JP2020127397A - Method for producing proteoglycan - Google Patents

Method for producing proteoglycan Download PDF

Info

Publication number
JP2020127397A
JP2020127397A JP2020016006A JP2020016006A JP2020127397A JP 2020127397 A JP2020127397 A JP 2020127397A JP 2020016006 A JP2020016006 A JP 2020016006A JP 2020016006 A JP2020016006 A JP 2020016006A JP 2020127397 A JP2020127397 A JP 2020127397A
Authority
JP
Japan
Prior art keywords
proteoglycan
acid
mass
acidic
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020016006A
Other languages
Japanese (ja)
Other versions
JP7295572B2 (en
Inventor
達治 高橋
Tatsuji Takahashi
達治 高橋
田中 友香
Tomoka Tanaka
友香 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ichimaru Pharcos Co Ltd
Original Assignee
Ichimaru Pharcos Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ichimaru Pharcos Co Ltd filed Critical Ichimaru Pharcos Co Ltd
Publication of JP2020127397A publication Critical patent/JP2020127397A/en
Priority to JP2023091551A priority Critical patent/JP2023101781A/en
Application granted granted Critical
Publication of JP7295572B2 publication Critical patent/JP7295572B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

To produce proteoglycan having excellent physiological effect efficiently and high-purity from a cartilage tissue of an animal.SOLUTION: A method for producing proteoglycan includes: a process of extracting proteoglycan from a cartilage tissue of an animal in acid solution of pH5.5 or less in the presence or absence of 1 mass% or less of protease with respect to the total amount and obtaining crude extract containing proteoglycan; and a process of removing lipid and substance having the molecular weight of 50,000 or less from the crude extract to refine proteoglycan.SELECTED DRAWING: Figure 1

Description

本発明は、動物の軟骨組織からプロテオグリカンをより効率的かつ高純度で抽出するプロテオグリカンの製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing proteoglycan from animal cartilage tissue in a more efficient and highly pure manner.

プロテオグリカン(以下「PG」と称する場合がある。)は、1本のコアタンパク質にコンドロイチン硫酸、ケラタン硫酸等のグリコサミノグリカンが数本から数十本、共有結合した糖タンパク質であり、細胞外マトリックスの一つとして皮膚や軟骨など体内に広く分布している。軟骨中のPGは、コラーゲンやヒアルロン酸と共に凝集体を形成しており、代表的な軟骨型PGは、アグリカンと称される。アグリカンはコアタンパク質に大量のグリコサミノグリカン糖鎖が結合すると共に、そのN末端側には、ヒアルロン酸およびリンクタンパク質の結合領域を有する。 Proteoglycan (hereinafter sometimes referred to as “PG”) is a glycoprotein obtained by covalently binding several to several tens of glycosaminoglycans such as chondroitin sulfate and keratan sulfate to one core protein, which is extracellular. As one of the matrices, it is widely distributed in the body such as skin and cartilage. PG in cartilage forms an aggregate together with collagen and hyaluronic acid, and a typical cartilage-type PG is called aggrecan. Aggrecan has a large amount of glycosaminoglycan sugar chains bound to the core protein, and has a binding region for hyaluronic acid and a link protein on its N-terminal side.

グリコサミノグリカンは分岐をもたない長い直鎖構造を持ち、多数の硫酸基とカルボシキル基を持つため負に荷電しており、その電気的反発力のために伸びた形状をとる。また、糖の持つ水親和性により、多量の水を保持し、弾力や衝撃への耐性といった軟骨特有の機能を担っている。さらに、PGには抗炎症作用、ヒアルロン酸合成促進作用、上皮細胞増殖因子(EGF)様作用等多くの生理機能を有することが明らかとなり、食品や化粧品への応用に期待が寄せられている。 Glycosaminoglycans have a long straight chain structure without branching, have a large number of sulfate groups and carboxyl groups, and thus are negatively charged, and take an elongated shape due to their electric repulsive force. In addition, due to the water affinity of sugar, it retains a large amount of water and has the unique functions of cartilage, such as elasticity and resistance to impact. Furthermore, it has been clarified that PG has many physiological functions such as an anti-inflammatory action, a hyaluronic acid synthesis promoting action, and an epidermal growth factor (EGF)-like action, and it is expected to be applied to foods and cosmetics.

これまで、高純度のPGを効率よく製造する方法が研究されてきた。例えば、サケ鼻軟骨から酢酸を用いてPGを抽出する方法(特許文献1参照)や、酢酸溶液の抽出温度と撹拌速度を制御してPGを抽出する方法(特許文献2参照)が知られている。その他、クエン酸水溶液を用いてPGを抽出する方法(特許文献3参照)、サポニン若しくはスークロース脂肪酸エステル又はこれらの混合物の水溶液に浸漬して抽出する方法(特許文献4参照)などが報告されている。一方、粗精製したPGをタンパク質分解酵素で処理した低分子PGが、コラーゲンゲル収縮促進効果や抗糖化作用に優れ、皮膚の引きしめ効果を有すること(特許文献5参照)、およびサケ鼻軟骨PGをタンパク質分解酵素アクチナーゼEで消化して得られる低分子PGを有効成分とするチロシナーゼ活性阻害剤の報告もある(特許文献6参照)。 So far, methods for efficiently producing high-purity PG have been studied. For example, a method of extracting PG from salmon nasal cartilage using acetic acid (see Patent Document 1) and a method of extracting PG by controlling the extraction temperature and stirring speed of an acetic acid solution (see Patent Document 2) are known. There is. In addition, a method of extracting PG using an aqueous citric acid solution (see Patent Document 3), a method of immersing in an aqueous solution of saponin or sucrose fatty acid ester or a mixture thereof (see Patent Document 4), and the like have been reported. .. On the other hand, a low-molecular-weight PG obtained by treating crudely purified PG with a proteolytic enzyme has excellent collagen gel contraction promoting effect and anti-glycation effect, and has a skin-pulling effect (see Patent Document 5), and salmon nasal cartilage PG There is also a report of a tyrosinase activity inhibitor containing a low-molecular-weight PG obtained by digestion with proteolytic enzyme actinase E as an active ingredient (see Patent Document 6).

しかしながら、PGの原料である動物の軟骨組織の確保、保存などは必ずしも容易ではなく、従来法よりもさらに効率的なPGの抽出および精製方法が望まれている。また、軟骨や皮膚の細胞外マトリックスに存在するPGは、生体内ではコラーゲンやヒアルロン酸と会合構造をとることで組織を維持しているが、巨大なPGがどのような形で抽出されているのかを解析することは難しく、従来法により精製されたPG分子の実態と、これまで知られているPGの様々な生理機能との関係については十分に解明されていない。例えば、非特許文献1には、サケの鼻軟骨から抽出および分画した異なる分子量のPGについて、経口投与による生理作用を調べたところ、プロテアーゼによる分解を受けた低分子PGに比べて、分子量40万以上の高分子PGが、より効果的な皮膚の抗老化作用を示すことが報告されている。 However, securing and preserving animal cartilage tissue, which is a raw material of PG, is not always easy, and a more efficient PG extraction and purification method than the conventional method is desired. In addition, PG existing in the extracellular matrix of cartilage and skin maintains tissues by forming an association structure with collagen and hyaluronic acid in vivo, but what kind of form is a huge PG extracted? It is difficult to analyze whether or not this is the case, and the relationship between the actual state of PG molecules purified by conventional methods and the various physiological functions of PG known so far has not been sufficiently clarified. For example, in Non-Patent Document 1, when PGs of different molecular weights extracted and fractionated from nasal cartilage of salmon were examined for physiological effects by oral administration, it was found that the molecular weight was 40 as compared with low molecular weight PGs degraded by protease. It has been reported that more than 10,000 high molecular weight PGs exhibit more effective anti-aging effects on the skin.

