JP2020122194A - Temperature control method for vapor deposition apparatus - Google Patents

Temperature control method for vapor deposition apparatus Download PDF

Info

Publication number
JP2020122194A
JP2020122194A JP2019015665A JP2019015665A JP2020122194A JP 2020122194 A JP2020122194 A JP 2020122194A JP 2019015665 A JP2019015665 A JP 2019015665A JP 2019015665 A JP2019015665 A JP 2019015665A JP 2020122194 A JP2020122194 A JP 2020122194A
Authority
JP
Japan
Prior art keywords
temperature
substrate
heater
difference
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019015665A
Other languages
Japanese (ja)
Inventor
小関 修一
Shuichi Koseki
修一 小関
慶太 渕上
Keita Fuchigami
慶太 渕上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2019015665A priority Critical patent/JP2020122194A/en
Publication of JP2020122194A publication Critical patent/JP2020122194A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

To provide a temperature control method for a vapor deposition apparatus, allowing for deposition of a high quality film having little variance.SOLUTION: The temperature control method for a vapor deposition apparatus 1 is provided in which a vapor phase raw material is supplied to a substrate W mounted on a substrate mount plate 5 while the substrate W is heated by a heater 6 with the temperature controlled using a thermocouple 7, and a thin film is thus deposited on the substrate W. The temperature control method includes the steps of: heating the heater 6 so that a temperature measured by the thermocouple 7 reaches a set temperature; measuring the temperature of the substrate mount plate 5 or the temperature of the substrate W mounted on the substrate mount plate 5 by an optical temperature sensor 9; calculating a difference between the set temperature and the temperature measured by the optical temperature sensor 9; adding a reference temperature difference to the difference to calculate a total correction value; and correcting the set temperature based upon the total correction value to perform the temperature control over the heater 6.SELECTED DRAWING: Figure 1

Description

本発明は、気相成長装置の温度制御方法に関する。 The present invention relates to a temperature control method for a vapor phase growth apparatus.

一般に、気相成長装置は、成膜室内に回転可能に設けられたサセプタと、サセプタに設けられて基板(ウェハ)が載置される基板載置プレートと、基板載置プレートを介して基板を加熱するヒータとを備えている。気相成長装置では、基板載置プレートに載置した基板をヒータで加熱しながら、基板に気相原料を供給し、基板上に薄膜を堆積させることで、気相成長が行われる。 Generally, a vapor phase growth apparatus rotatably provided in a film forming chamber, a substrate placing plate on which a substrate (wafer) is placed and provided on the susceptor, and a substrate placed through the substrate placing plate. And a heater for heating. In a vapor phase growth apparatus, a substrate placed on a substrate placing plate is heated by a heater, a vapor phase raw material is supplied to the substrate, and a thin film is deposited on the substrate to perform vapor phase growth.

ところで、気相成長装置では、基板の表面温度をプロセス毎に同一条件とすることが同一品質を得るために重要である(例えば、下記特許文献1を参照。)。このため、温度制御の方法としては、下記の二つが考えられる。 By the way, in the vapor phase growth apparatus, it is important to set the surface temperature of the substrate to the same condition for each process in order to obtain the same quality (for example, refer to Patent Document 1 below). Therefore, the following two methods can be considered as the temperature control method.

一つは、ヒータの近傍に熱電対を設けて温度を測定し、この測定値を元にフィードバック制御を行う方法である。もう一つは、光学的温度センサにより、基板載置プレート温度又は当該基板載置プレートに載置された基板の表面温度を測定して、この測定値を元にフィードバック制御を行う方法である。 One is a method in which a thermocouple is provided near the heater to measure the temperature, and feedback control is performed based on the measured value. The other is a method of measuring the substrate mounting plate temperature or the surface temperature of the substrate mounted on the substrate mounting plate with an optical temperature sensor and performing feedback control based on the measured value.

特開2014−194996号公報JP, 2014-194996, A

しかしながら、ヒータ近傍に設けた熱電対により測定してフィードバック制御を行う場合、基板の環境の違いなどを反映することができないため、プロセス毎の再現性が十分でないといった課題がある。 However, when performing feedback control by measuring with a thermocouple provided in the vicinity of the heater, there is a problem that the reproducibility for each process is not sufficient because the difference in the environment of the substrate cannot be reflected.

