樹脂粒子をこの樹脂粒子に対して10倍量(w/w)の有機溶媒に50℃で5時間以上浸漬した後に前記溶液を25℃に冷却後に、固体状態として残存する樹脂試料を回収し、樹脂試料の重量減少率が20重量%未満である有機溶媒である、請求項10または11に記載の製造方法。 The organic solvent contains resin particles having a weight average molecular weight Mw of 5×10 4 to 70×10 4 including a residue unit represented by the general formula (4), which is 10 times (w/w) the resin particles. After immersing in the organic solvent of 50) at 50° C. for 5 hours or more, the solution is cooled to 25° C., and the resin sample remaining as a solid state is recovered, and the weight loss rate of the resin sample is less than 20% by weight. The manufacturing method according to claim 10 or 11. 分子内にフッ素原子と水素原子を含む有機溶媒を用いることを特徴とする請求項9乃至12のいずれか一項に記載の製造方法。 13. The production method according to claim 9, wherein an organic solvent containing a fluorine atom and a hydrogen atom is used in the molecule. 溶媒分子内の水素原子の含有量が1重量%以上である有機溶媒を用いることを特徴とする請求項13に記載の製造方法。 The method according to claim 13, wherein an organic solvent having a hydrogen atom content in the solvent molecule of 1% by weight or more is used. 一般式(3)で表される単量体が一般式(5)で表されるパーフルオロ(4−メチル−2−メチレン−1,3−ジオキソラン)であり、一般式(4)で表される残基単位が一般式(6)で表されるパーフルオロ(4−メチル−2−メチレン−1,3−ジオキソラン)残基単位である、請求項9乃至13いずれか一項に記載の製造方法。
The monomer represented by the general formula (3) is perfluoro(4-methyl-2-methylene-1,3-dioxolane) represented by the general formula (5), and is represented by the general formula (4). 14. The production according to any one of claims 9 to 13, wherein the residual unit is a perfluoro(4-methyl-2-methylene-1,3-dioxolane) residual unit represented by the general formula (6). Method.
JP2019171553A 2018-09-28 2019-09-20 Fluororesin particles and method for producing the same Active JP7339830B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP19864320.7A EP3858873A4 (en) 2018-09-28 2019-09-27 Fluororesin, fluororesin particles, and methods for producing these
CN202311186045.8A CN117447634A (en) 2018-09-28 2019-09-27 Fluororesin, fluororesin particle, and method for producing same
CN202311186369.1A CN117447635A (en) 2018-09-28 2019-09-27 Fluororesin, fluororesin particle, and method for producing same
PCT/JP2019/038144 WO2020067421A1 (en) 2018-09-28 2019-09-27 Fluororesin, fluororesin particles, and methods for producing these
CN201980064085.0A CN112771086B (en) 2018-09-28 2019-09-27 Fluororesin, fluororesin particle, and method for producing same
US17/280,624 US11807702B2 (en) 2018-09-28 2019-09-27 Fluororesin, fluororesin particles, and methods for producing these
JP2023073965A JP2023099114A (en) 2018-09-28 2023-04-28 Fluororesin particles and methods for producing the same
JP2023134648A JP2023159307A (en) 2018-09-28 2023-08-22 Fluororesin particle and method for producing the same
US18/471,482 US20240059809A1 (en) 2018-09-28 2023-09-21 Fluororesin, fluororesin particles, and methods for producing these
US18/471,794 US20240076426A1 (en) 2018-09-28 2023-09-21 Fluororesin, fluororesin particles, and methods for producing these

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018183594 2018-09-28
JP2018183594 2018-09-28
JP2019027318 2019-02-19
JP2019027318 2019-02-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2023073965A Division JP2023099114A (en) 2018-09-28 2023-04-28 Fluororesin particles and methods for producing the same
JP2023134648A Division JP2023159307A (en) 2018-09-28 2023-08-22 Fluororesin particle and method for producing the same

Publications (2)

Publication Number Publication Date
JP2020128520A true JP2020128520A (en) 2020-08-27
JP7339830B2 JP7339830B2 (en) 2023-09-06

Family

ID=72175280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019171553A Active JP7339830B2 (en) 2018-09-28 2019-09-20 Fluororesin particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP7339830B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020139093A (en) * 2019-02-28 2020-09-03 東ソー株式会社 Fluorine resin and method for producing the same
US11807702B2 (en) 2018-09-28 2023-11-07 Tosoh Corporation Fluororesin, fluororesin particles, and methods for producing these

