JP2020121267A - Exhaust gas treatment equipment - Google Patents

Exhaust gas treatment equipment Download PDF

Info

Publication number
JP2020121267A
JP2020121267A JP2019014479A JP2019014479A JP2020121267A JP 2020121267 A JP2020121267 A JP 2020121267A JP 2019014479 A JP2019014479 A JP 2019014479A JP 2019014479 A JP2019014479 A JP 2019014479A JP 2020121267 A JP2020121267 A JP 2020121267A
Authority
JP
Japan
Prior art keywords
exhaust gas
drum
water
heat exchanger
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019014479A
Other languages
Japanese (ja)
Inventor
琴衣 松山
Kotoe Matsuyama
琴衣 松山
横山 公一
Koichi Yokoyama
公一 横山
真人 上西
Masato Uenishi
真人 上西
克洋 矢代
Katsuhiro Yashiro
克洋 矢代
啓一郎 甲斐
Keiichiro Kai
啓一郎 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2019014479A priority Critical patent/JP2020121267A/en
Priority to CN202010040654.2A priority patent/CN111495175A/en
Publication of JP2020121267A publication Critical patent/JP2020121267A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8631Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases

Abstract

To provide an exhaust gas purifier which satisfactorily suppresses production of acidic ammonium sulfate at exhaust gas low temperature time with simple configuration.SOLUTION: A denitration catalyst packed layer for reducing and removing nitrogen oxide in exhaust gas with ammonia or urea as a reductant is located in a gas flow passage 18 in which exhaust gas, which has been discharged from a furnace of a circulation type drum boiler 1 for heating water derived from a drum 4 by the furnace and returning the same to the drum 4, flows. Ammonia or urea is injected into exhaust gas flowing in the gas flow passage on an upstream side of the denitration catalyst packed layer. A heat exchanger 30 is located in the gas flow passage 18 on the upstream side of the denitration catalyst packed layer (denitration device 20), and a heat medium introduction pipe 33 introduces water in the drum 4 into the heat exchanger 30. Water introduced from the heat medium introduction pipe 33 flows in the heat exchanger 30 as a heat medium.SELECTED DRAWING: Figure 1

Description

本発明は、ボイラからの排ガスを浄化するための排ガス処理装置に関する。 The present invention relates to an exhaust gas treatment device for purifying exhaust gas from a boiler.

ボイラで燃料を燃焼して発電を行う火力発電所では、ボイラからの排ガスを排煙処理系統で浄化した後に大気中に排出している。排煙処理系統には、排ガス中の窒素酸化物(NOx)を還元除去する脱硝装置や、排ガスとの熱交換によって燃焼用空気を加熱する空気予熱器や、排ガス中の煤塵(燃焼灰)を捕集除去する電気集塵機などが設けられる。 In a thermal power plant that burns fuel in a boiler to generate power, exhaust gas from the boiler is purified by a smoke treatment system and then discharged into the atmosphere. The flue gas treatment system includes a denitrification device that reduces and removes nitrogen oxides (NOx) in exhaust gas, an air preheater that heats combustion air by heat exchange with exhaust gas, and dust (combustion ash) in exhaust gas. An electric dust collector or the like for collecting and removing is provided.

また、特許文献1には、ボイラ出口部の煙道に脱硝装置が設置されたボイラの起動時において脱硝装置入口の排ガス温度を上昇させるボイラ起動装置として2つの例(第1及び第2の例)が記載されている。第1の例では、ボイラの起動時に一部の伝熱面をバイパスさせるバイパスダンパを開いて脱硝装置入口の排ガス温度を上昇させる。第2の例では、汽水分離器からタービン側へ供給される蒸気の一部を、脱硝装置の入口に設置する排ガス過熱器に供給する。 Further, in Patent Document 1, there are two examples (first and second examples) as a boiler starting device that raises the exhaust gas temperature at the denitration device inlet at the time of starting the boiler in which the denitration device is installed in the flue of the boiler outlet part. ) Is described. In the first example, when the boiler is activated, a bypass damper that bypasses a part of the heat transfer surface is opened to raise the exhaust gas temperature at the inlet of the denitration device. In the second example, part of the steam supplied from the brackish water separator to the turbine side is supplied to the exhaust gas superheater installed at the inlet of the denitration device.

特開平3−51601号公報JP-A-3-51601

アンモニアや尿素を還元剤とする触媒を用いた脱硝装置の場合、脱硝装置へ流入する排ガスの温度(脱硝触媒を通過する前の排ガス温度)が低いと、排ガス中に含まれるS分と還元剤であるアンモニアが反応し、酸性硫安(硫酸水素アンモニウム:NHHSO)が生成される。これにより、脱硝触媒の性能低下を引き起こす。また、生成された酸性硫安が脱硝装置の下流側の機器(例えば、空気予熱器)に付着堆積し、当該機器の劣化や機能不全(例えば、空気予熱器の閉塞)を招くおそれがある。例えば、電力供給量を調整する(低く抑える)ためのボイラの低負荷運転時には、排ガス温度が低下し、酸性硫安が生成され易い。 In the case of a denitration device using a catalyst that uses ammonia or urea as a reducing agent, if the temperature of the exhaust gas flowing into the denitration device (exhaust gas temperature before passing through the denitration catalyst) is low, the S content and reducing agent contained in the exhaust gas Is reacted with ammonia to produce acidic ammonium sulfate (ammonium hydrogen sulfate: NH 4 HSO 4 ). This causes the performance of the denitration catalyst to deteriorate. In addition, the generated acidic ammonium sulfate may be deposited and deposited on a device (for example, an air preheater) on the downstream side of the denitration device, resulting in deterioration or malfunction of the device (for example, clogging of the air preheater). For example, during low-load operation of the boiler for adjusting (suppressing the power supply amount to be low), the exhaust gas temperature is lowered and acid ammonium sulfate is easily generated.

