JP2020125732A - Manufacturing method for impeller and impeller - Google Patents

Manufacturing method for impeller and impeller Download PDF

Info

Publication number
JP2020125732A
JP2020125732A JP2019019231A JP2019019231A JP2020125732A JP 2020125732 A JP2020125732 A JP 2020125732A JP 2019019231 A JP2019019231 A JP 2019019231A JP 2019019231 A JP2019019231 A JP 2019019231A JP 2020125732 A JP2020125732 A JP 2020125732A
Authority
JP
Japan
Prior art keywords
impeller
reinforcing member
manufacturing
main
side plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019019231A
Other languages
Japanese (ja)
Inventor
隼夫 阪口
Hayao SAKAGUCHI
隼夫 阪口
野口 学
Manabu Noguchi
学 野口
涼太郎 山本
Ryotaro Yamamoto
涼太郎 山本
浩章 中本
Hiroaki Nakamoto
浩章 中本
雅裕 海藤
Masahiro Kaido
雅裕 海藤
瞬 長山
Shun NAGAYAMA
瞬 長山
小林 真治
Shinji Kobayashi
真治 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2019019231A priority Critical patent/JP2020125732A/en
Priority to PCT/JP2020/003852 priority patent/WO2020162380A1/en
Publication of JP2020125732A publication Critical patent/JP2020125732A/en
Pending legal-status Critical Current

Links

Abstract

To restrain deformation of end parts of an impeller when the impeller is formed by a lamination molding method.SOLUTION: A manufacturing method comprises: a structure formation step S1 of forming a structure comprising an impeller and a reinforcing member, by a lamination molding method; and a removal step S4 of removing the reinforcing member from the structure. In the structure formation step S1, the impeller comprises at least a pair of end parts arranged vertically, and the structure is formed so that one end of the reinforcing member is connected to at least a portion of an upper end part out of the pair of end parts.SELECTED DRAWING: Figure 7

Description

本発明は、羽根車の製造方法及び羽根車に関する。 The present invention relates to an impeller manufacturing method and an impeller.

従来ポンプに応じて、様々な羽根車が用いられている。クローズドインペラ、オープンインペラ、ノンクロッグ形インペラなどがある。クローズドインペラは、遠心ポンプ及び斜流ポンプで側板のあるインペラである。オープンインペラは、遠心ポンプ及び斜流ポンプで側板のないインペラである。このうち主板が羽根外周まであるものをセミオープン形インペラといい,主板を極力短くしたものがフルオープン形インペラである。 Conventionally, various impellers are used according to the pump. There are closed impeller, open impeller, non-clog type impeller and so on. The closed impeller is an impeller having a side plate in a centrifugal pump and a mixed flow pump. The open impeller is a centrifugal pump and a mixed flow pump and has no side plate. Of these, the one with the main plate extending to the outer circumference of the blade is called a semi-open type impeller, and the one with the main plate as short as possible is the full-open type impeller.

また、吸込形式に応じて異なる形態の羽根車が用いられている。片吸込ポンプの場合、片吸込用の羽根車が用いられており、両吸込ポンプの場合、両吸込用の羽根車が用いられる。両吸込用の羽根車は、羽根車の左右両方から均等に流体を吸い込んで加速する。例えば、両吸込用の羽根車は、横軸両吸込渦巻ポンプに使用される。 Further, different types of impellers are used depending on the suction type. In the case of a single suction pump, a single suction impeller is used, and in the case of a double suction pump, a double suction impeller is used. The impeller for both suction sucks fluid from both the left and right sides of the impeller evenly and accelerates. For example, a double suction impeller is used in a horizontal shaft double suction centrifugal pump.

3Dプリンタの適用技術として、レーザ等による積層造形法と呼ばれる技術が知られている。この技術は、一例として、レーザ等により金属粉末を実質的な二次元平面上で焼結または溶融させ、これを積み上げていくことで三次元形状を得るものである。特許文献1には、タービンホイールに適用される羽根車を、積層造形法により形成する方法が記載されている。 As a technique applied to the 3D printer, a technique called a layered manufacturing method using a laser or the like is known. In this technique, for example, a metal powder is sintered or melted on a substantially two-dimensional plane by a laser or the like, and the metal powder is piled up to obtain a three-dimensional shape. Patent Document 1 describes a method of forming an impeller applied to a turbine wheel by an additive manufacturing method.

特開2016−037901号公報JP, 2016-037901, A

しかしながら、積層造形法により、ポンプ(特に搬送流体が液体のポンプ)に用いられる羽根車を形成する場合、羽根車の端部の下側に支持する部材がないと、積層造形の途中で重力によって羽根車の端部が落ちてきてしまい、羽根車の端部(例えば、流路の入口または出口となる部分)が変形しやすいという問題がある。 However, when forming an impeller used for a pump (especially a pump whose liquid carrier is a liquid) by the additive manufacturing method, if there is no supporting member below the end of the impeller, gravity will occur during the additive manufacturing. There is a problem that the end of the impeller falls and the end of the impeller (for example, the part that becomes the inlet or outlet of the flow path) is easily deformed.

本発明は、上記問題に鑑みてなされたものであり、積層造形法により羽根車を形成する場合に羽根車の端部の変形を抑制することを可能とする羽根車の製造方法及び羽根車を提供することを目的とする。 The present invention has been made in view of the above problems, and a method for manufacturing an impeller and an impeller that can suppress the deformation of the end portion of the impeller when the impeller is formed by the additive manufacturing method. The purpose is to provide.

本発明の第1の態様に係る羽根車の製造方法は、羽根車と、補強部材と、を有する構造体を積層造形法により形成する構造体形成工程と、前記構造体から前記補強部材を除去する除去工程と、を有し、前記構造体形成工程において、前記羽根車は、上下に配置される少なくとも一対の端部を有し、前記補強部材の一端が、前記一対の端部のうち上方の端部の少なくとも一部に連結するように、前記構造体が形成される。 A method for manufacturing an impeller according to a first aspect of the present invention includes a structure forming step of forming a structure having an impeller and a reinforcing member by an additive manufacturing method, and removing the reinforcing member from the structure. In the structure forming step, the impeller has at least a pair of upper and lower end portions, and one end of the reinforcing member is an upper portion of the pair of end portions. The structure is formed so as to be connected to at least a part of an end of the structure.

この構成によれば、補強部材が、上下に配置される少なくとも一対の端部のうち上方の端部の少なくとも一部を支持するため、当該上方の端部の変形を抑えることができる。従って、積層造形法により羽根車を形成する場合に羽根車の端部の変形を抑制することができる。 According to this configuration, the reinforcing member supports at least a part of the upper end portion of at least a pair of upper and lower end portions, so that the deformation of the upper end portion can be suppressed. Therefore, when the impeller is formed by the additive manufacturing method, the deformation of the end portion of the impeller can be suppressed.

本発明の第2の態様に係る羽根車の製造方法は、第1の態様に係る羽根車の製造方法であって、前記構造体形成工程において、前記補強部材のうち、少なくとも前記補強部材の前記一端は、連結される前記羽根車の端部と略同じ金属密度になるように形成される。 A method for manufacturing an impeller according to a second aspect of the present invention is the method for manufacturing an impeller according to the first aspect, wherein in the structure forming step, at least the reinforcing member of the reinforcing member is used. One end is formed to have substantially the same metal density as the end of the impeller to be connected.

この構成によれば、補強部材の一端が、連結される羽根車の端部と略同じ密度になり、補強部材が羽根車の端部と同じ強度で維持できるので、羽根車の端部の変形を抑制することができる。また、補強部材が略同じ密度であることによって、羽根車の端部が羽根車の他の部位と同様の放熱性を有するので、羽根車の端部が羽根車の他の部位と同様の速度で冷却されるので変形が抑えられる。 According to this structure, one end of the reinforcing member has substantially the same density as the end of the impeller to be connected, and the reinforcing member can be maintained with the same strength as the end of the impeller. Can be suppressed. Further, since the reinforcing members have substantially the same density, the end portion of the impeller has the same heat dissipation property as the other portions of the impeller, so that the end portion of the impeller has the same speed as the other portions of the impeller. Since it is cooled by, deformation is suppressed.

本発明の第3の態様に係る羽根車の製造方法は、第1または第2の態様に係る羽根車の製造方法であって、前記構造体形成工程において、前記補強部材は、連結される前記羽根車の端部よりも低い密度で、且つ、前記羽根車の端部より傾いた角度で形成される。 A method for manufacturing an impeller according to a third aspect of the present invention is the method for manufacturing an impeller according to the first or second aspect, wherein in the structure forming step, the reinforcing members are connected to each other. It is formed at a density lower than the end of the impeller and at an angle inclined from the end of the impeller.

この構成によれば、補強部材の素材量を低減することができるので、羽根車の製造コストを抑制することができる。それとともに、補強部材が羽根車の端部より傾いた角度で形成されるので、補強部材の変形を抑える。 According to this configuration, the amount of material of the reinforcing member can be reduced, so that the manufacturing cost of the impeller can be suppressed. At the same time, since the reinforcing member is formed at an angle inclined from the end of the impeller, deformation of the reinforcing member is suppressed.

本発明の第4の態様に係る羽根車の製造方法は、第1から3のいずれかの態様に係る羽根車の製造方法であって、前記構造体形成工程において、前記構造体の少なくとも一部が、当該構造体より低い金属密度の部材によって支持されて形成される。 A method for manufacturing an impeller according to a fourth aspect of the present invention is the method for manufacturing an impeller according to any one of the first to third aspects, wherein in the structure forming step, at least a part of the structure is provided. Are supported and formed by a member having a metal density lower than that of the structure.

本発明の第5の態様に係る羽根車の製造方法は、第1から4のいずれかの態様に係る羽根車の製造方法であって、前記補強部材は、当該補強部材の前記一端から延伸し、当該補強部材が延伸する距離は、当該補強部材の素材に応じて決まる限界距離以下である。 A method for manufacturing an impeller according to a fifth aspect of the present invention is the method for manufacturing an impeller according to any one of the first to fourth aspects, wherein the reinforcing member extends from the one end of the reinforcing member. The distance that the reinforcing member extends is equal to or less than the limit distance that is determined according to the material of the reinforcing member.

この構成によれば、補強部材が延伸する距離を、当該補強部材の素材に応じて決まる限界距離以下にすることによって、補強部材が途中で崩れ落ちる可能性を抑制することができる。 According to this configuration, by setting the distance that the reinforcing member extends to be equal to or less than the limit distance that is determined according to the material of the reinforcing member, it is possible to suppress the possibility that the reinforcing member collapses on the way.

本発明の第6の態様に係る羽根車の製造方法は、第1から5のいずれかの態様に係る羽根車の製造方法であって、当該補強部材の前記一端から略水平に延伸する第1の部材と、当該補強部材の前記他端から垂直方向に延伸して前記第1の部材を支持する第2の部材と、を有し、前記第2の部材と前記一対の端部のうち下方の端部との間に水平距離を有する。 A method for manufacturing an impeller according to a sixth aspect of the present invention is the method for manufacturing an impeller according to any one of the first to fifth aspects, in which the impeller is extended substantially horizontally from the one end of the reinforcing member. And a second member that extends in the vertical direction from the other end of the reinforcing member to support the first member, and the second member and the lower part of the pair of end portions. Has a horizontal distance to the end of.

この構成によれば、一対の端部のうち下方の端部を支持することができるので、一対の端部のうち下方の端部の変形を抑制することができる。 According to this configuration, the lower end of the pair of end portions can be supported, so that the deformation of the lower end of the pair of end portions can be suppressed.

本発明の第7の態様に係る羽根車の製造方法は、第1から6のいずれかの態様に係る羽根車の製造方法であって、一対の端部のうち下方に位置する端部の少なくとも一部から延伸した第2の補強部材を有し、前記第2の補強部材は、当該補強部材の前記一端から延伸する第1の部材を有し、当該第1の部材が延伸する距離は、当該第1の部材の素材に応じて決まる限界距離以下である。 A method for manufacturing an impeller according to a seventh aspect of the present invention is the method for manufacturing an impeller according to any one of the first to sixth aspects, wherein at least one of a pair of end portions located at a lower end is located. It has a second reinforcing member extending from a part, the second reinforcing member has a first member extending from the one end of the reinforcing member, and the distance by which the first member extends is It is less than or equal to the limit distance determined according to the material of the first member.

この構成によれば、一対の端部のうち下方に位置する端部を支持することができるので、一対の端部のうち下方に位置する端部の変形を抑制することができる。 According to this configuration, the lower end of the pair of end portions can be supported, so that the deformation of the lower end of the pair of end portions can be suppressed.

