JP2020125230A - Annealing method of nitride semiconductor substrate - Google Patents

Annealing method of nitride semiconductor substrate Download PDF

Info

Publication number
JP2020125230A
JP2020125230A JP2019019673A JP2019019673A JP2020125230A JP 2020125230 A JP2020125230 A JP 2020125230A JP 2019019673 A JP2019019673 A JP 2019019673A JP 2019019673 A JP2019019673 A JP 2019019673A JP 2020125230 A JP2020125230 A JP 2020125230A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
substrate
annealing
semiconductor substrate
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019019673A
Other languages
Japanese (ja)
Other versions
JP7290952B2 (en
Inventor
晃 三嶋
Akira Mishima
晃 三嶋
優志 富田
Yuji Tomita
優志 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2019019673A priority Critical patent/JP7290952B2/en
Publication of JP2020125230A publication Critical patent/JP2020125230A/en
Application granted granted Critical
Publication of JP7290952B2 publication Critical patent/JP7290952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

To provide an annealing method of a nitride semiconductor substrate capable of reducing as much as possible generation of warp, when annealing the nitride semiconductor substrate.SOLUTION: When a semiconductor nitride substrate 13 formed by growing a nitride semiconductor thin film 12 on the surface of a substrate 11 is installed on an anneal holder 14, and the nitride semiconductor thin film is annealed by heating the anneal holder and the semiconductor nitride substrate at specific temperature and time in a specific gas atmosphere, a dummy substrate 15 is installed on the outer surface of the semiconductor nitride substrate.SELECTED DRAWING: Figure 1

Description

本発明は、窒化物半導体基板のアニール方法に関し、詳しくは、基板の表面に窒化物半導体薄膜を成長させた窒化物半導体基板をアニールホルダに設置してアニールする方法に関する。 The present invention relates to a method of annealing a nitride semiconductor substrate, and more particularly, to a method of placing a nitride semiconductor substrate having a nitride semiconductor thin film grown on the surface of the substrate in an annealing holder and performing annealing.

紫外発光素子は、蛍光灯の代替、高密度DVD、生化学用レーザ、光触媒による公害物質の分解、He−Cdレーザ、水銀灯の代替など、次世代の光源として幅広く注目されている。この紫外発光素子は、ワイドギャップ半導体と呼ばれるAlGaN系窒化物半導体からなり、サファイアなどの異種基板上に積層される。しかし、サファイアは、AlGaNとの格子不整合が大きいため、多数の貫通転位が存在し、非発光再結合中心となって内部量子効率を著しく低下させてしまう。 Ultraviolet light emitting devices have been widely noticed as next-generation light sources such as alternatives to fluorescent lamps, high-density DVDs, biochemical lasers, decomposition of pollutants by photocatalysts, He-Cd lasers, alternatives to mercury lamps. This ultraviolet light emitting element is made of an AlGaN-based nitride semiconductor called a wide gap semiconductor, and is laminated on a heterogeneous substrate such as sapphire. However, since sapphire has a large lattice mismatch with AlGaN, a large number of threading dislocations are present and serve as non-radiative recombination centers, which significantly reduces the internal quantum efficiency.

これに対して、AlNは、AlGaNと格子定数が近く、200nmの紫外領域まで透明であるため、発光した紫外線を吸収することなく、紫外光を効率よく外部へ取り出すことができる。しかし、バルクの単結晶AlN結晶は、1インチサイズでも大変高価で容易に入手できないため、コスト及び量産性を考えた場合、紫外発光素子の基板材料には不向きである。一方、サファイアは、4〜6インチサイズが安価に入手できる状況にある。このようなことから、サファイア基板上に高品質AlN単結晶膜を作製することができれば、これを基板に用いてAlGaN系発光素子を準ホモエピタキシャル成長させることにより、結晶の欠陥密度を低く抑えた紫外発光素子を安価に作製することができる。 On the other hand, since AlN has a lattice constant close to that of AlGaN and is transparent up to the ultraviolet region of 200 nm, it is possible to efficiently extract the ultraviolet light to the outside without absorbing the emitted ultraviolet light. However, a bulk single crystal AlN crystal is very expensive even if it has a size of 1 inch and cannot be easily obtained. Therefore, when considering cost and mass productivity, it is unsuitable as a substrate material for an ultraviolet light emitting device. On the other hand, sapphire is available in a 4 to 6 inch size at low cost. From this, if a high-quality AlN single crystal film can be formed on a sapphire substrate, an AlGaN-based light emitting device is used as a substrate for quasi-homoepitaxial growth to obtain an ultraviolet ray having a low crystal defect density. The light emitting element can be manufactured at low cost.

