JP2020120031A - Perylene derivative compound, composition for organic semiconductor arranged by use of the compound, and organic thin film transistor arranged by use of the composition for organic semiconductor - Google Patents

Perylene derivative compound, composition for organic semiconductor arranged by use of the compound, and organic thin film transistor arranged by use of the composition for organic semiconductor Download PDF

Info

Publication number
JP2020120031A
JP2020120031A JP2019011117A JP2019011117A JP2020120031A JP 2020120031 A JP2020120031 A JP 2020120031A JP 2019011117 A JP2019011117 A JP 2019011117A JP 2019011117 A JP2019011117 A JP 2019011117A JP 2020120031 A JP2020120031 A JP 2020120031A
Authority
JP
Japan
Prior art keywords
group
organic semiconductor
carbon atoms
substituent
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019011117A
Other languages
Japanese (ja)
Other versions
JP7290948B2 (en
Inventor
絵里子 千葉
Eriko Chiba
絵里子 千葉
泰彰 宮崎
Yasuaki Miyazaki
泰彰 宮崎
規敏 鈴木
Noritoshi Suzuki
規敏 鈴木
水上 誠
Makoto Mizukami
誠 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
Hodogaya Chemical Co Ltd
Original Assignee
Yamagata University NUC
Hodogaya Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC, Hodogaya Chemical Co Ltd filed Critical Yamagata University NUC
Priority to JP2019011117A priority Critical patent/JP7290948B2/en
Publication of JP2020120031A publication Critical patent/JP2020120031A/en
Application granted granted Critical
Publication of JP7290948B2 publication Critical patent/JP7290948B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thin Film Transistor (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

To provide: an n-type organic semiconductor material having high dissolubility adaptive to a solution process; an organic semiconductor element of high electron mobility, in which the n-type organic semiconductor material is used as a composition for an organic semiconductor; and an organic thin film transistor.SOLUTION: A composition for an organic semiconductor comprises a perylene derivative compound represented by the formula (1) below. An organic thin film transistor comprises an organic semiconductor element of 10cm/Vs or more in mobility, which is arranged by use of the composition for an organic semiconductor.SELECTED DRAWING: None

Description

本発明は、ペリレン誘導体化合物、該化合物を用いた有機半導体用組成物、該有機半導体組成物を用いた有機半導体素子および有機薄膜トランジスタに関する。 The present invention relates to a perylene derivative compound, a composition for an organic semiconductor using the compound, an organic semiconductor device and an organic thin film transistor using the organic semiconductor composition.

従来、シリコン系の無機材料を無機半導体材料として用いた薄膜トランジスタが広く用いられているが、これらの製膜は高温度下で実施されるため、薄型ディスプレイ化に対応した基板として軽量でフレキシブルであるプラスチック材料などは、耐熱性に乏しく使用できないという難点がある。そこで、近年は、シリコン系の無機材料に代えて、半導体としての性質を示す有機化合物を有機半導体材料として用いた有機薄膜トランジスタの開発が盛んである。 Conventionally, thin film transistors using a silicon-based inorganic material as an inorganic semiconductor material have been widely used, but since these film formations are performed at a high temperature, they are lightweight and flexible as a substrate compatible with thin display. Plastic materials have the drawback that they cannot be used due to their poor heat resistance. Therefore, in recent years, in place of the silicon-based inorganic material, an organic thin film transistor using an organic compound having a property as a semiconductor as an organic semiconductor material has been actively developed.

有機薄膜トランジスタにおける有機半導体材料を含有する有機半導体層の形成においては、真空中高温下で作製する真空蒸着プロセスと比較し、大気中で作製する溶液プロセスにより、製造コストをおさえつつ、有機薄膜トランジスタ素子の大型化が容易となる。さらに、製膜時に必要となる温度を下げることができ、基板にプラスチック材料などを用いることが可能となる。このため、フレキシブルな素子への適応可能な溶液プロセスに対応した有機半導体材料が望まれている。 In the formation of the organic semiconductor layer containing the organic semiconductor material in the organic thin film transistor, as compared with the vacuum deposition process which is produced under high temperature in vacuum, the solution process which is produced in the atmosphere by the solution process of the organic thin film transistor element while suppressing the production cost. It becomes easy to upsize. Further, the temperature required for film formation can be lowered, and a plastic material or the like can be used for the substrate. Therefore, an organic semiconductor material that is compatible with a solution process that can be applied to a flexible element is desired.

有機半導体層を形成する有機半導体は、正孔がキャリアとして流れるp型有機半導体材料と電子がキャリアとして流れるn型有機半導体材料に分類される。これまでにp型有機半導体材料が数多く報告されている。 The organic semiconductor forming the organic semiconductor layer is classified into a p-type organic semiconductor material in which holes flow as carriers and an n-type organic semiconductor material in which electrons flow as carriers. Many p-type organic semiconductor materials have been reported so far.

一方、n型有機半導体材料として、ペリレン誘導体やフラーレンなどで材料開発が進んでいるが、溶媒への溶解性が低く、溶液プロセスへの適合性が低い。 On the other hand, as the n-type organic semiconductor material, materials such as perylene derivative and fullerene are being developed, but their solubility in a solvent is low and compatibility with a solution process is low.

また、高性能n型有機半導体材料は、pn接合や集積回路構築のために必要であるが、電子電流は正孔電流と比べて大気や不純物を始めとする外的要因の影響を受けやすく、その電子移動度はp型有機半導体材料と比較して未だ低い。 Further, a high-performance n-type organic semiconductor material is necessary for constructing a pn junction or an integrated circuit, but the electron current is more susceptible to external factors such as the atmosphere and impurities than the hole current, Its electron mobility is still lower than that of p-type organic semiconductor materials.

上述した通り、溶液プロセスに適合する溶媒への高い溶解性と高いキャリア移動度を両立した有機半導体材料の開発が望まれている。 As described above, it is desired to develop an organic semiconductor material that has both high solubility in a solvent compatible with a solution process and high carrier mobility.

特表2007−527114Special table 2007-527114 特表2008−524846Special table 2008-524846 特表2017−52139Special table 2017-52139 特開2015−115490Japanese Unexamined Patent Publication No. 2015-115490

Angew.Chem.Int.Ed.2004,43,P.6363−6366Angew. Chem. Int. Ed. 2004, 43, P.I. 6363-6366 J.Org.Chem.2014,79,P.6655−6662J. Org. Chem. 2014, 79, P.I. 6655-6662

本発明が解決しようとする課題は、溶液プロセスに対応した高い溶解性を有するn型有機半導体材料を提供し、さらに該n型有機半導体材料を有機半導体用組成物として用いた高電子移動度の有機半導体素子ならびに有機薄膜トランジスタを提供することである。 The problem to be solved by the present invention is to provide an n-type organic semiconductor material having a high solubility corresponding to a solution process, and to use the n-type organic semiconductor material as a composition for an organic semiconductor, which has a high electron mobility. An organic semiconductor device and an organic thin film transistor are provided.

上記課題を解決するため、発明者らは、溶液プロセスに対応した溶解性を有するn型有機半導体材料、および電子移動度に優れた有機薄膜トランジスタについて鋭意検討した結果、特定の構造を有することで溶解性が向上した化合物をn型有機半導体材料として用いること、さらに該化合物を有機半導体層に含有させることにより、高移動度な有機薄膜トランジスタが得られることを見出した。すなわち、本発明は以下を要旨とするものである。 In order to solve the above-mentioned problems, the inventors diligently studied an n-type organic semiconductor material having solubility corresponding to a solution process, and an organic thin-film transistor having excellent electron mobility, and as a result, have a specific structure It was found that an organic thin film transistor with high mobility can be obtained by using a compound having improved properties as an n-type organic semiconductor material and further incorporating the compound in the organic semiconductor layer. That is, the present invention is summarized below.

1.下記一般式(1)で表されるペリレン誘導体化合物。 1. A perylene derivative compound represented by the following general formula (1).

Figure 2020120031
Figure 2020120031

[式中、RとR10は、互いに異なるものとして、
水素原子、ハロゲン原子、
置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルキル基、
置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルケニル基、
置換基を有していてもよい炭素原子数6〜36の芳香族炭化水素基、
または置換基を有していてもよい炭素原子数2〜36の複素環基を表す。
〜Rは、同一でも異なっていてもよく、
水素原子、ハロゲン原子、シアノ基、水酸基、ニトロ基、ニトロソ基、チオ基、アミノ基、
置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルキル基、
または置換基を有していてもよい炭素原子数1〜20の直鎖状もくしは分岐状のアルケニル基を表し、
とR、RとR、RとR、RとR、RとR、RとR、は互いに結合して環を形成していてもよい。]
[Wherein R 1 and R 10 are different from each other,
Hydrogen atom, halogen atom,
A linear or branched alkyl group having 1 to 20 carbon atoms, which may have a substituent,
A linear or branched alkenyl group having 1 to 20 carbon atoms which may have a substituent,
An aromatic hydrocarbon group having 6 to 36 carbon atoms which may have a substituent,
Alternatively, it represents a heterocyclic group having 2 to 36 carbon atoms, which may have a substituent.
R 2 to R 9 may be the same or different,
Hydrogen atom, halogen atom, cyano group, hydroxyl group, nitro group, nitroso group, thio group, amino group,
A linear or branched alkyl group having 1 to 20 carbon atoms, which may have a substituent,
Or represents a linear or branched alkenyl group having 1 to 20 carbon atoms which may have a substituent,
R 2 and R 3 , R 3 and R 4 , R 4 and R 5 , R 6 and R 7 , R 7 and R 8 , and R 8 and R 9 may be bonded to each other to form a ring. ]

2.前記一般式(1)において、RまたはR10は下記一般式(2)で表される1価基である化合物。 2. In the general formula (1), R 1 or R 10 is a monovalent group represented by the following general formula (2).