本発明の第8の態様に係る羽根車の製造方法は、第1から7のいずれかの態様に係る羽根車の製造方法であって、前記羽根車は、主板と、側板と、当該主板と当該側板との間に設けられ揚液にエネルギーを与える主翼と、を備え、前記一対の端部は、前記主板または前記側板の吐出し側の端部である。 An impeller manufacturing method according to an eighth aspect of the present invention is the impeller manufacturing method according to any one of the first to seventh aspects, wherein the impeller includes a main plate, a side plate, and the main plate. A main wing provided between the side plate and the side plate for giving energy to the pumping liquid, and the pair of end portions is an end portion on the discharge side of the main plate or the side plate.

この構成によれば、主板または側板の吐出し側の端部のうち上方の端部を支持することができるので、主板または側板の吐出し側の端部の変形を抑制することができる。 According to this configuration, the upper end of the discharge side end of the main plate or the side plate can be supported, so that the deformation of the discharge side end of the main plate or the side plate can be suppressed.

本発明の第9の態様に係る羽根車の製造方法は、第1から7のいずれかの態様に係る羽根車の製造方法であって、前記羽根車は、主板と、側板と、当該主板と当該側板との間に設けられる複数の主翼と、を備え、前記一対の端部は、前記側板の吸込み側の端部である。 A method for manufacturing an impeller according to a ninth aspect of the present invention is the method for manufacturing an impeller according to any one of the first to seventh aspects, wherein the impeller includes a main plate, a side plate, and the main plate. A plurality of main wings provided between the side plate and the side plate, and the pair of end parts is an end part on the suction side of the side plate.

この構成によれば、側板の吸込み側の端部を支持することができるので、側板の吸込み側の端部の変形を抑制することができる。 According to this configuration, since the suction-side end of the side plate can be supported, it is possible to suppress deformation of the suction-side end of the side plate.

本発明の第10の態様に係る羽根車の製造方法は、第1から7のいずれかの態様に係る羽根車の製造方法であって、前記羽根車は、揚液にエネルギーを与える複数の主翼と、を備え、前記一対の端部は、前記複数の主翼のうち隣り合う主翼の端部である。 A method for manufacturing an impeller according to a tenth aspect of the present invention is the method for manufacturing an impeller according to any one of the first to seventh aspects, wherein the impeller has a plurality of main blades that impart energy to pumping liquid. And the pair of end portions are end portions of adjacent main wings of the plurality of main wings.

この構成によれば、複数の主翼のうち隣り合う主翼の端部を支持することができるので、複数の主翼のうち隣り合う主翼の端部の変形を抑制することができる。 According to this configuration, the ends of the adjacent main wings of the plurality of main wings can be supported, so that the deformation of the ends of the adjacent main wings of the plurality of main wings can be suppressed.

本発明の第11の態様に係る羽根車は、主板と、側板と、当該主板と当該側板との間に設けられ揚液にエネルギーを与える主翼と、を備えた羽根車であって、前記主板、前記側板および前記主翼にて形成される流路が積層造形により形成され、且つ、前記主板と前記側板との少なくとも一方の外周面が切削加工にて形成された羽根車である。 An impeller according to an eleventh aspect of the present invention is an impeller provided with a main plate, a side plate, and a main blade that is provided between the main plate and the side plate to give energy to pumping liquid, the main plate A flow path formed by the side plate and the main blade is formed by additive manufacturing, and at least one outer peripheral surface of the main plate and the side plate is formed by cutting.

この構成によれば、流路が積層造形により形成されるので当該流路の加工精度が向上し、主板と側板との少なくとも一方の外周面が切削加工されているので、当該端部の加工精度が向上する。 According to this configuration, since the flow path is formed by additive manufacturing, the processing accuracy of the flow path is improved, and since the outer peripheral surface of at least one of the main plate and the side plate is cut, the processing accuracy of the end portion is improved. Is improved.

本発明の第12の態様に係る羽根車は、第11の態様に係る羽根車であって、前記流路面と、前記外周面との表面粗さが異なる。 An impeller according to a twelfth aspect of the present invention is the impeller according to the eleventh aspect, wherein the flow passage surface and the outer peripheral surface have different surface roughnesses.

本発明の第13の態様に係る羽根車は、第12の態様に係る羽根車であって、前記流路面は、外周面よりも表面粗さが粗い。 An impeller according to a thirteenth aspect of the present invention is the impeller according to the twelfth aspect, wherein the flow passage surface has a rougher surface than the outer peripheral surface.

本発明の第14の態様に係る羽根車の製造方法は、羽根車と、補強部材と、を有する構造体を積層造形法により形成する構造体形成工程と、前記構造体から前記補強部材を除去する除去工程と、を有し、前記構造体形成工程において、前記羽根車は、前記羽根車の端部の円形の開口が積層面に対し垂直となるように配置され、前記補強部材の一端部が、前記円形の端部のうち中点よりも上方の端部の少なくとも一部に連結するように、前記構造体が形成される。 A manufacturing method for an impeller according to a fourteenth aspect of the present invention is a structure forming step of forming a structure having an impeller and a reinforcing member by a layered manufacturing method, and removing the reinforcing member from the structure. In the structure forming step, the impeller is arranged such that a circular opening at an end of the impeller is perpendicular to a stacking surface, and one end of the reinforcing member is provided. However, the structure is formed so as to be connected to at least a part of an end of the circular end above the midpoint.

本発明の第15の態様に係る羽根車の製造方法は、第14の態様に係る羽根車の製造方法であって、前記羽根車の端部の円形の開口が吸込み口である。 A method for manufacturing an impeller according to a fifteenth aspect of the present invention is the method for manufacturing an impeller according to the fourteenth aspect, wherein the circular opening at the end of the impeller is a suction port.

本発明の第16の態様に係る羽根車の製造方法は、第14または15の態様に係る羽根車の製造方法であって、前記羽根車の端部の円形の開口がインペラハブの開口部である。 A method for manufacturing an impeller according to a sixteenth aspect of the present invention is the method for manufacturing an impeller according to the fourteenth or fifteenth aspects, wherein the circular opening at the end of the impeller is an opening of the impeller hub. ..

本発明の一態様によれば、ベースプレートから積層された補強部材が、主板と側板のうち後に積層造形する方の端部の少なくとも一部を支持するため、主板と側板のうち後に積層造形する方の端部の変形を抑えることができる。従って、積層造形法により羽根車を形成する場合に羽根車の端部の変形を抑制することができる。 According to one aspect of the present invention, since the reinforcing member laminated from the base plate supports at least a part of the end portion of the main plate and the side plate to be laminated and manufactured later, one of the main plate and the side plate to be laminated and molded later. It is possible to suppress the deformation of the end portion of the. Therefore, when the impeller is formed by the additive manufacturing method, the deformation of the end portion of the impeller can be suppressed.

第1の実施形態に係るポンプの構造を示す断面図である。It is sectional drawing which shows the structure of the pump which concerns on 1st Embodiment. 図1に示すポンプのポンプケーシングの正面図である。It is a front view of the pump casing of the pump shown in FIG. 図1に示す羽根車の断面図である。It is sectional drawing of the impeller shown in FIG. 図3に示す羽根車を、その吸込口側から見たときの一部切断の正面図である。FIG. 4 is a partially cutaway front view of the impeller shown in FIG. 3 when viewed from the suction port side. 第1の実施形態に係る羽根車の製造工程の途中で形成される構造体の一例の断面図である。It is sectional drawing of an example of the structure formed in the middle of the manufacturing process of the impeller which concerns on 1st Embodiment. 第1の実施形態に係る羽根車の製造工程の途中で形成される構造体を、その吸込口側から見たときの一部切断の正面図である。It is a front view of a part cut when the structure formed in the manufacturing process of the impeller concerning a 1st embodiment is seen from the suction opening side. 第1の実施形態に係る羽根車の製造方法の流れの一例を示すフローチャートである。It is a flow chart which shows an example of the flow of the manufacturing method of the impeller concerning a 1st embodiment. 第1の実施形態の第1の変形例に係る構造体の一例の断面図である。It is sectional drawing of an example of the structure which concerns on the 1st modification of 1st Embodiment. 第1の実施形態の第2の変形例に係る構造体の一例の断面図である。It is sectional drawing of an example of the structure which concerns on the 2nd modification of 1st Embodiment. 第2の実施形態に係る構造体の一例の断面図である。It is sectional drawing of an example of the structure which concerns on 2nd Embodiment. 第3の実施形態に係る構造体の一例の断面図である。It is sectional drawing of an example of the structure which concerns on 3rd Embodiment. 第4の実施形態に係る構造体の一例の断面図である。It is sectional drawing of an example of the structure which concerns on 4th Embodiment. 第5の実施形態に係る構造体の一例の斜視図である。It is a perspective view of an example of the structure concerning a 5th embodiment. 第5の実施形態に係る構造体の一例の断面図である。It is sectional drawing of an example of the structure which concerns on 5th Embodiment.

以下、各実施形態について、図面を参照しながら説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, each embodiment will be described with reference to the drawings. However, more detailed description than necessary may be omitted. For example, detailed description of well-known matters and repeated description of substantially the same configuration may be omitted. This is for avoiding unnecessary redundancy in the following description and for facilitating understanding by those skilled in the art.

本実施形態では、ベースプレートの上に金属粉末を用いた積層造形法により、本実施形態に係る羽根車の原型となる構造体を形成する。ここで、積層造形法は、所望の羽根車の形状に合わせて配置した金属粉末を、レーザ又は電子ビーム等による熱エネルギーにより焼結させる。金属粉末の配置及び焼結といった工程を順次繰り返すことで、焼結された金属粉末が積層され、所望の形状の羽根車の原型となる構造体が形成される。 In the present embodiment, a structure serving as a prototype of the impeller according to the present embodiment is formed on the base plate by an additive manufacturing method using metal powder. Here, in the additive manufacturing method, the metal powder arranged according to the desired shape of the impeller is sintered by thermal energy such as laser or electron beam. By sequentially repeating the steps of arranging and sintering the metal powder, the sintered metal powder is laminated to form a structure that is a prototype of the impeller having a desired shape.

図1は、第1の実施形態に係るポンプの構造を示す断面図である。図2は、図1に示すポンプのポンプケーシングの正面図である。図1及び図2に示すように、ポンプは、吸込口1aと吐出し口1bを有するポンプケーシング1と、ケーシングカバー2とを備えている。羽根車3は、その吸込口9(図3参照)がポンプケーシング1の吸込口1aを向くようにポンプケーシング1の内部に配置され、吸込口1aからポンプケーシング1の内部に入った流体は、羽根車3を通って昇圧され、ポンプケーシング1の吐出し口1bから外部に排出される。羽根車3は、軸受胴体4に組込まれた軸受5a,5bに支持された主軸であるポンプ軸6のポンプケーシング1側の端部に固定されている。ポンプ軸6の他端には図示しない駆動機が連結されており、ポンプ軸6を介して羽根車3が回転駆動される。図2は、ポンプケーシング1を軸受胴体4側からみた図を示す。 FIG. 1 is a cross-sectional view showing the structure of the pump according to the first embodiment. FIG. 2 is a front view of the pump casing of the pump shown in FIG. As shown in FIGS. 1 and 2, the pump includes a pump casing 1 having a suction port 1a and a discharge port 1b, and a casing cover 2. The impeller 3 is arranged inside the pump casing 1 so that its suction port 9 (see FIG. 3) faces the suction port 1a of the pump casing 1, and the fluid that has entered the pump casing 1 through the suction port 1a is The pressure is increased through the impeller 3 and is discharged to the outside from the discharge port 1b of the pump casing 1. The impeller 3 is fixed to an end portion of a pump shaft 6, which is a main shaft supported by bearings 5a and 5b incorporated in a bearing body 4, on the pump casing 1 side. A drive machine (not shown) is connected to the other end of the pump shaft 6, and the impeller 3 is rotationally driven via the pump shaft 6. FIG. 2 shows a view of the pump casing 1 as seen from the bearing body 4 side.

