JP2020120463A - Gas insulation switchgear and method for manufacturing the same - Google Patents

Gas insulation switchgear and method for manufacturing the same Download PDF

Info

Publication number
JP2020120463A
JP2020120463A JP2019008385A JP2019008385A JP2020120463A JP 2020120463 A JP2020120463 A JP 2020120463A JP 2019008385 A JP2019008385 A JP 2019008385A JP 2019008385 A JP2019008385 A JP 2019008385A JP 2020120463 A JP2020120463 A JP 2020120463A
Authority
JP
Japan
Prior art keywords
insulated switchgear
resistance material
tank
resin layer
switchgear according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019008385A
Other languages
Japanese (ja)
Other versions
JP7137486B2 (en
Inventor
淳 額賀
Atsushi Nukaga
淳 額賀
喬文 細野
Takafumi Hosono
喬文 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2019008385A priority Critical patent/JP7137486B2/en
Priority to PCT/JP2019/044297 priority patent/WO2020152952A1/en
Publication of JP2020120463A publication Critical patent/JP2020120463A/en
Application granted granted Critical
Publication of JP7137486B2 publication Critical patent/JP7137486B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/055Features relating to the gas

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Installation Of Bus-Bars (AREA)

Abstract

To maintain high dielectric strength by surely suppressing floating of metallic foreign substances generated inside a gas insulation switchgear and adhering to an inner surface of a tank.SOLUTION: A gas insulation switchgear has a grounded tank and a high voltage conductor installed inside the tank and insulated therefrom. On an inner surface of the tank, a resin layer having a configuration in which a plurality of kinds of nonlinear resistance materials are mixed in resin is formed. A first nonlinear resistance material that is at least one kind of nonlinear resistance material out of a plurality of kinds of nonlinear resistance materials has higher operating electric field than a second nonlinear resistor material that is the other nonlinear resistor material of at least one kind out of the plurality of kinds of nonlinear resistor materials and a slope of a nonlinear characteristic curve significantly increases in a range of an electric field higher than the operating electric field.SELECTED DRAWING: Figure 2

Description

本発明は、ガス絶縁開閉装置及びその製造方法に関する。 The present invention relates to a gas insulated switchgear and a method for manufacturing the same.

ガス絶縁開閉装置は、受電用断路器、遮断器、母線用断路器等の主回路機器が、六フッ化硫黄(SF)などの絶縁性ガスを封入した密閉容器内に収容されている。各機器間は、主回路導体により接続されている。主回路導体は、容器内に設置した絶縁物によりガス中で支持され、接地電位である密閉容器との間で絶縁を保持している。 In the gas insulated switchgear, main circuit devices such as a power receiving disconnector, a circuit breaker, and a busbar disconnecting switch are housed in a hermetically sealed container in which an insulating gas such as sulfur hexafluoride (SF 6 ) is sealed. The respective devices are connected by a main circuit conductor. The main circuit conductor is supported in the gas by an insulator installed in the container, and maintains insulation between the main circuit conductor and the closed container having the ground potential.

受電用のガス絶縁開閉装置においては、電力ケーブルあるいは架空線により電力系統から電力を引き込み、受電用断路器−遮断器−母線用断路器を経由して母線に給電する。また、給電用のガス絶縁開閉装置の場合は、母線から受電し、母線用断路器−遮断器−給電用断路器を経由して負荷に接続した電力ケーブルあるいは架空線に給電する。三相分を一回線とした1ベイを構成するガス絶縁開閉装置と、隣接する1ベイを構成するガス絶縁開閉装置との間は、母線により電気的に接続される。 In the gas-insulated switchgear for power reception, electric power is drawn from the power system by a power cable or an overhead line, and power is supplied to the busbar via the power disconnector-circuit breaker-busbar disconnector. Further, in the case of a gas-insulated switchgear for power supply, power is received from a bus bar and power is supplied to a power cable or an overhead line connected to a load via the bus bar disconnector-circuit breaker-power supply disconnector. A gas-insulated switchgear that configures one bay with three phases as one line and a gas-insulated switchgear that configures an adjacent one bay are electrically connected by a bus bar.

絶縁性ガスを封入した密閉容器と、密閉容器の内部に収容された主回路導体と、を有するガス絶縁開閉装置においては、密閉容器の内面に、非線形抵抗材を含む樹脂層を形成することにより、密閉容器の内部で発生する金属異物の周辺に高電界が発生し、金属異物が浮上する、という問題を解決することが検討されている。 In a gas insulated switchgear having an airtight container enclosing an insulating gas, and a main circuit conductor housed inside the airtight container, by forming a resin layer containing a non-linear resistance material on the inner surface of the airtight container. It has been studied to solve the problem that a high electric field is generated around a metal foreign substance generated inside a closed container and the metal foreign substance floats.

特許文献1には、絶縁ガスが充填された接地タンクと、接地タンクの内部に配置された中心導体と、接地タンクの下側の内表面に配置され、絶縁材料に非線形抵抗材料が含有されてなる非線形抵抗部と、を有し、非線形抵抗部は、接地タンク側と比較して中心導体側により多くの非線形抵抗材料を含有する、ガス絶縁開閉装置が開示されている。この文献には、上記の構成により、接地タンク内に混入した金属異物の周辺の部分放電を抑制しつつ、接地タンクから金属異物への電荷流入も抑制できる、という効果を奏すると記載されている。 In Patent Document 1, a grounding tank filled with an insulating gas, a central conductor arranged inside the grounding tank, and a lower inner surface of the grounding tank are arranged. The insulating material contains a non-linear resistance material. And a non-linear resistance part, wherein the non-linear resistance part contains more non-linear resistance material on the center conductor side than on the ground tank side. It is described in this document that the above-described configuration produces an effect that it is possible to suppress the partial discharge around the metallic foreign matter mixed in the ground tank, and also to suppress the charge inflow from the ground tank to the metallic foreign matter. ..

国際公開第2015/136753号International Publication No. 2015/136753

ガス絶縁開閉装置の密閉容器の内部で発生する金属異物の周辺における高電界、及び金属異物の浮上は、密閉容器の内部におけるコロナ放電やストリーマ放電の発生、絶縁耐力の低下等につながる。 The high electric field around the metallic foreign matter generated inside the closed container of the gas insulated switchgear and the floating of the metallic foreign matter lead to the generation of corona discharge or streamer discharge inside the closed container, and the reduction of the dielectric strength.