Figure 2020120031
Figure 2020120031

[式中、R11〜R15は、同一でも異なっていてもよく、水素原子、ハロゲン原子、
置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルキル基、
置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルケニル基、
または置換基を有していてもよい炭素原子数6〜36の芳香族炭化水素基を表す。
nは0〜5の整数を表す。
11〜R15の少なくとも1つがフッ素原子で置換されていてもよいものとする。]
[In the formula, R 11 to R 15 may be the same or different and each represents a hydrogen atom, a halogen atom,
A linear or branched alkyl group having 1 to 20 carbon atoms, which may have a substituent,
A linear or branched alkenyl group having 1 to 20 carbon atoms which may have a substituent,
Alternatively, it represents an aromatic hydrocarbon group having 6 to 36 carbon atoms which may have a substituent.
n represents an integer of 0 to 5.
At least one of R 11 to R 15 may be substituted with a fluorine atom. ]

3.前記一般式(2)において、下記一般式(3)または(4)で表される1価基である化合物。 3. A compound which is a monovalent group represented by the following general formula (3) or (4) in the general formula (2).

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

[式中、nは0〜5の整数を表し、mは0〜10の整数を表す。] [In formula, n represents the integer of 0-5 and m represents the integer of 0-10. ]

4.前記一般式(1)において、R〜R10が少なくとも1個のフッ素原子を含有する化合物。 4. In the general formula (1), R 1 to R 10 are compounds having at least one fluorine atom.

5.前記一般式(1)において、R、R、R、Rが少なくとも1個のシアノ基、または置換基を有していてもよい炭素原子数1〜4の直鎖状もしくは分岐状のアルキル基である化合物。 5. In the general formula (1), R 3 , R 4 , R 7 , and R 8 are at least one cyano group, or a linear or branched C1 to C4 optionally substituted group. A compound which is an alkyl group of.

6.25±2℃における芳香族系有機溶媒またはハロゲン系有機溶媒への溶解度が0.02〜5質量%濃度である、前記記載の化合物。 The compound as described above, which has a solubility of 0.02 to 5% by mass in an aromatic organic solvent or a halogen organic solvent at 6.25±2°C.

7.前記化合物を含有する有機半導体用組成物。 7. An organic semiconductor composition containing the compound.

8.前記有機半導体用組成物を用いた有機半導体素子。 8. An organic semiconductor device using the composition for organic semiconductors.

9.移動度が10−3cm/Vs以上である、前記記載の有機半導体素子。 9. The organic semiconductor device as described above, which has a mobility of 10 −3 cm 2 /Vs or more.

10.前記有機半導体素子を用いた有機薄膜トランジスタ。 10. An organic thin film transistor using the organic semiconductor element.

本発明に係るペリレン誘導体化合物は、溶液プロセスに対応した有機溶媒への溶解性を有するn型有機半導体材料を提供することができ、さらに該有機半導体材料を含有する有機半導体用組成物を用いることにより、電子移動度に優れた有機薄膜トランジスタを得ることができる。 INDUSTRIAL APPLICABILITY The perylene derivative compound according to the present invention can provide an n-type organic semiconductor material having solubility in an organic solvent compatible with a solution process, and further uses a composition for an organic semiconductor containing the organic semiconductor material. This makes it possible to obtain an organic thin film transistor having excellent electron mobility.

本発明の一実施形態に係るボトムゲート・ボトムコンタクト型有機薄膜トランジスタの構成を表す概略断面図である。It is a schematic sectional drawing showing the structure of the bottom gate/bottom contact type organic thin-film transistor which concerns on one Embodiment of this invention.

以下、本発明の実施の形態について、詳細に説明する。本発明の一般式(1)で表される化合物は、溶媒に溶解させ、該化合物を含有する有機半導体用組成物を用いて有機半導体層を形成し、さらに有機半導体素子として用いる。なお、本願明細書において、有機半導体用組成物および有機半導体層は、一般式(1)で表される化合物の少なくとも1種を含有し、任意選択的に本願発明に属さない他の半導体用材料等を含む組成物をいう。 Hereinafter, embodiments of the present invention will be described in detail. The compound represented by the general formula (1) of the present invention is dissolved in a solvent, an organic semiconductor layer is formed using a composition for an organic semiconductor containing the compound, and further used as an organic semiconductor element. In the specification of the present application, the organic semiconductor composition and the organic semiconductor layer contain at least one compound represented by the general formula (1), and optionally other semiconductor materials not belonging to the present invention. And the like.

以下に、前記一般式(1)で表される化合物について具体的に説明するが、本発明はこれらに限定されるものではない。なお本願明細書において「〜」を用いて表される数値範囲は「〜」前後に記載される数値を下限値および上限値として含む範囲を意味する。 The compound represented by formula (1) is specifically described below, but the invention is not limited thereto. In the specification of the application, a numerical range represented by “to” means a range including the numerical values before and after “to” as the lower limit value and the upper limit value.

本発明において、「ハロゲン原子」としては、フッ素、塩素、臭素およびヨウ素があげられる。 In the present invention, examples of the “halogen atom” include fluorine, chlorine, bromine and iodine.

一般式(1)において、RまたはR10で表される「置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルキル基」における「炭素原子数1〜20の直鎖状もしくは分岐状のアルキル基」としては、具体的に、メチル基、エチル基、n−プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、イソプロピル基、イソブチル基、s−ブチル基、t−ブチル基、イソオクチル基、t−オクチル基などがあげられる。 In the general formula (1), "1 to 1 carbon atoms in the "linear or branched alkyl group having 1 to 20 carbon atoms which may have a substituent" represented by R 1 or R 10 " Examples of the “20 linear or branched alkyl group” specifically include methyl group, ethyl group, n-propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group. , Isopropyl group, isobutyl group, s-butyl group, t-butyl group, isooctyl group, t-octyl group and the like.

一般式(1)において、RまたはR10で表される「置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルケニル基」における「炭素原子数1〜20の直鎖状もしくは分岐状のアルケニル基」としては、具体的に、ビニル基、1−プロペニル基、アリル基、1−ブテニル基、2−ブテニル基、1−ペンテニル基、1−ヘキセニル基、イソプロペニル基、イソブテニル基、またはこれらのアルケニル基が複数結合した炭素原子数2〜18の直鎖状もしくは分岐状のアルケニル基などをあげることができる。 In the general formula (1), “C 1 to C 1 in “a linear or branched alkenyl group having 1 to 20 carbon atoms which may have a substituent” represented by R 1 or R 10 As the “20 linear or branched alkenyl group”, specifically, a vinyl group, a 1-propenyl group, an allyl group, a 1-butenyl group, a 2-butenyl group, a 1-pentenyl group, a 1-hexenyl group, Examples thereof include an isopropenyl group, an isobutenyl group, and a linear or branched alkenyl group having 2 to 18 carbon atoms in which a plurality of these alkenyl groups are bonded.

一般式(1)において、RまたはR10で表される「置換基を有していてもよい炭素原子数6〜36の芳香族炭化水素基」における「炭素原子数6〜36の芳香族炭化水素基」としては具体的に、フェニル基、ビフェニル基、テルフェニル基、ナフチル基、ビフェニル基、アントラセニル基(アントリル基)、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などをあげることができる。なお、本発明において芳香族炭化水素基には、「縮合多環芳香族基」および「アリール基」が含まれるものとする。 In the general formula (1), the “aromatic group having 6 to 36 carbon atoms” in the “aromatic hydrocarbon group having 6 to 36 carbon atoms which may have a substituent” represented by R 1 or R 10. Specific examples of the “hydrocarbon group” include phenyl group, biphenyl group, terphenyl group, naphthyl group, biphenyl group, anthracenyl group (anthryl group), phenanthryl group, fluorenyl group, indenyl group, pyrenyl group, perylenyl group, fluorane group. Examples thereof include a tenyl group and a triphenylenyl group. In the present invention, the aromatic hydrocarbon group includes "condensed polycyclic aromatic group" and "aryl group".

一般式(1)において、RまたはR10で表される「置換基を有していてもよい炭素原子数2〜36の複素環基」における「炭素原子数2〜36の複素環基」としては具体的に、ピリジル基、ピリミジリニル基、トリアジニル基、チエニル基、フリル基(フラニル基)、ピロリル基、イミダゾリル基、ピラゾリル基、トリアゾリル基、キノリル基、イソキノリル基、ナフチルジニル基、アクリジニル基、フェナントロリニル基、ベンゾフラニル基、ベンゾチエニル基、オキサゾリル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、チアゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボニリル基などをあげることができる。 In the general formula (1), "heterocyclic group having 2 to 36 carbon atoms" in "heterocyclic group having 2 to 36 carbon atoms which may have a substituent" represented by R 1 or R 10. Specific examples thereof include a pyridyl group, a pyrimidinyl group, a triazinyl group, a thienyl group, a furyl group (furanyl group), a pyrrolyl group, an imidazolyl group, a pyrazolyl group, a triazolyl group, a quinolyl group, an isoquinolyl group, a naphthyldinyl group, an acridinyl group, and fe Nantrolinyl group, benzofuranyl group, benzothienyl group, oxazolyl group, indolyl group, carbazolyl group, benzoxazolyl group, thiazolyl group, benzothiazolyl group, quinoxalinyl group, benzimidazolyl group, pyrazolyl group, dibenzofuranyl group, dibenzothienyl group , Carbonylyl group and the like.