しかしながら、AlNは、サファイアとの格子不整合が大きいため、サファイア上に成長したAlN膜には多数の貫通転位が存在する。このため、AlGaN系発光素子用の基板として不適切である。そこで、AlN結晶の欠陥密度を低く抑えた高品質な層(薄膜)を得る方法として、表面が平坦で、かつ、高品質なAlN膜の製造方法が開示されている(例えば、特許文献1参照。)。さらに、それぞれの表面に、原子をイオン注入した少なくとも一対の単結晶炭化ケイ素基板を、イオン注入面同士を対向させるように密接又は近接させて密閉容器内に配置して熱処理する工程が開示されている(例えば、特許文献2参照。)。 However, since AlN has a large lattice mismatch with sapphire, many threading dislocations are present in the AlN film grown on sapphire. Therefore, it is not suitable as a substrate for an AlGaN light emitting device. Therefore, as a method for obtaining a high-quality layer (thin film) in which the defect density of an AlN crystal is suppressed low, a method for producing a high-quality AlN film having a flat surface is disclosed (for example, see Patent Document 1). ..). Further, on each surface, at least a pair of single crystal silicon carbide substrates ion-implanted with atoms, the step of heat treatment by placing in close contact or close to each other so that the ion-implanted surfaces face each other is disclosed. (For example, see Patent Document 2).

両者を組み合わせることにより、窒化物半導体基板を得ることが可能と思われるが、アニールの際に、窒化物半導体基板が密閉容器に接触したり、外気に接触したりすると、高温雰囲気で不活性ガスに曝されることによって窒化物半導体基板の片面(サファイア基板部)が劣化するおそれがあり、結果として、窒化物半導体基板が大きく反りかえることがあった。また、カーボン部材のアニールホルダに接触する場合においても、その接触によって同様に大きく反りかえることがあった。そこで、一酸化炭素を添加することによってサファイア基板の劣化を防ぐ方法が開示されている(例えば、特許文献3参照。)。 It seems that a nitride semiconductor substrate can be obtained by combining the two. However, if the nitride semiconductor substrate comes into contact with the closed container or the outside air during annealing, it will be inert gas in a high temperature atmosphere. There is a possibility that one surface (sapphire substrate portion) of the nitride semiconductor substrate may be deteriorated by being exposed to, and as a result, the nitride semiconductor substrate may be largely warped. Further, even when the carbon member comes in contact with the annealing holder, the contact may cause a large warp. Therefore, a method for preventing deterioration of the sapphire substrate by adding carbon monoxide has been disclosed (for example, refer to Patent Document 3).

特開2017−55116号公報JP, 2017-55116, A 特開2006−339396号公報JP, 2006-339396, A 特開2015−042598号公報JP, 2005-042598, A

しかし、各特許文献に記載の手法を組み合わせても、基板の反りを安定的に制御することは困難であり、大きく反り返った基板は、その後の成膜処理で、膜厚分布の均一性が損なわれたり、さらには、その後の各処理を行う装置に入らなくなったりするなどの問題があった。 However, even if the methods described in each patent document are combined, it is difficult to control the warp of the substrate in a stable manner, and the substrate that is largely warped loses the uniformity of the film thickness distribution in the subsequent film forming process. However, there is a problem in that the device does not enter the device that performs each subsequent process.

そこで本発明は、窒化物半導体基板をアニールする際の反りの発生を極力低減することができる窒化物半導体基板のアニール方法を提供することを目的としている。 Therefore, an object of the present invention is to provide a method for annealing a nitride semiconductor substrate, which can minimize the occurrence of warpage when annealing the nitride semiconductor substrate.

上記目的を達成するため、本発明の窒化物半導体基板のアニール方法は、基板の表面に窒化物半導体薄膜を成長させた窒化物半導体基板をアニールホルダに設置し、該アニールホルダと前記窒化物半導体基板とを一緒にガス中で加熱することにより前記窒化物半導体薄膜をアニールする方法において、前記窒化物半導体基板の外面にダミー基板を設置することを特徴としている。 In order to achieve the above object, a method for annealing a nitride semiconductor substrate according to the present invention is a method in which a nitride semiconductor substrate having a nitride semiconductor thin film grown on a surface of the substrate is placed in an annealing holder, and the annealing holder and the nitride semiconductor are provided. In the method of annealing the nitride semiconductor thin film by heating the substrate together with a gas, a dummy substrate is provided on the outer surface of the nitride semiconductor substrate.