Goto, M., et al., Anti−aging effects of high molecular weight proteoglycan from salmon nasal cartilage in hairless mice. INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 29: 761−768, 2012Goto, M.; , Et al. , Anti-agging effects of high molecular weight proteoglycan from salmon nasal cartridge in hairless mice. INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 29: 761-768, 2012

特許第3731150号公報Japanese Patent No. 3731150 特許第6317053号公報Japanese Patent No. 6317053 特許第5749067号公報Japanese Patent No. 5749067 特許第6006545号公報Japanese Patent No. 6006545 特開2017−155004号公報JP, 2017-155004, A 特開2018−127423号公報JP, 2018-127423, A

本発明は、このような状況下においてなされたものであってその目的とするところは、動物の軟骨組織から優れた生理作用を有するプロテオグリカンを効率的、かつ高純度に製造する方法を提供することである。 The present invention has been made under such circumstances, and an object thereof is to provide a method for efficiently and highly producing proteoglycan having excellent physiological action from animal cartilage tissue. Is.

上記課題を解決するために、本発明者らは、動物の軟骨からプロテオグリカンを抽出する工程で、種々の酸性溶液を用いて抽出効率を検討した結果、特定の酸性溶液または所定濃度のプロテアーゼ存在下で抽出を行うことでプロテオグリカンを軟骨組織から効率的かつ高純度に製造できることを見出し、本発明を完成するに至った。 In order to solve the above problems, the present inventors, in the step of extracting proteoglycan from animal cartilage, as a result of examining the extraction efficiency using various acidic solutions, in the presence of a specific acidic solution or a predetermined concentration of protease It was found that proteoglycan can be efficiently and highly purified from cartilage tissue by performing extraction with the above-mentioned method, and the present invention has been completed.

すなわち、本発明は以下の実施形態を含む。
(1)pH5.5以下の酸性溶液中、その全量に対して1質量%以下のプロテアーゼの存在または非存在下で、動物の軟骨組織からプロテオグリカンを抽出して、プロテオグリカンを含む粗抽出液を得る工程と、この粗抽出液から、脂質と、分子量5万以下(より好ましくは分子量10万以下)の物質とを除去してプロテオグリカンを精製する工程と、を含む、プロテオグリカンの製造方法。
(2)軟骨組織が、サケ頭部の鼻軟骨組織である(1)に記載のプロテオグリカンの製造方法。
(3)プロテアーゼが、酸性プロテアーゼであり、酸性溶液中における含有量が、0.001質量%〜0.5質量%である(1)または(2)に記載のプロテオグリカンの製造方法。
(4)酸性溶液が、酢酸、クエン酸、リンゴ酸、およびアスコルビン酸からなる群より選択される少なくとも1種を含む水溶液である(1)〜(3)の何れかに記載のプロテオグリカンの製造方法。
(5)酸性溶液が、酸性電解水若しくは炭酸水またはこれらに酢酸、クエン酸、リンゴ酸、およびアスコルビン酸からなる群より選択される少なくとも1種を添加した水溶液である(1)〜(3)の何れかに記載のプロテオグリカンの製造方法。
(6)酸性溶液中の酢酸、クエン酸、リンゴ酸、およびアスコルビン酸からなる群より選択される少なくとも1種の濃度が、0.1質量%〜1質量%である(1)〜(5)の何れかに記載のプロテオグリカンの製造方法。
(7)プロテオグリカンが、質量平均分子量40万〜100万のアグリカンである(1)〜(6)の何れかに記載のプロテオグリカンの製造方法。
That is, the present invention includes the following embodiments.
(1) A proteoglycan-containing crude extract is obtained by extracting proteoglycan from animal cartilage tissue in an acidic solution having a pH of 5.5 or less in the presence or absence of a protease of 1% by mass or less based on the total amount of the solution. A process for producing proteoglycan, which comprises the steps of: removing a lipid and a substance having a molecular weight of 50,000 or less (more preferably a molecular weight of 100,000 or less) from the crude extract to purify the proteoglycan.
(2) The method for producing proteoglycan according to (1), wherein the cartilage tissue is a nasal cartilage tissue of a salmon head.
(3) The method for producing a proteoglycan according to (1) or (2), wherein the protease is an acidic protease and the content in the acidic solution is 0.001% by mass to 0.5% by mass.
(4) The method for producing proteoglycan according to any one of (1) to (3), wherein the acidic solution is an aqueous solution containing at least one selected from the group consisting of acetic acid, citric acid, malic acid, and ascorbic acid. ..
(5) The acidic solution is acidic electrolyzed water or carbonated water, or an aqueous solution obtained by adding at least one selected from the group consisting of acetic acid, citric acid, malic acid, and ascorbic acid to these (1) to (3). The method for producing a proteoglycan according to any one of 1.
(6) The concentration of at least one selected from the group consisting of acetic acid, citric acid, malic acid, and ascorbic acid in the acidic solution is 0.1% by mass to 1% by mass (1) to (5). The method for producing a proteoglycan according to any one of 1.
(7) The method for producing a proteoglycan according to any one of (1) to (6), wherein the proteoglycan is an aggrecan having a mass average molecular weight of 400,000 to 1,000,000.

本発明のプロテオグリカンの製造方法は、動物の軟骨組織から優れた生理作用を有するプロテオグリカンを効率的、かつ高純度に製造することができる。 According to the method for producing proteoglycan of the present invention, proteoglycan having excellent physiological action can be efficiently and highly purified from animal cartilage tissue.

図1は、製造例1で得られたプロテオグリカンをHPLCで分析した結果を示す。FIG. 1 shows the result of HPLC analysis of the proteoglycan obtained in Production Example 1. 図2は、製造例2で得られたプロテオグリカンをHPLCで分析した結果を示す。FIG. 2 shows the results of HPLC analysis of the proteoglycans obtained in Production Example 2.

本実施形態において、プロテオグリカンを抽出するための材料は、例えば魚類、軟体動物、鳥類または哺乳類の軟骨組織、筋肉組織もしくは皮膚組織を使用することができるが、その中でも軟骨組織が好ましい。本実施形態で使用される軟骨組織は、魚類、軟体動物、鳥類もしくは哺乳類、特にそれらの廃棄部位のいずれでもよい。本明細書において軟骨組織とは、軟骨のみからなるだけでなく、軟骨周辺部位、例えば骨、筋肉組織、皮膚組織等を含む組織でもよい。 In the present embodiment, as the material for extracting proteoglycan, for example, cartilage tissue, muscle tissue or skin tissue of fish, molluscs, birds or mammals can be used, and among them, cartilage tissue is preferable. The cartilage tissue used in this embodiment may be fish, molluscs, birds or mammals, especially their disposal site. In the present specification, the cartilage tissue is not limited to only cartilage, but may be a tissue around the cartilage, such as bone, muscle tissue, skin tissue, or the like.