気相成長装置を運用する場合、定期的な温度測定によって、基板の表面温度を補正する。具体的には、ヒータ(加熱手段)を制御する温度センサと、基板の表面温度を測定する温度センサとの値が概ね合致するように、補正値を算出し、この補正値に基づいた補正を制御装置で行っている。また、この補正した温度で成膜プロセスの温度条件を決定する。しかしながら、毎回のプロセスにおいては、プロセス毎の環境変化によって、補正した値から、さらに温度が変化する。したがって、プロセス毎の温度補正が望まれている。 When operating the vapor phase growth apparatus, the surface temperature of the substrate is corrected by periodic temperature measurement. Specifically, the correction value is calculated so that the value of the temperature sensor that controls the heater (heating means) and the value of the temperature sensor that measures the surface temperature of the substrate approximately match, and the correction based on this correction value is performed. It is done by the control device. Further, the temperature condition of the film forming process is determined by the corrected temperature. However, in each process, the temperature further changes from the corrected value due to the environmental change in each process. Therefore, temperature correction for each process is desired.

ヒータ(加熱手段)を制御する温度センサに対して、基板の表面温度を光学的温度センサにより測定してフィードバック制御を行う場合、基板載置プレート上に設置された基板は、サセプタの回転により常時同一点を測定することができない。また、基板の歪みが温度により変化するなどの要因によって、安定した測定が難しく、測定温度の変化が著しい。 When the surface temperature of the substrate is measured by an optical temperature sensor and feedback control is performed with respect to the temperature sensor that controls the heater (heating means), the substrate placed on the substrate mounting plate is constantly rotated by the rotation of the susceptor. You cannot measure the same point. Also, due to factors such as the strain of the substrate changing with temperature, stable measurement is difficult and the measured temperature changes significantly.

本発明は、このような従来の事情に鑑みて提案されたものであり、ばらつきの少ない高品質の成膜を行うことを可能とした気相成長装置の温度制御方法を提供することを目的とする。 The present invention has been proposed in view of such conventional circumstances, and an object of the present invention is to provide a temperature control method for a vapor deposition apparatus capable of performing high-quality film formation with little variation. To do.

上記目的を達成するために、本発明は以下の手段を提供する。
〔1〕 基板載置プレートに載置された基板を、熱電対を用いて温度制御されるヒータで加熱しながら、前記基板に気相原料を供給し、前記基板上に薄膜を堆積させる気相成長装置の温度制御方法であって、
前記熱電対により測定される温度が設定温度となるように、前記ヒータを加熱する工程と、
前記基板載置プレートの温度又は当該基板載置プレートに載置された基板の温度を光学的温度センサにより測定する工程と、
前記設定温度と前記光学的温度センサが測定した温度との差分を算出する工程と、
前記差分に基準温度差を加算して総合補正値を算出する工程と、
前記総合補正値に基づいて、前記設定温度を補正し、前記ヒータの温度制御を行う工程とを含むことを特徴とする気相成長装置の温度制御方法。
〔2〕 前記設定温度を補正する工程を同一プロセス中に複数回行うことを特徴とする前記〔1〕に記載の気相成長装置の温度制御方法。
In order to achieve the above object, the present invention provides the following means.
[1] Gas phase for supplying a gas phase raw material to the substrate while heating the substrate mounted on the substrate mounting plate with a heater whose temperature is controlled using a thermocouple to deposit a thin film on the substrate A temperature control method for a growth apparatus, comprising:
Heating the heater so that the temperature measured by the thermocouple reaches a set temperature;
Measuring the temperature of the substrate mounting plate or the temperature of the substrate mounted on the substrate mounting plate by an optical temperature sensor,
Calculating a difference between the set temperature and the temperature measured by the optical temperature sensor;
Calculating a total correction value by adding a reference temperature difference to the difference;
A step of correcting the set temperature based on the comprehensive correction value and controlling the temperature of the heater.
[2] The temperature control method for a vapor phase growth apparatus according to [1], wherein the step of correcting the set temperature is performed a plurality of times during the same process.

以上のように、本発明によれば、ばらつきの少ない高品質の成膜を行うことを可能とした気相成長装置の温度制御方法を提供することが可能である。 As described above, according to the present invention, it is possible to provide a temperature control method for a vapor phase growth apparatus that enables high-quality film formation with less variation.

本発明の一実施形態に係る気相成長装置の構成を示す断面図である。図である。It is sectional drawing which shows the structure of the vapor phase growth apparatus which concerns on one Embodiment of this invention. It is a figure. 図1に示す気相成長装置の総合補正値ΔTの決定方法を説明するためのフローチャートである。6 is a flowchart for explaining a method of determining a total correction value ΔT of the vapor phase growth apparatus shown in FIG. 1. 図1に示す気相成長装置の総合補正値ΔTに基づく温度制御を説明するためのフローチャートである。6 is a flowchart for explaining temperature control based on a total correction value ΔT of the vapor phase growth apparatus shown in FIG. 1.