さらに、本発明の窒化物半導体基板のアニール方法は、前記ダミー基板が前記窒化物半導体基板の基板と同じ材質で形成されていることを特徴とし、特に、前記基板がAl元素比率が40%以上のアルミニウム化合物で形成されていることを特徴としている。さらに、複数枚の前記窒化物半導体基板を重ねて前記アニールホルダに設置する際には、窒化物半導体基板における前記窒化物半導体薄膜の面の方向を逆に向けて交互に重ねることを特徴としている。 Further, the method for annealing a nitride semiconductor substrate of the present invention is characterized in that the dummy substrate is formed of the same material as the substrate of the nitride semiconductor substrate, and in particular, the substrate has an Al element ratio of 40% or more. It is characterized by being formed from the aluminum compound of. Further, when a plurality of the nitride semiconductor substrates are stacked and installed in the annealing holder, the nitride semiconductor thin films are alternately stacked with the directions of the surfaces of the nitride semiconductor thin films in the nitride semiconductor substrates reversed. ..

加えて、前記窒化物半導体薄膜が、AlGaIn(1−x−y)N(0≦x≦1、0≦y≦1、(x+y)≦1)であること、前記ガスが、窒素、アルゴン、ヘリウム、クリプトン、ネオン、一酸化炭素、アンモニアのいずれか一種のガス又は複数が混合したガスであることを特徴としている。 In addition, the nitride semiconductor thin film, Al x Ga y In (1 -x-y) N (0 ≦ x ≦ 1,0 ≦ y ≦ 1, (x + y) ≦ 1) that is, the gas, It is characterized in that it is any one gas of nitrogen, argon, helium, krypton, neon, carbon monoxide, and ammonia, or a mixed gas thereof.

本発明の窒化物半導体基板のアニール方法によれば、アニールする際の窒化物半導体薄膜基板の反りを低減させることができる。 According to the method for annealing a nitride semiconductor substrate of the present invention, warpage of the nitride semiconductor thin film substrate during annealing can be reduced.

本発明の窒化物半導体基板のアニール方法の処理状態の第1形態例を示す模式図である。It is a schematic diagram which shows the 1st form example of the processing state of the annealing method of the nitride semiconductor substrate of this invention. 第1形態例における処理後の窒化物半導体基板の反り量を測定した結果を示す図である。It is a figure which shows the result of having measured the curvature amount of the nitride semiconductor substrate after the process in a 1st form example. 本発明の窒化物半導体基板のアニール方法の処理状態の第2形態例を示す模式図である。It is a schematic diagram which shows the 2nd example of a process state of the annealing method of the nitride semiconductor substrate of this invention. 第2形態例における処理後の窒化物半導体基板の反り量を測定した結果を示す図である。It is a figure which shows the result of having measured the curvature amount of the nitride semiconductor substrate after the process in the example of a 2nd form. ダミー基板を使用せずにアニールした窒化物半導体基板の反り量を測定した結果を示す図である。It is a figure which shows the result of having measured the curvature amount of the nitride semiconductor substrate annealed, without using a dummy substrate. 本発明の窒化物半導体基板のアニール方法の処理状態の第3形態例を示す模式図である。It is a schematic diagram which shows the 3rd example of a processing state of the annealing method of the nitride semiconductor substrate of this invention.

図1及び図2は、本発明の第1形態例を示している。本形態例に示す窒化物半導体基板のアニール方法は、基板(ウエハ)11の表面(片面)に窒化物半導体薄膜12を成長させた窒化物半導体基板13をアニールホルダ14に設置し、該アニールホルダ14と前記窒化物半導体基板13とを一緒にガス中で加熱することにより前記窒化物半導体基板13をアニールする際に、前記窒化物半導体基板13の両外面(表面及び裏面の両面)にダミー基板15を設置したものである。 1 and 2 show a first embodiment of the present invention. In the method for annealing a nitride semiconductor substrate shown in the present embodiment, a nitride semiconductor substrate 13 having a nitride semiconductor thin film 12 grown on a surface (one surface) of a substrate (wafer) 11 is placed in an annealing holder 14, and the annealing holder 14 is used. When the nitride semiconductor substrate 13 is annealed by heating 14 and the nitride semiconductor substrate 13 together in a gas, dummy substrates are formed on both outer surfaces (both the front surface and the back surface) of the nitride semiconductor substrate 13. 15 is installed.