図3は、図1に示す羽根車の断面図である。図4は、図3に示す羽根車を、その吸込口側から見たときの一部切断の正面図である。図3及び図4に示すように、羽根車3は、インペラハブ10、主板11、側板12及び主板11と側板12との間に配置された複数の主翼13から構成されている。インペラハブ10は、ポンプ軸6が貫通する開口部8を有し、ポンプ軸6に固定され,主翼13を取り付ける回転体である。主板11は、羽根車3を形成する側壁のうち、インペラハブ10に連なる側の側壁である。側板12は、羽根車3を形成する側壁のうち、主翼13に支えられる側の側壁である。主翼13は、揚液にエネルギーを与える羽根であり、インペラハブ10に取り付けられている。主翼13は、この例では、厚さt1の板状に形成されて、互いに隣接する一方の主翼13の回転方向側の表面13aと他方の主翼13の反回転方向側の裏面13bとの間に、流路20がそれぞれ区画形成されている。また図3には、主板11と側板12との間に形成された流路20の出口幅B2が示されている。 FIG. 3 is a cross-sectional view of the impeller shown in FIG. FIG. 4 is a partially cut front view of the impeller shown in FIG. 3 as viewed from the suction port side. As shown in FIGS. 3 and 4, the impeller 3 includes an impeller hub 10, a main plate 11, a side plate 12, and a plurality of main blades 13 arranged between the main plate 11 and the side plate 12. The impeller hub 10 is a rotating body that has an opening 8 through which the pump shaft 6 penetrates, is fixed to the pump shaft 6, and mounts the main wing 13. The main plate 11 is a side wall of the side walls forming the impeller 3 and connected to the impeller hub 10. The side plate 12 is a side wall of the side walls forming the impeller 3 that is supported by the main wing 13. The main wing 13 is a blade that gives energy to the pumped liquid, and is attached to the impeller hub 10. In this example, the main wing 13 is formed in a plate shape having a thickness t1, and is disposed between the front surface 13a of one main wing 13 on the rotation direction side and the back surface 13b of the other main wing 13 on the anti-rotation direction side that are adjacent to each other. The flow paths 20 are formed in sections. Further, FIG. 3 shows the outlet width B2 of the flow path 20 formed between the main plate 11 and the side plate 12.

図5は、第1の実施形態に係る羽根車の製造工程の途中で形成される構造体の一例の断面図である。図6は、第1の実施形態に係る羽根車の製造工程の途中で形成される構造体を、羽根車3の吸込口9側から見たときの一部切断の正面図である。図5及び図6に示すように、羽根車3の原型となる構造体14は、インペラハブ10と、主板11と、側板12と、当該主板11と当該側板12との間に設けられる複数の主翼13と、を備える羽根車3と、側板12を支持する支持部材22と、インペラハブ10を支持する支持部材23と、補強部材30と、を有する。構造体14は、ベースプレート21の上に金属粉末を用いた積層造形法により形成されている。 FIG. 5: is sectional drawing of an example of the structure formed in the middle of the manufacturing process of the impeller which concerns on 1st Embodiment. FIG. 6 is a partially cut front view of the structure formed during the manufacturing process of the impeller according to the first embodiment, as seen from the suction port 9 side of the impeller 3. As shown in FIGS. 5 and 6, the structure 14 serving as a prototype of the impeller 3 includes an impeller hub 10, a main plate 11, a side plate 12, and a plurality of main wings provided between the main plate 11 and the side plate 12. An impeller 3 including a support member 22, a support member 22 that supports the side plate 12, a support member 23 that supports the impeller hub 10, and a reinforcing member 30. The structure 14 is formed on the base plate 21 by an additive manufacturing method using metal powder.

図5及び図6に示すように、補強部材30の一端部30aが、主板11の外周面11cに連結している。補強部材30の第2の部材32は、主板11の外周面11cから離れており、補強部材30の他端部30bがベースプレート21に連結している。 As shown in FIGS. 5 and 6, one end portion 30 a of the reinforcing member 30 is connected to the outer peripheral surface 11 c of the main plate 11. The second member 32 of the reinforcing member 30 is separated from the outer peripheral surface 11c of the main plate 11, and the other end 30b of the reinforcing member 30 is connected to the base plate 21.

より詳細には、補強部材30は、当該補強部材30の一端部30aから主板11の外周面11cに向かって延伸する第1の部材31と、当該補強部材30の他端部30bから垂直方向に延伸して第1の部材31を支持する第2の部材32と、を有する。この第2の部材32と側板12との間の水平距離Dは、造形する素材に応じて決まる限界距離以下に設定されている。この構成によれば、第2の部材32と主板11との間の水平距離Dを、当該限界距離以下にすることによって、補強部材30が途中で崩れ落ちるのを抑制することができる。本実施形態では、主板11が略水平に配置されて積層造形されるため、第1の部材31は補強部材30の一端部30aから略水平に延伸する。一実施形態では、主板11が水平から傾いて配置されて積層造形してもよいし、または/および、第1の部材31は、補強部材30の一端部30aから水平に対して所定の角度で延伸してもよい。そうすれば、水平距離Dを長くできる。また、積層造形では、順次積層される水平面の面積を極力少なくすることで、形成される構造体14の変形を抑えることができる。第1の部材31を水平より傾いた角度で形成することで、補強部材30の変形を抑えることができる。 More specifically, the reinforcing member 30 includes a first member 31 extending from one end 30a of the reinforcing member 30 toward the outer peripheral surface 11c of the main plate 11 and a vertical direction from the other end 30b of the reinforcing member 30. A second member 32 that extends to support the first member 31. The horizontal distance D between the second member 32 and the side plate 12 is set to be equal to or less than the limit distance determined according to the material to be molded. According to this configuration, by setting the horizontal distance D between the second member 32 and the main plate 11 to be equal to or less than the limit distance, it is possible to prevent the reinforcing member 30 from collapsing halfway. In the present embodiment, since the main plate 11 is arranged substantially horizontally and is laminated and manufactured, the first member 31 extends substantially horizontally from the one end portion 30 a of the reinforcing member 30. In one embodiment, the main plate 11 may be arranged to be inclined from the horizontal for additive manufacturing, and/or the first member 31 may be disposed at a predetermined angle from the one end 30a of the reinforcing member 30 with respect to the horizontal. You may stretch. Then, the horizontal distance D can be increased. In addition, in the layered manufacturing, it is possible to suppress the deformation of the formed structure 14 by minimizing the area of the horizontal planes that are sequentially layered. By forming the first member 31 at an angle inclined from the horizontal, the deformation of the reinforcing member 30 can be suppressed.

本実施形態に係る構造体形成工程において、補強部材30のうち、少なくとも一端部30aは、羽根車3と略同じ金属密度になるように形成されることが好ましい。これにより、主板11の外周面11cと連結する補強部材30の一端部30aが、主板11と略同じ金属密度になり、補強部材30が主板11の端部と同じ強度で維持できるので、主板11の外周面の変形を抑制することができる。また、積層造形では、造形時の熱がうまく放熱できないと、結果として変形してしまう。ここで、外周面11cに補強部材30がないと、外周面11cは空気に触れて放熱されにくい。また、外周面11cより低い金属密度の補強部材30が当接すると、羽根車3の他の部分に比べて放熱されにくく外周面11cが部分的に変形してしまう虞がある。しかしながら、外周面11cと略同じ金属密度の補強部材30が当接すれば、羽根車の外周面11cが羽根車の他の部位と同様の放熱性を有するので、外周面11cは羽根車の他の部位と同様の速度で冷却され変形が抑えられる。本実施形態では、第1の部材31は全て羽根車3と同じ金属密度で形成される。一実施形態では、第1の部材31の外周側の少なくとも一部が羽根車3より低い金属密度(例えば、メッシュ構造やスポンジ状の造形物)で形成されてもよい。 In the structure forming step according to the present embodiment, it is preferable that at least one end portion 30a of the reinforcing member 30 is formed to have substantially the same metal density as that of the impeller 3. Thereby, the one end portion 30a of the reinforcing member 30 connected to the outer peripheral surface 11c of the main plate 11 has substantially the same metal density as that of the main plate 11, and the reinforcing member 30 can be maintained with the same strength as the end portion of the main plate 11, so that the main plate 11 can be maintained. It is possible to suppress the deformation of the outer peripheral surface of the. In addition, in the layered modeling, if the heat at the time of modeling cannot be radiated well, the result is deformation. Here, if the outer peripheral surface 11c does not have the reinforcing member 30, the outer peripheral surface 11c is in contact with air and is less likely to radiate heat. Further, when the reinforcing member 30 having a metal density lower than that of the outer peripheral surface 11c comes into contact, the outer peripheral surface 11c may be partially deformed because it is less likely to radiate heat than the other parts of the impeller 3. However, if the reinforcing member 30 having substantially the same metal density as that of the outer peripheral surface 11c comes into contact with the outer peripheral surface 11c, the outer peripheral surface 11c has the same heat dissipation as the other parts of the impeller, and therefore the outer peripheral surface 11c does not correspond to other parts of the impeller. It is cooled at the same speed as the part and deformation is suppressed. In the present embodiment, all the first members 31 are formed with the same metal density as the impeller 3. In one embodiment, at least a part of the outer peripheral side of the first member 31 may be formed with a metal density lower than that of the impeller 3 (for example, a mesh structure or a sponge-like shaped object).

本実施形態に係る構造体形成工程において、補強部材30のうち、少なくとも補強部材30の他端部30bは、羽根車3より低い金属密度(例えば、メッシュ構造やスポンジ状の造形物)で形成されてもよい。これにより、補強部材30の金属量を低減することができるので、羽根車の製造コストを抑制することができる。本実施形態では、第2の部材32は全て羽根車3より低い金属密度(例えば、メッシュ構造やスポンジ状の造形物)で形成される。一実施形態では、第2の部材32の少なくとも一部が羽根車3と同じ金属密度で形成されてもよい。 In the structure forming step according to the present embodiment, at least the other end 30b of the reinforcing member 30 of the reinforcing member 30 is formed with a metal density lower than that of the impeller 3 (for example, a mesh structure or a sponge-like shaped object). May be. Thereby, the amount of metal of the reinforcing member 30 can be reduced, so that the manufacturing cost of the impeller can be suppressed. In this embodiment, all the second members 32 are formed with a metal density lower than that of the impeller 3 (for example, a mesh structure or a sponge-like shaped object). In one embodiment, at least a part of the second member 32 may be formed with the same metal density as the impeller 3.

本実施形態に係る構造体形成工程において、支持部材22は、例えば、羽根車3に比べて低い金属密度(例えば、メッシュ構造やスポンジ状の造形物)になるように形成されてもよい。これにより、支持部材22の金属量を低減することができるので、羽根車3の製造コストを抑制することができる。本実施形態では、支持部材22はインペラハブ10および側板12全体を支持するように形成される。一実施形態では、羽根車3の径が小さい等で側板12が安定して形成できるのであれば、支持部材22は側板12の少なくとも一部のみを支持するように形成されてもよい。更には、支持部材22はなくてもよい。 In the structure forming step according to this embodiment, the support member 22 may be formed to have a lower metal density (for example, a mesh structure or a sponge-like shaped object) than the impeller 3. As a result, the amount of metal of the support member 22 can be reduced, so that the manufacturing cost of the impeller 3 can be suppressed. In the present embodiment, the support member 22 is formed to support the impeller hub 10 and the side plate 12 as a whole. In one embodiment, the support member 22 may be formed to support at least a part of the side plate 12 as long as the side plate 12 can be stably formed due to the small diameter of the impeller 3 or the like. Furthermore, the support member 22 may be omitted.

図7を用いて第1の実施形態に係る羽根車の製造方法について説明する。図7は、第1の実施形態に係る羽根車の製造方法の流れの一例を示すフローチャートである。 The manufacturing method of the impeller according to the first embodiment will be described with reference to FIG. 7. FIG. 7 is a flowchart showing an example of the flow of the method for manufacturing the impeller according to the first embodiment.

(ステップS1)まず、ベースプレート21の上に、金属粉末(例えば、チタンまたはステンレスなど)を用いた積層造形法により、本実施形態に係る羽根車3の原型となる構造体14を形成する。 (Step S1) First, the structure 14 serving as the prototype of the impeller 3 according to the present embodiment is formed on the base plate 21 by a layered manufacturing method using metal powder (for example, titanium or stainless steel).

(ステップS2)次に、構造体14をベースプレート21から剥がす。例えば、構造体14が構成される金属がチタンの場合、ペンチで構造体14をベースプレート21から剥がしてもよい。一方、例えば、構造体14が構成される金属がステンレスの場合、機械加工で構造体14をベースプレート21から剥がしてもよい。 (Step S2) Next, the structure 14 is peeled off from the base plate 21. For example, when the metal forming the structure 14 is titanium, the structure 14 may be peeled from the base plate 21 with pliers. On the other hand, for example, when the metal forming the structure 14 is stainless steel, the structure 14 may be peeled from the base plate 21 by machining.

(ステップS3)次に、構造体14から支持部材22を除去する。例えば、構造体14が構成される金属がチタンの場合、ペンチで構造体14から支持部材22を除去してもよい。一方、例えば、構造体14が構成される金属がステンレスの場合、機械加工(例えば、切削加工)で構造体14から支持部材22を除去してもよい。 (Step S3) Next, the support member 22 is removed from the structure 14. For example, when the metal forming the structure 14 is titanium, the support member 22 may be removed from the structure 14 with pliers. On the other hand, for example, when the metal forming the structure 14 is stainless steel, the support member 22 may be removed from the structure 14 by machining (for example, cutting).