以下、本発明の実施形態について、図面を参照して詳細に説明する。
なお、以下の説明で用いる図面においては、各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがあり、各構成要素の寸法比率などが実際と同じであるとは限らない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In the drawings used in the following description, in order to make each component easy to see, the scale of dimensions may be different depending on the component, and the dimensional ratio of each component may not be the same as the actual one. Absent.

(気相成長装置)
先ず、本発明の一実施形態として、例えば図1に示す気相成長装置1の構成について説明する。なお、図1は、気相成長装置1の構成を示す断面図である。
(Vapor growth equipment)
First, as an embodiment of the present invention, a configuration of a vapor phase growth apparatus 1 shown in FIG. 1, for example, will be described. Note that FIG. 1 is a cross-sectional view showing the configuration of the vapor phase growth apparatus 1.

本実施形態の気相成長装置1は、図1に示すように、略偏平円筒状の成膜室2と、成膜室2の底面を貫通する回転軸3を介して回転(公転)する略円板状のサセプタ4と、サセプタ4の周方向(回転方向)に並んで設けられて、基板Wが載置された状態で回転(自転)する複数の基板載置プレート5と、サセプタ4の底面側に配置されて基板載置プレート5を介して基板Wを加熱するヒータ6と、ヒータ6の近傍に配置されてヒータ6の温度を測定する熱電対7と、成膜室2の上面に設けられた透光部8を介して基板載置プレート5の温度又は当該基板載置プレート5に載置された基板Wの温度を測定する光学的温度センサ9とを概略備えている。 As shown in FIG. 1, the vapor phase growth apparatus 1 of the present embodiment rotates (revolves) through a substantially flat cylindrical film forming chamber 2 and a rotary shaft 3 penetrating the bottom surface of the film forming chamber 2. The disk-shaped susceptor 4, a plurality of substrate mounting plates 5 that are provided side by side in the circumferential direction (rotational direction) of the susceptor 4 and that rotate (rotate) while the substrate W is mounted, and the susceptor 4 A heater 6 arranged on the bottom surface side to heat the substrate W via the substrate mounting plate 5, a thermocouple 7 arranged near the heater 6 to measure the temperature of the heater 6, and an upper surface of the film forming chamber 2 An optical temperature sensor 9 for roughly measuring the temperature of the substrate mounting plate 5 or the temperature of the substrate W mounted on the substrate mounting plate 5 is provided via the light transmitting portion 8 provided.

また、気相成長装置1は、ヒータ6の温度を設定する温度設定部15と、温度設定部15で設定された温度(以下、「設定温度」という。)に温度補正を行う設定温度補正部10と、熱電対7が測定した温度に基づいて、補正された温度となるようにヒータ6の加熱を制御するヒータ制御部11と、設定温度と光学的温度センサ9が測定した温度との差分を算出する差分算出部12と、当該差分と予め設定された値を記録部14に記録した基準温度差に基づいて設定温度を補正する温度補正値演算部13とを備えている。 The vapor phase growth apparatus 1 also includes a temperature setting unit 15 that sets the temperature of the heater 6, and a set temperature correction unit that performs temperature correction to the temperature set by the temperature setting unit 15 (hereinafter, referred to as “set temperature”). 10, a heater control unit 11 that controls the heating of the heater 6 based on the temperature measured by the thermocouple 7 so that the temperature is corrected, and the difference between the set temperature and the temperature measured by the optical temperature sensor 9. And a temperature correction value calculation unit 13 that corrects the set temperature based on the reference temperature difference in which the difference and a preset value are recorded in the recording unit 14.

気相成長装置1では、基板載置プレート5に載置した基板Wをヒータ6で加熱しながら、基板Wに気相原料を供給し、基板W上に薄膜を堆積させることで、気相成長が行われる。 In the vapor phase growth apparatus 1, while heating the substrate W placed on the substrate placing plate 5 by the heater 6, the vapor phase raw material is supplied to the substrate W to deposit a thin film on the substrate W, thereby performing the vapor phase growth. Is done.

(気相成長装置の温度制御方法)
次に、本発明を適用した気相成長装置1の温度制御方法について、図2を参照しながら説明する。なお、図2は、気相成長装置1の総合補正値ΔTの決定方法を説明するためのフローチャートである。
(Temperature control method of vapor phase growth apparatus)
Next, a temperature control method of the vapor phase growth apparatus 1 to which the present invention is applied will be described with reference to FIG. Note that FIG. 2 is a flowchart for explaining a method of determining the total correction value ΔT of the vapor phase growth apparatus 1.