特許文献1においては、非線形抵抗材料の種類により異なる電界−導電率特性については、十分には検討されていない。 In Patent Document 1, electric field-conductivity characteristics that differ depending on the type of nonlinear resistance material have not been sufficiently investigated.

非線形性が現れる電界が低い材料は、導電率の上昇率がなだらかで、高電界領域の緩和効果が小さく、部分放電が発生しやすい。また、導電率の上昇率が急峻な材料は、非線形性が現れる電界が比較的高く、低電界時の緩和効果が小さいため、部分放電の抑制のばらつきが大きくなる。 A material having a low electric field exhibiting non-linearity has a gentle increase rate of conductivity, a small relaxation effect in a high electric field region, and a partial discharge easily occurs. Further, a material having a steep increase rate of conductivity has a relatively high electric field in which non-linearity appears, and has a small mitigation effect when the electric field is low, resulting in large variation in suppression of partial discharge.

本発明の目的は、ガス絶縁開閉装置の内部に発生しタンクの内面に付着する金属異物の浮上を確実に抑制し、高い絶縁耐力を維持することにある。 An object of the present invention is to reliably suppress the floating of metallic foreign matters that are generated inside the gas insulated switchgear and adhere to the inner surface of the tank, and maintain a high dielectric strength.

本発明のガス絶縁開閉装置は、接地されているタンクと、タンクの内部に設置されタンクとは絶縁されている高電圧導体と、を有し、タンクの内面には、樹脂に複数種類の非線形抵抗材が混合された構成を有する樹脂層が形成され、複数種類の非線形抵抗材のうち少なくとも一種類の非線形抵抗材である第一の非線形抵抗材は、複数種類の非線形抵抗材のうち少なくとも一種類の他の非線形抵抗材である第二の非線形抵抗材よりも、動作電界が高く、かつ、動作電界より高い電界の範囲で非線形特性曲線の傾きが大きい。 The gas-insulated switchgear of the present invention has a grounded tank, and a high-voltage conductor installed inside the tank and insulated from the tank. A first non-linear resistance material, which is a non-linear resistance material of at least one kind among plural kinds of non-linear resistance materials, in which a resin layer having a structure in which resistance materials are mixed is formed, The second non-linear resistance material, which is another kind of non-linear resistance material, has a higher operating electric field and a larger slope of the non-linear characteristic curve in the electric field range higher than the operating electric field.

本発明によれば、ガス絶縁開閉装置の内部に発生しタンクの内面に付着する金属異物の浮上を確実に抑制し、高い絶縁耐力を維持することができる。 ADVANTAGE OF THE INVENTION According to this invention, the floating of the metal foreign material which generate|occur|produces inside a gas insulated switchgear and adheres to the inner surface of a tank can be suppressed reliably, and high dielectric strength can be maintained.

本発明のガス絶縁開閉装置の全体構成を示す部分断面図である。It is a fragmentary sectional view showing the whole gas insulated switchgear of the present invention. 本発明のガス絶縁開閉装置のタンクの一部を示す模式断面図である。It is a schematic cross section which shows a part of tank of the gas insulated switchgear of this invention. 図2の樹脂層53の配置の例を示す断面図である。It is sectional drawing which shows the example of arrangement|positioning of the resin layer 53 of FIG. 非線形抵抗材である酸化亜鉛の電界−導電率特性を示すグラフである。It is a graph which shows the electric field-electric conductivity characteristic of zinc oxide which is a nonlinear resistance material. 非線形抵抗材である炭化ケイ素の電界−導電率特性を示すグラフである。It is a graph which shows the electric field-conductivity characteristic of silicon carbide which is a nonlinear resistance material. 二種類の非線形抵抗材を混合した場合の電界−導電率特性を示すグラフである。It is a graph which shows an electric field-conductivity characteristic at the time of mixing two types of nonlinear resistance materials. 非線形抵抗材の添加量をパラメータとした場合の電界−導電率特性を示すグラフである。It is a graph which shows an electric field-conductivity characteristic when the amount of addition of a nonlinear resistance material is made into a parameter. 金属異物をタンク内に設置した場合における浮上試験の結果を示すグラフである。It is a graph which shows the result of the levitation test at the time of installing a metallic foreign substance in a tank. 本発明の樹脂層の形成工程の一例を示すフロー図である。It is a flowchart which shows an example of the formation process of the resin layer of this invention.

本発明は、ガス絶縁開閉装置のタンク内部のコーティング技術に関し、詳しくは、遮断器及び断路器をガス絶縁密封容器内に設置し、電力系統から受電する受電ユニット、さらに遮断器及び断路器をガス絶縁容器内に設置し、母線を介して電力を負荷側に給電する給電ユニットを有するガス絶縁開閉装置に用いるタンク内部への非線形抵抗材のコーティングに関する。 TECHNICAL FIELD The present invention relates to a coating technology inside a tank of a gas-insulated switchgear, and more specifically, a circuit breaker and a disconnector installed in a gas-insulated hermetic container, and a power receiving unit for receiving power from a power system, and a circuit breaker and a disconnector. The present invention relates to coating of a non-linear resistance material inside a tank used in a gas insulated switchgear having a power supply unit that is installed in an insulating container and supplies power to a load side via a bus bar.

以下、本発明について図面を参照しつつ説明する。 Hereinafter, the present invention will be described with reference to the drawings.

図1は、本発明のガス絶縁開閉装置の全体構成を示す部分断面図である。 FIG. 1 is a partial cross-sectional view showing the overall configuration of the gas insulated switchgear of the present invention.

本図において、ガス絶縁開閉装置100は、絶縁ガス(SF等)が充填された接地タンク2(以下、単に「タンク」ともいう。)と、接地タンク2の内部に設けられた高電圧導体1と、接地タンク2の内部で高電圧導体1の支持及び固定をする絶縁スペーサ30(以下、単に「スペーサ」ともいう。)と、を備えている。このほか、ガス絶縁開閉装置100は、遮断器20、断路器21、接地開閉器22、変流器23、変圧器24、母線25、26等を含む。タンク内に充填する絶縁ガスとしては、乾燥空気も用いられる。 In the figure, a gas-insulated switchgear 100 includes a ground tank 2 (hereinafter also simply referred to as “tank”) filled with an insulating gas (SF 6 or the like) and a high-voltage conductor provided inside the ground tank 2. 1 and an insulating spacer 30 (hereinafter, also simply referred to as “spacer”) that supports and fixes the high-voltage conductor 1 inside the ground tank 2. In addition, the gas-insulated switchgear 100 includes a circuit breaker 20, a disconnector 21, a ground switch 22, a current transformer 23, a transformer 24, busbars 25, 26, and the like. Dry air is also used as the insulating gas filled in the tank.