これに対し、特許文献1の第1の例のように、一部の伝熱面(例えば節炭器)をバイパスさせるバイパスダクトを設け、バイパスダクトをバイパスダンパによって開閉可能とした排ガス処理装置では、脱硝装置へ流入する排ガスの温度が低い場合、バイパスダンパを開くことによって脱硝装置入口の排ガス温度を上昇させることができる。また、第2の例のように、汽水分離器(ドラム)からタービン側へ供給される蒸気の一部を、脱硝装置の入口側の排ガス過熱器(熱交換器)に供給する排ガス処理装置では、脱硝装置へ流入する排ガスの温度が低い場合、熱交換器によって脱硝装置入口の排ガス温度を上昇させることができる。このため、酸性硫安が生成され難くなり、脱硝装置の下流側の機器への酸性硫安の付着堆積を抑制することができる。 On the other hand, as in the first example of Patent Document 1, in an exhaust gas treatment device in which a bypass duct that bypasses a part of the heat transfer surface (for example, a economizer) is provided and the bypass duct can be opened and closed by a bypass damper When the temperature of the exhaust gas flowing into the denitration device is low, the exhaust gas temperature at the inlet of the denitration device can be raised by opening the bypass damper. In addition, as in the second example, in the exhaust gas treatment device that supplies part of the steam supplied from the brackish water separator (drum) to the turbine side to the exhaust gas superheater (heat exchanger) on the inlet side of the denitration device. If the temperature of the exhaust gas flowing into the denitration device is low, the exhaust gas temperature at the denitration device inlet can be raised by the heat exchanger. For this reason, acid ammonium sulfate is less likely to be generated, and the adhesion and deposition of acid ammonium sulfate on the equipment downstream of the denitration device can be suppressed.

しかし、第1の例の排ガス処理装置を、バイパスダクトを備えない既存のボイラに適用する場合、バイパスダクトの追加という大掛かりな工事が必要となる。また、大型のバイパスダクトを配置するためのスペース上の問題もある。このような理由から、バイパスダクトを備えない既存のボイラに第1の例の排ガス処理装置を適用することは困難な場合が多く、バイパスダクトを備えない既存のボイラに容易に適用可能な排ガス処理装置が求められている。 However, when the exhaust gas treatment device of the first example is applied to an existing boiler that does not have a bypass duct, large-scale construction of adding a bypass duct is required. In addition, there is a space problem for disposing a large bypass duct. For these reasons, it is often difficult to apply the exhaust gas treatment device of the first example to an existing boiler without a bypass duct, and an exhaust gas treatment that can be easily applied to an existing boiler without a bypass duct. A device is needed.

また、第2の例の排ガス処理装置では、ドラムからの蒸気を熱媒として利用するため、発電量の低下を招き易く、また熱交換器での凝縮により脈動を引き起こす可能性がある。 Further, in the exhaust gas treating apparatus of the second example, since the steam from the drum is used as a heat medium, the amount of power generation tends to be lowered, and pulsation may occur due to condensation in the heat exchanger.

そこで本発明は、排ガス低温時に生成される酸性硫安を簡易な構成によって好適に抑制することを目的とする。 Therefore, it is an object of the present invention to suitably suppress acidic ammonium sulfate generated at a low temperature of exhaust gas with a simple configuration.

上記目的を達成すべく、本発明に係る排ガス浄化装置は、ドラムから導出した水を火炉で加熱してドラムへ戻す循環型ドラムボイラに設けられる。火炉から排出された排ガスが流通するガス流通路には、アンモニア又は尿素を還元剤として排ガス中の窒素酸化物を還元除去する脱硝触媒充填層が配置され、脱硝触媒充填層の上流側のガス流通路を流通する排ガス中には、アンモニア又は尿素が注入される。 In order to achieve the above object, the exhaust gas purifying apparatus according to the present invention is provided in a circulation type drum boiler that heats water drawn from a drum in a furnace and returns it to the drum. In the gas flow passage through which the exhaust gas discharged from the furnace flows, a denitration catalyst packed layer that reduces and removes nitrogen oxides in the exhaust gas by using ammonia or urea as a reducing agent is arranged, and gas distribution on the upstream side of the denitration catalyst packed layer Ammonia or urea is injected into the exhaust gas flowing through the passage.

本発明の第1の態様に係る排ガス浄化装置は、脱硝触媒充填層の上流側のガス流通路に配置される熱交換器と、ドラム内の水を熱交換器へ導入する熱媒導入管とを備える。熱媒導入管から導入された水は、熱交換器の内部を熱媒として流通する。 An exhaust gas purifying apparatus according to a first aspect of the present invention includes a heat exchanger arranged in a gas flow passage on an upstream side of a denitration catalyst packed bed, and a heat medium introducing pipe for introducing water in a drum into the heat exchanger. Equipped with. The water introduced from the heat medium introduction pipe flows as a heat medium inside the heat exchanger.