(ステップS4)次に、構造体14から補強部材30を機械加工等(ここでは一例として切削加工)で除去する。ここで、本実施形態では、構造体14から第2の部材32を除去した後、構造体14から第1の部材31を除去する。具体的には、ペンチやカッター等で構造体14から羽根車3よりも金属密度が低い部材(本実施形態では、第2の部材32)を切断し、次に羽根車3と金属密度が同じ部分(本実施形態では、第1の部材31)を旋盤にて切削する。当該旋盤での切削は、ステップS5における研磨作業を兼ねることができるため作業工程を簡略化できる。また、旋盤では、加工中に被加工物の硬さが変化すると加工機械が(特に工具刃)傷んでしまう虞があるため、補強部材30のうちの少なくとも一端部30aは、主板11の外周面の一周に渡り連結され且つ主板11と同じ金属密度で形成されるとよい。 (Step S4) Next, the reinforcing member 30 is removed from the structure 14 by machining or the like (cutting as an example here). Here, in the present embodiment, after the second member 32 is removed from the structure 14, the first member 31 is removed from the structure 14. Specifically, a member having a lower metal density than the impeller 3 (the second member 32 in the present embodiment) is cut from the structure 14 with pliers or a cutter, and then the impeller 3 has the same metal density. The portion (the first member 31 in this embodiment) is cut by a lathe. The cutting with the lathe can double as the polishing work in step S5, so that the working process can be simplified. Further, in a lathe, if the hardness of the work piece changes during processing, the processing machine may be damaged (particularly, the tool blade), so at least one end portion 30 a of the reinforcing member 30 has an outer peripheral surface of the main plate 11. It is preferable that they are connected over one round and have the same metal density as that of the main plate 11.

(ステップS5)次に、構造体14を研磨する。前記主板11、前記側板12の外表面11a、12aは、旋盤等によって切削加工による研磨がなされ、前記主板11、前記側板12および前記主翼13にて形成される流路20は、スライム等による流体研磨がなされる。なお、ステップS5は省略されてもよい。 (Step S5) Next, the structure 14 is polished. The outer surfaces 11a, 12a of the main plate 11 and the side plate 12 are polished by a lathe or the like by cutting, and the flow path 20 formed by the main plate 11, the side plate 12 and the main wing 13 is a fluid such as slime. Polished. Note that step S5 may be omitted.

ここで、ステップS5にて製造された羽根車3は、積層造形にて形成された表面の積層面に対して傾斜した面に積層段差が残り、積層面に平行な面にはレーザ又は電子ビーム等による塗り痕が残る。それに対して、切削加工の面には工具痕(例えば筋目方向の傷)が残る。このように、羽根車3は、積層造形にて形成された流路面(流路面11b、12b、および主翼13の表面13a、裏面13b)と、機械加工された面(外周面11c、12cおよび外表面11a、12a)との表面粗さが異なる。そして、主板11は、流路面11bにおける表面粗さが外周面11cよりも粗い。一例として、主板11の流路面11b(流路面のうち上側の面)の表面粗さはSa(算術平均高さ)が20μm〜100μmであるのに対して、外周面11c(旋盤加工された面)の表面粗さはSaが5μm以下である。
特に、クローズドインペラの製造において、鋳物や溶接に比して積層造形であれば、複雑な流路を形成でき、更に、積層造形にて変形しやすい主板11または/および側板12は旋盤等で後から切削加工することで、所望する形状の羽根車3を製造できる。
Here, in the impeller 3 manufactured in step S5, a stacking step remains on the surface of the surface formed by additive manufacturing that is inclined with respect to the stacking surface, and the surface parallel to the stacking surface is a laser or electron beam. A coating mark due to etc. remains. On the other hand, tool marks (for example, scratches in the streak direction) remain on the surface of the cutting work. As described above, the impeller 3 includes the flow path surfaces (flow path surfaces 11b and 12b, and the front surface 13a and the back surface 13b of the main wing 13) formed by additive manufacturing, and the machined surfaces (outer peripheral surfaces 11c and 12c and the outer surface). The surface roughness is different from the surface 11a, 12a). The surface roughness of the flow path surface 11b of the main plate 11 is rougher than that of the outer peripheral surface 11c. As an example, the surface roughness of the flow path surface 11b (upper surface of the flow path surface) of the main plate 11 is Sa (arithmetic mean height) of 20 μm to 100 μm, whereas the outer peripheral surface 11c (the surface subjected to lathe processing). The surface roughness Sa) is 5 μm or less.
In particular, in the manufacturing of a closed impeller, if the additive manufacturing is more complicated than casting or welding, a complicated flow path can be formed, and further, the main plate 11 and/or the side plate 12 that is easily deformed by additive manufacturing is a lathe or the like. The impeller 3 having a desired shape can be manufactured by cutting from the blade.

なお、ステップS3とステップS4の順番は逆でもよい。 The order of step S3 and step S4 may be reversed.

このように、羽根車3は、上下に配置される少なくとも一対の端部である外周面11c、12cを有し、補強部材30の一端部30aが、一対の端部のうち上方の端部(外周面11c)の少なくとも一部に連結するように、構造体14が形成される。また、積層造形により形成された主板11、側板12および主翼13にて形成される流路20と、切削加工にて形成された主板11の外周側の端部である一端部11cとの表面粗さが異なる。 Thus, the impeller 3 has the outer peripheral surfaces 11c and 12c that are at least a pair of end portions arranged vertically, and the one end portion 30a of the reinforcing member 30 has the upper end portion (of the pair of end portions) ( The structure 14 is formed so as to be connected to at least a part of the outer peripheral surface 11c). In addition, the surface roughness of the flow path 20 formed by the main plate 11, the side plate 12, and the main wing 13 formed by additive manufacturing, and the one end portion 11c that is the outer peripheral end of the main plate 11 formed by cutting. But different.

なお、本実施形態では一例として、図6に示すように、主板11の外周面11cの一周に渡って補強部材30を連結するようにしたが、これに限ったものではなく、主板11の外周面11cの半周毎に半周分に相当する補強部材30を連結してもよいし、外周方向に間隔を設けて円弧分に相当する補強部材30を複数連結してもよい。また、補強部材30は、主板11の外周面に限らず、主板11の外周側の端部(表面の端部または裏面の端部)に連結していてもよい。このように、補強部材30は、主板11の端部(例えば、外周面)の少なくとも一部に連結していればよい。特に、主翼13は補強部材30と同様に積層造形時に主板11を支持することができるので、外周面11cの主翼13に接する部分から所定の間隔を空けて補強部材30を配置してもよい。また、本実施形態では、第1の部材31は側板11の外周面11cの一周に渡り、且つ、複数の第2の部材32が第1の部材31の外周側の一周に渡り設けられている。一実施形態では、第1の部材31は側板11の外周面11cの一周に渡り、且つ、第2の部材32が第1の部材31の外周側の少なくとも一部に設けられてもよい。 In the present embodiment, as an example, as shown in FIG. 6, the reinforcing member 30 is connected over the entire circumference of the outer peripheral surface 11c of the main plate 11, but the embodiment is not limited to this, and the outer periphery of the main plate 11 is not limited to this. For each half circumference of the surface 11c, the reinforcing members 30 corresponding to a half circumference may be connected, or a plurality of reinforcing members 30 corresponding to an arc may be connected at intervals in the outer circumferential direction. Further, the reinforcing member 30 is not limited to the outer peripheral surface of the main plate 11, and may be connected to the outer peripheral side end portion (front surface end portion or back surface end portion) of the main plate 11. Thus, the reinforcing member 30 may be connected to at least a part of the end portion (for example, the outer peripheral surface) of the main plate 11. In particular, since the main wing 13 can support the main plate 11 at the time of additive manufacturing similarly to the reinforcing member 30, the reinforcing member 30 may be arranged at a predetermined interval from the portion of the outer peripheral surface 11c that is in contact with the main wing 13. Further, in the present embodiment, the first member 31 extends over the entire circumference of the outer peripheral surface 11 c of the side plate 11, and the plurality of second members 32 extend over the entire circumference of the first member 31. .. In one embodiment, the first member 31 may extend over the entire circumference of the outer peripheral surface 11 c of the side plate 11, and the second member 32 may be provided on at least a part of the outer peripheral side of the first member 31.

<第1の実施形態の第1の変形例>
続いて第1の実施形態の第1の変形例について説明する。図8は、第1の実施形態の第1の変形例に係る構造体の一例の断面図である。第1の実施形態の構造体は、主板11より上に側板12が積層形成され、補強部材30が側板12に連結されているものとして説明したが、第1の実施形態の第1の変形例に係る構造体は、主板11より上に側板12が積層形成されたものであり、補強部材40が、主板11ではなく側板12に連結されている点が異なっている。これは、主板11が支持部材23によって支持されるようになる一方、側板12の外周面12c側は支持部材で支持されなくなるので、補強部材40で支持するためである。
<First Modification of First Embodiment>
Then, the 1st modification of 1st Embodiment is demonstrated. FIG. 8 is a cross-sectional view of an example of the structure according to the first modification of the first embodiment. The structure of the first embodiment has been described as the side plate 12 stacked on the main plate 11 and the reinforcing member 30 connected to the side plate 12, but the first modification of the first embodiment. The structure according to (1) is different in that the side plate 12 is laminated and formed on the main plate 11, and the reinforcing member 40 is connected to the side plate 12 instead of the main plate 11. This is because the main plate 11 comes to be supported by the supporting member 23, while the outer peripheral surface 12c side of the side plate 12 is no longer supported by the supporting member, so that the reinforcing member 40 supports it.

図8に示すように、補強部材40の一端40aが側板12の外周面12cに連結している。また補強部材40の第2の部材42が主板11の外周面から離れている。補強部材40の他端40bがベースプレート21に連結している。 As shown in FIG. 8, one end 40 a of the reinforcing member 40 is connected to the outer peripheral surface 12 c of the side plate 12. The second member 42 of the reinforcing member 40 is separated from the outer peripheral surface of the main plate 11. The other end 40b of the reinforcing member 40 is connected to the base plate 21.

補強部材40は、当該補強部材40の一端40aから略水平に延伸する第1の部材41と、当該補強部材40の他端40bから垂直方向に延伸して第1の部材41を支持する第2の部材42と、を有する。この第2の部材42と主板11との間の水平距離Dは、積層する素材に応じて決まる限界距離以下である。この構成によれば、第2の部材42と主板11との間の水平距離Dを設ける。なぜならば、当接した第2の部材42と主板11を積層造形した結果、形成不良等で第2の部材42が異物として流路20内に入り込んでしまうと、当該流路内の第2の部材42を後工程で流路20から取り除かなければならないからである。特に、搬送流体が気体等のタービンの羽根車に比して搬送流体が液体のポンプの場合、流路20内の異物による圧損が顕著に現れる。しかしながら、主板11、側板12および主翼13にて形成される流路20から異物を取り除くのは困難である。そのため、特に搬送流体が液体のポンプの場合には、水平距離Dを設け異物が流路20内に入るのを防止することが有効である。また、第1の部材41を当該限界距離以下で延伸することによって、補強部材40が途中で崩れ落ちるのを抑制することができる。 The reinforcing member 40 includes a first member 41 extending substantially horizontally from one end 40a of the reinforcing member 40 and a second member 41 extending vertically from the other end 40b of the reinforcing member 40 to support the first member 41. And the member 42 of. The horizontal distance D between the second member 42 and the main plate 11 is less than or equal to the limit distance determined according to the material to be laminated. According to this configuration, the horizontal distance D between the second member 42 and the main plate 11 is provided. This is because when the second member 42 and the main plate 11 that have been brought into contact with each other are laminated and molded, and the second member 42 enters the flow path 20 as a foreign matter due to defective formation or the like, the second member 42 in the flow path is damaged. This is because the member 42 has to be removed from the flow path 20 in a later step. In particular, in the case where the carrier fluid is a pump in which the carrier fluid is a liquid as compared with an impeller of a turbine in which the carrier fluid is a gas or the like, the pressure loss due to the foreign matter in the flow passage 20 becomes remarkable. However, it is difficult to remove foreign matter from the flow path 20 formed by the main plate 11, the side plate 12, and the main wing 13. Therefore, especially when the carrier fluid is a liquid pump, it is effective to provide the horizontal distance D to prevent foreign matter from entering the flow path 20. Further, by stretching the first member 41 within the limit distance, it is possible to prevent the reinforcing member 40 from collapsing halfway.

本実施形態では、補強部材30と同様に、一端部40aが羽根車3と同じ金属密度で形成され且つ側板12の外周面12cの一周に渡って連結されることで、第1の部材41を旋盤にて良好に切削することができる。 In the present embodiment, similarly to the reinforcing member 30, the one end portion 40a is formed with the same metal density as the impeller 3 and is connected over the entire circumference of the outer peripheral surface 12c of the side plate 12, so that the first member 41 is connected. Can be satisfactorily cut with a lathe.