本実施形態の気相成長装置1の温度制御方法では、先ず、総合補正値ΔTを決定する。具体的には、図2に示すステップS1において、熱電対7により測定される温度が温度設定部15により設定された設定温度Tとなるように、ヒータ制御部11によりヒータ6の加熱を制御する。 In the temperature control method for the vapor phase growth apparatus 1 according to the present embodiment, first, the total correction value ΔT is determined. Specifically, in step S1 shown in FIG. 2, the heating of the heater 6 is controlled by the heater control unit 11 so that the temperature measured by the thermocouple 7 becomes the set temperature T 0 set by the temperature setting unit 15. To do.

次に、図2に示すステップS2において、基板載置プレート5の温度又は当該基板載置プレート5に載置された基板Wの表面温度を光学的温度センサ9により測定する。そして、この光学的温度センサ9が測定した温度の測定値Tを差分算出部12へと供給する。 Next, in step S2 shown in FIG. 2, the optical temperature sensor 9 measures the temperature of the substrate mounting plate 5 or the surface temperature of the substrate W mounted on the substrate mounting plate 5. Then, the measured value T 1 of the temperature measured by the optical temperature sensor 9 is supplied to the difference calculation unit 12.

なお、光学的温度センサ9による温度測定は、ヒータ6による加熱を開始してから常時行われている。一方、差分算出部12に供給される温度の測定値Tは、ヒータ6による加熱を開始し、熱電対7により測定される温度が設定温度Tに到達してから、ヒータ6による加熱が設定温度Tを維持する制御(安定制御)となった以降に測定される温度である。 The temperature measurement by the optical temperature sensor 9 is always performed after the heating by the heater 6 is started. On the other hand, the measured value T 1 of the temperature supplied to the difference calculation unit 12 is not heated by the heater 6 after the heating by the heater 6 starts and the temperature measured by the thermocouple 7 reaches the set temperature T 0. It is a temperature measured after the control (stable control) for maintaining the set temperature T 0 is started.

次に、図2に示すステップS3において、差分算出部12が、設定温度Tと光学的温度センサ9が測定した温度(測定値T)との差分を算出する。すなわち、この差分算出部12では、設定温度Tと光学的温度センサ9が測定した温度の測定値Tとの差分値Δt(=T−T)を算出する。そして、差分算出部12が算出した差分値Δtを温度補正値演算部13へと供給する。 Next, in step S3 shown in FIG. 2, the difference calculator 12 calculates the difference between the set temperature T 0 and the temperature (measured value T 1 ) measured by the optical temperature sensor 9. That is, the difference calculator 12 calculates a difference value Δt (=T 0 −T 1 ) between the set temperature T 0 and the measured value T 1 of the temperature measured by the optical temperature sensor 9. Then, the difference value Δt calculated by the difference calculation unit 12 is supplied to the temperature correction value calculation unit 13.

次に、図2に示すステップS4において、温度補正値演算部13が、差分(差分値Δt)に、予め記憶させたおいた基準温度差StdΔを加えて総合補正値ΔT(=Δt+StdΔ)を算出する。 Next, in step S4 shown in FIG. 2, the temperature correction value calculation unit 13 calculates the total correction value ΔT (=Δt+StdΔ) by adding the previously stored reference temperature difference StdΔ to the difference (difference value Δt). To do.

ここで、気相成長装置1では、定期的に温度補正をしているので、ステップS3で算出した差分値Δtには、予め補正に用いた基準温度差StdΔが含まれている。重複した補正を回避するためには、この基準温度差分を削除する必要がある。したがって、温度補正値演算部13では、この基準温度差StdΔを考慮して、総合補正値ΔT(=Δt+StdΔ)を演算により決定する。 Here, since the vapor phase growth apparatus 1 periodically performs temperature correction, the difference value Δt calculated in step S3 includes the reference temperature difference StdΔ used for correction in advance. In order to avoid the duplicated correction, it is necessary to delete this reference temperature difference. Therefore, the temperature correction value calculation unit 13 calculates the total correction value ΔT (=Δt+StdΔ) in consideration of the reference temperature difference StdΔ.

次に、気相成長装置1の総合補正値ΔTに基づく温度制御について、図3を参照しながら説明する。なお、図3は、気相成長装置1の総合補正値ΔTに基づく温度制御を説明するためのフローチャートである。 Next, temperature control based on the total correction value ΔT of the vapor phase growth apparatus 1 will be described with reference to FIG. It should be noted that FIG. 3 is a flowchart for explaining the temperature control based on the total correction value ΔT of the vapor phase growth apparatus 1.