上記構成では、循環型ドラムボイラ(ボイラ)の運転によりドラム内の水が高温となり、ドラム内の高温の水(ドレン水、降下水)がドラムから抽出され、熱媒導入管を介して熱交換器に導入されるので、脱硝触媒(脱硝触媒充填層)を通過する前の排ガスが高温のドレン水との熱交換によって昇温する。例えばボイラの低負荷運転時には、非低負荷運転時(例えば通常運転時)に比べて排ガス温度は低下するが、発電用の循環型ドラムボイラでは、プラント効率向上のため蒸気圧力を高圧化している。そのため、ドラム内の高温水は脱硝触媒を通過する排ガスの温度よりも高くなり、係る低負荷運転時において、熱交換器によって昇温した排ガスを脱硝触媒へ導入することができる。 In the above configuration, the water in the drum becomes hot due to the operation of the circulation type drum boiler (boiler), the hot water in the drum (drain water, falling water) is extracted from the drum, and heat exchange is performed via the heat medium introduction pipe. Since it is introduced into the reactor, the temperature of the exhaust gas before passing through the denitration catalyst (denitration catalyst packed bed) rises due to heat exchange with high-temperature drain water. For example, during low-load operation of the boiler, the exhaust gas temperature is lower than during non-low-load operation (for example, during normal operation), but with a circulating drum boiler for power generation, the steam pressure is increased to improve plant efficiency. .. Therefore, the high-temperature water in the drum becomes higher than the temperature of the exhaust gas passing through the denitration catalyst, and the exhaust gas heated by the heat exchanger can be introduced into the denitration catalyst during the low load operation.

また、脱硝触媒の上流側のガス流通路に熱交換器を配置し、ドラム内の水を熱交換器に導入する熱媒導入管を設けるという簡易な構成であり、且つバイパスダクトのような広い配置スペースを必要としないため、バイパスダクトを備えない既存の循環型ドラムボイラに容易に適用することができる。 Further, the heat exchanger is arranged in the gas flow passage on the upstream side of the denitration catalyst, and the heat medium introducing pipe for introducing the water in the drum to the heat exchanger is provided, which is a simple structure and has a wide width such as a bypass duct. Since it does not require an installation space, it can be easily applied to an existing circulating drum boiler without a bypass duct.

また、ドラムからの高温のドレン水を熱媒として利用しているので、蒸気を熱媒とする場合に比べて発電量の低下を招き難く、且つ熱交換器での凝縮による脈動を引き起こすこともない。 Further, since the high temperature drain water from the drum is used as the heat medium, it is less likely to cause a decrease in the amount of power generation as compared with the case where steam is used as the heat medium, and it may cause pulsation due to condensation in the heat exchanger. Absent.

本発明の第2の態様は、第1の態様の排ガス処理装置であって、熱交換器から流出した水を循環型ドラムボイラの給水経路又は水循環経路へ戻す熱媒回収管を備える。 A second aspect of the present invention is the exhaust gas treatment apparatus of the first aspect, which includes a heat medium recovery pipe that returns water flowing out from the heat exchanger to the water supply route or the water circulation route of the circulating drum boiler.

上記構成では、熱交換器から流出したドレン水をボイラの給水経路又は水循環経路へ戻すので、熱交換器を通過したドレン水の残熱を回収してボイラ効率を高めることができる。 In the above configuration, since the drain water flowing out from the heat exchanger is returned to the boiler water supply path or the water circulation path, it is possible to recover the residual heat of the drain water that has passed through the heat exchanger and improve the boiler efficiency.

本発明の第3の態様は、第1又は第2の態様の排ガス処理装置であって、熱媒導入管に設けられ、熱交換器への水の導入量を制御する導入量制御バルブを備える。 A third aspect of the present invention is the exhaust gas treatment apparatus according to the first or second aspect, which includes an introduction amount control valve that is provided in the heat medium introduction pipe and controls the introduction amount of water to the heat exchanger. ..

上記構成では、循環ボイラの運転状態に応じてドレン水の導入量を増減する(ドレン水を導入しない全閉を含んでもよい)ことができ、酸性硫安の生成を抑制しつつ、ボイラ効率を高めることができる。例えば、酸性硫安が生成される可能性が高い温度範囲の上限(閾値温度)を予め求めておき、脱硝触媒を通過する排ガスの温度を検出し、検出した排ガスの温度(排ガス検出温度)が閾値温度以下(又は閾値温度未満)の場合にドレン水を導入し、排ガス検出温度が閾値温度を超えている(又は閾値温度以上)の場合にドレン水の導入を停止することにより、酸性硫安の生成を抑制しつつ、ボイラ効率を高めることができる。 In the above configuration, the amount of drain water introduced can be increased or decreased depending on the operating state of the circulation boiler (may include fully closed without drain water introduced), while increasing the boiler efficiency while suppressing the production of acidic ammonium sulfate. be able to. For example, the upper limit (threshold temperature) of the temperature range in which acid ammonium sulfate is likely to be generated is obtained in advance, the temperature of the exhaust gas passing through the denitration catalyst is detected, and the detected exhaust gas temperature (exhaust gas detection temperature) is the threshold value. Drain water is introduced when the temperature is below the temperature (or below the threshold temperature), and when the exhaust gas detection temperature exceeds the threshold temperature (or above the threshold temperature), the introduction of drain water is stopped to generate acidic ammonium sulfate. It is possible to improve boiler efficiency while suppressing the above.

本発明によれば、排ガス低温時の酸性硫安の生成を簡易な構成によって好適に抑制することができる。 According to the present invention, it is possible to preferably suppress the production of acidic ammonium sulfate at a low temperature of exhaust gas with a simple configuration.

本発明の一実施形態に係る排煙処理系統を示す模式図である。It is a schematic diagram which shows the smoke emission processing system which concerns on one Embodiment of this invention. 図1の熱交換器及び脱硝装置を示す模式図である。It is a schematic diagram which shows the heat exchanger and the denitration apparatus of FIG.