このように、第1の実施形態の第1の変形例における羽根車3は、上下に配置される少なくとも一対の端部である外周面11c、12cを有し、補強部材40の一端部40aが、一対の端部のうち上方の端部(外周面12c)の少なくとも一部に連結するように、構造体14が形成される。また、第1の実施形態と同様に積層造形により形成された側板12にて形成される流路20と、切削加工にて形成された側板12の外周側の端部である一端部12cとの表面粗さが異なる。 Thus, the impeller 3 in the first modified example of the first embodiment has the outer peripheral surfaces 11c and 12c that are at least a pair of upper and lower end portions, and the one end portion 40a of the reinforcing member 40 is The structure 14 is formed so as to be connected to at least a part of the upper end (outer peripheral surface 12c) of the pair of ends. Further, as in the first embodiment, the flow path 20 formed by the side plate 12 formed by additive manufacturing and the one end portion 12c which is the end portion on the outer peripheral side of the side plate 12 formed by cutting work. The surface roughness is different.

なお、第1の実施形態の第1の変形例では、一例として側板12の外周面12cの一周に渡って補強部材40を連結するようにしたが、これに限ったものではなく、側板12の外周面12cの半周毎に半周分に相当する補強部材40を連結してもよいし、外周方向に間隔を設けて円弧分に相当する補強部材40を複数連結してもよい。また、補強部材30は、側板12の外周面に限らず、側板12の外周側の端部(表面の端部または裏面の端部)に連結していてもよい。このように、補強部材40は、側板12の端部(例えば、外周面)の少なくとも一部に連結していればよい。 In the first modification of the first embodiment, as an example, the reinforcing member 40 is connected over the entire circumference of the outer peripheral surface 12c of the side plate 12, but the invention is not limited to this. For each half of the outer peripheral surface 12c, the reinforcing members 40 corresponding to a half circumference may be connected, or a plurality of reinforcing members 40 corresponding to an arc may be connected at intervals in the outer circumferential direction. Further, the reinforcing member 30 is not limited to the outer peripheral surface of the side plate 12, and may be connected to the outer peripheral side end of the side plate 12 (front surface end or back surface end). As described above, the reinforcing member 40 may be connected to at least a part of the end portion (for example, the outer peripheral surface) of the side plate 12.

<第1の実施形態の第2の変形例>
続いて第1の実施形態の第2の変形例について説明する。図9は、第1の実施形態の第2の変形例に係る構造体の一例の断面図である。第1の実施形態の第1の変形例に係る構造体では、補強部材40が一つであったのに対して、第1の実施形態の第2の変形例に係る構造体では、第2の補強部材43が追加され、その分、第1の変形例に係る支持部材23より支持部材24が水平方向に更に長くなっており、第1の変形例に係る補強部材40の第1の部材41より補強部材40cの第1の部材41cが水平方向に更に長くなっている点が異なっている。
<Second Modification of First Embodiment>
Subsequently, a second modification of the first embodiment will be described. FIG. 9 is a cross-sectional view of an example of a structure according to a second modification of the first embodiment. In the structure according to the first modified example of the first embodiment, the number of the reinforcing member 40 is one, whereas in the structure according to the second modified example of the first embodiment, the second reinforcing member 40 is provided. The reinforcing member 43 is added, and the supporting member 24 is further longer in the horizontal direction than the supporting member 23 according to the first modification, and the first member of the reinforcing member 40 according to the first modification is added. The difference is that the first member 41c of the reinforcing member 40c is longer than the reference numeral 41 in the horizontal direction.

図9に示すように、構造体14cは、主板11の外周面の少なくとも一部(ここでは一例として外周面全体)に連結する第2の補強部材43を有する。第2の補強部材43は、補強部材40と同様に、当該第2の補強部材43の一端部43aから略水平に延伸する第1の部材43cと、当該第1の部材43cの他端部43bから垂直方向に延伸して第1の部材43cを支持する第2の部材44と、を有する。
補強部材40cは、補強部材40と同様に、当該補強部材40cの一端部40aから略水平に延伸する第1の部材41cと、当該補強部材40cの他端部40bから垂直方向に延伸して第1の部材41cを支持する第2の部材42と、を有する。第2の部材42と第2の補強部材43との間の水平距離Dは、金属粉末の素材に応じて決まる限界距離以下である。
図7のステップS4における除去工程において、構造体14cから補強部材40cに加えて第2の補強部材43を除去する。よって、補強部材30と同様に、補強部材40cの一端部40a並びに第2の補強部材43の一端部43aは、羽根車3と同じ金属密度にて形成されるとよい。
この構成によれば、主板11の外周面11cと側板12の外周面12cの両方を支持することができるので、羽根車3の外周面11c、12c側の端部の両方の変形を抑制することができる。
As shown in FIG. 9, the structure 14c has a second reinforcing member 43 that is connected to at least a part of the outer peripheral surface of the main plate 11 (here, the entire outer peripheral surface as an example). Similarly to the reinforcing member 40, the second reinforcing member 43 includes a first member 43c extending substantially horizontally from one end 43a of the second reinforcing member 43 and another end 43b of the first member 43c. And a second member 44 that extends in the vertical direction to support the first member 43c.
Similar to the reinforcing member 40, the reinforcing member 40c includes a first member 41c that extends substantially horizontally from one end 40a of the reinforcing member 40c and a first member 41c that extends vertically from the other end 40b of the reinforcing member 40c. The second member 42 that supports the first member 41c. The horizontal distance D between the second member 42 and the second reinforcing member 43 is less than or equal to the limit distance determined according to the material of the metal powder.
In the removing step in step S4 of FIG. 7, the second reinforcing member 43 is removed from the structure 14c in addition to the reinforcing member 40c. Therefore, similarly to the reinforcing member 30, the one end portion 40a of the reinforcing member 40c and the one end portion 43a of the second reinforcing member 43 may be formed with the same metal density as that of the impeller 3.
According to this configuration, both the outer peripheral surface 11c of the main plate 11 and the outer peripheral surface 12c of the side plate 12 can be supported, so that both the outer peripheral surfaces 11c and 12c of the impeller 3 are prevented from being deformed. You can

以上によれば、一実施形態に係る羽根車の製造方法は、主板11と、側板12と、当該主板11と当該側板12との間に設けられる複数の主翼13と、補強部材30、40または40cと、を有する構造体14、14bまたは14cを、ベースプレート21の上に金属粉末を用いた積層造形法により形成する構造体形成工程と、構造体14、14bまたは14cから前記補強部材30、40または40cを除去する除去工程と、を有する。
この構造体形成工程において、補強部材30、40または40cの一端が主板11と側板12のうち後に積層造形する方の端部の少なくとも一部に連結し、且つ補強部材30、40または40cが主板11と側板12のうち先に積層造形する方の端部から離れており、且つ補強部材30、40または40cの他端がベースプレート21に連結するように、構造体14、14bまたは14cが形成される。
According to the above, the method for manufacturing the impeller according to the embodiment includes the main plate 11, the side plate 12, the plurality of main wings 13 provided between the main plate 11 and the side plate 12, and the reinforcing members 30, 40 or. A structure forming step of forming a structure 14, 14b or 14c having 40c by a layered manufacturing method using a metal powder on the base plate 21, and the reinforcing member 30, 40 from the structure 14, 14b or 14c. Or a removal step of removing 40c.
In this structure forming step, one end of the reinforcing member 30, 40 or 40c is connected to at least a part of the end of one of the main plate 11 and the side plate 12 to be layered later, and the reinforcing member 30, 40 or 40c is the main plate. The structure 14, 14b or 14c is formed such that the structure 11 is separated from the end of the side plate 12 on which the additive manufacturing is performed first and the other end of the reinforcing member 30, 40 or 40c is connected to the base plate 21. R.

この構成によれば、ベースプレート21から積層された補強部材30、40または40cが、主板11と側板12のうち後に積層造形する方の端部の少なくとも一部を支持するため、主板11と側板12のうち後に積層造形する方の端部の変形を抑えることができる。従って、積層造形法により羽根車3を形成する場合に羽根車3の端部(主板11または/および側板12の外周面11c、12c側の端部)の変形を抑制することができる。 According to this configuration, since the reinforcing member 30, 40 or 40c laminated from the base plate 21 supports at least a part of the end portion of the main plate 11 and the side plate 12 which is to be later laminated and manufactured, the main plate 11 and the side plate 12 are formed. It is possible to suppress the deformation of the end portion of the one to be layered and formed later. Therefore, when the impeller 3 is formed by the additive manufacturing method, it is possible to suppress the deformation of the end portion of the impeller 3 (the end portions on the outer peripheral surfaces 11c and 12c of the main plate 11 and/or the side plate 12).

なお、構造体形成工程において、補強部材30、40または40cは、当該補強部材30、40または40cのベースプレート21に連結している他端部30bまたは40bまたは当該補強部材30、40または40cの途中の高さから、当該補強部材30、40または40cの一端部30aまたは他端部30bにかけて、水平より傾いた角度で形成されてもよい。この構成によれば、主板11の外周面11cまたは側板12の外周面12cを斜めに支持することができるので、補強部材30、40または40cの他端部30bと、主板11または側板12との間の水平距離を長くすることができる。傾いた角度で形成されると、水平に形成されるのに比して一層の形成面が少ない。そのため、補強部材30、40、40cの第1の部材31、41、41cは金属密度を低く(例えば、メッシュ構造)して形成しても形状が安定するので、材料が少なくて済むという利点がある。 In the structure forming step, the reinforcing member 30, 40 or 40c is connected to the base plate 21 of the reinforcing member 30, 40 or 40c at the other end 30b or 40b or in the middle of the reinforcing member 30, 40 or 40c. From the height to the one end 30a or the other end 30b of the reinforcing member 30, 40 or 40c may be formed at an angle inclined from the horizontal. According to this configuration, since the outer peripheral surface 11c of the main plate 11 or the outer peripheral surface 12c of the side plate 12 can be obliquely supported, the other end portion 30b of the reinforcing member 30, 40 or 40c and the main plate 11 or the side plate 12 can be supported. The horizontal distance between them can be increased. When formed at an inclined angle, the number of formation surfaces is smaller than that when formed horizontally. Therefore, the shape of the first members 31, 41, 41c of the reinforcing members 30, 40, 40c is stable even if they are formed with a low metal density (for example, a mesh structure). is there.

<第2の実施形態>
続いて第2の実施形態について説明する。図10は、第2の実施形態に係る構造体の一例の断面図である。図10に示すように、第2の実施形態では、構造体14dを形成する積層方向を、第1の実施形態の積層方法に対して90度回転させたものになっている。
図10に示すように、構造体14dは、主板11、側板12、及び主翼13に加えて、側板12と連結している補強部材51、インペラハブ10と連結している補強部材52、インペラハブ10と連結している補強部材53と、側板12と連結している補強部材54、及び主板11、側板12及び主翼13を支持する支持部材25を備える。本実施形態では、図10のA断面矢視図およびB断面矢視図に示すように、補強部材の一端部52a、53aが開口部8の全周に渡って連結している。つまり、補強部材の一端部52aが開口部8の中点Rよりも上方の端部に連結し、補強部材の一端部53aが開口部8の中点Rよりも下方の端部に連結する。同様に、補強部材の一端部51aが吸込口9の中点Rよりも上方の端部に連結し、補強部材の一端部54aが開口部8の中点Rよりも下方の端部に連結する。一実施形態では、補強部材の一端部52aが開口部8の中点Rよりも上方の端部の少なくとも一部に連結し、補強部材の一端部53aが開口部8の中点Rよりも下方の端部の少なくとも一部に連結する。同様に、補強部材の一端部51aが吸込口9の中点Rよりも上方の端部の少なくとも一部に連結し、補強部材の一端部54aが開口部8の中点Rよりも下方の端部の少なくとも一部に連結する。
<Second Embodiment>
Next, the second embodiment will be described. FIG. 10 is a cross-sectional view of an example of the structure according to the second embodiment. As shown in FIG. 10, in the second embodiment, the stacking direction forming the structure 14d is rotated by 90 degrees with respect to the stacking method of the first embodiment.
As shown in FIG. 10, in addition to the main plate 11, the side plate 12, and the main wing 13, the structure 14d includes a reinforcing member 51 connected to the side plate 12, a reinforcing member 52 connected to the impeller hub 10, and an impeller hub 10. The reinforcing member 53 that is connected, the reinforcing member 54 that is connected to the side plate 12, and the support member 25 that supports the main plate 11, the side plate 12, and the main wing 13 are provided. In this embodiment, as shown in the sectional view A and the sectional view B of FIG. 10, the one ends 52a and 53a of the reinforcing member are connected over the entire circumference of the opening 8. That is, the one end 52a of the reinforcing member is connected to the end above the midpoint R of the opening 8, and the one end 53a of the reinforcing member is connected to the end below the midpoint R of the opening 8. Similarly, one end 51a of the reinforcing member is connected to an end above the midpoint R of the suction port 9, and one end 54a of the reinforcing member is connected to an end below the midpoint R of the opening 8. .. In one embodiment, the one end 52a of the reinforcing member is connected to at least a part of the end above the midpoint R of the opening 8, and the one end 53a of the reinforcing member is below the midpoint R of the opening 8. Is connected to at least a part of the end of the. Similarly, one end 51a of the reinforcing member is connected to at least a part of the upper end of the suction port 9 above the midpoint R, and the one end 54a of the reinforcing member is lower than the midpoint R of the opening 8. Connect to at least a portion of the section.