基板11は、用途や成膜する薄膜の種類に応じた材質のものを使用でき、厚さや外形は任意であるが、通常は、サファイア製の円盤状の基板を用いることが好ましく、ダミー基板15は、窒化物半導体薄膜12に悪影響を与えないものであればよく、厚さや形状も任意であるが、通常は、窒化物半導体薄膜12を成膜していない基板11をそのまま使用することが好ましい。例えば、厚さ900μm、直径100mmのサファイア基板を使用することができる。この場合、基板11の材質は、サファイア(Al)のようなAl元素比率が40%以上のアルミニウム化合物であればよい。 The substrate 11 may be made of a material depending on the application and the type of thin film to be formed, and the thickness and the outer shape are arbitrary, but it is generally preferable to use a disc-shaped substrate made of sapphire, and the dummy substrate 15 May have any adverse effect on the nitride semiconductor thin film 12 and may have any thickness and shape, but normally it is preferable to use the substrate 11 on which the nitride semiconductor thin film 12 is not formed as it is. .. For example, a sapphire substrate having a thickness of 900 μm and a diameter of 100 mm can be used. In this case, the material of the substrate 11 may be an aluminum compound such as sapphire (Al 2 O 3 ) having an Al element ratio of 40% or more.

窒化物半導体薄膜12は、周知のMOCVD法などを使用し窒化物半導体薄膜であるAlGaIn(1−x−y)N(0≦x≦1、0≦y≦1、(x+y)≦1)を成膜したもので、例えば、前記化学式におけるx=1であるAlNを挙げることができる。 Nitride semiconductor thin film 12, using, for example, well-known MOCVD method Al x Ga y In (1- x-y) N (0 ≦ x ≦ 1,0 ≦ y ≦ 1 is a nitride semiconductor thin film, (x + y) ≦1) is formed, and for example, AlN in which x=1 in the above chemical formula can be mentioned.

窒化物半導体基板13を設置するアニールホルダ14は、例えば、カーボンを筒状に形成したものであって、内部に設置した窒化物半導体基板13を均一に加熱できるように形成されている。アニールホルダ14の内径は、基板11の直径以上で、筒内の高さ(深さ)は、少なくとも1枚の窒化物半導体基板13と2枚のダミー基板15との計3枚を積層した高さよりも大きく形成され、通常は、複数枚の窒化物半導体基板13を同時に収納可能な高さに形成されている。 The anneal holder 14 on which the nitride semiconductor substrate 13 is installed is, for example, a cylinder of carbon and is formed so that the nitride semiconductor substrate 13 installed therein can be heated uniformly. The inner diameter of the anneal holder 14 is equal to or larger than the diameter of the substrate 11, and the height (depth) in the cylinder is a height obtained by stacking at least one nitride semiconductor substrate 13 and two dummy substrates 15 in total of three layers. The nitride semiconductor substrate 13 is formed to have a size larger than that, and is usually formed to a height capable of accommodating a plurality of nitride semiconductor substrates 13 at the same time.

アニールの際の雰囲気として使用するガスには、基板11や窒化物半導体薄膜12、アニールホルダ14に悪影響を及ぼさなければ任意のガスを使用でき、通常は、窒素、アルゴン、ヘリウム、クリプトン、ネオン、一酸化炭素、アンモニアのいずれか一種のガス又は複数が混合した混合ガスを使用することが好ましい。 The gas used as the atmosphere during annealing may be any gas that does not adversely affect the substrate 11, the nitride semiconductor thin film 12, and the annealing holder 14, and is usually nitrogen, argon, helium, krypton, neon, It is preferable to use any one gas of carbon monoxide and ammonia or a mixed gas in which a plurality of gases are mixed.

図1に示すように、1枚の窒化物半導体基板13をアニール処理する際には、2枚のダミー基板15の間に、窒化物半導体基板13を挟んで重ね合わせた状態でアニールホルダ14内に設置し、窒化物半導体基板13を設置した状態のアニールホルダ14を周知のアニール装置(図示せず)に配置する。そして、アニール装置内を、あらかじめ設定されたガスの雰囲気、例えば窒素雰囲気で満たした状態で、あらかじめ設定された温度、例えば1700℃で、あらかじめ設定された時間、例えば3時間保持することにより、窒化物半導体基板13のアニール処理が行われる。 As shown in FIG. 1, when annealing one nitride semiconductor substrate 13, the nitride semiconductor substrate 13 is sandwiched between two dummy substrates 15 and stacked in the annealing holder 14. The annealing holder 14 with the nitride semiconductor substrate 13 installed therein is placed in a well-known annealing device (not shown). Then, the inside of the annealing device is filled with a preset gas atmosphere, for example, a nitrogen atmosphere, and is kept at a preset temperature, for example, 1700° C. for a preset time, for example, 3 hours, thereby performing nitriding. The semiconductor substrate 13 is annealed.