気相成長においては、基板Wを搬入してから搬出するまで、時間軸によって温度を変化させる成膜プロセスを有する。この1回の成膜プロセスの基本環境が同一とみなされる。基板Wの搬出後は、新たに搬入する基板Wなどに由来する条件の変化だけでなく、成膜室2内のヒータ6や基板載置プレート5などの部品類の交換などにより、新たな基本環境とみなされる。 The vapor phase growth has a film forming process in which the temperature is changed depending on the time axis from the time when the substrate W is carried in until the time when the substrate W is carried out. The basic environment of this one-time film forming process is regarded as the same. After unloading the substrate W, not only the conditions due to the newly loaded substrate W or the like are changed, but also the parts such as the heater 6 and the substrate mounting plate 5 in the film forming chamber 2 are replaced with new basics. Considered the environment.

そこで、この1回の成膜プロセスでの動的な温度制御のための設定温度を「T100」とする。したがって、設定温度Tは、温度補正を行う時点で、設定温度T100と同一の値となる。 Therefore, the set temperature for the dynamic temperature control in this one-time film forming process is set to "T100". Therefore, the set temperature T 0 has the same value as the set temperature T100 at the time of temperature correction.

本発明では、1つの基本環境において、ある設定温度Tでの総合補正値ΔTが決定した後に、動的に温度制御する設定温度T100に対する補正を実行する。一方、1回の成膜プロセスにおいて、補正する設定温度Tを複数設けて、その設定温度毎に補正を実行してもよい。 In the present invention, in one basic environment, after the total correction value ΔT at a certain set temperature T 0 is determined, the correction for the set temperature T100 that is dynamically temperature controlled is executed. On the other hand, in one film forming process, a plurality of set temperatures T 0 to be corrected may be provided, and the correction may be executed for each set temperature.

本発明では、基本環境における代表的な制御温度で補正値を決め、それを同一の基本環境で用いる間、すなわち1つの成膜プロセスで利用できる点に特長がある。 The present invention is characterized in that a correction value is determined at a typical control temperature in the basic environment and the correction value can be used during the same basic environment, that is, in one film forming process.

具体的には、先ず、図3に示すステップS101において、補正実行の命令により、設定温度補正部10が、設定温度T100に総合補正値ΔTを加えて、補正された温度T100’を算出する。但し、補正を実行する必要がない場合、T100’はT100のままとなる。 Specifically, first, in step S101 shown in FIG. 3, the set temperature correction unit 10 adds a total correction value ΔT to the set temperature T100 to calculate a corrected temperature T100′ by a correction execution command. However, if it is not necessary to perform the correction, T100' remains T100.

次に、図3に示すステップS102において、設定温度補正部10が、設定温度であったT100に対して、補正された設定温度T100’を設定する。 Next, in step S102 shown in FIG. 3, the set temperature correction unit 10 sets the corrected set temperature T100' to the set temperature T100.

次に、図3に示すステップS103において、ヒータ制御部11では、熱電対7により測定される温度が、この補正後の設定温度T100’となるように、ヒータ6の加熱を制御する。このような制御を行うことで、光学的温度センサ9により測定される基板Wの表面温度がT100となる。 Next, in step S103 shown in FIG. 3, the heater control unit 11 controls the heating of the heater 6 so that the temperature measured by the thermocouple 7 becomes the corrected set temperature T100'. By performing such control, the surface temperature of the substrate W measured by the optical temperature sensor 9 becomes T100.

これにより、設定温度T100に対する基板Wの温度制御を成膜プロセス毎に再現性良く実施することが可能である。また、この制御方法によれば、基板Wなどに由来する条件の変化だけでなく、成膜室2内のヒータ6や基板載置プレート5などの部品類を交換した際にも、同一の基本環境内で温度再現性を高めるために有効である。 This makes it possible to control the temperature of the substrate W with respect to the set temperature T100 with good reproducibility for each film forming process. Further, according to this control method, not only the change of the condition derived from the substrate W or the like but also the same basic condition when the parts such as the heater 6 and the substrate mounting plate 5 in the film forming chamber 2 are replaced. It is effective for improving temperature reproducibility in the environment.

また、本実施形態では、上述した図2及び図3に示す設定温度を補正する工程について、同一の成膜プロセス中に複数回行ってもよい。 Further, in the present embodiment, the steps of correcting the set temperature shown in FIGS. 2 and 3 described above may be performed a plurality of times during the same film forming process.

この場合、光学的温度センサ9が常時測定した温度の測定値Tに基づいて、差分算出部12が差分値Δtを算出しながら、この差分値Δtが一定の閾値を超えたときに、温度補正値演算部13が総合補正値ΔTを求め、設定温度補正部10が設定温度T100を補正し、この補正後の設定温度T100’に基づいて、ヒータ制御部11によるヒータ6の加熱制御を行ってもよい。 In this case, while the difference calculation unit 12 calculates the difference value Δt based on the temperature measurement value T 1 constantly measured by the optical temperature sensor 9, when the difference value Δt exceeds a certain threshold value, the temperature The correction value calculation unit 13 obtains the total correction value ΔT, the set temperature correction unit 10 corrects the set temperature T100, and the heater control unit 11 controls the heating of the heater 6 based on the corrected set temperature T100′. May be.