第2の実施形態に係る羽根車の製造工程は、図7における第1の実施形態に係る羽根車の製造工程に比べて、構造体14d自体の構成が異なることに加えて、図7のステップS4における除去工程において、構造体14dから補強部材51及び補強部材52を除去する点が異なり、図7のステップS3における除去工程において、構造体14dから支持部材25を除去する点が異なる。また、羽根車3と、補強部材51、52、53、54を有する構造体14dを積層造形法により形成する構造体形成工程(S1)と、構造体14dから補強部材51、52、53、54を除去する除去工程(S4)と、を有する。構造体形成工程S1において羽根車3は当該羽根車3の端部の円形の開口(吸込口9、開口部8)が積層面に対し垂直となるように配置される。そして、補強部材の一端部51aが吸込口9の中点R(つまり軸線)よりも上方の端部の少なくとも一部に連結し、補強部材の一端部53aが吸込口9の中点R(つまり軸線)よりも下方の端部の少なくとも一部に連結する。また、補強部材の一端部52aが開口部8の中点Rよりも上方の端部の少なくとも一部に連結し、補強部材の一端部53aが開口部8の中点Rよりも下方の端部の少なくとも一部に連結する。これにより、第1の実施形態と同様に、羽根車3の端部である吸込口9および/または開口部8の変形を防止することができる。 The manufacturing process of the impeller according to the second embodiment is different from the manufacturing process of the impeller according to the first embodiment in FIG. 7 in that the configuration of the structure 14d itself is different, and the step of FIG. The difference is that the reinforcing member 51 and the reinforcing member 52 are removed from the structure 14d in the removal step in S4, and the support member 25 is removed from the structure 14d in the removal step in step S3 of FIG. Further, a structure forming step (S1) of forming the structure 14d having the impeller 3 and the reinforcing members 51, 52, 53, 54 by the additive manufacturing method, and the reinforcing members 51, 52, 53, 54 from the structure 14d. And a removing step (S4) of removing. In the structure forming step S1, the impeller 3 is arranged such that the circular opening (suction port 9, opening 8) at the end of the impeller 3 is perpendicular to the stacking surface. Then, the one end 51a of the reinforcing member is connected to at least a part of the upper end of the suction port 9 above the midpoint R (that is, the axis), and the one end 53a of the reinforcing member is located at the midpoint R of the suction port 9 (that is, It is connected to at least a part of the end below the axis. Further, one end 52a of the reinforcing member is connected to at least a part of an end portion above the midpoint R of the opening portion 8, and one end portion 53a of the reinforcing member is an end portion below the midpoint R of the opening portion 8. To at least a part of. Thereby, similarly to the first embodiment, it is possible to prevent the deformation of the suction port 9 and/or the opening 8 which is the end of the impeller 3.

また、一端部51a、54aが羽根車3と同じ金属密度で形成され且つ吸込口9の外周面の一周に渡って連結され、一端部52a、53aが羽根車3と同じ金属密度で形成され且つインペラハブ10の外周面10cの一周に渡って連結されることで、補強部材30と同様にS4の切削加工の工程において旋盤にて良好に切削することができる。 Further, the one ends 51a and 54a are formed with the same metal density as the impeller 3 and are connected over the entire circumference of the outer peripheral surface of the suction port 9, and the one ends 52a and 53a are formed with the same metal density as the impeller 3. Since the outer peripheral surface 10c of the impeller hub 10 is connected over the entire circumference, it can be satisfactorily cut by a lathe in the cutting process of S4, like the reinforcing member 30.

<第3の実施形態>
続いて第3の実施形態について説明する。図11は、第3の実施形態に係る構造体の一例の断面図である。第1の実施形態及び第2の実施形態では片吸込用の羽根車3であったのに対して、第3の実施形態では、両吸込用の羽根車103である。なお、第3の実施形態に係る両吸込ポンプの構成図は省略する。
<Third Embodiment>
Subsequently, a third embodiment will be described. FIG. 11 is a cross-sectional view of an example of the structure according to the third embodiment. In the first and second embodiments, the impeller 3 for single suction is used, whereas in the third embodiment, the impeller 103 is for both suction. The configuration diagram of the double-suction pump according to the third embodiment is omitted.

図11に示すように、第3の実施形態に係る構造体14eは、インペラハブ61a、主板61b、側板62a、62c、を備えた羽根車103に加えて、一端部が側板62aの端部に連結され且つ他端部がベースプレート21に連結された補強部材64aと、一端部が側板62aの端部に連結され且つ他端部がベースプレート21に連結された補強部材64bとを備える。
更に、構造体14eは、一端部がインペラハブ61aの端部に連結され且つ他端部がベースプレート21に連結された補強部材65aと、一端がインペラハブ61aの端部に連結され且つ他端がベースプレート21に連結された補強部材65bとを備える。更に、構造体14eは、インペラハブ61aを支持する支持部材26と、側板62cを支持する支持部材27とを備える。
As shown in FIG. 11, in addition to the impeller 103 including the impeller hub 61a, the main plate 61b, and the side plates 62a and 62c, the structure 14e according to the third embodiment has one end connected to the end of the side plate 62a. And a reinforcing member 64a having the other end connected to the base plate 21, and a reinforcing member 64b having one end connected to the end of the side plate 62a and the other end connected to the base plate 21.
Further, the structure 14e has a reinforcing member 65a having one end connected to the end of the impeller hub 61a and the other end connected to the base plate 21, and one end connected to the end of the impeller hub 61a and the other end connected to the base plate 21. And a reinforcing member 65b connected to. Further, the structure 14e includes a support member 26 that supports the impeller hub 61a and a support member 27 that supports the side plate 62c.

補強部材64a、65aは、ベースプレート21に連結された他端から垂直方向に積層された後に、途中の高さから、当該補強部材64a、65aの一端にかけて、水平より傾いた角度で形成されている。具体的には、補強部材64aは、側板62aの端部から、水平線に対して所定の角度θ1で傾斜するように構成されており、補強部材65aは、主板61bの端部から、水平線に対して所定の角度θ2で傾斜するように構成されている。ここで、角度θ1と角度θ2は同じであっても異なっていてもよい。補強部材64a、65aは、連結される羽根車103の端部(ここでは側板62aの端部またはインペラハブ61aの端部)よりも低い密度であることが好ましい。これにより、補強部材64a、65aの素材量を低減することができるので、羽根車103の製造コストを抑制することができる。本実施形態では、補強部材64a、65a、64b、65bは、側板62a、側板62cの端部の軸対称の位置に設けられる。一実施形態では、所定の角度で傾斜する補強部材64a、65aが側板62a、側板62cの端部に複数設けられてもよい。一実施形態では、補強部材64a、65aが設けられずに補強部材64b、65bのみが側板62a、側板62cの端部の一周に渡って設けられてもよい。また、一実施形態では、補強部材64b、65bが設けられずに水平線に対して所定の角度で傾斜する補強部材64a、65aのみが側板62a、側板62cの端部の一周に渡って設けられてもよい。 The reinforcing members 64a and 65a are vertically stacked from the other end connected to the base plate 21, and then are formed at an angle inclined from the horizontal from the midway height to one end of the reinforcing members 64a and 65a. .. Specifically, the reinforcing member 64a is configured to incline from the end of the side plate 62a at a predetermined angle θ1 with respect to the horizontal line, and the reinforcing member 65a extends from the end of the main plate 61b to the horizontal line. And is inclined at a predetermined angle θ2. Here, the angle θ1 and the angle θ2 may be the same or different. It is preferable that the reinforcing members 64a and 65a have a lower density than the end portion (here, the end portion of the side plate 62a or the end portion of the impeller hub 61a) of the impeller 103 to be connected. As a result, the amount of material of the reinforcing members 64a and 65a can be reduced, so that the manufacturing cost of the impeller 103 can be suppressed. In the present embodiment, the reinforcing members 64a, 65a, 64b, 65b are provided at axially symmetrical positions of the ends of the side plates 62a, 62c. In one embodiment, a plurality of reinforcing members 64a and 65a that are inclined at a predetermined angle may be provided at the ends of the side plates 62a and 62c. In one embodiment, the reinforcing members 64a and 65a may not be provided, and only the reinforcing members 64b and 65b may be provided over the entire circumference of the end portions of the side plates 62a and 62c. Further, in one embodiment, the reinforcing members 64b and 65b are not provided, and only the reinforcing members 64a and 65a that are inclined at a predetermined angle with respect to the horizontal line are provided over the entire circumference of the end portions of the side plates 62a and 62c. Good.

第3の実施形態に係る羽根車130の製造工程は、図7における第1の実施形態に係る羽根車の製造工程に比べて、構造体14e自体の構成が異なることに加えて、図7のステップS3における除去工程において、構造体14eから支持部材26、27を除去する点が異なり、図7のステップS4における除去工程において、構造体14eから補強部材64a、64b、65a、65bを除去する点が異なる。 The manufacturing process of the impeller 130 according to the third embodiment is different from the manufacturing process of the impeller according to the first embodiment in FIG. 7 in that the structure 14e itself is different from the manufacturing process in FIG. In the removing step in step S3, the support members 26 and 27 are removed from the structure 14e, and in the removing step in step S4 in FIG. 7, the reinforcing members 64a, 64b, 65a, 65b are removed from the structure 14e. Is different.

このように、本実施形態に係る羽根車103の製造工程では、上下に配置される一対の端部である主板61bの端部と側板62aの端部を有し、補強部材64aまたは/および64bの一端が、当該一対の端部のうち上方の端部である側板62aの少なくとも一部に連結する構造体14eが形成される。また、羽根車3の製造では、上下に配置される一対の端部である主板61bの端部と側板62cの端部を有し、補強部材65aまたは/および65bの一端が、当該一対の端部のうち上方の端部である主板61bの少なくとも一部に連結する構造体14eが形成される。 As described above, in the manufacturing process of the impeller 103 according to the present embodiment, the reinforcing member 64a or/and 64b has the end portions of the main plate 61b and the side plate 62a, which are a pair of upper and lower end portions. A structure 14e is formed, one end of which is connected to at least a part of the side plate 62a which is the upper end of the pair of ends. In the manufacture of the impeller 3, the main plate 61b, which is a pair of upper and lower ends, and the side plate 62c have an end portion, and one end of the reinforcing member 65a or/and 65b is the end portion of the pair. A structure 14e that is connected to at least a part of the main plate 61b that is the upper end of the portion is formed.

以上、第3の実施形態に係る羽根車の製造工程は、主板61bと、側板62a、62c、と、当該主板61bと当該側板62a、62cとの間に設けられる主翼63と、補強部材64a、64b、65a、65bと、を有する構造体14eを、ベースプレート21の上に金属粉末を用いた積層造形法により形成する構造体形成工程と、構造体14eから補強部材64a、64b、65a、65bを除去する除去工程と、を有する。
この構造体形成工程において、補強部材64a、64b、65a、65bの一端が前記主板61bの端部の少なくとも一部または側板62aの端部の少なくとも一部に連結し、且つ補強部材64a、64b、65a、65bの他端がベースプレート21に連結するように、構造体14eが形成される。
As described above, in the manufacturing process of the impeller according to the third embodiment, the main plate 61b, the side plates 62a and 62c, the main wing 63 provided between the main plate 61b and the side plates 62a and 62c, and the reinforcing member 64a, A structure forming step of forming a structure 14e having 64b, 65a, 65b on the base plate 21 by a layered manufacturing method using metal powder; and a reinforcing member 64a, 64b, 65a, 65b from the structure 14e. And a removing step of removing.
In this structure forming step, one end of the reinforcing members 64a, 64b, 65a, 65b is connected to at least a part of the end of the main plate 61b or at least a part of the end of the side plate 62a, and the reinforcing members 64a, 64b, The structure 14e is formed so that the other ends of the 65a and 65b are connected to the base plate 21.

この構成によれば、ベースプレート21から積層された補強部材64a、64b、65a、65bが、主板61bの端部の少なくとも一部または側板62aの端部の少なくとも一部を支持するため、主板61bの端部または側板62aの端部の変形を抑えることができる。従って、積層造形法により羽根車を形成する場合に羽根車の端部の変形を抑制することができる。 According to this configuration, since the reinforcing members 64a, 64b, 65a, 65b stacked from the base plate 21 support at least a part of the end portion of the main plate 61b or at least a part of the end portion of the side plate 62a, the main plate 61b is not supported. The deformation of the end portion or the end portion of the side plate 62a can be suppressed. Therefore, when the impeller is formed by the additive manufacturing method, the deformation of the end portion of the impeller can be suppressed.