高電圧導体1は、円柱形状の金属(アルミニウムや銅等)で形成されている。接地タンク2は、円筒形状の金属容器である。高電圧導体1は、接地タンク2の内部で絶縁スペーサ30によって支持・固定され、接地タンク2と絶縁されている。接地タンク2は、接地されているため、通常、電位は0である。 The high-voltage conductor 1 is formed of a cylindrical metal (aluminum, copper, etc.). The grounding tank 2 is a cylindrical metal container. The high voltage conductor 1 is supported and fixed by an insulating spacer 30 inside the ground tank 2 and is insulated from the ground tank 2. Since the ground tank 2 is grounded, the potential is normally 0.

本図においては、絶縁スペーサ30としてコーン型のもの(コーンスペーサ)を図示しているが、これ以外にもディスク状のスペーサや柱状のポストスペーサ等、種々の形状がある。 In this figure, a cone type (cone spacer) is shown as the insulating spacer 30, but other than this, there are various shapes such as a disk-shaped spacer and a columnar post spacer.

図2は、本発明のガス絶縁開閉装置のタンクの一部を示す模式断面図である。 FIG. 2 is a schematic cross-sectional view showing a part of the tank of the gas insulated switchgear of the present invention.

本図に示すように、タンク壁51の内面には、樹脂層53が設けられている。樹脂層53は、エポキシ樹脂等に非線形抵抗材121、122を添加し混合したものをコーティングすることにより形成したものである。非線形抵抗材121、122としては、酸化亜鉛(ZnO)、炭化ケイ素(SiC)、チタン酸バリウム(BaTiO)、ダイヤモンドなどが用いられる。 As shown in the figure, a resin layer 53 is provided on the inner surface of the tank wall 51. The resin layer 53 is formed by coating a mixture of epoxy resin or the like with the nonlinear resistance materials 121 and 122 added and mixed. As the nonlinear resistance materials 121 and 122, zinc oxide (ZnO), silicon carbide (SiC), barium titanate (BaTiO 3 ), diamond or the like is used.

すなわち、本発明においては、非線形抵抗材121、122は、粒子状であり、異なる組成の二種類以上で構成されている。 That is, in the present invention, the nonlinear resistance materials 121 and 122 are in the form of particles and are composed of two or more kinds having different compositions.

なお、タンク壁51の内面には、異物54(金属異物)が付着する場合がある。 Note that foreign matter 54 (metallic foreign matter) may adhere to the inner surface of the tank wall 51.

図3は、図2の樹脂層53の配置の例を示す断面図である。 FIG. 3 is a cross-sectional view showing an example of the arrangement of the resin layer 53 of FIG.

本図においては、タンク壁51の内面のうち下半分の領域に樹脂層53が設けられている。タンク壁51の内面のうち上半分の領域には、非線形抵抗材を含まない樹脂(エポキシ樹脂等)が塗布され、樹脂層131(絶縁樹脂層)が形成されている。金属異物は、重力により下方に落下する場合が多いため、樹脂層53は、下半分の領域に設ければ十分である場合が多い。また、このように樹脂層53を部分的に設けることにより、製造コストを抑えることができる。 In this figure, the resin layer 53 is provided in the lower half region of the inner surface of the tank wall 51. A resin (epoxy resin or the like) containing no nonlinear resistance material is applied to the upper half region of the inner surface of the tank wall 51 to form a resin layer 131 (insulating resin layer). Since the foreign metal particles often fall downward due to gravity, it is often sufficient to provide the resin layer 53 in the lower half region. Further, by partially providing the resin layer 53 in this manner, the manufacturing cost can be suppressed.

もちろん、樹脂層53は、タンク壁51の内面のうち上半分の領域にも設けてもよい。場合によっては、下半分の全領域と上半分の領域の一部とに樹脂層53を設けてもよい。樹脂層53は、少なくとも下半分の全領域に設けることが望ましい。 Of course, the resin layer 53 may also be provided in the upper half region of the inner surface of the tank wall 51. In some cases, the resin layer 53 may be provided in the entire area of the lower half and a part of the area of the upper half. It is desirable that the resin layer 53 be provided in at least the entire lower half region.

つぎに、非線形抵抗材121、122を含む樹脂層53の作用効果について、図2を用いて説明する。 Next, the function and effect of the resin layer 53 including the nonlinear resistance materials 121 and 122 will be described with reference to FIG.

タンクの内部に異物54(金属異物)が発生した場合、異物54の近傍に電界が集中し、高電界となる。この範囲にある非線形抵抗材121、122への電界が上昇すると、非線形抵抗材121、122の導電率が大きくなり、電気的に異物54の先端部の大きさが拡がることと等価となり、異物54近傍の電界集中が緩和される。この緩和により、異物54付着時の絶縁耐力が向上する。 When the foreign matter 54 (metal foreign matter) is generated inside the tank, the electric field is concentrated in the vicinity of the foreign matter 54 and becomes a high electric field. When the electric field to the nonlinear resistance materials 121 and 122 in this range rises, the electrical conductivity of the nonlinear resistance materials 121 and 122 increases, which is equivalent to electrically expanding the size of the tip of the foreign matter 54, and the foreign matter 54. Electric field concentration in the vicinity is reduced. This relaxation improves the dielectric strength when the foreign matter 54 is attached.

なお、樹脂層53の厚さは、50μm以上が好適である。また、樹脂層53の厚さは、タンク内の寸法、材料コスト等の面から、1mm以下が望ましく、200μm以下が更に望ましい。 The thickness of the resin layer 53 is preferably 50 μm or more. In addition, the thickness of the resin layer 53 is preferably 1 mm or less, more preferably 200 μm or less from the viewpoints of the dimensions in the tank, material costs, and the like.

以下、実施例について説明する。 Examples will be described below.

図4は、非線形抵抗材の一例である酸化亜鉛の電界−導電率特性を示すグラフである。横軸に電界、縦軸に導電率をとっている。樹脂層における酸化亜鉛の濃度は、10質量%である。 FIG. 4 is a graph showing electric field-conductivity characteristics of zinc oxide, which is an example of a nonlinear resistance material. The horizontal axis represents the electric field and the vertical axis represents the conductivity. The concentration of zinc oxide in the resin layer is 10% by mass.