本発明の一実施形態に係る排ガス処理装置について、図面を参照して説明する。図中の白抜き矢印は排ガスの流通方向を示す。本実施形態では、本発明の排ガス処理装置を発電用の石炭炊きの自然循環型ドラムボイラ(以下、単にボイラと称する)1に適用した例について説明する。なお、ボイラ1は、発電用以外のボイラであってもよく、石炭炊き以外のボイラであってもよく、また強制循環型ドラムボイラであってもよい。 An exhaust gas treatment apparatus according to an embodiment of the present invention will be described with reference to the drawings. The white arrows in the figure indicate the exhaust gas flow direction. In the present embodiment, an example in which the exhaust gas treatment device of the present invention is applied to a coal-fired natural circulation drum boiler (hereinafter simply referred to as a boiler) 1 for power generation will be described. It should be noted that the boiler 1 may be a boiler other than a boiler for power generation, a boiler other than coal-cooking, or a forced circulation type drum boiler.

図1に示すように、ボイラ1の火炉を形成する水壁管3には、ドラム(汽水分離ドラム、汽水分離器)4内の水が降水管5を介して導入される。水壁管3内の水は、火炉の燃焼室2での燃料の燃焼熱を受けて蒸気を発生し、上昇管6を経てドラム4に戻り、ドラム4で水と蒸気に分離される。ドラム4と降水管5と水壁管3と上昇管6とは、ボイラ1の水循環経路を構成し、ドラム4で分離された水は、再び降水管5から水壁管3へ導入されて循環する。また、ドラム4で分離された蒸気は、飽和蒸気管7、過熱器8及び過熱蒸気管9を経て、発電用のタービン(図示省略)に供給される。なお、図1では、降水管5及び上昇管6と水壁管3との接続部分の図示を省略している。 As shown in FIG. 1, water in a drum (brackish water separating drum, brackish water separator) 4 is introduced into a water wall pipe 3 forming a furnace of a boiler 1 through a downcomer pipe 5. The water in the water wall pipe 3 receives the combustion heat of the fuel in the combustion chamber 2 of the furnace to generate steam, returns to the drum 4 via the rising pipe 6, and is separated into water and steam by the drum 4. The drum 4, the downcomer pipe 5, the water wall pipe 3 and the rising pipe 6 constitute a water circulation path of the boiler 1, and the water separated by the drum 4 is again introduced from the downcomer pipe 5 to the water wall pipe 3 and circulated. To do. The steam separated by the drum 4 is supplied to a turbine (not shown) for power generation via a saturated steam pipe 7, a superheater 8 and a superheated steam pipe 9. In addition, in FIG. 1, illustration of the connecting portion between the downcomer pipe 5 and the rising pipe 6 and the water wall pipe 3 is omitted.

ドラム4には、給水タンク(図示省略)内の水が給水管10を介して給水ポンプ11により供給される。給水管10の途中には節炭器(エコノマイザ)12が設けられ、節炭器12によって加熱された水がドラム4に供給される。すなわち、給水管10、給水ポンプ11及び節炭器12は、ボイラ1の給水経路を構成する。 Water in a water supply tank (not shown) is supplied to the drum 4 by a water supply pump 11 via a water supply pipe 10. A economizer 12 is provided in the middle of the water supply pipe 10, and water heated by the economizer 12 is supplied to the drum 4. That is, the water supply pipe 10, the water supply pump 11, and the economizer 12 constitute a water supply path of the boiler 1.

燃料(石炭)は、ミル(図示省略)で微粉砕され、一次空気ダクト13を流通する一次空気によって搬送されて、一次空気とともにバーナ14から燃焼室(火炉の内部空間)2へ投入される。また、燃焼室2には、空気予熱器(エアヒータ)15で加熱された二次空気(燃焼用空気)が、二次空気ダクト16を流通してバーナ14から供給される。なお、一次空気の一部又は全部を空気予熱器15によって加熱してもよく、二次空気をバーナ14以外(例えばアフタエアポートなど)から燃焼室2へ供給してもよい。 Fuel (coal) is finely pulverized by a mill (not shown), is carried by the primary air flowing through the primary air duct 13, and is introduced into the combustion chamber (internal space of the furnace) 2 from the burner 14 together with the primary air. Further, the combustion chamber 2 is supplied with secondary air (combustion air) heated by an air preheater (air heater) 15 from a burner 14 through a secondary air duct 16. Note that part or all of the primary air may be heated by the air preheater 15, and the secondary air may be supplied to the combustion chamber 2 from other than the burner 14 (for example, an after air port or the like).

燃料の燃焼によって発生した排ガスは、煙道17を流通して煙突(図示省略)から排出される。ボイラ1の火炉から煙突までの排ガスの流通路(ガス流通路18)には、上流側から下流側に向かって、過熱器8、節炭器12、熱交換器30、脱硝装置20、及び空気予熱器15が配設されている。 The exhaust gas generated by the combustion of the fuel flows through the flue 17 and is discharged from the chimney (not shown). In the exhaust gas flow passage (gas flow passage 18) from the furnace of the boiler 1 to the chimney, the superheater 8, the economizer 12, the heat exchanger 30, the denitration device 20, and the air flow from the upstream side to the downstream side. A preheater 15 is provided.