図2は、基板11として厚さ900μm、直径100mmのサファイア基板を使用し、表面にMOCVD法により窒化物半導体薄膜12としてAlNを300nmの厚みで成膜した窒化物半導体基板13を、図1に示すようにしてアニールホルダ14に設置し、周知のアニール装置にて、窒素雰囲気中、1700℃で3時間保持してアニールし、常温まで冷却した窒化物半導体基板13の反り量を測定した結果を示している。この測定結果から、窒化物半導体基板13の反り量は、15μm以下に抑えられていることがわかる。 FIG. 2 shows a nitride semiconductor substrate 13 in which a sapphire substrate having a thickness of 900 μm and a diameter of 100 mm is used as the substrate 11, and AlN is deposited on the surface as a nitride semiconductor thin film 12 to a thickness of 300 nm by the MOCVD method. The results are shown in FIG. Showing. From this measurement result, it can be seen that the amount of warpage of the nitride semiconductor substrate 13 is suppressed to 15 μm or less.

また、基板11の窒化物半導体薄膜12側(表面側)に重ね合わせたダミー基板15は、アニール装置での加熱の際に窒化物半導体薄膜12が蒸発しないようにするための蒸発防止用としても機能しており、加熱によって窒化物半導体薄膜12が劣化することを防止している。 Further, the dummy substrate 15 superposed on the nitride semiconductor thin film 12 side (front surface side) of the substrate 11 is also used for evaporation prevention in order to prevent the nitride semiconductor thin film 12 from evaporating during heating in the annealing device. It functions and prevents the nitride semiconductor thin film 12 from being deteriorated by heating.

図3及び図4は、本発明の第2形態例を示している。本形態例は、2枚以上で、偶数枚の窒化物半導体基板13を同時にアニールする際の状態を示している。偶数枚、図3においては6枚の窒化物半導体基板13をアニールする際には、各窒化物半導体基板13における窒化物半導体薄膜12の面の方向を逆に向けて交互に重ね、窒化物半導体薄膜12同士を対向させた状態とし、最外面に窒化物半導体薄膜12が向かないようにする。そして、アニールホルダ14内に設置するときに、アニールホルダ14の底面上に置いた1枚目のダミー基板15の上に、窒化物半導体薄膜12同士を対向させた偶数枚の窒化物半導体基板13を重ね合わせて設置し、さらに、最上面に、2枚目のダミー基板15を載置する。 3 and 4 show a second embodiment of the present invention. The present embodiment shows a state in which two or more even-numbered nitride semiconductor substrates 13 are simultaneously annealed. When annealing an even number, six in FIG. 3, of the nitride semiconductor substrates 13, the nitride semiconductor thin films 12 on each of the nitride semiconductor substrates 13 are alternately stacked with the directions of the faces of the nitride semiconductor thin films 12 reversed, and the nitride semiconductors are stacked. The thin films 12 are made to face each other so that the nitride semiconductor thin film 12 does not face the outermost surface. When installed in the annealing holder 14, the even number of nitride semiconductor substrates 13 with the nitride semiconductor thin films 12 facing each other are placed on the first dummy substrate 15 placed on the bottom surface of the annealing holder 14. Are placed on top of each other, and the second dummy substrate 15 is placed on the uppermost surface.

この状態でアニールホルダ14をアニール装置に配置してアニールすることにより、基板11の反り、及び、窒化物半導体薄膜12の蒸発を抑制した効果的なアニールを行うことができる。 By arranging the annealing holder 14 in the annealing apparatus in this state and performing annealing, it is possible to perform effective annealing while suppressing the warp of the substrate 11 and the evaporation of the nitride semiconductor thin film 12.

図4は、図3に示すように、6枚の窒化物半導体基板13と2枚のダミー基板15を設置して前記同様の処理条件でアニールしたときの各窒化物半導体基板13における反り量を測定した結果を示している。その結果、6枚すべての窒化物半導体基板13の反り量が15μm以下に抑えられていることがわかる。 FIG. 4 shows the amount of warpage in each nitride semiconductor substrate 13 when six nitride semiconductor substrates 13 and two dummy substrates 15 are installed and annealed under the same processing conditions as shown in FIG. The measurement results are shown. As a result, it can be seen that the warpage amount of all six nitride semiconductor substrates 13 is suppressed to 15 μm or less.

図5は、図3と同様に、6枚の窒化物半導体基板13を同時にアニールする際に、上下のダミー基板15を使用せずにアニールした際の各窒化物半導体基板13における反り量を測定した結果を示している。この結果から、最上段及び最下段の窒化物半導体基板に、40〜50μmの大きな反りが発生しているのがわかる。したがって、ダミー基板15を上下にそれぞれ配置することにより、アニールの際の反りの発生を防止できることがわかる。 Similar to FIG. 3, FIG. 5 shows the amount of warpage in each nitride semiconductor substrate 13 when the six nitride semiconductor substrates 13 are simultaneously annealed without using the upper and lower dummy substrates 15. The result is shown. From this result, it can be seen that a large warp of 40 to 50 μm occurs in the uppermost and lowermost nitride semiconductor substrates. Therefore, it is understood that the warp during the annealing can be prevented by disposing the dummy substrates 15 on the upper and lower sides, respectively.