本図に示すように、酸化亜鉛は、非線形の電界−導電率特性(非線形特性)を有する。酸化亜鉛の場合、電界−導電率曲線の急峻な上昇が開始する電界(以下「動作電界」という。)は、約7kV/mmである。すなわち、酸化亜鉛の場合、電界が約7kV/mmになると、非線形特性曲線(以下、単に「曲線」ともいう。)の傾きが急になり、曲線が立ち上がり、導電率が急上昇する。 As shown in this figure, zinc oxide has a non-linear electric field-conductivity characteristic (non-linear characteristic). In the case of zinc oxide, the electric field where the steep rise of the electric field-conductivity curve starts (hereinafter referred to as “operating electric field”) is about 7 kV/mm. That is, in the case of zinc oxide, when the electric field becomes about 7 kV/mm, the slope of the nonlinear characteristic curve (hereinafter, also simply referred to as “curve”) becomes steep, the curve rises, and the conductivity sharply rises.

なお、「動作電界」の更に厳密な定義の一例としては、曲線の傾きの変化率(二次導関数)が所定の値以上に大きくなり始める電界の値としてもよい。この場合に、曲線の近似式を3次以上のTaylor多項式で表し、二次導関数を算出することにより、動作電界を算出することができる。 As an example of a more strict definition of the “operating electric field”, a value of the electric field at which the rate of change in the slope of the curve (second derivative) starts to increase above a predetermined value may be used. In this case, the operating electric field can be calculated by expressing the approximate expression of the curve by a Taylor polynomial of third or higher order and calculating the second derivative.

動作電界は、非線形抵抗材の種類だけでなく、樹脂中の非線形抵抗材の濃度によっても変化する。このため、異なる種類の非線形抵抗材について動作電界を比較する場合は、本明細書においては、質量基準で同じ濃度でかつ同じ樹脂と混合したもの同士で測定された非線形特性曲線を比較対象とする。よって、第一の非線形抵抗材は、第二の非線形抵抗材よりも、動作電界が高く、かつ、動作電界より高い電界の範囲で非線形特性曲線の傾きが大きい、といった表現が可能である。 The operating electric field changes depending on not only the type of the nonlinear resistance material but also the concentration of the nonlinear resistance material in the resin. Therefore, when comparing operating electric fields for different types of non-linear resistance materials, in the present specification, non-linear characteristic curves measured at the same concentration on the mass basis and mixed with the same resin will be compared. .. Therefore, it can be expressed that the first nonlinear resistance material has a higher operating electric field than the second nonlinear resistance material, and that the slope of the nonlinear characteristic curve is large in the range of the electric field higher than the operating electric field.

図5は、非線形抵抗材である炭化ケイ素の電界−導電率特性を示すグラフである。樹脂層における炭化ケイ素の濃度は、10質量%である。 FIG. 5 is a graph showing electric field-conductivity characteristics of silicon carbide, which is a nonlinear resistance material. The concentration of silicon carbide in the resin layer is 10% by mass.

本図に示すように、炭化ケイ素の場合、動作電界が低く、曲線の傾きが比較的緩やかである。曲線の立ち上がり(動作電界)は、約4kV/mmであり、約8kV/mm以上では曲線の傾きが緩やかになる。 As shown in the figure, in the case of silicon carbide, the operating electric field is low and the slope of the curve is relatively gentle. The rise of the curve (operating electric field) is about 4 kV/mm, and the slope of the curve becomes gentle at about 8 kV/mm or more.

図6は、二種類の非線形抵抗材を混合した場合の電界−導電率特性を示すグラフである。樹脂層における酸化亜鉛の濃度は10質量%であり、炭化ケイ素の濃度は10質量%である。 FIG. 6 is a graph showing electric field-conductivity characteristics when two types of nonlinear resistance materials are mixed. The zinc oxide concentration in the resin layer is 10% by mass, and the silicon carbide concentration is 10% by mass.

本図においては、動作電界が低い炭化ケイ素の作用により、約4kV/mmで曲線の傾きが大きくなり始め、約7kV/mm以上で更に傾きが大きくなっている。 In this figure, due to the action of silicon carbide having a low operating electric field, the slope of the curve starts to increase at about 4 kV/mm, and further increases at about 7 kV/mm or more.

これにより、印加電圧が低い状態から異物周辺の電界が緩和される。また、高電圧において十分な電界緩和効果が得られる。動作電界が低くなるため、電界緩和のばらつきが小さくなり、低電圧での異物浮上を防止できる。また、非線形特性曲線の傾きが大きくなるため、高電圧での電界緩和効果が大きくなり、部分放電を防止でき、異物の浮上電界を高くすることが可能となる。 As a result, the electric field around the foreign matter is relaxed from the state where the applied voltage is low. Further, a sufficient electric field relaxation effect can be obtained at high voltage. Since the operating electric field is lowered, the variation in electric field relaxation is reduced, and the floating of foreign matter at a low voltage can be prevented. Further, since the slope of the non-linear characteristic curve becomes large, the electric field relaxation effect at a high voltage becomes large, partial discharge can be prevented, and the floating electric field of foreign matter can be increased.

非線形抵抗材を含む樹脂(コーティング材)のタンク壁51の内面への塗布は、スプレーコーティング若しくは刷毛塗りによりなされる。 The resin (coating material) containing the non-linear resistance material is applied to the inner surface of the tank wall 51 by spray coating or brush coating.

まとめると、図4及び5から、第一の非線形抵抗材である酸化亜鉛は、第二の非線形抵抗材である炭化ケイ素よりも、動作電界が高く、かつ、動作電界より高い電界の範囲で非線形特性曲線の傾きが大きい、と言える。そして、図6の曲線は、図4及び5の曲線を重ね合わせた形状を有する。このため、適切な導電率及び動作電界が得られる。 In summary, from FIGS. 4 and 5, the first non-linear resistance material, zinc oxide, has a higher operating electric field than the second non-linear resistance material, silicon carbide, and is non-linear in the electric field range higher than the operating electric field. It can be said that the slope of the characteristic curve is large. The curve of FIG. 6 has a shape in which the curves of FIGS. 4 and 5 are superposed. Therefore, an appropriate conductivity and operating electric field can be obtained.