過熱器8では、ドラム4で分離された飽和蒸気が排ガスによって加熱されて過熱蒸気が発生する。節炭器12では、ドラム4に供給される水が排ガスによって加熱され、空気予熱器15では、燃焼室2に供給される二次空気が排ガスによって加熱される。 In the superheater 8, the saturated steam separated by the drum 4 is heated by the exhaust gas to generate superheated steam. In the economizer 12, the water supplied to the drum 4 is heated by the exhaust gas, and in the air preheater 15, the secondary air supplied to the combustion chamber 2 is heated by the exhaust gas.

図2に示すように、脱硝装置20は、触媒層(脱硝触媒充填層)21と複数の還元剤注入ノズル(還元剤注入手段)22とを備える。触媒層21と還元剤注入ノズル22とは、ガス流通路18に固定的に設けられる。 As shown in FIG. 2, the denitration device 20 includes a catalyst layer (denitration catalyst filling layer) 21 and a plurality of reducing agent injection nozzles (reducing agent injection means) 22. The catalyst layer 21 and the reducing agent injection nozzle 22 are fixedly provided in the gas flow passage 18.

触媒層21は、アンモニアや尿素を還元剤として排ガス中の窒素酸化物を還元除去する脱硝触媒と、脱硝触媒を担持する担体とから構成される。触媒層21は、1層(1段)であってもよく、複数層(複数段)であってもよい。 The catalyst layer 21 is composed of a denitration catalyst that reduces and removes nitrogen oxides in exhaust gas by using ammonia or urea as a reducing agent, and a carrier that supports the denitration catalyst. The catalyst layer 21 may be a single layer (one step) or a plurality of layers (a plurality of steps).

還元剤注入ノズル22は、触媒層21の上流側のガス流通路18に配置され、ガス流通路18を流通する排ガス中へアンモニアや尿素を注入する。なお、ボイラ1と脱硝装置20との間の煙道17内のガス流通路18に還元剤注入ノズル22を配置してもよい。 The reducing agent injection nozzle 22 is arranged in the gas flow passage 18 on the upstream side of the catalyst layer 21, and injects ammonia or urea into the exhaust gas flowing through the gas flow passage 18. The reducing agent injection nozzle 22 may be arranged in the gas flow passage 18 in the flue 17 between the boiler 1 and the denitration device 20.

触媒層21の上流側には、脱硝触媒を通過する排ガスの温度を検出するガス温センサ(排ガス温度検出手段)23が設けられている。なお、ガス温センサ23を配置する場所は触媒層21の上流側に限定されず、例えば触媒層21の下流側であってもよい。 A gas temperature sensor (exhaust gas temperature detection means) 23 that detects the temperature of the exhaust gas passing through the denitration catalyst is provided on the upstream side of the catalyst layer 21. The location of the gas temperature sensor 23 is not limited to the upstream side of the catalyst layer 21, and may be the downstream side of the catalyst layer 21, for example.

図1及び図2に示すように、熱交換器30は、脱硝装置20(触媒層21)の上流側のガス流通路18に配置され、熱交換器30の熱媒流入口31には、熱媒導入管33の下流端が接続される。熱媒導入管33は、ドラム4内の水を抽出する1本又は複数本のドレン抽出管36を上流端に有し、ドラム4内の水を熱交換器30へ導入する。熱媒導入管33から導入された高温の水(ドレン水、降下水)は、熱交換器30の内部を熱媒として流通する。なお、熱媒導入管33の上流端をドラム4に接続せず、降水管5に接続してもよい。 As shown in FIGS. 1 and 2, the heat exchanger 30 is arranged in the gas flow passage 18 on the upstream side of the denitration device 20 (catalyst layer 21), and the heat medium inlet 31 of the heat exchanger 30 has The downstream end of the medium introduction pipe 33 is connected. The heat medium introduction pipe 33 has one or a plurality of drain extraction pipes 36 for extracting water in the drum 4 at the upstream end, and introduces the water in the drum 4 into the heat exchanger 30. High-temperature water (drain water, falling water) introduced from the heat medium introduction pipe 33 flows through the inside of the heat exchanger 30 as a heat medium. The upstream end of the heat medium introducing pipe 33 may be connected to the downfall pipe 5 instead of being connected to the drum 4.

熱媒導入管33の途中には、熱交換器30への水の導入量を制御する導入量制御バルブ34が設けられる。導入量制御バルブ34は、例えば全開と全閉との間の任意の開度に設定される。導入量制御バルブ34の開度(ドレン水の単位時間当たりの導入量)は、脱硝触媒(触媒層21)を通過する排ガスの温度(ガス温センサ23が検出した排ガスの温度(排ガス検出温度))に基づいて設定してもよい。導入量制御バルブ34の開閉は、手動操作によって行ってもよく、自動制御によって行ってもよい。 An introduction amount control valve 34 for controlling the introduction amount of water to the heat exchanger 30 is provided in the middle of the heat medium introduction pipe 33. The introduction amount control valve 34 is set to, for example, an arbitrary opening between fully open and fully closed. The opening degree of the introduction amount control valve 34 (the introduction amount of drain water per unit time) is the temperature of the exhaust gas passing through the denitration catalyst (catalyst layer 21) (the temperature of the exhaust gas detected by the gas temperature sensor 23 (exhaust gas detection temperature)). ). The introduction amount control valve 34 may be opened and closed by a manual operation or an automatic control.