一般式(1)において、RまたはR10で表される「置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルキル基」、「置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルケニル基」、「置換基を有していてもよい炭素原子数6〜36の芳香族炭化水素基」または「置換基を有していてもよい炭素原子数2〜36の複素環基」における「置換基」としては、具体的に、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;シアノ基;水酸基;ニトロ基;ニトロソ基;カルボキシル基;
メチルエステル基、エチルエステル基などのカルボン酸エステル基;
メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、s−ブチル基、t−ブチル基、n−ペンチル基、イソペンチル基、n−ヘキシル基、2−エチルヘキシル基、ヘプチル基、オクチル基、イソオクチル基、ノニル基、デシル基などの炭素原子数1〜18の直鎖状もしくは分岐状のアルキル基;
ビニル基、1−プロペニル基、アリル基、1−ブテニル基、2−ブテニル基、1−ペンテニル基、1−ヘキセニル基、イソプロペニル基、イソブテニル基など炭素原子数2〜20の直鎖状もしくは分岐状のアルケニル基;
メトキシ基、エトキシ基、プロポキシ基、t−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基などの炭素原子数1〜18の直鎖状もしくは分岐状のアルコキシ基;
フェニル基、ナフチル基、アントリル基、フェナントリル基、ピレニル基などの炭素原子数6〜30の芳香族炭化水素基;
ピリジル基、ピリミジリニル基、トリアジニル基、チエニル基、フリル基(フラニル基)、ピロリル基、イミダゾリル基、ピラゾリル基、トリアゾリル基、キノリル基、イソキノリル基、ナフチルジニル基、アクリジニル基、フェナントロリニル基、ベンゾフラニル基、ベンゾチエニル基、オキサゾリル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、チアゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボニリル基などの炭素原子数2〜30の複素環基;
ジメチルアミノ基、ジエチルアミノ基、エチルメチルアミノ基、メチルプロピルアミノ基、ジ−t−ブチルアミノ基、ジフェニルアミノ基などの、炭素原子数1〜18の直鎖状もしくは分岐状のアルキル基、または炭素原子数6〜18の芳香族炭化水素基などから選択される置換基を有する炭素原子数0〜18の一置換もしくは二置換アミノ基;
メチルチオ基、エタンチオ基、プロピルチオ基、ジ−t−ブチルチオ基、ヘキサ−5−エン−3−チオ基、フェニルチオ基、ビフェニルチオ基などの炭素原子数1〜18のチオ基;
などをあげることができる。これらの「置換基」は、1つのみ含まれてもよく、複数含まれてもよく、複数含まれる場合は互いに同一でも異なっていてもよい。また、これら「置換基」はさらに前記例示した置換基を有していてもよい。これらの「置換基」は、1つのみ含まれてもよく、複数含まれてもよく、複数含まれる場合は互いに同一でも異なっていてもよい。また、少なくとも1以上のフッ素原子を含有していてもよい。
In the general formula (1), “a linear or branched alkyl group having 1 to 20 carbon atoms which may have a substituent” represented by R 1 or R 10 and “having a substituent An optionally substituted straight-chain or branched alkenyl group having 1 to 20 carbon atoms, "an optionally substituted aromatic hydrocarbon group having 6 to 36 carbon atoms" or "a substituent" As the "substituent" in the "heterocyclic group having 2 to 36 carbon atoms which may have", specifically, a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom; a cyano group; a hydroxyl group; Nitro group; Nitroso group; Carboxyl group;
Carboxylic acid ester groups such as methyl ester group and ethyl ester group;
Methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-pentyl group, isopentyl group, n-hexyl group, 2-ethylhexyl group, A linear or branched alkyl group having 1 to 18 carbon atoms such as a heptyl group, an octyl group, an isooctyl group, a nonyl group and a decyl group;
Vinyl group, 1-propenyl group, allyl group, 1-butenyl group, 2-butenyl group, 1-pentenyl group, 1-hexenyl group, isopropenyl group, isobutenyl group, etc., linear or branched having 2 to 20 carbon atoms Alkenyl group;
A linear or branched alkoxy group having 1 to 18 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group, a t-butoxy group, a pentyloxy group, a hexyloxy group;
Aromatic hydrocarbon group having 6 to 30 carbon atoms such as phenyl group, naphthyl group, anthryl group, phenanthryl group, and pyrenyl group;
Pyridyl group, pyrimidinyl group, triazinyl group, thienyl group, furyl group (furanyl group), pyrrolyl group, imidazolyl group, pyrazolyl group, triazolyl group, quinolyl group, isoquinolyl group, naphthyldinyl group, acridinyl group, phenanthrolinyl group, benzofuranyl Group, benzothienyl group, oxazolyl group, indolyl group, carbazolyl group, benzoxazolyl group, thiazolyl group, benzothiazolyl group, quinoxalinyl group, benzimidazolyl group, pyrazolyl group, dibenzofuranyl group, dibenzothienyl group, carbonylyl group, etc. A heterocyclic group having 2 to 30 atoms;
A linear or branched alkyl group having 1 to 18 carbon atoms, such as dimethylamino group, diethylamino group, ethylmethylamino group, methylpropylamino group, di-t-butylamino group, diphenylamino group, or carbon A mono- or di-substituted amino group having 0 to 18 carbon atoms having a substituent selected from an aromatic hydrocarbon group having 6 to 18 atoms;
A thio group having 1 to 18 carbon atoms such as methylthio group, ethanethio group, propylthio group, di-t-butylthio group, hexa-5-ene-3-thio group, phenylthio group, biphenylthio group;
And so on. Only one of these "substituents" may be contained, or a plurality of them may be contained, and when a plurality of "substituents" are contained, they may be the same or different from each other. Further, these “substituents” may further have the substituents exemplified above. Only one of these "substituents" may be contained, or a plurality of them may be contained, and when a plurality of "substituents" are contained, they may be the same or different from each other. Further, it may contain at least one or more fluorine atoms.

一般式(1)において、RまたはR10は、互いに異なり、置換基を有していてもよい炭素原子数1〜4の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数6〜18の芳香族炭化水素基であり、少なくとも1以上のフッ素原子を含有していることが好ましい。 In the general formula (1), R 1 or R 10 is different from each other and has a linear or branched alkyl group having 1 to 4 carbon atoms which may have a substituent, or a substituent. Is an aromatic hydrocarbon group having 6 to 18 carbon atoms, and preferably contains at least one or more fluorine atoms.

一般式(1)において、R〜Rは「置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルキル基」における「炭素原子数1〜20の直鎖状もしくは分岐状のアルキル基」としては、一般式(1)において、RまたはR10で表される「置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルキル基」と同じものをあげることができる。 In the general formula (1), R 2 to R 9 are each a “direct group having 1 to 20 carbon atoms” in the “linear or branched alkyl group having 1 to 20 carbon atoms which may have a substituent”. The "chain or branched alkyl group" is represented by R 1 or R 10 in the general formula (1), which may be a straight chain or branched chain having 1 to 20 carbon atoms and optionally having a substituent. Same as the "like alkyl group".

一般式(1)において、R〜Rは「置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルケニル基」における「炭素原子数1〜20の直鎖状もしくは分岐状のアルケニル基」としては、一般式(1)において、RまたはR10で表される「置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルケニル基」と同じものをあげることができる。 In the general formula (1), R 2 to R 9 are each a “direct group having 1 to 20 carbon atoms” in the “linear or branched alkenyl group having 1 to 20 carbon atoms which may have a substituent”. The "chained or branched alkenyl group" is represented by R 1 or R 10 in the general formula (1), which may be a linear or branched chain having 1 to 20 carbon atoms which may have a substituent. The same as the "like alkenyl group".

一般式(1)において、R〜Rで表される「置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルキル基」または「置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルケニル基」の「置換基」としては、前記一般式(1)において、RまたはR10で表される「置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルキル基」、「置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルケニル基」、「置換基を有していてもよい炭素原子数6〜36の芳香族炭化水素基」または「置換基を有していてもよい炭素原子数2〜36の複素環基」における「置換基」と同じものをあげることができる。また、少なくとも1以上のフッ素原子を含有していてもよい。 In the general formula (1), “a linear or branched alkyl group having 1 to 20 carbon atoms which may have a substituent” represented by R 2 to R 9 or “having a substituent” As the "substituent" of the linear or branched alkenyl group having 1 to 20 carbon atoms which may be present, a "substituent represented by R 1 or R 10 in the general formula (1) is represented by "A linear or branched alkyl group having 1 to 20 carbon atoms which may have", "a linear or branched alkenyl group having 1 to 20 carbon atoms which may have a substituent"","Substituted" in "Aromatic hydrocarbon group having 6 to 36 carbon atoms which may have a substituent" or "heterocyclic group having 2 to 36 carbon atoms which may have a substituent" The same as "group" can be mentioned. Further, it may contain at least one or more fluorine atoms.

一般式(1)において、R〜Rは上記で述べたとおりの置換基を表すが、RとR、RとR、RとR、RとR、RとR、RとRは、単結合、硫黄原子を介した結合もしくは窒素原子を介した結合によって互いに結合して環を形成していてもよい。 In the general formula (1), R 2 to R 9 represent the substituents as described above, but R 2 and R 3 , R 3 and R 4 , R 4 and R 5 , R 6 and R 7 , R. 7 and R 8 and R 8 and R 9 may be bonded to each other by a single bond, a bond through a sulfur atom or a bond through a nitrogen atom to form a ring.

一般式(1)において、R〜Rは、同一でも異なっていてもよく、水素原子、シアノ基、置換基を有していてもよい炭素原子数1〜5の直鎖状のアルキル基であることが好ましい。 In the general formula (1), R 2 to R 9 may be the same or different and each is a hydrogen atom, a cyano group, or a linear alkyl group having 1 to 5 carbon atoms which may have a substituent. Is preferred.

一般式(1)において、RまたはR10は前記一般式(2)で表されることが好ましい。 In the general formula (1), R 1 or R 10 is preferably represented by the general formula (2).