本実施形態では、入手の容易性、及びコストの面などから、例えば、サケ科の魚の頭部に含まれる鼻軟骨組織由来のものが好適に用いられ、例えば、青森県沿岸や北海道沿岸等で漁獲されたサケ(主にシロサケ)が、様々な加工品として処理される際、排出される頭部を使用することができる。 In the present embodiment, from the viewpoint of availability, cost, and the like, for example, those derived from the nasal cartilage tissue contained in the head of salmonid fish are preferably used, for example, in the coast of Aomori prefecture or the coast of Hokkaido. The head that is ejected can be used when the caught salmon (mainly white salmon) is processed as various processed products.

また本実施形態では、サケの他、マス、エイ、サメ、タラ等の魚類由来軟骨組織、イカ、タコ等の軟体動物由来表皮、ニワトリ等の鳥類由来軟骨組織、さらにウシやクジラ等の哺乳動物由来軟骨組織も利用することができる。 In the present embodiment, in addition to salmon, trout, rays, sharks, fish-derived cartilage tissues such as cod, squid, mollusk-derived epidermis such as octopus, bird-derived cartilage tissue such as chicken, and mammals such as cows and whales. Derived cartilage tissue can also be used.

本実施形態で使用する酸性溶液は、酸性電解水、炭酸水などの無機酸を含む酸性水溶液であるか、または、酢酸、クエン酸、リンゴ酸、およびアスコルビン酸などの有機酸を含む酸性水溶液である。この酸性水溶液のpHは、5.5以下であることが好ましく、pHが2〜4の酸性水溶液がさらに好ましい。なお、酸性溶液としては、これら以外に、乳酸、酒石酸、コハク酸、リン酸、グルコン酸、フマル酸、グルタル酸、アジピン酸、フィチン酸、塩酸、硫酸等を含む水溶液であってもよい。異なる実施形態では、これらの無機酸および有機酸の2種以上を組み合わせた酸性水溶液である。例えば、酸性電解水と酢酸またはクエン酸との組み合わせなどである。酸性溶液中の有機酸の濃度は、プロテオグリカンの使用目的によって適宜選択する。例えば、有機酸として酢酸を用いる場合の濃度の下限は、0.01質量%、好ましくは0.1質量%であり、有機酸として酢酸を用いる場合の濃度の上限は、10質量%、好ましくは5質量%、より好ましくは1質量%である。 The acidic solution used in the present embodiment is acidic electrolyzed water, an acidic aqueous solution containing an inorganic acid such as carbonated water, or an acidic aqueous solution containing an organic acid such as acetic acid, citric acid, malic acid, and ascorbic acid. is there. The pH of the acidic aqueous solution is preferably 5.5 or less, more preferably the acidic aqueous solution having a pH of 2 to 4. In addition to these, the acidic solution may be an aqueous solution containing lactic acid, tartaric acid, succinic acid, phosphoric acid, gluconic acid, fumaric acid, glutaric acid, adipic acid, phytic acid, hydrochloric acid, sulfuric acid and the like. In a different embodiment, the acidic aqueous solution is a combination of two or more of these inorganic acids and organic acids. For example, it is a combination of acidic electrolyzed water and acetic acid or citric acid. The concentration of the organic acid in the acidic solution is appropriately selected depending on the purpose of use of the proteoglycan. For example, when acetic acid is used as the organic acid, the lower limit of the concentration is 0.01% by mass, preferably 0.1% by mass, and when acetic acid is used as the organic acid, the upper limit of the concentration is 10% by mass, preferably It is 5% by mass, more preferably 1% by mass.

これらの酸性溶液による抽出工程は、例えば1〜60℃の温度で行なうことができる。ある程度温度を上げることによって抽出時間をより短縮し、より抽出効率も上げることができることから、この酸性溶液による抽出工程に係る温度の下限は、好ましくは4℃、更に好ましくは20℃である。一方、プロテオグリカンの分解はほとんど起きないまま、糖タンパク質複合体として効率よく抽出することがよりできるように、この酸性溶液による抽出工程に係る温度の上限は、好ましくは55℃、更に好ましくは50℃、更に好ましくは40℃である。 The extraction process using these acidic solutions can be performed at a temperature of 1 to 60° C., for example. Since the extraction time can be further shortened and the extraction efficiency can be further increased by raising the temperature to some extent, the lower limit of the temperature relating to the extraction step using this acidic solution is preferably 4°C, more preferably 20°C. On the other hand, the upper limit of the temperature involved in the extraction step with this acidic solution is preferably 55° C., more preferably 50° C., so that proteoglycan can be efficiently extracted as a glycoprotein complex with almost no decomposition. And more preferably 40°C.

上記抽出工程は軟骨表面全体を酸性溶液が流動的に接触する条件で行い、この際の酸性溶液の流速が、0.04〜10.0cm/秒となることが好ましい。より好ましくは流速が0.04〜5.0cm/秒である。この流れはスターラーやミキサーによる水平方向の円運動だけでなく、液を循環させるなどの方法により垂直方向、さらに軟骨組織を置いた上に一方から他方へ液を流すような一定方向の流れなど何れでも構わないが、液が常に対流することで抽出効率の向上が可能である。酸性溶液が軟骨組織と流動的に接触する工程は、所望の収率または収量でプロテオグリカンを抽出するために十分な時間実施すればよく、抽出工程中連続して、所定の時間をおいて間欠的に、又は抽出工程の一部であってもよい。この流動的に接触する時間は、抽出温度や酸性溶液の流速に合わせて適宜設定することができる。抽出が終了した溶液はプロテオグリカンを抽出した後の残渣を多く含むことから、これらをろ過、遠心分離、その他の方法で取り除くことが好ましい。 The extraction step is performed under the condition that the acidic solution is brought into fluid contact with the entire cartilage surface, and the flow rate of the acidic solution at this time is preferably 0.04 to 10.0 cm/sec. More preferably, the flow rate is 0.04 to 5.0 cm/sec. This flow is not only horizontal circular movement by a stirrer or mixer, but also vertical direction by a method of circulating a liquid, and a certain direction such as a liquid flowing from one side to the other side after placing cartilage tissue. However, the extraction efficiency can be improved by always convection of the liquid. The step in which the acidic solution is brought into fluid contact with the cartilage tissue may be performed for a sufficient time to extract the proteoglycan at a desired yield or yield, and the step may be performed intermittently at a predetermined time continuously during the extraction step. Or as part of the extraction process. This fluid contact time can be appropriately set according to the extraction temperature and the flow rate of the acidic solution. Since the solution after the extraction contains a large amount of the residue after extracting the proteoglycan, it is preferable to remove these by filtration, centrifugation or other methods.