熱交換器30の熱媒流出口32には、熱媒回収管35の上流端が接続される。熱媒回収管35の下流端は、給水ポンプ11の上流側の給水管10に接続され、熱交換器30から流出したドレン水は、熱媒回収管35によってボイラ1の給水経路に戻される。なお、熱交換器30から流出したドレン水をボイラ1の水循環経路へ戻すように、熱媒回収管35の下流端を水循環経路の配管又はドラム4に接続してもよい。 The upstream end of the heat medium recovery pipe 35 is connected to the heat medium outlet 32 of the heat exchanger 30. The downstream end of the heat medium recovery pipe 35 is connected to the water supply pipe 10 on the upstream side of the water supply pump 11, and the drain water flowing out from the heat exchanger 30 is returned to the water supply path of the boiler 1 by the heat medium recovery pipe 35. The downstream end of the heat medium recovery pipe 35 may be connected to the pipe of the water circulation path or the drum 4 so that the drain water flowing out from the heat exchanger 30 is returned to the water circulation path of the boiler 1.

ドラム4から熱交換器30へドレン水が重力によって流下するように、熱交換器30はドラム4よりも低位置に配置される。なお、熱交換器30内をドレン水が重力によって流通するように、熱媒流出口32を熱媒流入口31よりも低位置に配置することが好ましい(図2参照)。また、排ガスの流通方向とドレン水(熱媒)の流通方向とが交叉するように熱交換器30を配置することが好ましい。 The heat exchanger 30 is arranged at a lower position than the drum 4 so that drain water flows from the drum 4 to the heat exchanger 30 by gravity. In addition, it is preferable to arrange the heat medium outlet 32 at a position lower than the heat medium inlet 31 so that the drain water flows by gravity in the heat exchanger 30 (see FIG. 2 ). Further, it is preferable to arrange the heat exchanger 30 so that the flow direction of the exhaust gas and the flow direction of the drain water (heat medium) intersect.

本実施形態によれば、ボイラ1の運転によりドラム4内の水が高温となり、ドラム4内の高温の水(ドレン水)がドラム4から抽出され、熱媒導入管33を介して熱交換器30に導入されるので、脱硝触媒(触媒層21)を通過する前の排ガスが高温のドレン水との熱交換によって昇温する。例えばボイラ1の低負荷運転時には、非低負荷運転時(例えば通常運転時)に比べて排ガス温度は低下するが、プラント効率向上のため蒸気圧力を高圧化することにより、ドラム4内の水温は、脱硝触媒を通過する前(熱交換器30の上流側)の排ガスの温度よりも高温となる。このため、係る低負荷運転時において、熱交換器30によって昇温した排ガスを脱硝触媒へ導入することができる。これにより、脱硝触媒の細孔内における酸性硫安の析出が防止され又は抑制され、脱硝触媒の下流側の機器(例えば空気予熱器15)への酸性硫安の付着堆積を抑制することができる。 According to the present embodiment, the water in the drum 4 becomes hot due to the operation of the boiler 1, the hot water (drain water) in the drum 4 is extracted from the drum 4, and the heat exchanger is introduced via the heat medium introducing pipe 33. Since it is introduced into 30, the exhaust gas before passing through the denitration catalyst (catalyst layer 21) rises in temperature by heat exchange with high-temperature drain water. For example, during low-load operation of the boiler 1, the exhaust gas temperature is lower than during non-low-load operation (for example, during normal operation), but by increasing the steam pressure to improve plant efficiency, the water temperature in the drum 4 is reduced. The temperature becomes higher than the temperature of the exhaust gas before passing through the denitration catalyst (on the upstream side of the heat exchanger 30). Therefore, during such a low load operation, the exhaust gas heated by the heat exchanger 30 can be introduced into the denitration catalyst. Accordingly, the deposition of ammonium ammonium sulfate in the pores of the denitration catalyst can be prevented or suppressed, and the deposition of ammonium ammonium sulfate on the downstream equipment (eg, air preheater 15) of the denitration catalyst can be suppressed.

脱硝触媒の上流側のガス流通路18に熱交換器30を配置し、ドラム4内の水を熱交換器30に導入する熱媒導入管33を設けるという簡易な構成であり、且つバイパスダクトのような広い配置スペースを必要としないため、バイパスダクトを備えない既存の循環型ドラムボイラに容易に適用することができる。 The heat exchanger 30 is arranged in the gas flow passage 18 on the upstream side of the denitration catalyst, and the heat medium introducing pipe 33 that introduces the water in the drum 4 into the heat exchanger 30 is provided. Since it does not require such a large space, it can be easily applied to an existing circulating drum boiler without a bypass duct.

ドラム4からの高温のドレン水を熱媒として利用しているので、蒸気を熱媒とする場合に比べて発電量の低下を招き難く、且つ熱交換機30での凝縮による脈動を引き起こすこともない。 Since the high-temperature drain water from the drum 4 is used as the heat medium, it is less likely to cause a decrease in the amount of power generation as compared with the case where steam is used as the heat medium, and pulsation due to condensation in the heat exchanger 30 is not caused ..

熱交換器30から流出したドレン水をボイラ1の給水経路へ戻すので、熱交換器30を通過したドレン水の残熱を回収してボイラ効率を高めることができる。 Since the drain water flowing out from the heat exchanger 30 is returned to the water supply path of the boiler 1, the residual heat of the drain water passing through the heat exchanger 30 can be recovered and the boiler efficiency can be improved.

熱交換器30から排ガスへ供給された熱量は、空気予熱器15で回収されてボイラ1に投入されるので、損失する熱量を少なく抑えることができ、ボイラ効率の低下を抑制することができる。 The amount of heat supplied from the heat exchanger 30 to the exhaust gas is recovered by the air preheater 15 and input to the boiler 1, so that the amount of heat that is lost can be suppressed to a small amount, and a decrease in boiler efficiency can be suppressed.