本実施例の樹脂層の動作電界は、3kV/mm以上であることが望ましい。動作電界が低すぎると、樹脂層の絶縁機能が不十分となるからである。また、本実施例の樹脂層の動作電界は、5kV/mm以下であることが望ましい。樹脂層の動作電界は、第二の非線形抵抗材の動作電界の望ましい範囲に対応している。 The operating electric field of the resin layer of this example is preferably 3 kV/mm or more. This is because if the operating electric field is too low, the insulating function of the resin layer will be insufficient. The operating electric field of the resin layer of this example is preferably 5 kV/mm or less. The operating electric field of the resin layer corresponds to the desired range of the operating electric field of the second nonlinear resistance material.

図7は、非線形抵抗材の添加量をパラメータとした場合の電界−導電率特性を示すグラフである。 FIG. 7 is a graph showing electric field-conductivity characteristics when the addition amount of the nonlinear resistance material is used as a parameter.

本図においては、樹脂層における酸化亜鉛及び炭化ケイ素の濃度が等しくなるように添加したものであり、それぞれの濃度が、5質量%、10質量%、15質量%の場合を示している。すなわち、酸化亜鉛の濃度が5質量%でかつ炭化ケイ素の濃度が5質量%の場合(各5質量%)、酸化亜鉛の濃度が10質量%でかつ炭化ケイ素の濃度が10質量%の場合(各10質量%)、酸化亜鉛の濃度が15質量%でかつ炭化ケイ素の濃度が15質量%の場合(各15質量%)である。 In this figure, zinc oxide and silicon carbide are added so that the concentrations in the resin layer are equal, and the respective concentrations are 5% by mass, 10% by mass, and 15% by mass. That is, when the concentration of zinc oxide is 5% by mass and the concentration of silicon carbide is 5% by mass (each 5% by mass), the concentration of zinc oxide is 10% by mass and the concentration of silicon carbide is 10% by mass ( 10% by mass), the concentration of zinc oxide is 15% by mass, and the concentration of silicon carbide is 15% by mass (15% by mass each).

本図に示すように、コーティング材の電界−導電率特性は、非線形抵抗材の添加量により変化する。具体的には、曲線の立ち上がりの始まり(動作電界)が、各5質量%では約7kV/mm、各10質量%では約5kV/mm、各15質量%の場合では約4kV/mmである。 As shown in this figure, the electric field-conductivity characteristic of the coating material changes depending on the addition amount of the nonlinear resistance material. Specifically, the start of the rising of the curve (operating electric field) is about 7 kV/mm for each 5 mass %, about 5 kV/mm for each 10 mass %, and about 4 kV/mm for each 15 mass %.

よって、非線形抵抗材の添加量が少ない場合、異物がタンク壁の内面に存在する場合において、電界集中時の導電率上昇が不十分となり、電界緩和に至らない可能性がある。 Therefore, when the amount of the non-linear resistance material added is small and the foreign matter is present on the inner surface of the tank wall, the electric conductivity may not be sufficiently increased when the electric field is concentrated, and the electric field may not be relaxed.

上記課題を解決するために、複数種類の非線形抵抗材の添加量の合計は、5質量%から50質量%までの範囲が電界緩和効果、電界−導電率特性、及び塗布作業におけるコーティング材の粘度において好適である。非線形抵抗材の添加量としては、5質量%から20質量%までの範囲が更に好適であり、5質量%から15質量%までの範囲が特に好適である。 In order to solve the above problems, the total addition amount of a plurality of types of non-linear resistance materials is in the range of 5% by mass to 50% by mass, the electric field relaxation effect, the electric field-conductivity characteristic, and the viscosity of the coating material in the coating operation. Is preferred. The addition amount of the nonlinear resistance material is more preferably in the range of 5% by mass to 20% by mass, and particularly preferably in the range of 5% by mass to 15% by mass.

また、動作電界の低い非線形抵抗材(例えば炭化ケイ素)と動作電界の高い非線形抵抗材(例えば酸化亜鉛)との混合率は、1:4から4:1までの間とすることで所望の非線形特性となり、異物の周囲における電界緩和効果が生じ、好適である。この混合率は、1:3から3:1までの間が更に好適であり、1:2から2:1までの間が特に好適である。 Further, the mixing ratio of the non-linear resistance material having a low operating electric field (eg, silicon carbide) and the non-linear resistance material having a high operating electric field (eg, zinc oxide) is between 1:4 and 4:1. It is preferable because it has characteristics and an electric field relaxation effect occurs around the foreign matter. This mixing ratio is more preferably 1:3 to 3:1, and particularly preferably 1:2 to 2:1.

図8は、金属異物をタンク内に設置した場合における浮上試験の結果を示すグラフである。縦軸は、破壊電圧の相対値をとっている。ここで、破壊電圧とは、所定の条件において金属異物が浮上する電圧をいう。この電圧は、金属異物浮上電圧ともいう。 FIG. 8 is a graph showing the results of the levitation test when the metallic foreign matter is installed in the tank. The vertical axis represents the relative value of the breakdown voltage. Here, the breakdown voltage means a voltage at which the metallic foreign matter floats up under a predetermined condition. This voltage is also called a metal foreign matter levitating voltage.

本図においては、タンク壁の内面を金属面とした場合(コーティングなし)の異物の浮上電界の値を1.0としている。樹脂のみによる絶縁膜で被覆した場合(樹脂コーティング)、浮上電界は平均値が1.3程度となり、ばらつきは20%程度となる。 In this figure, when the inner surface of the tank wall is a metal surface (without coating), the value of the floating electric field of the foreign matter is 1.0. When coated with an insulating film made of only resin (resin coating), the floating electric field has an average value of about 1.3 and a variation of about 20%.

また、酸化亜鉛単体を添加したコーティング材を塗布した場合(非線形抵抗材コーティング(単体))、平均値は1.5程度と高くなるが、ばらつきは20%程度と樹脂コーティングと同等である。 When a coating material containing zinc oxide alone is applied (non-linear resistance material coating (single body)), the average value is as high as about 1.5, but the variation is about 20%, which is equivalent to the resin coating.

これに対して、本実施例である、二種類の非線形抵抗材(酸化亜鉛及び炭化ケイ素)を添加したコーティング材を塗布した場合(非線形抵抗材コーティング(混合))、浮上電界の平均値が1.6以上となり、かつ、ばらつきが5%程度と小さくなる。これは、ばらつきが小さくなった分、平均値が高くなり、低い電圧では金属異物の浮上が生じなくなったことを意味する。これにより、タンク内部に金属異物が存在する場合においても、金属異物の浮上を制限し、高い絶縁耐力を維持することができる。 On the other hand, when the coating material containing two types of non-linear resistance materials (zinc oxide and silicon carbide) according to the present embodiment is applied (non-linear resistance material coating (mixing)), the average value of the levitation electric field is 1 6 or more, and the variation is as small as about 5%. This means that the smaller the variation is, the higher the average value is, and the floating of the metallic foreign matter does not occur at a low voltage. As a result, even if the metallic foreign matter is present inside the tank, the floating of the metallic foreign matter can be restricted and a high dielectric strength can be maintained.