この抽出工程において、上記酸性溶液の全量に対して1質量%以下の濃度で酸性プロテアーゼを共存させることが好ましい。酸性溶液中におけるこの酸性プロテアーゼの濃度は、1質量%を超えると抽出されたプロテオグリカン分子がさらに分解されて低分子化する可能性があること、および製造コストが上がるため好ましくない。したがって、酸性溶液中への酸性プロテアーゼの添加量の上限は、0.5質量%がより好ましく、0.1質量%がさらに好ましい。一方、下限は、0質量%を超えれば好ましく、0.0001質量%以上がより好ましく、0.001質量%以上がさらに好ましい。本明細書における酸性プロテアーゼとは、植物、動物または細菌を起源とするタンパク質分解酵素でタンパク質分解活性の至適pH(最大活性を示すpH)が6.0以下にあるものであれば、特に限定されるものではないが、タンパク質分解活性の至適pHが2.0以上5.0以下にあるものが酸性溶液中で働く点で好ましい。また、pHが7.0以上で失活することが分解反応を制御する上で好ましい。タンパク質分解活性の至適pHが2.0未満では、タンパク質の変性が大きく、分解反応の制御が困難であるという問題がある。 In this extraction step, it is preferable that the acidic protease coexist at a concentration of 1% by mass or less with respect to the total amount of the acidic solution. If the concentration of the acidic protease in the acidic solution exceeds 1% by mass, the extracted proteoglycan molecule may be further decomposed to lower the molecular weight, and the production cost increases, which is not preferable. Therefore, the upper limit of the amount of acidic protease added to the acidic solution is more preferably 0.5% by mass, and even more preferably 0.1% by mass. On the other hand, the lower limit is preferably 0 mass% or more, more preferably 0.0001 mass% or more, and further preferably 0.001 mass% or more. The acidic protease in the present specification is a proteolytic enzyme originating from plants, animals or bacteria, and is particularly limited as long as it has an optimum pH for proteolytic activity (pH exhibiting maximum activity) of 6.0 or less. However, it is preferable that the optimum pH for proteolytic activity is 2.0 or more and 5.0 or less because it works in an acidic solution. Deactivation at a pH of 7.0 or higher is preferable for controlling the decomposition reaction. If the optimum pH for proteolytic activity is less than 2.0, there is a problem that the denaturation of the protein is large and it is difficult to control the decomposition reaction.

これらの酸性プロテアーゼとしては、エンドペプチダーゼ等の酸性プロテアーゼが知られており、特にアスペルギルス オリゼ(Aspergillus oryzae)またはアスペルギルス ニガー(Aspergillus niger)を起源とするタンパク質分解酵素が挙げられる。このタンパク質分解酵素としては、市販されているものを使用することができる。市販されているタンパク質分解酵素としては、製品名「ニューラーゼF3G」(天野エンザイム社製)、製品名「プロテアーゼM「アマノ」SD」(天野エンザイム社製)、製品名「モルシンF」(キッコーマンバイオケミファ社製)、製品名「スミチームAP」(新日本化学工業社製)、製品名「デナプシン2P」(ナガセケムテックス社製)、製品名「グリンドアミルPR59」(ダニスコジャパン社製)、製品名「オリエンターゼAY」(エイチビィアイ社製)、製品名「テトラーゼS」(エイチビィアイ社製)、製品名「ブリューワーズクラレックス」(ディー・エス・エムジャパン社製)、製品名「プロテアーゼYP−SS」(ヤクルト薬品工業社製)などの酸性プロテアーゼが挙げられる。 As these acidic proteases, acidic proteases such as endopeptidases are known, and particularly proteolytic enzymes originating from Aspergillus oryzae or Aspergillus niger are mentioned. As this proteolytic enzyme, a commercially available one can be used. Commercially available proteolytic enzymes include the product name "Nurase F3G" (manufactured by Amano Enzymes Inc.), the product name "Protease M "Amano" SD" (manufactured by Amano Enzymes Inc.), and the product name "Morcin F" (Kikkoman Bio). Chemifa), product name "Sumiteam AP" (manufactured by Shin Nippon Chemical Industry Co., Ltd.), product name "Denapsin 2P" (manufactured by Nagase Chemtex), product name "Grind Amill PR59" (manufactured by Danisco Japan), product name " Orientase AY" (manufactured by HBI), product name "Tetolase S" (manufactured by HBI), product name "Brewers Clarex" (manufactured by DSM Japan), product name "Protease YP-SS" ( Yakult Pharmaceutical Co., Ltd.) and other acidic proteases.

次に、プロテオグリカン抽出液を粉末セルロース及び/又は吸油マットなどを用いることにより、混入すると考えられる脂質成分を簡便に吸着除去する。脂質除去後の液から得られるプロテオグリカンは適当な分画分子量を有する分離膜等で固液分離することにより、抽出液を回収する。この操作において、5万以上の分離膜等を使用すれば液相から低分子量の夾雑物(コラーゲン等)も除去することができ、プロテオグリカンの純度を上げることが可能である。好ましくは、10万以上の分離膜等を用いることが望ましい。さらに、得られた分画液は真空凍結乾燥機を用いて固形物にしてもよい。あるいは、スプレードライヤーで乾燥させ、粉末状固形分とすることもできる。 Next, the proteoglycan extract solution is simply adsorbed and removed by using powdered cellulose and/or an oil-absorbing mat or the like to remove lipid components which are considered to be mixed. The proteoglycan obtained from the liquid after lipid removal is subjected to solid-liquid separation with a separation membrane or the like having an appropriate molecular weight cutoff to recover the extract. In this operation, if a separation membrane of 50,000 or more is used, low molecular weight contaminants (collagen etc.) can be removed from the liquid phase and the purity of proteoglycan can be increased. It is preferable to use 100,000 or more separation membranes. Further, the obtained fractionated liquid may be made into a solid by using a vacuum freeze dryer. Alternatively, it can be dried with a spray dryer to obtain a powdery solid content.