低負荷運転から高負荷運転(通常運転)に切り替える場合、脱硝触媒を通過する排ガス温度を短時間で上昇させることができるため、高負荷運転時の性能が得られるまでの時間を短縮することができる。 When switching from low-load operation to high-load operation (normal operation), the temperature of the exhaust gas passing through the denitration catalyst can be raised in a short time, so the time required to obtain performance during high-load operation can be shortened. it can.

低負荷運転中において、酸性硫安の除去を目的としたボイラ負荷上昇運転を行う必要がないので、低負荷運転を継続させることができる。 Since it is not necessary to perform the boiler load increasing operation for the purpose of removing ammonium acid sulfate during the low load operation, the low load operation can be continued.

また、導入量制御バルブ34を開閉することにより、ボイラ1の運転状態に応じて高温ドレン水の導入量を増減する(ドレン水を導入しない全閉を含んでもよい)ことができ、酸性硫安の生成を抑制しつつ、ボイラ効率を高めることができる。例えば、酸性硫安が生成される可能性が高い温度範囲の上限(閾値温度)を予め求めておき、脱硝触媒を通過する排ガスの温度をガス温センサ23によって検出し、ガス温センサ23による排ガス検出温度が閾値温度以下(又は閾値温度未満)の場合にドレン水を導入し、排ガス検出温度が閾値温度を超えている(又は閾値温度以上)の場合にドレン水の導入を停止することにより、酸性硫安の生成を抑制しつつ、ボイラ効率を高めることができる。 In addition, by opening and closing the introduction amount control valve 34, the introduction amount of the high temperature drain water can be increased or decreased according to the operating state of the boiler 1 (fully closed without drain water may be included). Boiler efficiency can be improved while suppressing generation. For example, the upper limit (threshold temperature) of the temperature range in which acidic ammonium sulfate is likely to be generated is obtained in advance, the temperature of the exhaust gas passing through the denitration catalyst is detected by the gas temperature sensor 23, and the exhaust gas is detected by the gas temperature sensor 23. By introducing drain water when the temperature is below the threshold temperature (or below the threshold temperature) and stopping the introduction of drain water when the exhaust gas detection temperature exceeds the threshold temperature (or above the threshold temperature), the acid Boiler efficiency can be improved while suppressing the production of ammonium sulfate.

なお、本発明は、一例として説明した上述の実施形態及び変形例に限定されることはなく、上述の実施形態等以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。例えば、循環型ドラムボイラ1には自然循環型と強制循環型があり、本発明はその両方に適用可能である。 The present invention is not limited to the above-described embodiments and modifications described as examples, and is not limited to the above-described embodiments and the like as long as the technical idea of the present invention is not deviated. Various modifications are possible according to the design, etc. For example, the circulation type drum boiler 1 includes a natural circulation type and a forced circulation type, and the present invention is applicable to both.

1:循環型ドラムボイラ
2:燃焼室
3:水壁管
4:ドラム
5:降水管
6:上昇管
7:飽和蒸気管
8:過熱器
9:過熱蒸気管
10:給水管
11:給水ポンプ
12:節炭器(エコノマイザ)
13:一次空気ダクト
14:バーナ
15:空気予熱器(エアヒータ)
16:二次空気ダクト
17:煙道
18:ガス流通路
20:脱硝装置
21:触媒層(脱硝触媒充填層)
22:還元剤注入ノズル
23:ガス温センサ
30:熱交換器
31:熱媒流入口
32:熱媒流出口
33:熱媒導入管
34:導入量制御バルブ
35:熱媒回収管
36:ドレン抽出管
1: Circulation type drum boiler 2: Combustion chamber 3: Water wall pipe 4: Drum 5: Precipitation pipe 6: Rise pipe 7: Saturated steam pipe 8: Superheater 9: Superheated steam pipe 10: Water supply pipe 11: Water supply pump 12: Economizer
13: Primary air duct 14: Burner 15: Air preheater (air heater)
16: Secondary air duct 17: Flue 18: Gas flow passage 20: Denitration device 21: Catalyst layer (Denitration catalyst packed layer)
22: reducing agent injection nozzle 23: gas temperature sensor 30: heat exchanger 31: heat medium inlet 32: heat medium outlet 33: heat medium introduction pipe 34: introduction amount control valve 35: heat medium recovery pipe 36: drain extraction tube

Claims (3)