なお、二種類の非線形抵抗材を一種類ずつに分けてコーティング材を作製し、タンクの内面に塗布することにより、二層の樹脂層を重ねた構成とした場合、金属異物と接触する非線形抵抗材の特性に強く影響されるため、本実施例のような効果を得ることはできない。 When two types of non-linear resistance materials are divided into one type and a coating material is applied and applied to the inner surface of the tank, and two resin layers are stacked, the non-linear resistance that contacts metal foreign matter Since it is strongly influenced by the characteristics of the material, the effect of this embodiment cannot be obtained.

図9は、本発明の樹脂層の形成工程の一例を示すフロー図である。 FIG. 9 is a flow chart showing an example of a step of forming the resin layer of the present invention.

本図に示すように、まず、表面処理剤と非線形抵抗材を混合する(S101)。この混合物を樹脂に添加する(S102)。これを撹拌する(S103)。これにより、非線形抵抗材の凝集が防止され、非線形抵抗材が一様に分散されたコーティング材となる。なお、表面処理剤の一例としては、シラン系カップリング剤がある。また、工程S102又はS103において、樹脂の硬化剤も混合する。 As shown in the figure, first, a surface treatment agent and a non-linear resistance material are mixed (S101). This mixture is added to the resin (S102). This is stirred (S103). As a result, the non-linear resistance material is prevented from agglomerating, and the non-linear resistance material is uniformly dispersed in the coating material. A silane coupling agent is an example of the surface treatment agent. Further, in step S102 or S103, a resin curing agent is also mixed.

撹拌後のコーティング材をスプレーガンによりタンク壁の内面に塗布する(S104)。塗布されたコーティング材は、所定の条件にて硬化される(S105)。 The coating material after stirring is applied to the inner surface of the tank wall by a spray gun (S104). The applied coating material is cured under predetermined conditions (S105).

工程S101において表面処理剤を用いることにより、工程S103の撹拌後、非線形抵抗材が樹脂中に一様に分散される。このため、コーティング材を塗布した範囲においては、金属異物の周囲における電界緩和効果が有効となる。これにより、金属異物の浮上電界向上効果が安定する。表面処理剤の添加量は、0.1質量%から5質量%までの範囲が好適である。 By using the surface treatment agent in step S101, the non-linear resistance material is uniformly dispersed in the resin after the stirring in step S103. Therefore, in the range where the coating material is applied, the electric field relaxation effect around the metallic foreign matter is effective. As a result, the effect of improving the floating electric field of the metallic foreign matter is stabilized. The addition amount of the surface treatment agent is preferably in the range of 0.1% by mass to 5% by mass.

上記のコーティング材は、非線形抵抗材を含まない絶縁樹脂単体をタンク内面に下塗りとして塗布した後、その塗布面に塗布してもよい。この場合、絶縁樹脂単体の下塗りをした後、一旦硬化し、その後、その塗布面にコーティング材を塗布することが望ましい。これにより、下塗りにより形成された絶縁樹脂層により、タンクから異物への電荷のチャージが妨げられるとともに、非線形抵抗材を含む樹脂層により、電界集中の緩和及び部分放電の抑制が可能となる。 The above-mentioned coating material may be applied to the inner surface of the tank as an undercoat of an insulating resin alone containing no non-linear resistance material, and then to the application surface. In this case, it is desirable to undercoat the insulating resin alone, then cure it once, and then apply the coating material to the application surface. As a result, the insulating resin layer formed by undercoating prevents the charge from being charged from the tank to the foreign matter, and the resin layer containing the non-linear resistance material can alleviate electric field concentration and suppress partial discharge.

絶縁樹脂層の厚さは、30μm以上が好適である。また、非線形抵抗材を含む樹脂層(コーティング層)の厚さは、50μm以上が好適である。これらの層の厚さは、タンク内の寸法、材料コスト等の面から、それぞれ、1mm以下が望ましく、200μm以下が更に望ましい。この上限値は、コーティング層のみの場合も同様である。 The thickness of the insulating resin layer is preferably 30 μm or more. The thickness of the resin layer (coating layer) containing the nonlinear resistance material is preferably 50 μm or more. The thickness of each of these layers is preferably 1 mm or less, more preferably 200 μm or less, from the viewpoints of the dimensions in the tank, material costs, and the like. This upper limit is the same for the coating layer alone.

1:高電圧導体、2:接地タンク、20:遮断器、21:断路器、22:接地開閉器、23:変流器、24:変圧器、25、26:母線、30:絶縁スペーサ、51:タンク壁、53:樹脂層、54:異物、100:ガス絶縁開閉装置、121、122:非線形抵抗材、131:樹脂層。 1: high-voltage conductor, 2: ground tank, 20: circuit breaker, 21: disconnector, 22: ground switch, 23: current transformer, 24: transformer, 25, 26: busbar, 30: insulating spacer, 51 : Tank wall, 53: resin layer, 54: foreign matter, 100: gas insulated switchgear, 121, 122: non-linear resistance material, 131: resin layer.

Claims (26)