このようにして得られるプロテオグリカンは、軟骨由来の典型的なプロテオグリカンでありアグリカン(Aggrecan)と称される。アグリカンは多数のグルコサミノグリカンと結合し、ヒアルロン酸やリンクタンパク質と凝集しているため巨大分子を形成するが、本実施形態の方法で得られるアグリカンは40万〜100万(好ましくは40万〜90万、より好ましくは40万〜70万、更に好ましくは40万〜60万)の質量平均分子量を有するため、コアタンパク質部分が分解されることなく低分子化していないインタクトなプロテオグリカンであると考えられる。その一方で、他のタンパク質との結合や凝集物が除かれているためプロテオグリカンとしての純度が向上し、生理活性のより発現しやすい完全なプロテオグリカン分子が得られると推測される。なお、本明細書において質量平均分子量とは、ゲルろ過クロマトグラフィー(Gel Filtration Chromatography、GFCともいう)分析を行った場合のプルラン換算の質量平均分子量をいう。なお、質量平均分子量の測定法は特に限定されるものではないが、一例としては、分子量が既知なプルラン、デキストラン、ポリエチレングリコール等を用い、2点以上の任意の濃度で、示差屈折検出器により校正曲線を作成する。次いで、検体(濃度は任意)を測定し、その保持時間から先の校正曲線を用いて相対分子量(プルラン、デキストランまたはポリエチレングリコール換算の分子量)を算出するのが一般的である。 The proteoglycan thus obtained is a typical proteoglycan derived from cartilage and is called aggrecan. Aggrecan binds with a large number of glycosaminoglycans and forms a macromolecule because it aggregates with hyaluronic acid and link protein, but the aggrecan obtained by the method of the present embodiment is 400,000 to 1,000,000 (preferably 400,000). To 900,000, more preferably 400,000 to 700,000, and even more preferably 400,000 to 600,000), it is an intact proteoglycan in which the core protein portion is not degraded and is not degraded. Conceivable. On the other hand, since the binding with other proteins and the aggregates are removed, the purity of proteoglycan is improved, and it is speculated that a complete proteoglycan molecule in which bioactivity is more easily expressed can be obtained. In the present specification, the mass average molecular weight refers to the pullulan-equivalent mass average molecular weight when performing gel filtration chromatography (also referred to as Gel Filtration Chromatography, GFC) analysis. The method for measuring the mass average molecular weight is not particularly limited, but as an example, pullulan, dextran, polyethylene glycol or the like having a known molecular weight is used, and the differential refraction detector is used at an arbitrary concentration of 2 or more points. Create a calibration curve. Then, the sample (concentration is arbitrary) is measured, and the relative molecular weight (pullulan, dextran, or polyethylene glycol-equivalent molecular weight) is generally calculated from the retention time using the above calibration curve.

さらに、本発明で得られたプロテオグリカンを用いて、線維芽細胞増殖作用、コラーゲンゲル収縮促進作用等を評価した結果、いずれの試験においても従来の酢酸を使用して低温で浸漬抽出されたプロテオグリカンと同等以上の効果が得られ、従来法で得られるプロテオグリカンに比べ純度の高い品質を有することが確認された。以下に、実施例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Furthermore, using the proteoglycan obtained in the present invention, as a result of evaluating fibroblast proliferation action, collagen gel contraction promoting action and the like, in any test using conventional acetic acid dip-extracted proteoglycan at low temperature and It was confirmed that the same or higher effect was obtained, and that it had a higher purity than the proteoglycan obtained by the conventional method. Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

[製造例1]
−30℃で冷凍保管したシロサケの頭部から摘出した鼻軟骨を400g用意し、出発原料とした。0.4質量%の酢酸水溶液2000gに出発原料およびプロテアーゼM(アマノ)SDを2g投入し、抽出温度50℃で24時間抽出した。
[Production Example 1]
400 g of nasal cartilage extracted from the head of a chum salmon frozen and stored at −30° C. was prepared as a starting material. 2 g of the starting material and Protease M (Amano) SD were added to 2000 g of a 0.4% by mass acetic acid aqueous solution, and the mixture was extracted at an extraction temperature of 50° C. for 24 hours.

この抽出液の温度を80℃に上昇させ、30分間加温してプロテアーゼを失活させた後、溶出液をステンレススチールメッシュ(150μm)でろ過し、不溶物を除去した。次に、吸油マット(前田工繊社製、商品名「油吸着シートSP−1300N(DX)」で液上層の油を吸着させた後、粉末セルロース(日本製紙社製、商品名「KCフロックW−400G」)を加え30分撹拌後ろ過した。ろ液を分画分子量5万の中空糸膜を用いて液量が1/10になるまで濃縮した。さらに水で希釈しながら濃縮と精製とを繰り返し、最終的に112gの濃縮液(pH6〜7)を得た。そして、得られた濃縮液を凍結乾燥し、約8.6gのプロテオグリカンを得た。 The temperature of this extract was raised to 80° C. and heated for 30 minutes to inactivate the protease, and then the eluate was filtered through a stainless steel mesh (150 μm) to remove insoluble matter. Next, after the oil in the liquid upper layer was adsorbed with an oil absorption mat (made by Maeda Kosen Co., Ltd., trade name “Oil Adsorption Sheet SP-1300N(DX)”, powdered cellulose (made by Nippon Paper Industries Co., Ltd., trade name “KC Flock W” -400G") was added and the mixture was stirred for 30 minutes and then filtered. The filtrate was concentrated using a hollow fiber membrane with a molecular weight cut-off of 50,000 until the liquid volume was reduced to 1/10. Finally, 112 g of concentrated solution (pH 6 to 7) was obtained, and the obtained concentrated solution was freeze-dried to obtain about 8.6 g of proteoglycan.

[製造例2]
上記製造例1で用いた酢酸水溶液の濃度を4質量%に変更した以外は製造例1と同様の条件で抽出、精製をおこない、約7.7gのプロテオグリカンを得た。
[Production Example 2]
Extraction and purification were carried out under the same conditions as in Production Example 1 except that the concentration of the acetic acid aqueous solution used in Production Example 1 was changed to 4% by mass to obtain about 7.7 g of proteoglycan.

(プロテオグリカンの定量)
製造例1および2で得た凍結乾燥品約1gを精密に量り、リン酸緩衝液(pH6.8)を加えて正確に10 mLとしたものを試料溶液とした。各試料を0.45 μmメンブレンフィルターを通した後、以下の操作条件でHPLCを行い標準品の検量線からプロテオグリカン量を求めた。なお、検量線の作成は、プロテオグリカン標準品(サケ鼻軟骨由来、和光純薬工業製)を、室温減圧デシケーター(シリカゲル)で3時間乾燥してから採取したものを精密に量り取り、試料と同じリン酸緩衝液に溶解して検量線作成用標準液を調製した。また、分子量マーカーとして、Shodex STANDARD P−82(昭和電工社製)を用いて作成した検量線からピークトップの分子量を求めた。
(Quantification of proteoglycan)
About 1 g of the freeze-dried product obtained in Production Examples 1 and 2 was precisely weighed, and a phosphate buffer (pH 6.8) was added to make exactly 10 mL, to give a sample solution. After passing each sample through a 0.45 μm membrane filter, HPLC was performed under the following operating conditions to determine the amount of proteoglycan from the calibration curve of the standard product. In addition, the preparation of the calibration curve is the same as the sample, since the proteoglycan standard product (derived from salmon nasal cartilage, manufactured by Wako Pure Chemical Industries, Ltd.) was dried for 3 hours with a room temperature vacuum desiccator (silica gel) and then sampled. A standard solution for preparing a calibration curve was prepared by dissolving in a phosphate buffer solution. Further, the molecular weight at the peak top was determined from a calibration curve prepared using Shodex STANDARD P-82 (manufactured by Showa Denko KK) as a molecular weight marker.