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4329154B1 (en) * 1966-04-28 1968-12-13
JPH0834820A (en) * 1994-07-22 1996-02-06 Daikin Ind Ltd Fine powder of meltable high-molecular-weight fluororesin, molded product and production thereof
JPH09512854A (en) * 1994-05-09 1997-12-22 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Copolymers of perhalo-2,2-di-lower alkyl-1,3-dioxole and perfluoro-2-methylene-4-methyl-1,3-dioxolane
WO2004097851A1 (en) * 2003-04-28 2004-11-11 Asahi Glass Company Limited Solid polymeric electrolyte material, process for producing the same and membrane/electrode assembly for solid polymer fuel cell
JP2007504125A (en) * 2003-08-29 2007-03-01 独立行政法人科学技術振興機構 Method for producing fluorine-containing 1,3-dioxolane compound, fluorine-containing 1,3-dioxolane compound, fluorine-containing polymer of fluorine-containing 1,3-dioxolane compound, and optical material or electric material using the polymer
WO2014156996A1 (en) * 2013-03-27 2014-10-02 旭硝子株式会社 End group conversion method and terminal stabilizing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4329154B1 (en) * 1966-04-28 1968-12-13
JPH09512854A (en) * 1994-05-09 1997-12-22 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Copolymers of perhalo-2,2-di-lower alkyl-1,3-dioxole and perfluoro-2-methylene-4-methyl-1,3-dioxolane
JPH0834820A (en) * 1994-07-22 1996-02-06 Daikin Ind Ltd Fine powder of meltable high-molecular-weight fluororesin, molded product and production thereof
WO2004097851A1 (en) * 2003-04-28 2004-11-11 Asahi Glass Company Limited Solid polymeric electrolyte material, process for producing the same and membrane/electrode assembly for solid polymer fuel cell
JP2007504125A (en) * 2003-08-29 2007-03-01 独立行政法人科学技術振興機構 Method for producing fluorine-containing 1,3-dioxolane compound, fluorine-containing 1,3-dioxolane compound, fluorine-containing polymer of fluorine-containing 1,3-dioxolane compound, and optical material or electric material using the polymer
WO2014156996A1 (en) * 2013-03-27 2014-10-02 旭硝子株式会社 End group conversion method and terminal stabilizing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11807702B2 (en) 2018-09-28 2023-11-07 Tosoh Corporation Fluororesin, fluororesin particles, and methods for producing these
JP2020139093A (en) * 2019-02-28 2020-09-03 東ソー株式会社 Fluorine resin and method for producing the same
JP7478370B2 (en) 2019-02-28 2024-05-07 東ソー株式会社 Fluorine resin

Also Published As

Publication number Publication date
JP7339830B2 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
US20240076426A1 (en) Fluororesin, fluororesin particles, and methods for producing these
TWI634138B (en) An amorphous fluorine-containing resin composition and a manufacturing method of thin films
JP7339830B2 (en) Fluororesin particles and method for producing the same
JP5598332B2 (en) Method for producing fluorine-containing polymer particles
JP2016148057A (en) Processing method of fluorine resin pellet
JP2024054374A (en) Manufacturing method of fluororesin
US20240158551A1 (en) Fluororesin
TWI393739B (en) A fluoropolymer and a fluoropolymer composition containing the same
JP7040533B2 (en) Fluorine-containing diene compounds, fluorine-containing polymers and methods for producing them
CN112771086B (en) Fluororesin, fluororesin particle, and method for producing same
JP2023099114A (en) Fluororesin particles and methods for producing the same
US20230303731A1 (en) Method for producing polytetrafluoroethylene and composition containing polytetrafluoroethylene
JP2022179573A (en) Production method of fluororesin particles containing fluorine-containing aliphatic ring structure
US20220289877A1 (en) Polytetrafluoroethylene production method
CN115677887B (en) Fluororesin, process for producing the same, and process for producing fluororesin particles
JP7478370B2 (en) Fluorine resin
JP7295507B2 (en) Method for producing fluororesin
JP2021155736A (en) Fluororesin and method for producing the same
JP2011032363A (en) Method for producing fluorine-containing copolymer
US20240117087A1 (en) Fluoropolymer production method, polytetrafluoroethylene production method and composition
JP2021088661A (en) Method for producing optical resin composition, and optical resin composition
JP2020139092A (en) Method for producing fluorine resin
JP2005206714A (en) Method for producing tetrafluoroethylene polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230825

R151 Written notification of patent or utility model registration

Ref document number: 7339830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151