接地されているタンクと、
前記タンクの内部に設置され前記タンクとは絶縁されている高電圧導体と、を有し、
前記タンクの内面には、樹脂に複数種類の非線形抵抗材が混合された構成を有する樹脂層が形成され、
前記複数種類の非線形抵抗材のうち少なくとも一種類の非線形抵抗材である第一の非線形抵抗材は、前記複数種類の非線形抵抗材のうち少なくとも一種類の他の非線形抵抗材である第二の非線形抵抗材よりも、動作電界が高く、かつ、前記動作電界より高い電界の範囲で非線形特性曲線の傾きが大きい、ガス絶縁開閉装置。
A grounded tank,
A high-voltage conductor installed inside the tank and insulated from the tank,
On the inner surface of the tank, a resin layer having a configuration in which a plurality of types of nonlinear resistance materials are mixed with resin is formed,
The first non-linear resistance material, which is at least one non-linear resistance material among the plurality of non-linear resistance materials, is the second non-linear resistance material, which is at least one other non-linear resistance material among the plurality of non-linear resistance materials. A gas-insulated switchgear having an operating electric field higher than that of the resistance material, and having a larger slope of the nonlinear characteristic curve in the electric field range higher than the operating electric field.
前記複数種類の非線形抵抗材の添加量の合計は、5質量%から50質量%までの範囲にある、請求項1記載のガス絶縁開閉装置。 The gas-insulated switchgear according to claim 1, wherein the total amount of addition of the plurality of types of nonlinear resistance materials is in the range of 5% by mass to 50% by mass. 前記第一の非線形抵抗材と前記第二の非線形抵抗材との混合率は、1:4から4:1までの範囲にある、請求項2記載のガス絶縁開閉装置。 The gas insulated switchgear according to claim 2, wherein a mixing ratio of the first nonlinear resistance material and the second nonlinear resistance material is in a range of 1:4 to 4:1. 前記樹脂層は、表面処理剤を含む、請求項1記載のガス絶縁開閉装置。 The gas-insulated switchgear according to claim 1, wherein the resin layer contains a surface treatment agent. 前記表面処理剤の添加量は、0.1質量%から5質量%までの範囲にある、請求項4記載のガス絶縁開閉装置。 The gas-insulated switchgear according to claim 4, wherein the amount of the surface treatment agent added is in the range of 0.1% by mass to 5% by mass. 前記樹脂層の厚さは、50μm以上1mm以下である、請求項1記載のガス絶縁開閉装置。 The gas insulated switchgear according to claim 1, wherein the resin layer has a thickness of 50 μm or more and 1 mm or less. 前記タンクの前記内面と前記樹脂層との間には、前記非線形抵抗材を含まない絶縁樹脂層が設けられている、請求項1記載のガス絶縁開閉装置。 The gas-insulated switchgear according to claim 1, wherein an insulating resin layer containing no nonlinear resistance material is provided between the inner surface of the tank and the resin layer. 前記絶縁樹脂層の厚さは、30μm以上1mm以下である、請求項7記載のガス絶縁開閉装置。 The gas-insulated switchgear according to claim 7, wherein the insulating resin layer has a thickness of 30 μm or more and 1 mm or less. 前記樹脂層の厚さは、50μm以上1mm以下である、請求項8記載のガス絶縁開閉装置。 The gas insulated switchgear according to claim 8, wherein the resin layer has a thickness of 50 μm or more and 1 mm or less. 前記非線形抵抗材は、酸化亜鉛、炭化ケイ素、チタン酸バリウム及びダイヤモンドからなる群から選択される二種類以上である、請求項1記載のガス絶縁開閉装置。 The gas insulated switchgear according to claim 1, wherein the non-linear resistance material is two or more kinds selected from the group consisting of zinc oxide, silicon carbide, barium titanate and diamond. 前記第一の非線形抵抗材は、酸化亜鉛であり、
前記第二の非線形抵抗材は、炭化ケイ素である、請求項1記載のガス絶縁開閉装置。
The first nonlinear resistance material is zinc oxide,
The gas insulated switchgear according to claim 1, wherein the second non-linear resistance material is silicon carbide.
前記第二の非線形抵抗材の前記動作電界は、3kV/mm以上5kV/mm以下である、請求項1記載のガス絶縁開閉装置。 The gas insulated switchgear according to claim 1, wherein the operating electric field of the second nonlinear resistance material is 3 kV/mm or more and 5 kV/mm or less. 前記樹脂層は、前記タンクの前記内面のうち、少なくとも下半分の領域に形成されている、請求項1記載のガス絶縁開閉装置。 The gas insulated switchgear according to claim 1, wherein the resin layer is formed in at least a lower half region of the inner surface of the tank. 接地されているタンクと、
前記タンクの内部に設置され前記タンクとは絶縁されている高電圧導体と、を有し、
前記タンクの内面には、樹脂に複数種類の非線形抵抗材が混合された構成を有する樹脂層が形成され、
前記複数種類の非線形抵抗材のうち少なくとも一種類の非線形抵抗材である第一の非線形抵抗材は、前記複数種類の非線形抵抗材のうち少なくとも一種類の他の非線形抵抗材である第二の非線形抵抗材よりも、動作電界が高く、かつ、前記動作電界より高い電界の範囲で非線形特性曲線の傾きが大きい、ガス絶縁開閉装置を製造する方法であって、
前記樹脂及び前記複数種類の非線形抵抗材を混合してコーティング材を作製する工程と、
前記コーティング材を前記タンクの前記内面に塗布する工程と、
前記コーティング材を硬化して前記樹脂層を形成する工程と、を含む、ガス絶縁開閉装置の製造方法。
A grounded tank,
A high-voltage conductor installed inside the tank and insulated from the tank,
On the inner surface of the tank, a resin layer having a configuration in which a plurality of types of nonlinear resistance materials are mixed with resin is formed,
The first non-linear resistance material, which is at least one non-linear resistance material among the plurality of non-linear resistance materials, is the second non-linear resistance material, which is at least one other non-linear resistance material among the plurality of non-linear resistance materials. A method for manufacturing a gas-insulated switchgear, which has a higher operating electric field than a resistance material and has a large slope of a non-linear characteristic curve in a range of an electric field higher than the operating electric field
A step of preparing a coating material by mixing the resin and the plurality of types of non-linear resistance materials,
Applying the coating material to the inner surface of the tank,
And a step of curing the coating material to form the resin layer.
前記複数種類の非線形抵抗材の添加量の合計は、5質量%から50質量%までの範囲にある、請求項14記載のガス絶縁開閉装置の製造方法。 The method for manufacturing a gas insulated switchgear according to claim 14, wherein the total amount of addition of the plurality of types of nonlinear resistance materials is in the range of 5% by mass to 50% by mass. 前記第一の非線形抵抗材と前記第二の非線形抵抗材との混合率は、1:4から4:1までの範囲にある、請求項15記載のガス絶縁開閉装置の製造方法。 The method for manufacturing a gas insulated switchgear according to claim 15, wherein a mixing ratio of the first nonlinear resistance material and the second nonlinear resistance material is in a range of 1:4 to 4:1. 前記複数種類の非線形抵抗材に表面処理剤を混合し、その後、更に前記樹脂と混合して前記コーティング材を作製する、請求項14記載のガス絶縁開閉装置の製造方法。 15. The method for manufacturing a gas insulation switchgear according to claim 14, wherein a surface treatment agent is mixed with the plurality of types of non-linear resistance materials and then further mixed with the resin to prepare the coating material. 前記表面処理剤の添加量は、0.1質量%から5質量%までの範囲にある、請求項17記載のガス絶縁開閉装置の製造方法。 The method for manufacturing a gas insulated switchgear according to claim 17, wherein the amount of the surface treatment agent added is in the range of 0.1% by mass to 5% by mass. 前記樹脂層の厚さは、50μm以上1mm以下である、請求項14記載のガス絶縁開閉装置の製造方法。 The method for manufacturing a gas insulated switchgear according to claim 14, wherein the resin layer has a thickness of 50 μm or more and 1 mm or less. 前記タンクの前記内面に前記非線形抵抗材を含まない絶縁樹脂単体を塗布して絶縁樹脂層を形成し、その後、前記絶縁樹脂層の表面に前記コーティング材を塗布する、請求項14記載のガス絶縁開閉装置の製造方法。 15. The gas insulation according to claim 14, wherein an insulating resin simple substance not containing the non-linear resistance material is applied to the inner surface of the tank to form an insulating resin layer, and then the coating material is applied to the surface of the insulating resin layer. Switchgear manufacturing method. 前記絶縁樹脂層の厚さは、30μm以上1mm以下である、請求項20記載のガス絶縁開閉装置の製造方法。 The method of manufacturing a gas insulated switchgear according to claim 20, wherein the insulating resin layer has a thickness of 30 μm or more and 1 mm or less. 前記樹脂層の厚さは、50μm以上1mm以下である、請求項21記載のガス絶縁開閉装置の製造方法。 22. The method for manufacturing a gas insulated switchgear according to claim 21, wherein the resin layer has a thickness of 50 μm or more and 1 mm or less. 前記非線形抵抗材は、酸化亜鉛、炭化ケイ素、チタン酸バリウム及びダイヤモンドからなる群から選択される二種類以上である、請求項14記載のガス絶縁開閉装置の製造方法。 15. The method for manufacturing a gas insulated switchgear according to claim 14, wherein the non-linear resistance material is two or more kinds selected from the group consisting of zinc oxide, silicon carbide, barium titanate and diamond. 前記第一の非線形抵抗材は、酸化亜鉛であり、
前記第二の非線形抵抗材は、炭化ケイ素である、請求項14記載のガス絶縁開閉装置の製造方法。
The first nonlinear resistance material is zinc oxide,
The method for manufacturing a gas insulated switchgear according to claim 14, wherein the second nonlinear resistance material is silicon carbide.
前記第二の非線形抵抗材の前記動作電界は、3kV/mm以上5kV/mm以下である、請求項14記載のガス絶縁開閉装置の製造方法。 The method for manufacturing a gas insulated switchgear according to claim 14, wherein the operating electric field of the second non-linear resistance material is 3 kV/mm or more and 5 kV/mm or less. 前記樹脂層は、前記タンクの前記内面のうち、少なくとも下半分の領域に形成する、請求項14記載のガス絶縁開閉装置の製造方法。 The method for manufacturing a gas insulated switchgear according to claim 14, wherein the resin layer is formed on at least a lower half region of the inner surface of the tank.
JP2019008385A 2019-01-22 2019-01-22 Gas-insulated switchgear and manufacturing method thereof Active JP7137486B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019008385A JP7137486B2 (en) 2019-01-22 2019-01-22 Gas-insulated switchgear and manufacturing method thereof
PCT/JP2019/044297 WO2020152952A1 (en) 2019-01-22 2019-11-12 Gas insulated switchgear and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019008385A JP7137486B2 (en) 2019-01-22 2019-01-22 Gas-insulated switchgear and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2020120463A true JP2020120463A (en) 2020-08-06
JP7137486B2 JP7137486B2 (en) 2022-09-14