操作条件
分析計 :HPLC分析装置
検出器 :示差屈折率検出器(RID−10A 島津製作所製)
カラム :ゲルろ過カラム(東ソー株式会社製TSKgel G5000PWXL)
カラム温度:40℃
試料注入量:50 μL
移動相 :リン酸緩衝液(pH6.8)
流量 :0.5 mL/min
Operating conditions Analyzer: HPLC analyzer Detector: Differential refractive index detector (RID-10A manufactured by Shimadzu Corporation)
Column: Gel filtration column (TSKgel G5000PWXL manufactured by Tosoh Corporation)
Column temperature: 40°C
Sample injection volume: 50 μL
Mobile phase: phosphate buffer (pH 6.8)
Flow rate: 0.5 mL/min

その結果を図1および図2に示す。図1は製造例1で得られた試料であり、図2は製造例2で得られた試料の分析結果である。いずれも単一ピークからなる純度の高いプロテオグリカンであることを示す。また、カラムの保持時間から計算したピークトップの分子量は、図1では約46万であり、図2では約48万であった。 The results are shown in FIGS. 1 and 2. 1 is a sample obtained in Production Example 1, and FIG. 2 is an analysis result of the sample obtained in Production Example 2. It is shown that all are highly pure proteoglycans consisting of a single peak. The molecular weight of the peak top calculated from the retention time of the column was about 460,000 in FIG. 1 and about 480,000 in FIG.

[製造例3〜12]
製造例1と同様のサケ鼻軟骨をスライス処理したもの約40gと、表1に示した各種抽出液とを250ml容器に入れ密封した。これを37℃の水浴中でゆっくりと攪拌しながら72時間インキュベートした。抽出終了以後、各抽出液を100メッシュのふるいでろ過し、油吸着マットで処理し、さらにKCフロックろ過したろ液を凍結乾燥した。回収された凍結乾燥粉末の質量と、製造例1と同様の方法で定量したPG量を測定し、PGの収率および平均分子量を求めた。その結果を表1に示す。なお、抽出液として用いた電解水は、ORPウォーター酸性イオン水(バイバイバクテリア、ヤマシタキカク社製)を、炭酸水は、伊賀の天然水 炭酸水(日本サンガリア社製)を用いた。
[Production Examples 3 to 12]
Approximately 40 g of a sliced salmon nasal cartilage similar to that used in Production Example 1 and the various extracts shown in Table 1 were placed in a 250 ml container and sealed. This was incubated in a 37° C. water bath for 72 hours with gentle agitation. After the completion of the extraction, each extract was filtered through a 100-mesh sieve, treated with an oil adsorption mat, and further subjected to KC floc filtration, and the filtrate was freeze-dried. The mass of the recovered freeze-dried powder and the amount of PG quantified by the same method as in Production Example 1 were measured to determine the PG yield and average molecular weight. The results are shown in Table 1. The electrolyzed water used as the extract was ORP water acidic ionized water (Baibai bacteria, manufactured by Yamashita Takaku Co., Ltd.), and the carbonated water was Iga natural water, carbonated water (manufactured by Japan Sangalia Co., Ltd.).

表1の結果より、抽出液として酸性電解水のみまたは炭酸水のみを用いた場合でも、収率は若干低いものの高純度のPGが得られることが分かった。酸性電解水または炭酸水にクエン酸を5%添加した場合は、固形分収率は上がるものの得られたPGの純度は低下していた。一方、リンゴ酸、アスコルビン酸を単独でまたは炭酸水と組み合わせて抽出した場合は収率および純度ともに優れていた。 From the results of Table 1, it was found that PG of high purity can be obtained although the yield is slightly low even when only acidic electrolyzed water or only carbonated water is used as the extract. When 5% of citric acid was added to acidic electrolyzed water or carbonated water, the solid content yield increased but the purity of the obtained PG decreased. On the other hand, when malic acid and ascorbic acid were extracted alone or in combination with carbonated water, the yield and purity were excellent.

[試験例1]コラーゲンゲル収縮試験
製造例1で得られたプロテオグリカンについてのコラーゲンゲル収縮の効果の有無を評価した。当該効果の有無は、標準品が発揮する効果と比較して表した。本試験例1では、標準品として、鮭鼻軟骨由来プロテオグリカン(富士フイルム和光純薬会社(商品コード:162−22131、168−22133))を用いた。
[Test Example 1] Collagen gel contraction test The proteoglycan obtained in Production Example 1 was evaluated for the effect of collagen gel contraction. The presence or absence of the effect was expressed by comparing with the effect exhibited by the standard product. In Test Example 1, salmon nasal cartilage-derived proteoglycan (Fujifilm Wako Pure Chemical Industries, Ltd. (product code: 162-22131, 168-22133)) was used as a standard product.

コラーゲン酸性溶液(IPC−30、高研株式会社)、希塩酸(pH調整用として利用、pH3.0)、10×MEMハンクス(新田ゼラチン株式会社)及び再構成緩衝液(Cellmatrix、新田ゼラチン株式会社)を用いて、氷冷下で1.2mg/mlの濃度になるように調製コラーゲン酸性溶液を準備した。準備した調製コラーゲン酸性溶液を24ウェルプレートに各ウェル0.4mlずつ注入した。当該注入後、37℃でコラーゲンをゲル化させた。当該ゲル化の後、正常ヒト皮膚線維芽細胞(クラボウ)を、各ウェルに0.6×10個/wellの細胞数となるように、各ウェルへ播種した。当該播種の翌日(翌日までは37℃、5%COの環境下でウェルを静置)に、以下試料(試料1〜試料5)を各ウェルに投与し、ゲル周囲を剥離した。以下試料添加後48時間後のゲル収縮の評価を、画像処理ソフト(ChemiDocTMイメージングシステム、BIORAD)を用いてコラーゲンゲルの面積を測定することにより行った。当該測定は、各群(試料1から試料5の群)において6サンプルずつ行った。以下表2では、各群において6サンプルの平均値を算出した結果を示す。 Collagen acidic solution (IPC-30, Koken Co., Ltd.), dilute hydrochloric acid (used for pH adjustment, pH 3.0), 10×MEM Hanks (Nitta Gelatin Co., Ltd.) and reconstitution buffer (Cellmatrix, Nitta Gelatin stock) Company) to prepare a collagen acidic solution prepared to have a concentration of 1.2 mg/ml under ice cooling. 0.4 ml of each well was poured into the prepared 24-well plate of the prepared collagen acidic solution. After the injection, collagen was gelated at 37°C. After the gelation, normal human skin fibroblasts (Kurabo) were seeded in each well so that the number of cells in each well was 0.6×10 5 cells/well. On the day after the seeding (until the next day, the wells were allowed to stand in an environment of 37° C. and 5% CO 2 ), the following samples (Sample 1 to Sample 5) were administered to each well, and the area around the gel was peeled off. Evaluation of gel contraction 48 hours after the addition of the sample was performed by measuring the area of the collagen gel using image processing software (ChemiDoc imaging system, BIORAD). The measurement was performed for 6 samples in each group (groups of Sample 1 to Sample 5). Table 2 below shows the results of calculating the average value of 6 samples in each group.

・試料1の群:コントロールとして、所定量の精製水を投与。
・試料2の群:最終濃度1mg/mlとなるように、製造例1で得られたプロテオグリカンを投与。
・試料3の群:最終濃度0.5mg/mlとなるように、製造例1で得られたプロテオグリカンを投与。
・試料4の群:最終濃度1mg/mlとなるように、標準品を投与。
・試料5の群:最終濃度0.5mg/mlとなるように、標準品を投与。
-Sample 1 group: A predetermined amount of purified water was administered as a control.
-Group of sample 2: The proteoglycan obtained in Production Example 1 was administered so that the final concentration was 1 mg/ml.
-Group of sample 3: The proteoglycan obtained in Production Example 1 was administered so that the final concentration was 0.5 mg/ml.
-Group of sample 4: administration of standard so that the final concentration is 1 mg/ml.
Group of sample 5: administration of standard product so that the final concentration was 0.5 mg/ml.