一般式(2)において、R11〜R15で表される「置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルキル基」における「炭素原子数1〜20の直鎖状もくしは分岐状のアルキル基」としては、一般式(1)において、RまたはR10で表される「置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルキル基」と同じものをあげることができる。 In the general formula (2), “C 1 to C 1 in the “linear or branched alkyl group having 1 to 20 carbon atoms which may have a substituent” represented by R 11 to R 15 ” The “20 linear or branched alkyl group” has 1 to 20 carbon atoms which may have a substituent represented by R 1 or R 10 in the general formula (1). The same thing as the "linear or branched alkyl group" can be mentioned.

一般式(2)において、R11〜R15で表される「置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルケニル基」における「炭素原子数1〜20の直鎖状もしくは分岐状のアルケニル基」としては、一般式(1)において、RまたはR10で表される「置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルケニル基」と同じものをあげることができる。 In the general formula (2), “C 1 to C 1 in “a linear or branched alkenyl group having 1 to 20 carbon atoms which may have a substituent” represented by R 11 to R 15 ” The "20 linear or branched alkenyl group" is represented by R 1 or R 10 in the general formula (1), "a straight chain having 1 to 20 carbon atoms which may have a substituent(s)." The same as the "standard or branched alkenyl group".

一般式(2)において、R11〜R15で表される「置換基を有していてもよい炭素原子数6〜36の芳香族炭化水素基」における「炭素原子数6〜36の芳香族炭化水素基」としては、一般式(1)において、RまたはR10で表される「置換基を有していてもよい炭素原子数6〜36の芳香族炭化水素基」と同じものをあげることができる。 In the general formula (2), “aromatic group having 6 to 36 carbon atoms” in “aromatic hydrocarbon group having 6 to 36 carbon atoms which may have a substituent” represented by R 11 to R 15 As the "hydrocarbon group", the same as the "aromatic hydrocarbon group having 6 to 36 carbon atoms which may have a substituent" represented by R 1 or R 10 in the general formula (1). I can give you.

一般式(2)において、R11〜R15は、水素原子、フッ素原子、および置換基を有していてもよい炭素原子数1〜5の直鎖状のアルキル基であることが好ましく、置換基を有していてもよい炭素原子数1〜5の直鎖状のアルキル基は少なくとも1のフッ素原子を含有していることが好ましい。また、nは0〜3の整数であることが好ましい。 In the general formula (2), R 11 to R 15 are preferably a hydrogen atom, a fluorine atom, and a linear alkyl group having 1 to 5 carbon atoms which may have a substituent, and a substituent. The linear alkyl group having 1 to 5 carbon atoms which may have a group preferably contains at least one fluorine atom. Further, n is preferably an integer of 0 to 3.

一般式(2)において、前記一般式(3)および(4)で表される1価基であることが好ましい。 In the general formula (2), the monovalent group represented by the general formulas (3) and (4) is preferable.

一般式(3)および(4)において、nは0〜3の整数であることが好ましく、mは0〜6の整数であることが好ましい。 In the general formulas (3) and (4), n is preferably an integer of 0 to 3, and m is preferably an integer of 0 to 6.

一般式(1)で表される本発明の化合物の具体例を以下に示すが、本発明はこれらに限定されるものではない。また、以下の例示化合物は水素原子、炭素原子等を一部省略して記載しており、存在し得る異性体のうちの一例を示したものであり、その他すべての異性体を包含するものとする。また、それぞれ2種以上の異性体の混合物であってもよい。 Specific examples of the compound of the present invention represented by the general formula (1) are shown below, but the present invention is not limited thereto. Further, the following exemplary compounds are described with a part of hydrogen atoms, carbon atoms and the like omitted, and show one example of isomers that may exist, and include all other isomers. To do. Further, it may be a mixture of two or more isomers.

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

Figure 2020120031
Figure 2020120031

一般式(1)で表される本発明のペリレン誘導体化合物は、J.Org.Chem.2014,79,P.6655−6662(非特許文献2)等公知の方法によって合成することができる。ペリレンテトラカルボン酸ジ無水物を、片側のみエステル化し、該当するアミン類と反応させた後、エステル部分を閉環し、再び該当するアミン類と反応させることで、前記一般式(1)で表されるペリレン誘導体を得ることができる。 The perylene derivative compound of the present invention represented by the general formula (1) is described in J. Org. Chem. 2014, 79, P.I. It can be synthesized by a known method such as 6655-6662 (Non-Patent Document 2). Perylene tetracarboxylic acid dianhydride is esterified on one side only and reacted with the corresponding amines, then the ester portion is closed and again reacted with the corresponding amines to obtain the compound represented by the general formula (1). Can be obtained.

一般式(1)で表されるペリレン誘導体化合物の精製方法としては、カラムクロマトグラフィーによる精製、シリカゲル、活性炭、活性白土等による吸着精製、溶媒による再結晶や晶析等により行うことができる。或いはこれらの方法を併用して、純度を高めた化合物を使用することが有効である。
また、これらの化合物の同定は、核磁気共鳴分析(NMR)により行うことができる。
As a method for purifying the perylene derivative compound represented by the general formula (1), purification by column chromatography, adsorption purification by silica gel, activated carbon, activated clay or the like, recrystallization by a solvent, crystallization and the like can be performed. Alternatively, it is effective to use a compound with increased purity by combining these methods.
Further, the identification of these compounds can be performed by nuclear magnetic resonance analysis (NMR).

本発明における前記一般式(1)で表される化合物は、溶媒への溶解性が向上する傾向にある。本発明による前記一般式(1)で表される化合物の溶解性は、透明サンプルチューブに秤量し、濃度が0.1質量%となるようにトルエンまたはクロロホルム溶媒を添加し、室温下(20〜27℃)にて数時間撹拌後、目視にて溶解度(または飽和溶解度)を評価している。溶解度は0.01〜10質量%濃度であることが好ましく、0.02〜5質量%濃度であることがさらに好ましい。 The compound represented by the general formula (1) in the present invention tends to have improved solubility in a solvent. The solubility of the compound represented by the general formula (1) according to the present invention is measured in a transparent sample tube, and a toluene or chloroform solvent is added so that the concentration becomes 0.1% by mass, and the room temperature (20- After stirring at 27° C. for several hours, the solubility (or saturated solubility) is visually evaluated. The solubility is preferably 0.01 to 10 mass% concentration, and more preferably 0.02 to 5 mass% concentration.

本発明のペリレン誘導体化合物は有機半導体材料として用いることができる。本発明において、上記有機半導体材料と溶媒を含有する組成物を、有機半導体用組成物という。有機半導体用組成物は、前記一般式(1)で表される化合物の1種または2種以上を含み、任意選択的に本発明に属さない他の化合物を含んでいてもよい。また、溶媒に溶解した溶液であっても、上記有機半導体材料が分散した分散液であってもよく、分散液中に上記有機半導体材料が部分的に残存している状態も含むものとする。本発明の有機半導体用組成物としては、溶液であることが好ましい。 The perylene derivative compound of the present invention can be used as an organic semiconductor material. In the present invention, a composition containing the organic semiconductor material and a solvent is referred to as an organic semiconductor composition. The composition for organic semiconductor contains one or more compounds represented by the general formula (1), and may optionally contain other compounds not belonging to the present invention. Further, it may be a solution dissolved in a solvent or a dispersion liquid in which the organic semiconductor material is dispersed, and a state in which the organic semiconductor material partially remains in the dispersion liquid is also included. The composition for organic semiconductor of the present invention is preferably a solution.

以上説明した本発明のペリレン誘導体化合物は、例えば薄膜化することで、電界効果型トランジスタ、発光ダイオードなどのダイオード、光電変換素子、有機薄膜太陽電池等の有機半導体素子の有機半導体層を構成する有機半導体材料として好適に用いることができる。本発明においては、有機薄膜トランジスタとして用いることが好ましい。 The perylene derivative compound of the present invention described above is, for example, a thin film to form an organic semiconductor layer of a field effect transistor, a diode such as a light emitting diode, a photoelectric conversion element, an organic semiconductor element such as an organic thin film solar cell. It can be preferably used as a semiconductor material. In the present invention, it is preferably used as an organic thin film transistor.

本発明のペリレン誘導体化合物による有機半導体材料を含む薄膜は、真空蒸着法等のドライプロセスにより形成することもできるが、溶液プロセスによっても安定かつ均一な薄膜を形成することができる。本発明での溶液プロセスによる製膜とは、上記有機半導体と溶媒からなる有機半導体用組成物を用いて製膜する方法をさす。具体的には、ドロップキャスト法、ディップコート法、ダイコーター法、ロールコーター法、バーコーター法、スピンコート法などの塗布法、インクジェット法、スクリーン印刷法、グラビア印刷法、フレキソグラフィー印刷法、オフセット印刷法、マイクロコンタクト印刷法などの各種印刷法、Langmuir−Blodgett(LB)法などの方法である。上記のように製膜後、加熱して溶媒を除去することによっても薄膜を形成することができる。本発明の有機半導体薄膜はドロップキャスト法またはスピンコート法、インクジェト法での形成が好ましい。 Although the thin film containing the organic semiconductor material of the perylene derivative compound of the present invention can be formed by a dry process such as a vacuum deposition method, a stable and uniform thin film can be formed by a solution process. The film formation by the solution process in the present invention refers to a method of forming a film by using the composition for organic semiconductor which comprises the above organic semiconductor and a solvent. Specifically, drop casting method, dip coating method, die coater method, roll coater method, bar coater method, spin coat method and other coating methods, ink jet method, screen printing method, gravure printing method, flexographic printing method, offset Various printing methods such as a printing method and a microcontact printing method, and a method such as a Langmuir-Blodgett (LB) method. After forming the film as described above, the thin film can also be formed by heating to remove the solvent. The organic semiconductor thin film of the present invention is preferably formed by a drop casting method, a spin coating method, or an inkjet method.