一方、光学的温度センサ9が定期的に測定した温度の測定値Tに基づいて、差分算出部12が差分値Δtを算出し、この差分値Δtに基づいて、温度補正値演算部13が総合補正値ΔTを求め、設定温度補正部10が設定温度T100を補正し、この補正後の設定温度T100’に基づいて、ヒータ制御部11によるヒータ6の加熱制御を行ってもよい。 On the other hand, the difference calculation unit 12 calculates the difference value Δt based on the temperature measurement value T 1 that the optical temperature sensor 9 regularly measures, and the temperature correction value calculation unit 13 calculates the difference value Δt based on this difference value Δt. The total correction value ΔT may be calculated, the set temperature correction unit 10 may correct the set temperature T100, and the heater control unit 11 may control the heating of the heater 6 based on the corrected set temperature T100′.

以上のように、本実施形態の気相成長装置1の温度制御方法では、上述した設定温度Tに対する基板Wの温度制御をプロセス毎に再現性良く実施することによって、ばらつきの少ない高品質の成膜を行うことが可能である。 As described above, in the temperature control method for the vapor phase growth apparatus 1 according to the present embodiment, the temperature control of the substrate W with respect to the set temperature T 0 described above is performed with good reproducibility for each process, thereby achieving high quality with little variation. It is possible to form a film.

以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。 Hereinafter, the effects of the present invention will be made more apparent by examples. The present invention is not limited to the following examples, and can be implemented with appropriate changes without departing from the scope of the invention.

(実施例)
実施例では、上記気相成長装置1を用いて、10枚のウェハ(基板W)をそれぞれ基板載置プレート5に載置し、一定量の窒素ガスを成膜室2内に流しながら、設定温度Tを1000℃として、ヒータ6による加熱を行った。そして、熱電対7により測定されるヒータ6の温度が温度補正を実施する設定温度T(1000℃)に到達した後に、光学的温度センサ9によるウェハの表面温度の測定を行った。
(Example)
In the embodiment, 10 wafers (substrates W) are mounted on the substrate mounting plate 5 by using the vapor phase growth apparatus 1, and a predetermined amount of nitrogen gas is allowed to flow into the film forming chamber 2 for setting. The temperature T 0 was set to 1000° C., and heating by the heater 6 was performed. Then, after the temperature of the heater 6 measured by the thermocouple 7 reaches the set temperature T 0 (1000° C.) for performing temperature correction, the surface temperature of the wafer is measured by the optical temperature sensor 9.

その結果、10枚のウェハの表面温度の平均値(測定値T)は、1010℃であった。したがって、設定温度Tと光学的温度センサ9が測定した温度(測定値T)との差分値Δt(=T−T)は、−10℃と算出された。 As a result, the average surface temperature of 10 wafers (measured value T 1 ) was 1010°C. Therefore, the difference value Δt (=T 0 −T 1 ) between the set temperature T 0 and the temperature (measured value T 1 ) measured by the optical temperature sensor 9 was calculated to be −10° C.

このとき、定期的な温度測定で予め設定された基準温度差StdΔは、3.4℃であった。 At this time, the reference temperature difference StdΔ preset by the periodic temperature measurement was 3.4°C.

測定値T(1010℃)においては、3.4℃の補正値が既に含まれている。したがって、上述した差分値Δt(−10℃)に、基準温度差StdΔ(3.4℃)を加算した総合補正値ΔT(=Δt+StdΔ)は、−6.6℃となる。 The measured value T 1 (1010° C.) already includes the correction value of 3.4° C. Therefore, the total correction value ΔT (=Δt+StdΔ) obtained by adding the reference temperature difference StdΔ (3.4°C) to the difference value Δt (-10°C) described above is -6.6°C.

総合補正値ΔTが決定したら、成膜が終了してウェハを取り出すまで、この総合補正値ΔT(−6.6℃)に基づいて、気相成長の成膜プロセスにおける動的な設定温度T100に対する補正を行う。 After the total correction value ΔT is determined, until the film formation is completed and the wafer is taken out, the total correction value ΔT (−6.6° C.) is used for the dynamic set temperature T100 in the vapor deposition process. Make a correction.

引き続き、設定温度T100を成膜プロセスに合わせて変化させ、この設定温度T100を750℃としたときに、総合補正値ΔTを考慮して補正された設定温度T100’(=T100+ΔT)を算出する。 Subsequently, the set temperature T100 is changed according to the film forming process, and when the set temperature T100 is set to 750° C., the set temperature T100′ (=T100+ΔT) corrected in consideration of the total correction value ΔT is calculated.