<第4の実施形態>
続いて第4の実施形態について説明する。図12は、第4の実施形態に係る構造体の一例の断面図である。図12に示すように、第4の実施形態では、構造体14fを形成する積層方向を、第3の実施形態の積層方法に対して90度回転させたものになっている。
<Fourth Embodiment>
Subsequently, a fourth embodiment will be described. FIG. 12 is a cross-sectional view of an example of the structure according to the fourth embodiment. As shown in FIG. 12, in the fourth embodiment, the stacking direction forming the structure 14f is rotated by 90 degrees with respect to the stacking method of the third embodiment.

図12に示すように、構造体14fは、インペラハブ61a、主板61b、側板62a、62b、62c、62d、主翼63を備える羽根車103に加えて、側板62aと連結している補強部材66aと、側板62cと連結している補強部材66cと、主板61bを支持する支持部材26と、側板62b、62dを支持する支持部材27とを備える。本実施形態では、補強部材66a、66cが側板62a、62cの最上部にのみ接続するように設けられている。一実施形態では、吸込口9の中点R1(つまり軸線)よりも上方に位置する側板62a、62cの端部の全てに補強部材66a、66cが接してもよい。 As shown in FIG. 12, in addition to the impeller 103 including the impeller hub 61a, the main plate 61b, the side plates 62a, 62b, 62c, 62d, and the main wing 63, the structure 14f includes a reinforcing member 66a connected to the side plate 62a, A reinforcing member 66c connected to the side plate 62c, a support member 26 that supports the main plate 61b, and a support member 27 that supports the side plates 62b and 62d are provided. In this embodiment, the reinforcing members 66a and 66c are provided so as to be connected only to the uppermost portions of the side plates 62a and 62c. In one embodiment, the reinforcing members 66a and 66c may be in contact with all of the ends of the side plates 62a and 62c located above the midpoint R1 of the suction port 9 (that is, the axis).

第4の実施形態に係る羽根車の製造工程は、図7における第1の実施形態に係る羽根車の製造工程に比べて、構造体14f自体の構成が異なることに加えて、図7のステップS4における除去工程において、構造体14fから補強部材66a、66cを除去する点が異なり、図7のステップS3における除去工程において、構造体14fから支持部材26、27を除去する点が異なる。 The manufacturing process of the impeller according to the fourth embodiment is different from the manufacturing process of the impeller according to the first embodiment in FIG. 7 in that the structure of the structure 14f itself is different, and the step of FIG. The difference is that the reinforcing members 66a and 66c are removed from the structure 14f in the removal step in S4, and the support members 26 and 27 are removed from the structure 14f in the removal step in Step S3 of FIG.

このように、羽根車3と、補強部材66a、66cを有する構造体14fを積層造形法により形成する構造体形成工程(S1)と、構造体14dから補強部材66a、66cを除去する除去工程(S4)と、を有する。構造体形成工程S1において羽根車3は当該羽根車3の端部の円形の開口(吸込口9)が積層面に対し垂直となるように配置される。そして、補強部材66aの一端部66a1が吸込口9の中点R1(つまり軸線)よりも上方の端部の少なくとも一部に連結し、補強部材66cの一端部66c1が吸込口9の中点R(つまり軸線)よりも上方の端部の少なくとも一部に連結する。これにより、第1の実施形態と同様に、羽根車103の端部である吸込口9の変形を防止することができる。 In this way, the structure forming step (S1) of forming the impeller 3 and the structure 14f having the reinforcing members 66a and 66c by the additive manufacturing method, and the removing step of removing the reinforcing members 66a and 66c from the structure 14d ( S4), and. In the structure forming step S1, the impeller 3 is arranged such that the circular opening (suction port 9) at the end of the impeller 3 is perpendicular to the stacking surface. Then, the one end 66a1 of the reinforcing member 66a is connected to at least a part of the end above the midpoint R1 (that is, the axis) of the suction port 9, and the one end 66c1 of the reinforcing member 66c is the midpoint R of the suction port 9. It is connected to at least a part of the upper end (that is, the axis). Thereby, similarly to the first embodiment, it is possible to prevent the deformation of the suction port 9 which is the end portion of the impeller 103.

<第5の実施形態>
続いて第5の実施形態について説明する。図13は、第5の実施形態に係る構造体の一例の斜視図である。図14は、第5の実施形態に係る構造体の一例の断面図である。第1、第2、第3及び第4の実施形態の羽根車はクローズドインペラであったのに対して、第5の実施形態の羽根車はオープン形インペラである。
<Fifth Embodiment>
Subsequently, a fifth embodiment will be described. FIG. 13 is a perspective view of an example of a structure according to the fifth embodiment. FIG. 14 is a cross-sectional view of an example of the structure according to the fifth embodiment. The impellers of the first, second, third and fourth embodiments are closed impellers, whereas the impeller of the fifth embodiment is an open type impeller.

図13及び図14に示すように、構造体14gは、インペラハブ70と、順に連結された複数の主翼71、72、73、74と、を備える羽根車203と、主翼72の外周面に連結されている補強部材83と、主翼73の外周面に連結されている補強部材83と、主翼72の外周面に連結されている補強部材84と、主翼73の外周面に連結されている補強部材85と、主翼74を支持する支持部材28と、を備える。 As shown in FIGS. 13 and 14, the structure 14g is connected to an impeller hub 70, an impeller 203 including a plurality of main blades 71, 72, 73, 74 connected in order, and an outer peripheral surface of the main blade 72. Reinforcing member 83, the reinforcing member 83 connected to the outer peripheral surface of the main wing 73, the reinforcing member 84 connected to the outer peripheral surface of the main wing 72, and the reinforcing member 85 connected to the outer peripheral surface of the main wing 73. And a support member 28 that supports the main wing 74.

第5の実施形態に係る羽根車の製造工程は、図7における第1の実施形態に係る羽根車の製造工程に比べて、構造体14g自体の構成が異なることに加えて、図7のステップS4における除去工程において、構造体14gから補強部材82、83を除去する点が異なり、図7のステップS3における除去工程において、構造体14gから支持部材28を除去する点が異なる。 The manufacturing process of the impeller according to the fifth embodiment is different from the manufacturing process of the impeller according to the first embodiment in FIG. 7 in that the structure 14g itself is different in structure, and the step of FIG. The difference is that the reinforcing members 82 and 83 are removed from the structure 14g in the removing step in S4, and the support member 28 is removed from the structure 14g in the removing step in step S3 of FIG.

以上、第5の実施形態に係る羽根車の製造方法は、複数の主翼71〜74と、補強部材82、83と、を有する構造体14gを、ベースプレート21の上に金属粉末を用いた積層造形法により形成する構造体形成工程と、構造体14gから補強部材82、83を除去する除去工程と、を有する。つまり、本実施形態に係る羽根車203の製造工程では、上下に配置される一対の端部である主翼72、73を有し、補強部材82の一端部が、当該一対の端部のうち上方の端部である主翼72の端部の少なくとも一部に連結する構造体14gが形成される。また、上下に配置される一対の端部である主翼73、74を有し、補強部材83の一端部が、当該一対の端部のうち上方の端部である主翼73の端部の少なくとも一部に連結する構造体14gが形成される。
この構造体形成工程において、補強部材83の一端が複数の主翼のうち後に積層造形する方(例えば、主翼73)の端部の少なくとも一部に連結し、且つ補強部材83が複数の主翼のうち先に積層造形する方(例えば、主翼74)の端部から離れており、且つ補強部材83の他端がベースプレート21に連結するように、構造体14gが形成される。
As described above, in the method for manufacturing the impeller according to the fifth embodiment, the structure 14g having the plurality of main wings 71 to 74 and the reinforcing members 82 and 83 is laminated on the base plate 21 using the metal powder. The method includes a structure forming step of forming by a method and a removing step of removing the reinforcing members 82 and 83 from the structure 14g. That is, in the manufacturing process of the impeller 203 according to this embodiment, the main blades 72, 73 that are a pair of upper and lower end portions are provided, and one end portion of the reinforcing member 82 is located above the pair of end portions. 14g that is connected to at least a part of the end of the main wing 72 that is the end of the structure. Further, it has a pair of main wings 73, 74 arranged vertically and one end of the reinforcing member 83 is at least one of the ends of the main wing 73 which is an upper end of the pair of ends. The structure 14g connected to the part is formed.
In this structure forming step, one end of the reinforcing member 83 is connected to at least a part of the end portion of the one of the plurality of main wings to be layered later (for example, the main wing 73), and the reinforcing member 83 is included in the plurality of main wings. The structure 14g is formed so that it is separated from the end of the one to be layered first (for example, the main wing 74) and the other end of the reinforcing member 83 is connected to the base plate 21.

この構成によれば、ベースプレートから積層された補強部材が、複数の主翼のうち先に積層造形する後に積層造形する方の端部の少なくとも一部を支持するため、複数の主翼のうち先に積層造形する後に積層造形する方の端部の変形を抑えることができる。従って、積層造形法により羽根車を形成する場合に羽根車の端部の変形を抑制することができる。 According to this configuration, since the reinforcing member laminated from the base plate supports at least a part of the end portion of the one of the plurality of main wings that is laminated and then modeled, the main member is laminated first of the plurality of main wings. It is possible to suppress the deformation of the end of the layered modeling after the modeling. Therefore, when the impeller is formed by the additive manufacturing method, the deformation of the end portion of the impeller can be suppressed.

なお、ステップS5にて製造された上述の羽根車103、203は、羽根車3と同様に、積層造形にて形成された表面の積層面に対して傾斜した面に積層段差が残り、積層面に平行な面にはレーザ又は電子ビーム等による塗り痕が残る。それに対して、切削加工の面には工具痕(例えば筋目方向の傷)が残る。このように、羽根車103、203においても、積層造形にて形成された面と、機械加工された面との表面粗さが異なり、積層造形にて形成された面の表面粗さは、機械加工された面よりも粗い。上述したように、鋳物や溶接に比して複雑な形状を製造できる積層造形にて構造体14〜14gを形成し、積層造形にて変形しやすい端部に接続された補強部材を旋盤等で後から切削加工することで、所望する形状の羽根車を製造できる。 In the above-mentioned impellers 103 and 203 manufactured in step S5, similarly to the impeller 3, a laminated step is left on the surface inclined by the laminated surface of the surface formed by additive manufacturing, and the laminated surface A mark left by a laser, an electron beam, or the like remains on the surface parallel to. On the other hand, tool marks (for example, scratches in the streak direction) remain on the surface of the cutting work. As described above, also in the impellers 103 and 203, the surface roughness of the surface formed by additive manufacturing is different from the surface machined, and the surface roughness of the surface formed by additive manufacturing is Rougher than the machined surface. As described above, the structures 14 to 14g are formed by additive manufacturing capable of manufacturing a complicated shape as compared with casting or welding, and a reinforcing member connected to an end portion that is easily deformed by additive manufacturing is latheed. An impeller having a desired shape can be manufactured by performing a cutting process later.

なお、各実施形態において、ベースプレート21の上に積層したが、ベースプレート21はなくてもよい。また、各実施形態において、羽根車を構成する材料は、金属に限らず、合成樹脂、カーボン、または複合材などであってもよく、その場合、合成樹脂の粉末、カーボンの粉末、または複合材の粉末を用いて積層造形してもよい。また、各実施形態において、粉末を用いて積層造形したが、これに限らず、ワイヤーを積層するような積層造形であってもよい。 In addition, in each of the embodiments, the base plate 21 is stacked, but the base plate 21 may be omitted. In each embodiment, the material forming the impeller is not limited to metal, but may be synthetic resin, carbon, or a composite material. In that case, synthetic resin powder, carbon powder, or composite material. You may laminate-mold using the powder of. Further, in each of the embodiments, the powder is used for additive manufacturing, but the present invention is not limited to this, and wire additive may be applied for additive manufacturing.

以上、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 As described above, the present invention is not limited to the above-described embodiments as they are, and constituent elements can be modified and embodied without departing from the scope of the invention in an implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, the constituent elements of different embodiments may be combined appropriately.