本発明において、上記有機半導体用組成物に用いる溶媒としては、ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、o−ジクロロベンゼン、m−ジクロロベンゼン、p−ジクロロベンゼン、ニトロベンゼン等の芳香族系有機溶媒;ジクロロメタン、クロロホルム、1,2−ジクロロエタン、1,1,2−トリクロロエタン、ジクロロメタン等のハロゲン系有機溶媒;ベンゾニトリル、アセトニトリル等のニトリル系溶媒;2−ブタノン等のケトン系溶媒;テトラヒドロフラン、ジオキサン、ジイソプロピルエーテル、c−プロピルメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル等のエーテル系溶媒;酢酸エチル、プロピレングリコールモノメチルエーテルアセテート等のエステル系溶媒;メタノール、イソプロパノール、n−ブタノール、プロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、シクロヘキサノール、2−n−ブトキシエタノール等のアルコール系溶媒;ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド等の非プロトン性極性溶媒等があげられるが、これらに限定されない。また、上記溶媒は、単独でも2種以上を混合して使用してもよい。特に、芳香族系有機溶媒およびハロゲン系有機溶媒を使用することが好ましい。 In the present invention, the solvent used in the composition for organic semiconductors is an aromatic organic solvent such as benzene, toluene, xylene, mesitylene, chlorobenzene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene or nitrobenzene; Halogen-based organic solvents such as dichloromethane, chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane, dichloromethane; nitrile-based solvents such as benzonitrile and acetonitrile; ketone-based solvents such as 2-butanone; tetrahydrofuran, dioxane, diisopropyl Ether-based solvents such as ether, c-propyl methyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether and propylene glycol monomethyl ether; ester-based solvents such as ethyl acetate and propylene glycol monomethyl ether acetate; methanol, isopropanol, n-butanol, propylene Alcoholic solvents such as glycol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, cyclohexanol, 2-n-butoxyethanol; aprotic substances such as dimethylformamide, dimethylacetamide, dimethylsulfoxide, etc. Examples thereof include polar solvents, but are not limited thereto. The above solvents may be used alone or in combination of two or more. In particular, it is preferable to use an aromatic organic solvent and a halogen organic solvent.

本発明においては、前記有機半導体用組成物中の前記一般式(1)で表される化合物の含有量は、特に限定されないが、0.01〜20質量%濃度であることが好ましく、0.02〜10質量%濃度であることがさらに好ましい。 In the present invention, the content of the compound represented by the general formula (1) in the composition for organic semiconductor is not particularly limited, but is preferably 0.01 to 20% by mass, It is more preferable that the concentration is from 02 to 10% by mass.

本発明の有機半導体素子の一例として、有機薄膜トランジスタについて説明する。
有機薄膜トランジスタは、一般的に、基板と、有機半導体層と、この有機半導体層にゲート絶縁層を介して積層されたゲート電極と、有機半導体層を介して対向配置されたソース電極及びドレイン電極とを備えて構成されている。本発明においては、前記有機半導体層として、前記一般式(1)で表されるペリレン誘導体化合物を含む有機半導体薄膜を用いる。有機薄膜トランジスタの形態は特に限定されるものではなく、ボトムゲート・ボトムコンタクト型、ボトムゲート・トップコンタクト型、トップゲート・ボトムコンタクト型、トップゲート・トップコンタクト型のいずれの形態を用いてもよく、それぞれの形態に応じて上記ゲート電極、ゲート絶縁層、ソース電極、ドレイン電極及び有機半導体層を適宜配置すればよい。
An organic thin film transistor will be described as an example of the organic semiconductor element of the present invention.
An organic thin film transistor generally includes a substrate, an organic semiconductor layer, a gate electrode stacked on the organic semiconductor layer via a gate insulating layer, and a source electrode and a drain electrode arranged to face each other via the organic semiconductor layer. Is configured. In the present invention, an organic semiconductor thin film containing the perylene derivative compound represented by the general formula (1) is used as the organic semiconductor layer. The form of the organic thin film transistor is not particularly limited, and any of bottom gate/bottom contact type, bottom gate/top contact type, top gate/bottom contact type, top gate/top contact type may be used. The gate electrode, the gate insulating layer, the source electrode, the drain electrode, and the organic semiconductor layer may be appropriately arranged according to each form.

本発明の有機薄膜トランジスタの形態について、図面の説明をする。
図1は有機薄膜トランジスタの一形態を示す模式的断面図であり、ボトムゲート・ボトムコンタクト構造をとる。この有機薄膜トランジスタの形態においては、基板1上にゲート電極2が設けられ、そのゲート電極上にゲート絶縁膜3が積層されており、その上に所定の間隔で形成されたソース電極6およびドレイン電極4が形成されており、さらにその上に有機半導体層5が積層されている。
The form of the organic thin film transistor of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing one form of an organic thin film transistor, which has a bottom gate/bottom contact structure. In the form of this organic thin film transistor, a gate electrode 2 is provided on a substrate 1, a gate insulating film 3 is laminated on the gate electrode, and a source electrode 6 and a drain electrode formed on the gate insulating film 3 at predetermined intervals. 4 is formed, and the organic semiconductor layer 5 is further laminated thereon.

上記構成の有機薄膜トランジスタの素子では、有機半導体層がチャネル領域を形成しており、ゲート電極の電圧によって、ソース電極とドレイン電極間に流れる電流が制御され、オンオフ動作をする。 In the element of the organic thin film transistor having the above structure, the organic semiconductor layer forms the channel region, and the current flowing between the source electrode and the drain electrode is controlled by the voltage of the gate electrode to perform on/off operation.

移動度とは、本発明の素子において、電子または正孔のキャリアの移動のし易さを示し、電子移動度とは固体物質中の電子の移動のし易さを示す量である。電界Eにおけるキャリア速度vは下式(a−1)で表され、
v=μE (a−1)
比例係数μが移動度(cm/V・s)である。半導体において移動度は抵抗率に反比例するため、移動度は物質の電気的特性を決める重要なパラメータである。
The mobility refers to the ease with which carriers of electrons or holes move in the device of the present invention, and the electron mobility refers to the amount indicating the ease with which electrons in a solid substance move. The carrier velocity v in the electric field E is represented by the following formula (a-1),
v=μE (a-1)
The proportionality coefficient μ is the mobility (cm 2 /V·s). Since mobility is inversely proportional to resistivity in semiconductors, mobility is an important parameter that determines the electrical properties of materials.

本発明の有機半導体素子または有機薄膜トランジスタは、電子移動度により伝達特性を評価できる。電子移動度は有機薄膜トランジスタにおいて、大きな電流を得られるなど、大きな値であることが重要である。電子移動度は0.001cm/V・s以上であることが望ましい。 The transfer characteristics of the organic semiconductor element or organic thin film transistor of the present invention can be evaluated by electron mobility. It is important that the electron mobility has a large value such that a large current can be obtained in the organic thin film transistor. The electron mobility is preferably 0.001 cm 2 /V·s or more.

本発明において有機半導体層を溶液プロセスで形成する場合は、上記有機半導体用組成物を用いる。有機半導体層を溶液プロセスにより形成後、ホットプレートやオーブン等の熱処理を行うことが好ましい場合がある。熱処理温度に関しては、特に制限するものではないが、室温(20〜27℃)〜200℃程度で実施する。 In the present invention, when the organic semiconductor layer is formed by a solution process, the above composition for organic semiconductor is used. After forming the organic semiconductor layer by a solution process, it may be preferable to perform heat treatment with a hot plate, an oven, or the like. The heat treatment temperature is not particularly limited, but is performed at room temperature (20 to 27°C) to about 200°C.

〈基板〉
本発明の有機薄膜トランジスタなどの有機半導体素子に使用する基板としては、特に限定するものではないが、一般にはガラス、石英、シリコン、ポリイミド、ポリエステル、ポリエチレン、ポリスチレン、ポリプロピレンおよびポリカーボネートなどのプラスチック基板などを用いることができる。
<substrate>
The substrate used for the organic semiconductor element such as the organic thin film transistor of the present invention is not particularly limited, but generally glass, quartz, silicon, polyimide, polyester, polyethylene, polystyrene, polypropylene and a plastic substrate such as polycarbonate and the like. Can be used.

〈電極〉
有機薄膜トランジスタの電極に用いる材料としては、導電性の材料であれば用いることができる。好ましくは有機半導体材料への電子注入障壁が小さい材料が望ましい。
<electrode>
As a material used for the electrodes of the organic thin film transistor, any conductive material can be used. A material having a small electron injection barrier to the organic semiconductor material is preferable.

各電極の形成方法としては、特に限定するものではないが、蒸着やスパッタリングなどのドライ製膜、印刷による方法を用いて形成することができ、ドライ製膜の場合はフォトリソグラフィーやエッチング処理により、所望の形状にパターニングでき、メタルマスクを用いてパターニングすることもできる。 The method for forming each electrode is not particularly limited, but it can be formed by a dry film formation method such as vapor deposition or sputtering, a method by printing, and in the case of a dry film formation, by photolithography or etching treatment, It can be patterned into a desired shape and can also be patterned using a metal mask.

ソースおよびドレイン電極の膜厚は、特に限定するものではないが、数nm〜数μmの範囲に設定することが好ましい。なお、ソースおよびドレイン電極の間隔は、数百nm〜数百μmの範囲に設定することが好ましい。 Although the film thickness of the source and drain electrodes is not particularly limited, it is preferably set in the range of several nm to several μm. The distance between the source and drain electrodes is preferably set in the range of several hundred nm to several hundred μm.