この総合補正値ΔTに基づいて、補正後の設定温度T100’を743.4℃として、ヒータ6の温度制御を行った。その後、光学的温度センサ9により10枚のウェハの表面温度を測定したところ、補正後のウェハの表面温度の平均値は、750℃となった。 Based on the total correction value ΔT, the temperature of the heater 6 was controlled by setting the corrected set temperature T100' to 743.4°C. After that, when the surface temperature of 10 wafers was measured by the optical temperature sensor 9, the average value of the corrected surface temperature of the wafer was 750° C.

その後、ウェハの加熱を中止し、室温まで冷却した後、全てのウェハを新たに用意した別のウェハに交換した。そして、このようなプロセス試験を繰り返し10回行った。その結果、各プロセスにおける補正後のウェハの表面温度の平均値は、749℃〜751℃の範囲に収まることを確認した。 After that, heating of the wafer was stopped, and after cooling to room temperature, all the wafers were exchanged for another newly prepared wafer. Then, such a process test was repeated 10 times. As a result, it was confirmed that the average value of the corrected surface temperature of the wafer in each process was within the range of 749°C to 751°C.

(比較例)
比較例では、上記気相成長装置1を用いて、10枚のウェハ(基板W)をそれぞれ基板載置プレート5に載置し、一定量の窒素ガスを成膜室2内に流しながら、設定温度Tを750℃として、ヒータ6による加熱を行った。そして、熱電対7により測定されるヒータ6の温度が設定温度T(750℃)に到達した後に、光学的温度センサ9によるウェハの表面温度の測定を行った。
(Comparative example)
In the comparative example, using the vapor phase growth apparatus 1, 10 wafers (substrates W) are mounted on the substrate mounting plate 5, respectively, and a predetermined amount of nitrogen gas is allowed to flow into the film forming chamber 2 for setting. The temperature T 0 was set to 750° C. and heating by the heater 6 was performed. Then, after the temperature of the heater 6 measured by the thermocouple 7 reached the set temperature T 0 (750° C.), the surface temperature of the wafer was measured by the optical temperature sensor 9.

その結果、10枚のウェハの表面温度の平均値(測定値T)は、748℃であった。 その後、ウェハの加熱を中止し、室温まで冷却した後、全てのウェハを新たに用意した別のウェハに交換した。そして、このようなプロセス試験を繰り返し10回行った。その結果、各プロセスにおけるウェハの表面温度の平均値は、747℃〜752℃の範囲に収まることを確認した。 As a result, the average value of the surface temperatures of 10 wafers (measured value T 1 ) was 748°C. After that, heating of the wafer was stopped, and after cooling to room temperature, all the wafers were exchanged for another newly prepared wafer. Then, such a process test was repeated 10 times. As a result, it was confirmed that the average value of the surface temperature of the wafer in each process was within the range of 747°C to 752°C.

以上のことから、実施例では、比較例に比べて、設定温度に対するウェハの温度制御をプロセス毎に再現性良く実施できることが明らかとなった。 From the above, it has been clarified that the temperature control of the wafer with respect to the set temperature can be performed with good reproducibility for each process in the example as compared with the comparative example.

1…気相成長装置 2…成膜室 4…サセプタ 5…基板設置プレート 6…ヒータ 7…熱電対 9…光学的温度センサ 10…設定温度補正部 11…ヒータ制御部 12…差分算出部 13…温度補正値演算部 14…記録部 15…温度設定部 W…基板 DESCRIPTION OF SYMBOLS 1... Vapor growth apparatus 2... Film-forming chamber 4... Susceptor 5... Substrate installation plate 6... Heater 7... Thermocouple 9... Optical temperature sensor 10... Set temperature correction part 11... Heater control part 12... Difference calculation part 13... Temperature correction value calculation unit 14... Recording unit 15... Temperature setting unit W... Substrate

Claims (2)