評価結果を表2に示す。表2で示すように、試料1の群と比べ、試料2と試料3の群(本発明に係る実施例の1つである製造例1で得られたプロテオグリカンの投与群)では、コラーゲンゲルの面積の縮小が確認できた。なお、試料2と試料3の群の評価結果は、試料4と試料5の群(標準品の投与群)と同様の結果であった。 The evaluation results are shown in Table 2. As shown in Table 2, compared with the group of Sample 1, in the groups of Samples 2 and 3 (the proteoglycan administration group obtained in Production Example 1 which is one of the Examples according to the present invention), collagen gel It was confirmed that the area was reduced. The evaluation results of the groups of Sample 2 and Sample 3 were the same as those of the groups of Sample 4 and Sample 5 (administration group of the standard product).

[試験例2]ヒト線維芽細胞増殖試験
製造例1で得られたプロテオグリカンについてのヒト線維芽細胞増殖能の有無を評価した。
5%FBS(Thermo Trace製)を含むDMEM培地が各ウェルに存在した96ウェルプレートを準備した。正常ヒト皮膚線維芽細胞(クラボウ)を、各ウェルに4×10個/wellの細胞数となるように、当該準備した96ウェルプレートに播種した。この播種後、37℃、5%COの環境下で、24時間、当該正常ヒト皮膚線維芽細胞を培養した。その後、5%FBS(Thermo Trace製)を含むDMEM培地から0.25%FBSを含むDMEM培地へ置換して、置換後、以下試料を各ウェルに投与し、37℃、5%COの環境下で、3日間、当該正常ヒト皮膚線維芽細胞を培養した。3日間の培養後、Cell Counting Kit−8(DOJINDO)を用いて、各群(試料1から試料5の群)の正常ヒト皮膚線維芽細胞数を測定した。当該測定は、各群(試料1から試料5の群)において10サンプルずつ行った。以下表3では、各群において10サンプルの平均値を算出した結果を用いての以下相対値を示す。
[Test Example 2] Human fibroblast proliferation test The presence or absence of human fibroblast proliferation ability of the proteoglycan obtained in Production Example 1 was evaluated.
A 96-well plate in which a DMEM medium containing 5% FBS (manufactured by Thermo Trace) was present in each well was prepared. Normal human skin fibroblasts (Kurabo) were seeded on the prepared 96-well plate so that the number of cells in each well was 4×10 3 cells/well. After this seeding, the normal human dermal fibroblasts were cultured in an environment of 37° C. and 5% CO 2 for 24 hours. After that, the DMEM medium containing 5% FBS (manufactured by Thermo Trace) was replaced with the DMEM medium containing 0.25% FBS, and after replacement, the following sample was administered to each well, and the environment was kept at 37° C. and 5% CO 2 . The normal human skin fibroblasts were cultured for 3 days under After culturing for 3 days, the number of normal human dermal fibroblasts in each group (sample 1 to sample 5 group) was measured using Cell Counting Kit-8 (DOJINDO). The measurement was performed for 10 samples in each group (sample 1 to sample 5 group). In Table 3 below, the following relative values are shown using the results of calculating the average value of 10 samples in each group.

・試料1の群:コントロールとして、所定量の精製水を投与。
・試料2の群:最終濃度0.5mg/mlとなるように、製造例1で得られたプロテオグリカンを投与。
・試料3の群:最終濃度0.1mg/mlとなるように、製造例1で得られたプロテオグリカンを投与。
・試料4の群:最終濃度0.5mg/mlとなるように、試験例1と同じ標準品を投与。
・試料5の群:最終濃度0.1mg/mlとなるように、試験例1と同じ標準品を投与。
-Sample 1 group: A predetermined amount of purified water was administered as a control.
-Sample 2 group: The proteoglycan obtained in Production Example 1 was administered so that the final concentration was 0.5 mg/ml.
-Group of sample 3: The proteoglycan obtained in Production Example 1 was administered so that the final concentration was 0.1 mg/ml.
-Sample 4 group: The same standard as in Test Example 1 was administered so that the final concentration was 0.5 mg/ml.
-Sample 5 group: The same standard product as in Test Example 1 was administered so that the final concentration was 0.1 mg/ml.

測定結果を以下記載する。以下表3で示す測定結果は、試料1の群(コントロールの群)の細胞数を100として、試料2から試料5の群では試料1の群と比べての相対値を示す。表3で示すように、試料1の群と比べ、試料2と試料3の群(本発明に係る実施例の1つである製造例1で得られたプロテオグリカンの投与群)では、製造例1で得られたプロテオグリカンの投与により、正常ヒト皮膚線維芽細胞の増殖が確認できた。なお、試料2と試料3の群の評価結果は、試料4と試料5の群(標準品の投与群)と同様の結果であった。 The measurement results are described below. The measurement results shown in Table 3 below show relative values in the groups of Sample 2 to Sample 5 as compared to the group of Sample 1, with the number of cells in the group of Sample 1 (control group) being 100. As shown in Table 3, compared with the group of Sample 1, in the groups of Samples 2 and 3 (the proteoglycan administration group obtained in Production Example 1 which is one of the Examples according to the present invention), Production Example 1 By administration of the proteoglycan obtained in 1., the proliferation of normal human dermal fibroblasts could be confirmed. The evaluation results of the groups of Sample 2 and Sample 3 were the same as those of the groups of Sample 4 and Sample 5 (administration group of the standard product).


Claims (7)