〈ゲート電極〉
ゲート電極を構成する材料としては、例えば、pドープシリコン、nドープシリコン、インジウム・錫酸化物(ITO)、ドーピングしたポリチオフェンやポリアニリン系等の導電性高分子、金,銀,白金,アルミニウム、クロム等の金属等があげられ、本発明においては、アルミニウムを用いるのが好ましい。
<Gate electrode>
Examples of the material forming the gate electrode include p-doped silicon, n-doped silicon, indium tin oxide (ITO), conductive polymers such as doped polythiophene and polyaniline, gold, silver, platinum, aluminum and chromium. And the like, and aluminum is preferably used in the present invention.

〈絶縁層〉
ゲート絶縁層を構成する材料としては、例えば、酸化シリコン,窒化シリコン,酸化アルミニウム,窒化アルミニウム,酸化タンタル等の無機化合物、ポリビニルアルコール、ポリビニルフェノール、ポリメチルメタクリレート、シアノエチルプルラン、パリレン(日本パリレン合同会社 登録商標)など有機高分子化合物を用いることができる。
<Insulation layer>
Examples of the material forming the gate insulating layer include inorganic compounds such as silicon oxide, silicon nitride, aluminum oxide, aluminum nitride, and tantalum oxide, polyvinyl alcohol, polyvinyl phenol, polymethyl methacrylate, cyanoethyl pullulan, parylene (Nippon Parylene LLC). Organic polymer compounds such as registered trademark) can be used.

ゲート絶縁膜の膜厚は、特に限定するものではないが、数nm〜数μmの範囲に設定することが好ましい。 The thickness of the gate insulating film is not particularly limited, but it is preferably set in the range of several nm to several μm.

〈ソース電極、ドレイン電極〉
ソース電極及びおよびドレイン電極を構成する材料としては、例えば、金、銀、白金、クロム、アルミニウム、インジウム、アルカリ金属(Li,Na,K,Rb,Cs)、アルカリ土類金属(Mg,Ca,Sr,Ba)等があげられる。本発明においては金を用いるのが好ましい。
<Source electrode, drain electrode>
Examples of the material forming the source electrode and the drain electrode include gold, silver, platinum, chromium, aluminum, indium, alkali metals (Li, Na, K, Rb, Cs), alkaline earth metals (Mg, Ca, Sr, Ba) and the like. In the present invention, it is preferable to use gold.

〈有機半導体層〉
本発明の有機薄膜トランジスタは、有機半導体層に前記一般式(1)で表される化合物を含有してなるものである。
有機半導体層には、本発明のペリレン誘導体化合物に加え、例えば、フラーレンおよびその誘導体や、フッ素やニトリル等の電子吸引基で置換された、ナフタレン、ナフタレンジイミド、アントラセン、テトラセン、ペリレン、ペンタセン、ピレン、コロネン、クリセン、デカシクレン、ビオランスレン等の多環芳香族分子およびこれらの誘導体、トリフェニレン、チオフェンオリゴマー、ポリチオフェン等の芳香環オリゴマー、ポリマーおよびこれらの誘導体、フタロシアニン、テトラチアフルバレン、テトラチオテトラセンおよびこれらの誘導体等の、電子欠乏性の有機半導体材料を適切な量で併用してもよい。また、ポリスチレン、ポリビニルフェノールなどのポリマー材料を適切な量添加しても良い。
<Organic semiconductor layer>
The organic thin film transistor of the present invention comprises an organic semiconductor layer containing the compound represented by the general formula (1).
In the organic semiconductor layer, in addition to the perylene derivative compound of the present invention, for example, fullerene and its derivative, or naphthalene, naphthalenediimide, anthracene, tetracene, perylene, pentacene, pyrene substituted with an electron withdrawing group such as fluorine or nitrile. , Polycyclic aromatic molecules such as coronene, chrysene, decacyclene, and violanthrene, and their derivatives, triphenylene, thiophene oligomers, aromatic ring oligomers such as polythiophene, polymers and their derivatives, phthalocyanine, tetrathiafulvalene, tetrathiotetracene and their derivatives An electron-deficient organic semiconductor material such as a derivative may be used together in an appropriate amount. Further, a polymer material such as polystyrene or polyvinylphenol may be added in an appropriate amount.

〈封止〉
本発明の有機薄膜トランジスタは、大気中の酸素や水分などの影響を軽減する目的で、有機薄膜トランジスタの外周面の全面または一部にガスバリア層を設けることができる。ガスバリア層を形成する材料としては、ポリビニルアルコール、エチレン−ビニルアルコール、共重合体、ポリ塩化ビニル、ポリテトラフルオロエチレンなどがあげられる。
<Sealing>
In the organic thin film transistor of the present invention, a gas barrier layer can be provided on the whole or a part of the outer peripheral surface of the organic thin film transistor for the purpose of reducing the influence of oxygen and moisture in the atmosphere. Examples of the material forming the gas barrier layer include polyvinyl alcohol, ethylene-vinyl alcohol, copolymers, polyvinyl chloride, polytetrafluoroethylene and the like.

以下、本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、合成実施例において得られた化合物の同定は、H−NMR(日本電子株式会社製核磁気共鳴装置、JNM−ECA−600)により行った。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to the following Examples. The compounds obtained in the synthesis examples were identified by 1 H-NMR (Nuclear Magnetic Resonance Device, JNM-ECA-600 manufactured by JEOL Ltd.).

[合成実施例1]化合物(A-1)の合成
1,7−ジブロモペリレン−3,4,9,10−テトラカルボン酸ジブチルエステルモノ無水物の合成を、J.Org.Chem.2014,79,P.6655−6662に記載の方法にて行い、下記式(5)で表される1,7−ジブロモペリレン−3,4,9,10−テトラカルボン酸ジブチルエステルモノ無水物を10g得た。(工程1)
[Synthesis Example 1] Synthesis of compound (A-1) The synthesis of 1,7-dibromoperylene-3,4,9,10-tetracarboxylic acid dibutyl ester monoanhydride was performed according to the method described in J. Org. Chem. 2014, 79, P.I. By the method described in 6655-6662, 10 g of 1,7-dibromoperylene-3,4,9,10-tetracarboxylic acid dibutyl ester monoanhydride represented by the following formula (5) was obtained. (Process 1)

Figure 2020120031
Figure 2020120031

窒素置換した反応容器に上記式(5)で表される1,7−ジブロモペリレン−3,4,9,10−テトラカルボン酸ジブチルエステルモノ無水物(7.0g)、ヘプタフルオロブチルアミン(4.5g)、酢酸 (3.4g)のN−メチル−2−ピロリドン溶液(45mL)を窒素気流下、60℃にて5時間撹拌した。反応液を室温まで冷却後、水(250mL)に注加し30分撹拌後、濾過して粗生成物を得た。粗生成物をカラムクロマトグラフィー(担体:シリカゲル、展開溶液:トルエン)で精製後、減圧乾燥を行い、下記式(6)で表される1,7−ジブロモペリレン−3,4,9,10−テトラカルボン酸ジブチルエステルモノイミド(収量:3.5g、収率:50%)を得た。(工程2) In a reaction vessel purged with nitrogen, 1,7-dibromoperylene-3,4,9,10-tetracarboxylic acid dibutyl ester monoanhydride (7.0 g) represented by the above formula (5) and heptafluorobutylamine (4. 5 g) and an N-methyl-2-pyrrolidone solution (45 mL) of acetic acid (3.4 g) were stirred at 60° C. for 5 hours under a nitrogen stream. The reaction solution was cooled to room temperature, poured into water (250 mL), stirred for 30 minutes and then filtered to obtain a crude product. The crude product is purified by column chromatography (carrier: silica gel, developing solution: toluene) and then dried under reduced pressure to give 1,7-dibromoperylene-3,4,9,10- represented by the following formula (6). Tetracarboxylic acid dibutyl ester monoimide (yield: 3.5 g, yield: 50%) was obtained. (Process 2)

Figure 2020120031
Figure 2020120031

窒素置換した反応容器に、上記式(6)表される1,7−ジブロモペリレン−3,4,9,10−テトラカルボン酸ジブチルエステルモノイミド(3.5g)、p−トルエンスルホン酸一水和物(3.5g)のトルエン溶液(140mL)を窒素気流下、90℃にて20時間撹拌した。反応液を室温まで冷却後、濾過して得られた粗生成物を、トルエンおよび水で洗浄した。その後減圧乾燥し、下記式(7)で表される1,7−ジブロモペリレン−3,4,9,10−テトラカルボン酸モノ無水物モノイミド(収量:2.4g、収率:83%)を得た。(工程3) In a reaction vessel purged with nitrogen, 1,7-dibromoperylene-3,4,9,10-tetracarboxylic acid dibutyl ester monoimide (3.5 g) represented by the above formula (6) and p-toluenesulfonic acid monohydrate were added. A toluene solution (140 mL) of the solvate (3.5 g) was stirred at 90° C. for 20 hours under a nitrogen stream. The reaction solution was cooled to room temperature and filtered to obtain a crude product, which was washed with toluene and water. Then, it is dried under reduced pressure to obtain 1,7-dibromoperylene-3,4,9,10-tetracarboxylic acid monoanhydride monoimide represented by the following formula (7) (yield: 2.4 g, yield: 83%). Obtained. (Process 3)