図6は、3枚以上の奇数枚の窒化物半導体基板13を同時にアニールする際の状態を示している。奇数枚、図5においては7枚の窒化物半導体基板13をアニールする際には、6枚の窒化物半導体基板13については、前記第2形態例(図3)と同様に、窒化物半導体薄膜12同士を対向させた状態とし、残りの1枚は、前記第1形態例(図1)と同様に、窒化物半導体薄膜12をダミー基板15で覆うようにしているので、窒化物半導体薄膜12の蒸発による劣化を抑えながら、反りの発生を抑制することができる。 FIG. 6 shows a state in which three or more odd-numbered nitride semiconductor substrates 13 are simultaneously annealed. When annealing the odd-numbered nitride semiconductor substrates 13 (7 in FIG. 5), the nitride semiconductor thin films for 6 nitride semiconductor substrates 13 are the same as in the second embodiment (FIG. 3). 12 are made to face each other, and the remaining one is made to cover the nitride semiconductor thin film 12 with the dummy substrate 15 as in the first embodiment (FIG. 1). It is possible to suppress the occurrence of warpage while suppressing deterioration due to evaporation of the.

このように、窒化物半導体基板13をアニールする際に、アニールホルダ14の底面と窒化物半導体基板13との間、及び、窒化物半導体基板13の外面部分にダミー基板15を重ねた状態でアニールすることにより、窒化物半導体基板13の反りを低減することができ、その後の各処理を確実に行うことができ、生産性の向上を図ることができる。これにより、紫外発光素子の製造コストの低減を図ることができる。 Thus, when the nitride semiconductor substrate 13 is annealed, the dummy substrate 15 is annealed between the bottom surface of the annealing holder 14 and the nitride semiconductor substrate 13 and on the outer surface portion of the nitride semiconductor substrate 13. By doing so, warpage of the nitride semiconductor substrate 13 can be reduced, each subsequent process can be reliably performed, and productivity can be improved. This can reduce the manufacturing cost of the ultraviolet light emitting device.

特に、ダミー基板15として、窒化物半導体基板13を作成するための基板11と同じものを用いることにより、基板11とは異なる素材や厚さで形成したダミー基板を用意する場合に比べて、ダミー基板を簡単に用意することができ、ダミー基板に要するコストの削減を図れる。 In particular, by using the same substrate as the substrate 11 for forming the nitride semiconductor substrate 13 as the dummy substrate 15, compared with the case where a dummy substrate formed of a material and a thickness different from that of the substrate 11 is prepared, The substrate can be easily prepared, and the cost required for the dummy substrate can be reduced.

なお、基板の材質、厚さや直径などの形状は任意であり、窒化物半導体薄膜も、目的に応じて任意の薄膜にすることができ、AlGaIn(1−x−y)N(0≦x≦1、0≦y≦1、(x+y)≦1)におけるx、yの数値も任意である。さらに、アニールする際の雰囲気ガスの種類も任意であり、窒素、アルゴン、ヘリウム、クリプトン、ネオンなどの不活性ガスをはじめとして、一酸化炭素、アンモニアを用いることができ、これらのいずれか一種のガスを用いてもよく、複数のガス種を混合した混合ガスを用いることもできる。また、アニールの条件も、基板の材質や窒化物半導体薄膜の種類、雰囲気ガスの種類などの条件に応じて、温度及び時間を適宜に設定することができる。 The material of the substrate, the shape of the thickness and diameter is optional, the nitride semiconductor thin films, can be any of the thin film according to the purpose, Al x Ga y In (1 -x-y) N ( The numerical values of x and y in 0≦x≦1, 0≦y≦1, (x+y)≦1) are also arbitrary. Further, the type of atmosphere gas at the time of annealing is also arbitrary, and carbon monoxide or ammonia can be used, including an inert gas such as nitrogen, argon, helium, krypton, or neon, and any one of them can be used. A gas may be used, or a mixed gas obtained by mixing a plurality of gas species may be used. Further, the annealing conditions can be appropriately set to the temperature and the time depending on the conditions such as the material of the substrate, the type of the nitride semiconductor thin film, the type of the atmospheric gas, and the like.