ドラムから導出した水を火炉で加熱して前記ドラムへ戻す循環型ドラムボイラの前記火炉から排出された排ガスが流通するガス流通路に、アンモニア又は尿素を還元剤として排ガス中の窒素酸化物を還元除去する脱硝触媒充填層を配置し、前記脱硝触媒充填層の上流側の前記ガス流通路を流通する排ガス中へアンモニア又は尿素を注入する排ガス浄化装置であって、
前記脱硝触媒充填層の上流側の前記ガス流通路に配置される熱交換器と、
前記ドラム内の水を前記熱交換器へ導入する熱媒導入管と、を備え、
前記熱媒導入管から導入された水は、前記熱交換器の内部を熱媒として流通する
ことを特徴とする排ガス浄化装置。
The water discharged from the drum is heated in the furnace and returned to the drum. In the gas flow passage through which the exhaust gas discharged from the furnace of the circulating drum boiler flows, the nitrogen oxides in the exhaust gas are reduced using ammonia or urea as a reducing agent. An exhaust gas purifying apparatus for arranging a denitration catalyst packed layer to be removed, for injecting ammonia or urea into the exhaust gas flowing through the gas flow passage on the upstream side of the denitration catalyst packed layer,
A heat exchanger arranged in the gas flow passage on the upstream side of the denitration catalyst packed bed;
A heat medium introducing pipe for introducing water in the drum to the heat exchanger,
The exhaust gas purifying apparatus, wherein the water introduced from the heat medium introducing pipe flows through the inside of the heat exchanger as a heat medium.
請求項1に記載の排ガス浄化装置であって、
前記熱交換器から流出した水を前記循環型ドラムボイラの給水経路又は水循環経路へ戻す熱媒回収管を備える
ことを特徴とする排ガス浄化装置。
The exhaust gas purifying apparatus according to claim 1,
An exhaust gas purifying apparatus comprising: a heat medium recovery pipe that returns water flowing out from the heat exchanger to a water supply path or a water circulation path of the circulating drum boiler.
請求項1又は請求項2に記載の排ガス浄化装置であって、
前記熱媒導入管に設けられ、前記熱交換器への水の導入量を制御する導入量制御バルブを備える
ことを特徴とする排ガス浄化装置。
The exhaust gas purifying apparatus according to claim 1 or 2, wherein
An exhaust gas purification apparatus, comprising: an introduction amount control valve that is provided in the heat medium introduction pipe and controls the introduction amount of water into the heat exchanger.
JP2019014479A 2019-01-30 2019-01-30 Exhaust gas treatment equipment Pending JP2020121267A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019014479A JP2020121267A (en) 2019-01-30 2019-01-30 Exhaust gas treatment equipment
CN202010040654.2A CN111495175A (en) 2019-01-30 2020-01-14 Exhaust gas treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019014479A JP2020121267A (en) 2019-01-30 2019-01-30 Exhaust gas treatment equipment

Publications (1)

Publication Number Publication Date
JP2020121267A true JP2020121267A (en) 2020-08-13

Family

ID=71865410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019014479A Pending JP2020121267A (en) 2019-01-30 2019-01-30 Exhaust gas treatment equipment

Country Status (2)

Country Link
JP (1) JP2020121267A (en)
CN (1) CN111495175A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113546511A (en) * 2021-08-26 2021-10-26 房保忠 Biomass boiler afterbody low temperature spouts calcium sweetener
CN113893683A (en) * 2021-08-17 2022-01-07 华能重庆珞璜发电有限责任公司 Full-load denitration system of subcritical coal-fired boiler

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103170230A (en) * 2013-03-01 2013-06-26 大连易世达新能源发展股份有限公司 Selective non-catalytic reduction reaction denitration system for cement kiln
JP6616737B2 (en) * 2016-05-31 2019-12-04 日立造船株式会社 Exhaust gas denitration device, incinerator and exhaust gas denitration method
CN206709040U (en) * 2017-03-21 2017-12-05 苏州海陆重工股份有限公司 It is matched in the HTHP denitration waste heat boiler of catalytic cracking unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113893683A (en) * 2021-08-17 2022-01-07 华能重庆珞璜发电有限责任公司 Full-load denitration system of subcritical coal-fired boiler
CN113893683B (en) * 2021-08-17 2023-10-20 华能重庆珞璜发电有限责任公司 Subcritical coal-fired boiler full-load denitration system
CN113546511A (en) * 2021-08-26 2021-10-26 房保忠 Biomass boiler afterbody low temperature spouts calcium sweetener

Also Published As

Publication number Publication date
CN111495175A (en) 2020-08-07

Similar Documents

Publication Publication Date Title
KR100366873B1 (en) Reheating Flue Gas for Selective Catalytic Systems
US4353207A (en) Apparatus for removing NOx and for providing better plant efficiency in simple cycle combustion turbine plants
CN203944290U (en) A kind of SCR flue gas denitrification system
RU2543096C1 (en) METHOD AND DEVICE FOR SELECTIVE CATALYTIC REDUCTION OF NOx IN POWER BOILER
JP5260585B2 (en) Coal-fired power plant and method for operating coal-fired power plant
CN104180378B (en) Method for online elimination of ammonium bisulfate clogging of air pre-heaters of coal-fired boiler of thermal power plant
GB2082084A (en) Apparatus for recovering heat energy and removing nox in combined cycle plants
CN105318313B (en) A kind of smoke waste heat utilization system based on SCR denitration device
JPH11108334A (en) Waste heat recovering boiler
JP6632198B2 (en) Heat exchanger and heat exchanger control method
CN111649349A (en) Full-load denitration system for deep peak shaving of boiler and operation method thereof
JP2020121267A (en) Exhaust gas treatment equipment
JP2002206701A (en) Exhaust gas heat recovering device and method
CN105091008A (en) Temperature-controllable selective catalytic reduction (SCR) denitration reaction catalytic device of thermal power plant
JP7420941B2 (en) Arrangement and method for operating a steam boiler system
CN210568552U (en) Boiler energy-saving and flue gas whitening system
WO2013136912A1 (en) Thermal power plant
EP3232022B1 (en) System and method for improving the performance of a heat recovery steam generator
CN113983488B (en) Anti-blocking system and method for air preheater of coal-fired unit boiler
CN205480940U (en) Energy -concerving and environment -protective comprehensive control device of coke -oven plant's flue gas
CN205560691U (en) Once -through boiler with flue gas intensification system
CN210688281U (en) Flue gas treatment system
CN210473607U (en) Full-load SCR denitration system of coal-fired boiler
CN105889899A (en) Superheated steam temperature adjusting system and method suitable for SCR low-load operation
JP2000065313A (en) Boiler apparatus and boiler starting operation method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220331