Figure 2020120031
Figure 2020120031

窒素置換した反応容器に、上記式(7)表される1,7−ジブロモペリレン−3,4,9,10−テトラカルボン酸モノ無水物モノイミド(1.0g)、ペンタフルオロアニリン(750mg)、酢酸(431μL)のN−メチル−2−ピロリドン溶液(6mL)を窒素気流下、120℃にて18時間撹拌した。反応液を室温まで冷却後、2N塩酸水(100mL)に注加し30分撹拌後、濾過して粗生成物を得た。クロロホルム溶解分をカラムクロマトグラフィー(担体:シリカゲル、展開溶液:トルエン)で精製後、減圧乾燥を行い、下記式(8)で表される1,7−ジブロモペリレン−3,4,9,10−テトラカルボン酸ジイミド(収量:165mg、収率:14%)を得た。(工程4) In a reaction vessel purged with nitrogen, 1,7-dibromoperylene-3,4,9,10-tetracarboxylic acid monoanhydride monoimide (1.0 g) represented by the above formula (7), pentafluoroaniline (750 mg), A solution of acetic acid (431 μL) in N-methyl-2-pyrrolidone (6 mL) was stirred at 120° C. for 18 hours under a nitrogen stream. The reaction solution was cooled to room temperature, poured into 2N hydrochloric acid water (100 mL), stirred for 30 minutes and then filtered to obtain a crude product. Chloroform-dissolved components were purified by column chromatography (carrier: silica gel, developing solution: toluene) and then dried under reduced pressure to give 1,7-dibromoperylene-3,4,9,10- represented by the following formula (8). Tetracarboxylic acid diimide (yield: 165 mg, yield: 14%) was obtained. (Process 4)

Figure 2020120031
Figure 2020120031

窒素置換した反応容器に、上記式(8)表される1,7−ジブロモペリレン−3,4,9,10−テトラカルボン酸ジイミド(200mg)、シアン化銅(359mg)、N,N−ジメチルホルムアミド溶液(10mL)を窒素気流下、90℃にて8時間撹拌した。室温まで冷却後、反応液を水(200mL)に注加し30分撹拌後、濾過して粗生成物を得た。粗生成物をクロロホルムに添加し、溶解分をカラムクロマトグラフィー(担体:シリカゲル、展開溶液:クロロホルム)で精製後、減圧乾燥を行い、目的の化合物を赤紫色固体(収量:130mg,収率:74%)として得た。(工程5) In a reaction vessel purged with nitrogen, 1,7-dibromoperylene-3,4,9,10-tetracarboxylic acid diimide represented by the above formula (8) (200 mg), copper cyanide (359 mg), N,N-dimethyl was used. The formamide solution (10 mL) was stirred under a nitrogen stream at 90°C for 8 hours. After cooling to room temperature, the reaction solution was poured into water (200 mL), stirred for 30 minutes and then filtered to obtain a crude product. The crude product was added to chloroform, and the dissolved component was purified by column chromatography (carrier: silica gel, developing solution: chloroform) and dried under reduced pressure to give the target compound as a reddish purple solid (yield: 130 mg, yield: 74). %). (Process 5)

得られた赤紫色固体のNMR分析を行い、以下の8個の水素のシグナルを検出し、(A−1)で表される構造と同定した。 The obtained red-purple solid was subjected to NMR analysis, and the following eight hydrogen signals were detected, and the structure was identified as (A-1).

H−NMR(600MHz、CDCl):δ(ppm)=5.03−5.08(2H)、9.01−9.04(2H)、9.07(1H)、9.08(1H)、9.75−9.77(2H)。 1 H-NMR (600 MHz, CDCl 3 ): δ (ppm)=5.03 to 5.08 (2H), 9.01 to 9.04 (2H), 9.07 (1H), 9.08 (1H ), 9.75-9.77 (2H).

Figure 2020120031
Figure 2020120031

[合成実施例2]化合物(A-2)の合成
合成実施例1におけるペンタフルオロアニリンの代わりに、ペンタフルオロフェネチルアミンを用いた以外は合成実施例1と同様に合成し、目的の化合物を赤紫色固体(230mg,収率31%)として得た。
[Synthesis Example 2] Synthesis of compound (A-2) Synthesis was performed in the same manner as in Synthesis Example 1 except that pentafluorophenethylamine was used instead of pentafluoroaniline in Synthesis Example 1, and the target compound was reddish purple. Obtained as a solid (230 mg, yield 31%).

得られた赤紫色固体のNMR分析を行い、以下の12個の水素のシグナルを検出し、(A−2)で表される構造と同定した。 NMR analysis of the obtained reddish purple solid was performed, the following 12 hydrogen signals were detected, and the structure was identified as (A-2).

H−NMR(600MHz、CDCl):δ(ppm)=3.26(2H)、4.52−4.55(2H)、5.02−5.07(2H)、8.91−9.06(4H)、9.71−9.75(2H)。 1 H-NMR (600 MHz, CDCl 3 ): δ (ppm)=3.26 (2H), 4.52-4.55 (2H), 5.02-5.07 (2H), 8.91-9 0.06 (4H), 9.71-9.75 (2H).

Figure 2020120031
Figure 2020120031

[合成実施例3]化合物(A-3)の合成
合成実施例1におけるペンタフルオロアニリンの代わりに、4−フルオロアニリンを用いた以外は合成実施例1と同様に合成し、目的の化合物を赤紫色固体(140g,収率81%)として得た。
[Synthesis Example 3] Synthesis of compound (A-3) Synthesis was performed in the same manner as in Synthesis Example 1 except that 4-fluoroaniline was used instead of pentafluoroaniline in Synthesis Example 1, and the target compound was red. Obtained as a purple solid (140 g, yield 81%).

得られた赤紫色固体のNMR分析を行い、以下の12個の水素のシグナルを検出し、(A−3)で表される構造と同定した。 NMR analysis of the obtained reddish-purple solid was performed, the following 12 hydrogen signals were detected, and the structure was identified as (A-3).

H−NMR(600MHz、CDCl):δ(ppm)=5.03−5.08(2H)、7.28−7.34(4H)、9.00−9・02(2H)、9.04(1H)、9.06(1H)、9.75−9.77(2H)。 1 H-NMR (600 MHz, CDCl 3 ): δ (ppm)=5.03 to 5.08 (2H), 7.28 to 7.34 (4H), 9.00 to 9.02 (2H), 9 0.04 (1H), 9.06 (1H), 9.75-9.77 (2H).

Figure 2020120031
Figure 2020120031

[合成実施例4]化合物(A-4)の合成
合成実施例1におけるペンタフルオロアニリンの代わりに4−(ノナフルオロブチル)アニリンを用いた以外は合成実施例1と同様に合成し、目的の化合物を赤紫色固体(741mg,収率98%)として得た。
[Synthesis Example 4] Synthesis of compound (A-4) Synthesis was performed in the same manner as in Synthesis Example 1 except that 4-(nonafluorobutyl)aniline was used instead of pentafluoroaniline in Synthesis Example 1, The compound was obtained as a red-purple solid (741 mg, yield 98%).

得られた赤紫色固体のNMR分析を行い、以下の12個の水素のシグナルを検出し、(A-4)で表される構造と同定した。 NMR analysis of the obtained reddish purple solid was performed, and the following 12 hydrogen signals were detected, and the structure was identified as (A-4).

H−NMR(600MHz、CDCl):δ(ppm)=5.03−5.08(2H)、
7.52−7.54(2H)、7.84−7.85(2H)、9.00−9.06(4H)、9.76−9.78(2H)。
1 H-NMR (600 MHz, CDCl 3 ): δ (ppm)=5.03 to 5.08 (2H),
7.52-7.54 (2H), 7.84-7.85 (2H), 9.00-9.06 (4H), 9.76-9.78 (2H).

Figure 2020120031
Figure 2020120031

[合成実施例5]化合物(A-5)の合成
合成実施例1におけるペンタフルオロアニリンの代わりに、4−(トリフルオロメチル)ベンジルアミンを用いた以外は合成実施例1と同様に合成し、目的の化合物を赤紫色固体(590mg,収率80%)として得た。
[Synthesis Example 5] Synthesis of compound (A-5) Synthesis was performed in the same manner as in Synthesis Example 1 except that 4-(trifluoromethyl)benzylamine was used in place of pentafluoroaniline in Synthesis Example 1, The target compound was obtained as a reddish purple solid (590 mg, yield 80%).

得られた赤紫色固体のNMR分析を行い、以下の14個の水素のシグナルを検出し、(A−5)で表される構造と同定した。 NMR analysis of the obtained reddish purple solid was performed, and the following 14 hydrogen signals were detected, and the structure was identified as (A-5).

H−NMR(600MHz、CDCl):δ(ppm)=5.02−5.07(2H)、
5.46−5.48(2H)、7.60−7.61(2H)、7.68−7.70(2H)、8.90−9.09(4H)、9.71−9.74(2H)。
1 H-NMR (600 MHz, CDCl 3 ): δ (ppm)=5.02 to 5.07 (2H),
5.46-5.48 (2H), 7.60-7.61 (2H), 7.68-7.70 (2H), 8.90-9.09 (4H), 9.71-9. 74 (2H).

Figure 2020120031
Figure 2020120031

[合成実施例6](A-6)の合成
合成実施例1におけるヘプタフルオロブチルアミンの代わりにウンデカフルオロヘキシルアミンを用いた以外は合成実施例1と同様に合成し、目的の化合物を赤紫色固体(723mg,収率69%)として得た。
[Synthesis Example 6] Synthesis of (A-6) Synthesis was performed in the same manner as in Synthesis Example 1 except that undecafluorohexylamine was used instead of heptafluorobutylamine in Synthesis Example 1, and the target compound was reddish purple. Obtained as a solid (723 mg, yield 69%).

得られた赤紫色固体のNMR分析を行い、以下の8個の水素のシグナルを検出し、(A−6)で表される構造と同定した。 NMR analysis of the obtained reddish purple solid was performed, and the following eight hydrogen signals were detected, and the structure was identified as (A-6).