11…基板、12…窒化物半導体薄膜、13…窒化物半導体基板、14…アニールホルダ、15…ダミー基板 11... Substrate, 12... Nitride semiconductor thin film, 13... Nitride semiconductor substrate, 14... Annealing holder, 15... Dummy substrate

Claims (6)

基板の表面に窒化物半導体薄膜を成長させた窒化物半導体基板をアニールホルダに設置し、該アニールホルダと前記窒化物半導体基板とを一緒にガス中で加熱することにより前記窒化物半導体薄膜をアニールする方法において、前記窒化物半導体基板の外面にダミー基板を設置することを特徴とする窒化物半導体基板のアニール方法。 A nitride semiconductor substrate having a nitride semiconductor thin film grown on the surface of the substrate is placed in an anneal holder, and the anneal holder and the nitride semiconductor substrate are heated together in a gas to anneal the nitride semiconductor thin film. The method for annealing a nitride semiconductor substrate according to claim 1, wherein a dummy substrate is provided on the outer surface of the nitride semiconductor substrate. 前記ダミー基板は、前記窒化物半導体基板の基板と同じ材質で形成されていることを特徴とする請求項1記載の窒化物半導体基板のアニール方法。 The method for annealing a nitride semiconductor substrate according to claim 1, wherein the dummy substrate is formed of the same material as the substrate of the nitride semiconductor substrate. 前記基板は、Al元素比率が40%以上のアルミニウム化合物で形成されていることを特徴とする請求項1又は2記載の窒化物半導体基板のアニール方法。 The method for annealing a nitride semiconductor substrate according to claim 1, wherein the substrate is formed of an aluminum compound having an Al element ratio of 40% or more. 複数枚の前記窒化物半導体基板を重ねて前記アニールホルダに設置する際には、窒化物半導体基板における前記窒化物半導体薄膜の面の方向を逆に向けて交互に重ねることを特徴とする請求項1乃至3のいずれか1項記載の窒化物半導体基板のアニール方法。 When stacking a plurality of the nitride semiconductor substrates on each other and placing them on the annealing holder, the nitride semiconductor thin films are alternately stacked with the directions of the surfaces of the nitride semiconductor thin films on the nitride semiconductor substrates reversed. 4. The method for annealing a nitride semiconductor substrate according to any one of 1 to 3. 前記窒化物半導体薄膜は、AlGaIn(1−x−y)N(0≦x≦1、0≦y≦1、(x+y)≦1)であることを特徴とする請求項1乃至4のいずれか1項記載の窒化物半導体基板のアニール方法。 The nitride semiconductor thin film, Al x Ga y In (1 -x-y) N (0 ≦ x ≦ 1,0 ≦ y ≦ 1, (x + y) ≦ 1) 1 to claim characterized in that it is a 5. The method for annealing a nitride semiconductor substrate according to any one of 4 above. 前記ガスは、窒素、アルゴン、ヘリウム、クリプトン、ネオン、一酸化炭素、アンモニアのいずれか一種のガス又は複数が混合したガスであることを特徴とする請求項1乃至5のいずれか1項記載の窒化物半導体基板のアニール方法。 The said gas is any one kind of gas of nitrogen, argon, helium, krypton, neon, carbon monoxide, and ammonia, or the gas which mixed two or more, The gas of any one of Claim 1 thru|or 5 characterized by the above-mentioned. Annealing method for nitride semiconductor substrate.
JP2019019673A 2019-02-06 2019-02-06 Annealing method for nitride semiconductor substrate Active JP7290952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019019673A JP7290952B2 (en) 2019-02-06 2019-02-06 Annealing method for nitride semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019019673A JP7290952B2 (en) 2019-02-06 2019-02-06 Annealing method for nitride semiconductor substrate

Publications (2)

Publication Number Publication Date
JP2020125230A true JP2020125230A (en) 2020-08-20
JP7290952B2 JP7290952B2 (en) 2023-06-14

Family

ID=72083744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019019673A Active JP7290952B2 (en) 2019-02-06 2019-02-06 Annealing method for nitride semiconductor substrate

Country Status (1)

Country Link
JP (1) JP7290952B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114293263A (en) * 2021-12-30 2022-04-08 广东省科学院半导体研究所 Protection device and method for preventing surface decomposition and impurity incorporation under high-temperature thermal annealing
CN115369489A (en) * 2022-07-29 2022-11-22 江西兆驰半导体有限公司 Substrate slice anaerobic annealing furnace, annealing method and substrate slice