1 ポンプケーシング
1a 吸込口
1b 吐出し口
11 主板
11a 外表面
11b 流路面
11c 外周面
12 側板
12a 外表面
12b 流路面
12c 外周面
13 主翼
13a 表面
13b 裏面
14、14b、14c、14d、14e、14f、14g 構造体
2 ケーシングカバー
20 流路
21 ベースプレート
22〜28 支持部材
3 羽根車
30、40、40c、51、52、64a、64b、65a、65b、66a、66c、82、83、84、85 補強部材
31、41、41c 第1の部材
32、42 第2の部材
30a 一端部
30b 他端部
4 軸受胴体
43、43b 第2の補強部材
5a 軸受
6 ポンプ軸
61a、61b インペラハブ
62a、62b、62c、62d 側板
63、71、72、73、74 主翼
1 Pump casing 1a Suction port 1b Discharge port 11 Main plate 11a Outer surface 11b Flow path surface 11c Outer peripheral surface 12 Side plate 12a Outer surface 12b Flow path surface 12c Outer peripheral surface 13 Main wing 13a Surface 13b Back surface 14, 14b, 14c, 14d, 14e, 14f, 14g Structure 2 Casing cover 20 Flow path 21 Base plate 22-28 Support member 3 Impeller 30, 40, 40c, 51, 52, 64a, 64b, 65a, 65b, 66a, 66c, 82, 83, 84, 85 Reinforcement member 31, 41, 41c First member 32, 42 Second member 30a One end portion 30b Other end portion 4 Bearing body 43, 43b Second reinforcing member 5a Bearing 6 Pump shaft 61a, 61b Impeller hub 62a, 62b, 62c, 62d Side plates 63, 71, 72, 73, 74 Main wings

Claims (16)

羽根車と、補強部材と、を有する構造体を積層造形法により形成する構造体形成工程と、
前記構造体から前記補強部材を除去する除去工程と、
を有し、
前記構造体形成工程において、
前記羽根車は、上下に配置される少なくとも一対の端部を有し、
前記補強部材の一端が、前記一対の端部のうち上方の端部の少なくとも一部に連結するように、前記構造体が形成される
羽根車の製造方法。
A structure forming step of forming a structure having an impeller and a reinforcing member by a layered manufacturing method;
A removing step of removing the reinforcing member from the structure,
Have
In the structure forming step,
The impeller has at least a pair of end portions arranged vertically,
The method for manufacturing an impeller, wherein the structure is formed so that one end of the reinforcing member is connected to at least a part of an upper end portion of the pair of end portions.
前記構造体形成工程において、前記補強部材のうち、少なくとも前記補強部材の前記一端は、連結される前記羽根車の端部と略同じ密度になるように形成される
請求項1に記載の羽根車の製造方法。
The impeller according to claim 1, wherein in the structure forming step, at least the one end of the reinforcing member of the reinforcing member is formed to have substantially the same density as an end portion of the impeller to be connected. Manufacturing method.
前記構造体形成工程において、前記補強部材は、連結される前記羽根車の端部よりも低い密度で、且つ、前記羽根車の端部より傾いた角度で形成される
請求項1に記載の羽根車の製造方法。
The blade according to claim 1, wherein in the structure forming step, the reinforcing member is formed with a density lower than an end portion of the impeller to be connected and at an angle inclined from an end portion of the impeller. Car manufacturing method.
前記構造体形成工程において、前記構造体の少なくとも一部が、当該構造体より低い金属密度の部材によって支持されて形成される
請求項1から3に記載の羽根車の製造方法。
The impeller manufacturing method according to claim 1, wherein in the structure forming step, at least a part of the structure is formed by being supported by a member having a metal density lower than that of the structure.
前記補強部材は、当該補強部材の前記一端から延伸し、
当該補強部材が延伸する距離は、当該補強部材の素材に応じて決まる限界距離以下である
請求項1から4のいずれか一項に記載の羽根車の製造方法。
The reinforcing member extends from the one end of the reinforcing member,
The manufacturing method of the impeller according to any one of claims 1 to 4, wherein a distance that the reinforcing member extends is equal to or less than a limit distance that is determined according to a material of the reinforcing member.
前記補強部材は、当該補強部材の前記一端から略水平に延伸する第1の部材と、当該補強部材の前記他端から垂直方向に延伸して前記第1の部材を支持する第2の部材と、を有し、
前記第2の部材と、前記一対の端部のうち下方の端部との間に水平距離を有する、
請求項1から5のいずれか一項に記載の羽根車の製造方法。
The reinforcing member includes a first member that extends substantially horizontally from the one end of the reinforcing member, and a second member that vertically extends from the other end of the reinforcing member to support the first member. Has,
There is a horizontal distance between the second member and the lower end of the pair of ends.
The manufacturing method of the impeller according to any one of claims 1 to 5.
前記構造体は、前記一対の端部のうち下方に位置する端部の少なくとも一部から延伸した第2の補強部材を有し、
前記第2の補強部材は、当該補強部材の前記一端から延伸する第1の部材を有し、
当該第1の部材が延伸する距離は、当該第1の部材の素材に応じて決まる限界距離以下である
請求項1から6のいずれか一項に記載の羽根車の製造方法。
The structure has a second reinforcing member extending from at least a part of the lower end of the pair of ends,
The second reinforcing member has a first member extending from the one end of the reinforcing member,
The method for manufacturing an impeller according to any one of claims 1 to 6, wherein a distance that the first member extends is equal to or less than a limit distance that is determined according to a material of the first member.
前記羽根車は、
主板と、側板と、当該主板と当該側板との間に設けられ揚液にエネルギーを与える主翼と、を備え、
前記一対の端部は、前記主板または前記側板の吐出し側の端部である、
請求項1から7のいずれか一項に記載の羽根車の製造方法。
The impeller is
A main plate, a side plate, and a main wing provided between the main plate and the side plate to give energy to the pumping liquid,
The pair of end portions are end portions on the discharge side of the main plate or the side plate,
A method for manufacturing an impeller according to any one of claims 1 to 7.
前記羽根車は、
主板と、側板と、当該主板と当該側板との間に設けられる複数の主翼と、を備え、
前記一対の端部は、前記側板の吸込み側の端部である、
請求項1から7のいずれか一項に記載の羽根車の製造方法。
The impeller is
A main plate, a side plate, and a plurality of main wings provided between the main plate and the side plate,
The pair of end portions are suction-side end portions of the side plates,
A method for manufacturing an impeller according to any one of claims 1 to 7.
前記羽根車は、
揚液にエネルギーを与える複数の主翼と、を備え、
前記一対の端部は、前記複数の主翼のうち隣り合う主翼の端部である、
請求項1から7のいずれか一項に記載の羽根車の製造方法。
The impeller is
A plurality of main wings that give energy to the pumping liquid,
The pair of ends are ends of adjacent main wings of the plurality of main wings,
A method for manufacturing an impeller according to any one of claims 1 to 7.
主板と、側板と、当該主板と当該側板との間に設けられ揚液にエネルギーを与える主翼と、を備えた羽根車であって、
前記主板、前記側板および前記主翼にて形成される流路が積層造形により形成され、且つ、前記主板と前記側板との少なくとも一方の外周面が切削加工にて形成された羽根車。
An impeller provided with a main plate, a side plate, and a main wing provided between the main plate and the side plate for giving energy to pumping liquid,
An impeller in which a flow path formed by the main plate, the side plate, and the main blade is formed by additive manufacturing, and at least one outer peripheral surface of the main plate and the side plate is formed by cutting.
前記流路面と、前記外周面との表面粗さが異なる、請求項11に記載の羽根車。 The impeller according to claim 11, wherein the flow passage surface and the outer peripheral surface have different surface roughnesses. 前記流路面は、外周面よりも表面粗さが粗い、請求項12に記載の羽根車。 The impeller according to claim 12, wherein the flow passage surface has a rougher surface than the outer peripheral surface. 羽根車と、補強部材と、を有する構造体を積層造形法により形成する構造体形成工程と、
前記構造体から前記補強部材を除去する除去工程と、
を有し、
前記構造体形成工程において、
前記羽根車は、前記羽根車の端部の円形の開口が積層面に対し垂直となるように配置され、
前記補強部材の一端部が、前記円形の端部のうち中点よりも上方の端部の少なくとも一部に連結するように、前記構造体が形成される
羽根車の製造方法。
A structure forming step of forming a structure having an impeller and a reinforcing member by a layered manufacturing method;
A removing step of removing the reinforcing member from the structure,
Have
In the structure forming step,
The impeller is arranged so that the circular opening at the end of the impeller is perpendicular to the stacking plane,
The method for manufacturing an impeller, wherein the structure is formed so that one end of the reinforcing member is connected to at least a part of an end of the circular end above the midpoint.
前記羽根車の端部の円形の開口が吸込み口である、請求項14に記載の羽根車の製造方法。 The method for manufacturing an impeller according to claim 14, wherein the circular opening at the end of the impeller is a suction port. 前記羽根車の端部の円形の開口がインペラハブの開口部である、請求項14または15に記載の羽根車の製造方法。 The method of manufacturing an impeller according to claim 14 or 15, wherein the circular opening at the end of the impeller is an opening of an impeller hub.
JP2019019231A 2019-02-06 2019-02-06 Manufacturing method for impeller and impeller Pending JP2020125732A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019019231A JP2020125732A (en) 2019-02-06 2019-02-06 Manufacturing method for impeller and impeller
PCT/JP2020/003852 WO2020162380A1 (en) 2019-02-06 2020-02-03 Impeller manufacturing method, impeller, impeller design method, impeller design system, and impeller manufacturing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019019231A JP2020125732A (en) 2019-02-06 2019-02-06 Manufacturing method for impeller and impeller

Publications (1)

Publication Number Publication Date
JP2020125732A true JP2020125732A (en) 2020-08-20

Family

ID=72084781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019019231A Pending JP2020125732A (en) 2019-02-06 2019-02-06 Manufacturing method for impeller and impeller

Country Status (1)

Country Link
JP (1) JP2020125732A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005537420A (en) * 2002-08-28 2005-12-08 株式会社荏原製作所 Centrifugal impeller and pump device
JP2007051592A (en) * 2005-08-18 2007-03-01 Ebara Corp Impeller and pump
DE102015010388A1 (en) * 2015-08-08 2017-02-09 FTAS GmbH Process for producing an impeller for a turbomachine by additive laser deposition melting
JP2018095946A (en) * 2016-12-16 2018-06-21 キヤノン株式会社 Manufacturing method of three-dimensional molded article and three-dimensional molding device
WO2018154737A1 (en) * 2017-02-24 2018-08-30 三菱重工コンプレッサ株式会社 Production method for impeller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005537420A (en) * 2002-08-28 2005-12-08 株式会社荏原製作所 Centrifugal impeller and pump device
JP2007051592A (en) * 2005-08-18 2007-03-01 Ebara Corp Impeller and pump
DE102015010388A1 (en) * 2015-08-08 2017-02-09 FTAS GmbH Process for producing an impeller for a turbomachine by additive laser deposition melting
JP2018095946A (en) * 2016-12-16 2018-06-21 キヤノン株式会社 Manufacturing method of three-dimensional molded article and three-dimensional molding device
WO2018154737A1 (en) * 2017-02-24 2018-08-30 三菱重工コンプレッサ株式会社 Production method for impeller

Similar Documents

Publication Publication Date Title
US10697465B2 (en) Manufacturing of a turbomachine impeller by assembling a plurality of tubular components
US9868155B2 (en) Monolithic shrouded impeller
RU2733502C2 (en) Method of making rotary machine component and component made using said method
JP5215803B2 (en) Method for manufacturing impeller of centrifugal rotating machine
EP1396309A1 (en) Method for production of a rotor of a centrifugal compressor
US10124450B2 (en) Rotation part of rotary machine and method of manufacturing the same
JP2010121612A (en) Impeller, compressor, and method of manufacturing the impeller
WO2010090062A1 (en) Impeller, compressor, and impeller fabrication method
KR101879734B1 (en) Flow-conducting component
WO2014184368A1 (en) Impeller with backswept circular pipes
JP5164558B2 (en) Fluid machinery and pumps
WO2020162380A1 (en) Impeller manufacturing method, impeller, impeller design method, impeller design system, and impeller manufacturing system
JP2018506671A (en) Method for manufacturing a turbine engine blade including a tip provided with a complex well
JP2020125732A (en) Manufacturing method for impeller and impeller
JP4972984B2 (en) Double suction centrifugal pump, impeller thereof, and manufacturing method of impeller
JP2020125733A (en) Manufacturing method for impeller and impeller
JP2008286058A (en) Centrifugal impeller for compressor and method for manufacturing same
JP2020172876A (en) Method for manufacturing impeller, impeller, and impeller manufacturing system
JP6411040B2 (en) Liquid ring vacuum pump and impeller used therefor
US11662149B2 (en) Layered diffuser channel heat exchanger
US11878347B2 (en) Impeller and turbocompressor equipped with such impeller and method for manufacturing such an impeller
CN211573859U (en) Impeller and turbo compressor equipped with the same
JP6730955B2 (en) Multistage centrifugal pump and method of manufacturing the multistage centrifugal pump
RU2749240C2 (en) Method of manufacturing or repairing a part of a rotary machine, as well as a part manufactured or repaired using such a method
KR101909708B1 (en) Impeller assembly of fluid rotary machine and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240305