pH5.5以下の酸性溶液中、その全量に対して1質量%以下のプロテアーゼの存在または非存在下で、動物の軟骨組織からプロテオグリカンを抽出して、当該プロテオグリカンを含む粗抽出液を得る工程と、
前記粗抽出液から、脂質と、分子量5万以下の物質とを除去して前記プロテオグリカンを精製する工程と、を含む、プロテオグリカンの製造方法。
a step of extracting proteoglycan from cartilage tissue of an animal in an acidic solution having a pH of 5.5 or less in the presence or absence of a protease of 1% by mass or less based on the total amount to obtain a crude extract containing the proteoglycan. ,
A method for producing proteoglycan, comprising the step of purifying the proteoglycan by removing lipids and substances having a molecular weight of 50,000 or less from the crude extract.
前記軟骨組織が、サケ頭部の鼻軟骨組織である請求項1に記載のプロテオグリカンの製造方法。 The method for producing proteoglycan according to claim 1, wherein the cartilage tissue is a nasal cartilage tissue of a salmon head. 前記プロテアーゼが、酸性プロテアーゼであり、前記酸性溶液中における含有量が、0.001質量%〜0.5質量%である請求項1または2に記載のプロテオグリカンの製造方法。 The method for producing proteoglycan according to claim 1, wherein the protease is an acidic protease, and the content in the acidic solution is 0.001% by mass to 0.5% by mass. 前記酸性溶液が、酢酸、クエン酸、リンゴ酸、およびアスコルビン酸からなる群より選択される少なくとも1種を含む水溶液である請求項1〜3の何れか一項に記載のプロテオグリカンの製造方法。 The method for producing proteoglycan according to any one of claims 1 to 3, wherein the acidic solution is an aqueous solution containing at least one selected from the group consisting of acetic acid, citric acid, malic acid, and ascorbic acid. 前記酸性溶液が、酸性電解水若しくは炭酸水またはこれらに酢酸、クエン酸、リンゴ酸、およびアスコルビン酸からなる群より選択される少なくとも1種を添加した水溶液である請求項1〜3の何れか一項に記載のプロテオグリカンの製造方法。 4. The acidic solution is an acidic electrolyzed water or carbonated water, or an aqueous solution obtained by adding at least one selected from the group consisting of acetic acid, citric acid, malic acid, and ascorbic acid to these. The method for producing proteoglycan according to the item. 前記酸性溶液中の酢酸、クエン酸、リンゴ酸、およびアスコルビン酸からなる群より選択される少なくとも1種の濃度が、0.1質量%〜1質量%である請求項1〜5の何れか一項に記載のプロテオグリカンの製造方法。 The concentration of at least one selected from the group consisting of acetic acid, citric acid, malic acid, and ascorbic acid in the acidic solution is 0.1% by mass to 1% by mass. The method for producing proteoglycan according to the item. 前記プロテオグリカンが、質量平均分子量40万〜100万のアグリカンである請求項1〜6の何れか一項に記載のプロテオグリカンの製造方法。


The method for producing proteoglycan according to any one of claims 1 to 6, wherein the proteoglycan is an aggrecan having a mass average molecular weight of 400,000 to 1,000,000.


JP2020016006A 2019-02-08 2020-02-03 Method for producing proteoglycan Active JP7295572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023091551A JP2023101781A (en) 2019-02-08 2023-06-02 Method for producing proteoglycan

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019021155 2019-02-08
JP2019021155 2019-02-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023091551A Division JP2023101781A (en) 2019-02-08 2023-06-02 Method for producing proteoglycan

Publications (2)

Publication Number Publication Date
JP2020127397A true JP2020127397A (en) 2020-08-27
JP7295572B2 JP7295572B2 (en) 2023-06-21

Family

ID=72173871

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020016006A Active JP7295572B2 (en) 2019-02-08 2020-02-03 Method for producing proteoglycan
JP2023091551A Pending JP2023101781A (en) 2019-02-08 2023-06-02 Method for producing proteoglycan

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023091551A Pending JP2023101781A (en) 2019-02-08 2023-06-02 Method for producing proteoglycan

Country Status (1)

Country Link
JP (2) JP7295572B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013301A1 (en) * 2021-08-06 2023-02-09 一丸ファルコス株式会社 Method for producing cartilage component mixture including proteoglycan

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069097A (en) * 2000-08-22 2002-03-08 Kakuhiro Corp Method for purifying cartilage type proteoglycan
JP2003300858A (en) * 2002-04-09 2003-10-21 Nonogawa Shoji Kk Skin care preparation
JP2012236776A (en) * 2011-05-09 2012-12-06 Institute Glycosmo Co Ltd Method for producing proteoglycan
JP6317053B1 (en) * 2018-01-17 2018-04-25 一丸ファルコス株式会社 Proteoglycan production method
JP2019014660A (en) * 2017-07-04 2019-01-31 一丸ファルコス株式会社 Method for producing proteoglycan

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069097A (en) * 2000-08-22 2002-03-08 Kakuhiro Corp Method for purifying cartilage type proteoglycan
JP2003300858A (en) * 2002-04-09 2003-10-21 Nonogawa Shoji Kk Skin care preparation
JP2012236776A (en) * 2011-05-09 2012-12-06 Institute Glycosmo Co Ltd Method for producing proteoglycan
JP2019014660A (en) * 2017-07-04 2019-01-31 一丸ファルコス株式会社 Method for producing proteoglycan
JP6317053B1 (en) * 2018-01-17 2018-04-25 一丸ファルコス株式会社 Proteoglycan production method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
日本食品科学工業会誌, 2013, VOL. 60, NO. 5, PP.237-241, JPN6022049489, ISSN: 0004925802 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013301A1 (en) * 2021-08-06 2023-02-09 一丸ファルコス株式会社 Method for producing cartilage component mixture including proteoglycan
JP7220941B1 (en) * 2021-08-06 2023-02-13 一丸ファルコス株式会社 Method for producing cartilage component mixture containing proteoglycan

Also Published As

Publication number Publication date
JP7295572B2 (en) 2023-06-21
JP2023101781A (en) 2023-07-21

Similar Documents

Publication Publication Date Title
US10421777B2 (en) Process for extraction of fish collagen and formulations of 3D matrices of collagen for biomedical and therapeutic applications thereof
CA2714155C (en) Fish protein hydrolysate having a bone-stimulating and -maintaining activity, nutraceutical and pharmacological compositions comprising such a hydrolysate and method for obtaining same
TW201609175A (en) Composition comprising collagen peptide, elastin peptide and proteoglycan
KR101373940B1 (en) Method of preparing fermented and enzyme treated silkworm segment extract having high bioactive substances, the silkworm extract obtained thereby, and the use of the silkworm extract having antiinflammatory efficacy
AU2010264800A1 (en) Compositions for treating degenerative joint diseases
JP2023101781A (en) Method for producing proteoglycan
CN110592053A (en) Collagen hydrolysis complex enzyme, protein oligopeptide and preparation method thereof
CN110538312A (en) skin wound repair ointment and preparation method thereof
CN100402088C (en) Method for preparing low molecular weighted glucidamin collagen composition, its product and use
CN108785751B (en) Fish scale collagen/sodium alginate composite porous bone tissue engineering scaffold and preparation method and application thereof
KR100706294B1 (en) low molecular weight chondroitin sulfates from cartilage of chondrichthyes and Process for preparing thereof
KR101883979B1 (en) pomegranate drink comprising marine collagen and manufacturing method thereof
WO2004050078A1 (en) Remedy
CN113563458B (en) Preparation method of non-denatured type II collagen
CN106032546A (en) Method for extracting medical material-based collagen from fish scales
JP6128583B2 (en) Method for producing royal jelly having tyrosinase inhibitory action
CN104017073A (en) Method for preparing collagen
KR100901138B1 (en) Method of extracting porcine placenta and health food comprising the extract
KR20200079215A (en) Composition for Silkworm-collagen and manufacturing method thereof
KR102141095B1 (en) Use of Mimosa pudica extracts for manufacture of composition for inhibiting MMP2 gene expression and collagen degradation
CN103088095A (en) Preparation method of sheep horn protein peptide
US20150265663A1 (en) Method for suppressing adipocyte formation
CN115403668A (en) Extraction process of bioactive collagen peptide of channel catfish swim bladder
US20030032620A1 (en) Low molecular weight chondroitin sulphate compound having cosmetic activity
JP2006327979A (en) Articular cartilage lesion treatment-accelerating agent, tendon lesion treatment-accelerating agent and food and drink containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230602

R150 Certificate of patent or registration of utility model

Ref document number: 7295572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150