Family

ID=71736132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019008385A Active JP7137486B2 (en) 2019-01-22 2019-01-22 Gas-insulated switchgear and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP7137486B2 (en)
WO (1) WO2020152952A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156587A (en) * 2013-01-18 2014-08-28 Toshiba Corp Nonlinear resistive coating material, bus bar and stator coil
WO2015136753A1 (en) * 2014-03-12 2015-09-17 三菱電機株式会社 Gas insulated switch device
JP2018196280A (en) * 2017-05-19 2018-12-06 株式会社日立製作所 Insulation spacer and gas insulation opening/closing device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156587A (en) * 2013-01-18 2014-08-28 Toshiba Corp Nonlinear resistive coating material, bus bar and stator coil
WO2015136753A1 (en) * 2014-03-12 2015-09-17 三菱電機株式会社 Gas insulated switch device
JP2018196280A (en) * 2017-05-19 2018-12-06 株式会社日立製作所 Insulation spacer and gas insulation opening/closing device using the same

Also Published As

Publication number Publication date
WO2020152952A1 (en) 2020-07-30
JP7137486B2 (en) 2022-09-14

Similar Documents

Publication Publication Date Title
JP5705384B1 (en) Gas insulation equipment
EP2937958B1 (en) Gas insulated electric equipment
JP5710080B2 (en) Gas insulated switchgear
US10069285B2 (en) Gas-insulated switchgear
EP3098919B1 (en) Gas-insulated electric apparatus
WO2020152952A1 (en) Gas insulated switchgear and manufacturing method thereof
US10965106B2 (en) Gas-insulated electrical equipment
JP6352782B2 (en) Insulating spacer
JP6807276B2 (en) Insulation spacer and gas insulation switchgear using it
WO2013125554A1 (en) Gas insulated switchgear and gas insulated busbar
JP2004335390A (en) Cone type insulation spacer
WO2019123889A1 (en) Open/close device
WO2017098553A1 (en) Gas insulation apparatus
JP7278997B2 (en) gas insulated switchgear
JP7418672B1 (en) insulation equipment
JPS6023569B2 (en) gas insulated electrical equipment
JPH0345111A (en) Gas-insulated machine
WO2019093071A1 (en) Gas insulated switchgear
EP3920351A1 (en) Gas insulation apparatus
UA127036C2 (en) POLYMER INSULATOR (OPTIONS)
Goud et al. Insulation Integrity of Three Phase Common Enclosure Gas Insulated Busduct with Particle Contamination under Image Charges
Padmavathi et al. Effect of Lorentz force on the conducting contaminant trajectory in a three phase Gas Insulated Busduct
JP2018007292A (en) Sealed insulation device and manufacturing method thereof
JPH0928010A (en) Gas insulated switchgear, gas insulated transmission line, and insulating spacer therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220902

R150 Certificate of patent or registration of utility model

Ref document number: 7137486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150