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010541A1 (en) * 2006-07-19 2008-01-24 Ngk Insulators, Ltd. Method for reducing dislocation in group iii nitride crystal and substrate for epitaxial growth
JP2011037666A (en) * 2009-08-11 2011-02-24 Hitachi Cable Ltd Nitride semiconductor free-standing substrate, method for producing nitride semiconductor free-standing substrate, and nitride semiconductor device
JP2015042598A (en) * 2013-08-26 2015-03-05 国立大学法人東北大学 Substrate having aluminum nitride (ain) film and method for manufacturing aluminum nitride (ain) film
JP2017055116A (en) * 2015-09-11 2017-03-16 国立大学法人三重大学 Nitride semiconductor substrate manufacturing method, nitride semiconductor substrate and heating device of the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339396A (en) 2005-06-02 2006-12-14 Kwansei Gakuin Ion implantation annealing method, method of manufacturing semiconductor element, and semiconductor element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010541A1 (en) * 2006-07-19 2008-01-24 Ngk Insulators, Ltd. Method for reducing dislocation in group iii nitride crystal and substrate for epitaxial growth
JP2011037666A (en) * 2009-08-11 2011-02-24 Hitachi Cable Ltd Nitride semiconductor free-standing substrate, method for producing nitride semiconductor free-standing substrate, and nitride semiconductor device
JP2015042598A (en) * 2013-08-26 2015-03-05 国立大学法人東北大学 Substrate having aluminum nitride (ain) film and method for manufacturing aluminum nitride (ain) film
JP2017055116A (en) * 2015-09-11 2017-03-16 国立大学法人三重大学 Nitride semiconductor substrate manufacturing method, nitride semiconductor substrate and heating device of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114293263A (en) * 2021-12-30 2022-04-08 广东省科学院半导体研究所 Protection device and method for preventing surface decomposition and impurity incorporation under high-temperature thermal annealing
CN115369489A (en) * 2022-07-29 2022-11-22 江西兆驰半导体有限公司 Substrate slice anaerobic annealing furnace, annealing method and substrate slice

Also Published As

Publication number Publication date
JP7290952B2 (en) 2023-06-14

Similar Documents

Publication Publication Date Title
KR102052287B1 (en) Method of manufacturing nitride semiconductor substrate
JP5192785B2 (en) Manufacturing method of nitride semiconductor device
WO2010110489A1 (en) Substrate for growing group-iii nitride semiconductors, epitaxial substrate for group-iii nitride semiconductors, group-iii nitride semiconductor element, stand-alone substrate for group-iii nitride semiconductors, and methods for manufacturing the preceding
JP4670055B2 (en) Semiconductor substrate and semiconductor device
JP7290952B2 (en) Annealing method for nitride semiconductor substrate
WO2021230148A1 (en) Base substrate for group iii-v compound crystals and production method for same
WO2006038567A1 (en) METHOD FOR PRODUCING P-TYPE Ga2O3 FILM AND METHOD FOR PRODUCING PN JUNCTION-TYPE Ga2O3 FILM
JP6138974B2 (en) Semiconductor substrate
JPWO2014156914A1 (en) III-nitride substrate processing method and epitaxial substrate manufacturing method
JP7352271B2 (en) Method for manufacturing nitride semiconductor substrate
KR100974048B1 (en) Compound semiconductor light emitting device with hybrid buffer layer and method for fabricating the same
US10643843B2 (en) Film forming method and aluminum nitride film forming method for semiconductor apparatus
TW202025487A (en) Nitride semiconductor device and substrate thereof, method for forming rare earth element-added nitride layer, and red light emitting device and method for manufacturing the same
US20170162378A1 (en) Method of manufacturing substrate for epitaxy
JP2002299267A (en) Manufacturing method for semiconductor wafer
US10304678B1 (en) Method for fabricating InGaP epitaxial layer by metal organic chemical vapor deposition (MOCVD)
US8729670B2 (en) Semiconductor substrate and method for manufacturing the same
JP7296614B2 (en) Nitride semiconductor manufacturing method, nitride semiconductor, and light emitting device
JP2011193010A (en) Semiconductor wafer and semiconductor wafer for high frequency electronic device
JP2016082200A (en) Crystal laminate structure and manufacturing method thereof, and semiconductor device
CN113025987B (en) Method for reducing surface oxide formation of aluminum nitride
US11600496B2 (en) In-situ p-type activation of III-nitride films grown via metal organic chemical vapor deposition
TWI755659B (en) Method and equipment for reducing surface oxide of aluminum nitride
JP4208078B2 (en) InN semiconductor and manufacturing method thereof
JP2010278470A (en) Substrate for growing group-iii nitride semiconductor, epitaxial substrate for group-iii nitride semiconductor, group-iii nitride semiconductor element, stand-alone substrate for group-iii nitride semiconductor, and methods for manufacturing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190307

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20201106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220428

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220428

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220513

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220517

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220729

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220802

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221018

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230214

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230602

R150 Certificate of patent or registration of utility model

Ref document number: 7290952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150