基板載置プレートに載置された基板を、熱電対を用いて温度制御されるヒータで加熱しながら、前記基板に気相原料を供給し、前記基板上に薄膜を堆積させる気相成長装置の温度制御方法であって、
前記熱電対により測定される温度が設定温度となるように、前記ヒータを加熱する工程と、
前記基板載置プレートの温度又は当該基板載置プレートに載置された基板の温度を光学的温度センサにより測定する工程と、
前記設定温度と前記光学的温度センサが測定した温度との差分を算出する工程と、
前記差分に基準温度差を加算して総合補正値を算出する工程と、
前記総合補正値に基づいて、前記設定温度を補正し、前記ヒータの温度制御を行う工程とを含むことを特徴とする気相成長装置の温度制御方法。
A substrate mounted on a substrate mounting plate is heated by a heater whose temperature is controlled using a thermocouple, while supplying a vapor-phase raw material to the substrate to deposit a thin film on the substrate. A temperature control method,
Heating the heater so that the temperature measured by the thermocouple reaches a set temperature;
Measuring the temperature of the substrate mounting plate or the temperature of the substrate mounted on the substrate mounting plate by an optical temperature sensor,
Calculating a difference between the set temperature and the temperature measured by the optical temperature sensor;
Calculating a total correction value by adding a reference temperature difference to the difference;
A step of correcting the set temperature based on the comprehensive correction value and controlling the temperature of the heater.
前記設定温度を補正する工程を同一プロセス中に複数回行うことを特徴とする請求項1に記載の気相成長装置の温度制御方法。 The temperature control method for a vapor phase growth apparatus according to claim 1, wherein the step of correcting the set temperature is performed a plurality of times during the same process.
JP2019015665A 2019-01-31 2019-01-31 Temperature control method for vapor deposition apparatus Pending JP2020122194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019015665A JP2020122194A (en) 2019-01-31 2019-01-31 Temperature control method for vapor deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019015665A JP2020122194A (en) 2019-01-31 2019-01-31 Temperature control method for vapor deposition apparatus

Publications (1)

Publication Number Publication Date
JP2020122194A true JP2020122194A (en) 2020-08-13

Family

ID=71992261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019015665A Pending JP2020122194A (en) 2019-01-31 2019-01-31 Temperature control method for vapor deposition apparatus

Country Status (1)

Country Link
JP (1) JP2020122194A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023277539A1 (en) * 2021-06-30 2023-01-05 주성엔지니어링(주) Method for controlling canister temperature and raw material supply device
CN117845197A (en) * 2024-03-07 2024-04-09 河套学院 Nano material growth control system and method based on chemical vapor deposition method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218928A (en) * 2007-03-07 2008-09-18 Sharp Corp Wafer heating film deposition device and method for controlling wafer temprature

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218928A (en) * 2007-03-07 2008-09-18 Sharp Corp Wafer heating film deposition device and method for controlling wafer temprature

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023277539A1 (en) * 2021-06-30 2023-01-05 주성엔지니어링(주) Method for controlling canister temperature and raw material supply device
CN117845197A (en) * 2024-03-07 2024-04-09 河套学院 Nano material growth control system and method based on chemical vapor deposition method

Similar Documents

Publication Publication Date Title
KR20220118975A (en) Methods for thermally calibrating reaction chambers
TWI224634B (en) Method and device for the temperature control of surface temperatures of substrates in a CVD reactor
TWI598476B (en) Vapor phase growth method and vapor phase growth device
KR100613925B1 (en) Substrate processing apparatus and method for manufacturing semiconductor device
TWI485281B (en) Film formation apparatus
JP4428175B2 (en) Vapor phase epitaxial growth apparatus and semiconductor wafer manufacturing method
JP2020122194A (en) Temperature control method for vapor deposition apparatus
JP2012054310A (en) Manufacturing method of epitaxial wafer, and epitaxial growth apparatus
JP6330720B2 (en) Epitaxial wafer manufacturing method and vapor phase growth apparatus
JP3764689B2 (en) Semiconductor manufacturing method and semiconductor manufacturing apparatus
TW202221292A (en) Method for emissivity-corrected pyrometry
JP2009194045A (en) Vapor phase epitaxy device
WO2016140321A1 (en) Sensor for film thickness monitoring device, film thickness monitoring device provided with same, and method for manufacturing sensor for film thickness monitoring device
US6217651B1 (en) Method for correction of thin film growth temperature
JP7230877B2 (en) Epitaxial wafer manufacturing system and epitaxial wafer manufacturing method
JP4980100B2 (en) Wafer heating film forming apparatus and wafer temperature control method
JP4978608B2 (en) Epitaxial wafer manufacturing method
CN113846376A (en) Temperature adjusting method for epitaxial growth apparatus and epitaxial growth apparatus
JP3926073B2 (en) Thin film forming method and apparatus
JP2004072030A (en) Semiconductor manufacturing apparatus
TWI734286B (en) Film forming method, film forming device, base unit and gasket set for base unit
JP6027929B2 (en) Method for adjusting vapor phase growth apparatus
JP2001085339A (en) Temperature control method
JP2020161733A (en) Film deposition apparatus and temperature control method
TWI758514B (en) Film thickness control method and device for reactive sputtering

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20201106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210914

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220817

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220817

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220825

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220830

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20221007

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20221018

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221213

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230214

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20230322