H−NMR(600MHz、CDCl):δ(ppm)=5.01−5.12(2H)、
9.01−9.08(4H)、9.74−9.78(2H)。
1 H-NMR (600 MHz, CDCl 3 ): δ (ppm)=5.01-5.12 (2H),
9.01-9.08 (4H), 9.74-9.78 (2H).

Figure 2020120031
Figure 2020120031

[合成実施例7](A-11)の合成
合成実施例1におけるヘプタフルオロブチルアミンの代わりにペンタデカフルオロオクチルアミンを用い、ペンタフルオロアニリンの代わりに4−(ノナフルオロブチル)アニリンを用いた以外は合成実施例1と同様に合成し、目的の化合物を赤紫色固体(170mg,収率65%)として得た。
[Synthesis Example 7] Synthesis of (A-11) Except that pentadecafluorooctylamine was used instead of heptafluorobutylamine and 4-(nonafluorobutyl)aniline was used instead of pentafluoroaniline in Synthesis Example 1. Was synthesized in the same manner as in Synthesis Example 1 to obtain the target compound as a reddish purple solid (170 mg, yield 65%).

得られた赤紫色固体のNMR分析を行い、以下の12個の水素のシグナルを検出し、(A−11)で表される構造と同定した。 NMR analysis of the obtained reddish-purple solid was performed, the following 12 hydrogen signals were detected, and the structure was identified as (A-11).

H−NMR(600MHz、CDCl):δ(ppm)=5.04−5.09(2H)、
7.52−7.54(2H)、7.84−7.85(2H)、9.00−9.06(4H)、9.76−9.78(2H)。
1 H-NMR (600 MHz, CDCl 3 ): δ (ppm)=5.04 to 5.09 (2H),
7.52-7.54 (2H), 7.84-7.85 (2H), 9.00-9.06 (4H), 9.76-9.78 (2H).

Figure 2020120031
Figure 2020120031

[合成実施例8](A-12)の合成
合成実施例7における4−(ノナフルオロブチル)アニリンの代わりに4−(トリデカフルオロヘキシル)アニリンを用いた以外は合成実施例7と同様に合成し、目的の化合物を赤紫色固体(120mg,収率66%)として得た。
[Synthesis Example 8] Synthesis of (A-12) Similar to Synthesis Example 7 except that 4-(tridecafluorohexyl)aniline was used in place of 4-(nonafluorobutyl)aniline in Synthesis Example 7. The target compound was synthesized and obtained as a reddish purple solid (120 mg, yield 66%).

得られた赤紫色固体のNMR分析を行い、以下の12個の水素のシグナルを検出し、式A−12)で表される構造と同定した。 NMR analysis of the obtained reddish purple solid was performed, and the following 12 hydrogen signals were detected, and the structure was identified as the structure represented by formula A-12).

H−NMR(600MHz、CDCl):δ(ppm)=5.06(2H)、7.51−7.55(2H)、7.83−7.86(2H)、8.99−9.00(2H)、
9.02−9.06(2H)、9.75−9.78(2H)。
1 H-NMR (600 MHz, CDCl 3 ): δ (ppm) = 5.06 (2H), 7.51 to 7.55 (2H), 7.83 to 7.86 (2H), 8.99-9. 0.00 (2H),
9.02-9.06 (2H), 9.75-9.78 (2H).

Figure 2020120031
Figure 2020120031

[合成実施例9](A-17)の合成
合成実施例1と同様に工程4までの合成を行い、下記式(9)の1,7−ジブロモペリレン−3,4,9,10−テトラカルボン酸ジイミドを得た。
[Synthesis Example 9] Synthesis of (A-17) The synthesis up to Step 4 was carried out in the same manner as in Synthesis Example 1, and 1,7-dibromoperylene-3,4,9,10-tetramethyl of the following formula (9) was used. A carboxylic acid diimide was obtained.

Figure 2020120031
Figure 2020120031

1,7−ジブロモペリレン−3,4,9,10−テトラカルボン酸ジイミド(1.5g,1.46mmol)、ヨウ化銅(112mg,0.59mmol)、フェナントロリン一水和物(116mg,0.69mmol)、カリウムトリメトキシ(トリフルオロメチル)ボラート(1.27g,8.76mmol)のジメチルスルホキシド(DMSO)溶液を窒素気流下、60℃にて4時間撹拌を行った。室温まで冷却後、反応液に酢酸エチルを加え濾過後、濾液に水を加え分液した。有機層を減圧濃縮により溶媒除去し、粗生成物を得た。粗生成物をクロロホルムに溶解させ、溶解分をカラムクロマトグラフィー(担体:シリカゲル、展開溶液:トルエン)で精製後、減圧乾燥を行い、目的の化合物を赤紫色固体(収量:250mg,収率:17%)として得た。 1,7-Dibromoperylene-3,4,9,10-tetracarboxylic acid diimide (1.5 g, 1.46 mmol), copper iodide (112 mg, 0.59 mmol), phenanthroline monohydrate (116 mg, 0. 69 mmol) and a solution of potassium trimethoxy(trifluoromethyl)borate (1.27 g, 8.76 mmol) in dimethylsulfoxide (DMSO) were stirred at 60° C. for 4 hours under a nitrogen stream. After cooling to room temperature, ethyl acetate was added to the reaction solution and filtered, and then water was added to the filtrate for liquid separation. The solvent was removed from the organic layer by concentration under reduced pressure to obtain a crude product. The crude product was dissolved in chloroform, the dissolved content was purified by column chromatography (carrier: silica gel, developing solution: toluene), and then dried under reduced pressure to give the target compound as a reddish purple solid (yield: 250 mg, yield: 17). %).

得られた赤紫色固体のNMR分析を行い、以下の12個の水素のシグナルを検出し、式(A−17)で表される構造と同定した。 NMR analysis of the obtained reddish purple solid was performed, and the following 12 hydrogen signals were detected, and the structure was identified as the structure represented by formula (A-17).

H−NMR(600MHz、CDCl):δ(ppm)=5.05−5.10(2H)、7.53−7.54(2H)、7.83−7.85(2H)、8.63−8.65(2H)、8.88−8.89(2H)、9.12−9.14(2H)。 1 H-NMR (600 MHz, CDCl 3 ): δ (ppm)=5.05-5.10 (2H), 7.53-7.54 (2H), 7.83-7.85 (2H), 8 .63-8.65 (2H), 8.88-8.89 (2H), 9.12-9.14 (2H).

Figure 2020120031
Figure 2020120031

[比較化合物]化合物(B−1)の合成
Angew.Chem.Int.Ed.2004,43,6363−6366に記載の方法にて行い、下記式(B−1)で表される1,7−ジシアノペリレン−3,4,9,10−テトラカルボン酸ジイミドを得た。
[Comparative Compound] Synthesis of Compound (B-1) Angew. Chem. Int. Ed. The method described in 2004, 43, 6363-6366 was performed to obtain 1,7-dicyanoperylene-3,4,9,10-tetracarboxylic acid diimide represented by the following formula (B-1).

Figure 2020120031
Figure 2020120031

[実施例1](A−1)の溶解度測定
化合物(A−1)を透明サンプルチューブに秤量し、濃度が0.1質量%となるようにトルエンまたはクロロホルム溶媒に添加し、室温下(25±2℃)にて数時間撹拌後、溶解性を目視にて評価した。結果を表1に示す。判定条件は完全溶解(25±2℃)を○、濁り残る(25±2℃)を△、不溶解(25±2℃)を×と表記した。
Example 1 Solubility Measurement of (A-1) The compound (A-1) was weighed in a transparent sample tube and added to a toluene or chloroform solvent so that the concentration was 0.1% by mass, and the mixture was allowed to stand at room temperature (25 After stirring for several hours at (±2° C.), the solubility was visually evaluated. The results are shown in Table 1. The judgment conditions are indicated by ◯ for complete dissolution (25±2° C.), Δ for turbidity remaining (25±2° C.), and x for insoluble (25±2° C.).

[実施例2〜実施例9]
化合物(A−1)の代わりに(A−2)、(A−3)、(A−4)、(A−5)、(A−6)、(A−11)、(A−12)又は(A−17)を用いて実施例1と同様に溶解度測定を行った。結果を表1に示す。
[Examples 2 to 9]
(A-2), (A-3), (A-4), (A-5), (A-6), (A-11), (A-12) instead of the compound (A-1). Alternatively, the solubility was measured in the same manner as in Example 1 by using (A-17). The results are shown in Table 1.

[比較例1]
化合物(A−1)の代わりに比較化合物(B−1)を用いて実施例1と同様に溶解度測定を行った。結果を表1に示す。
[Comparative Example 1]
Solubility was measured in the same manner as in Example 1 except that the comparative compound (B-1) was used instead of the compound (A-1). The results are shown in Table 1.

Figure 2020120031
*判定条件
○:完全溶解(25±2℃)
△:濁り残る(25±2℃)
×:不溶解(25±2℃)
Figure 2020120031
* Judgment condition ○: Complete dissolution (25±2°C)
△: Remains cloudy (25±2°C)
X: Insoluble (25±2°C)

表1より、実施例で表される化合物は、クロロホルムおよびトルエンに対して、比較例と同等以上の溶解性を有することが明らかである。 From Table 1, it is clear that the compounds shown in Examples have solubility in chloroform and toluene that is equal to or higher than that of Comparative Examples.

[実施例10]有機薄膜トランジスタの伝達特性の測定
ガラス基板を中性洗剤で10分間、水で10分間、アセトンで10分間、イソプロピルアルコールで10分間、超音波洗浄を行った後、100℃のオーブンにて1時間乾燥を行った。基板表面に、ゲート電極となるアルミを、メタルマスクを用いて50nmの厚さに蒸着した。その後、ポリビニルフェノールとメラミンの混合溶液をスピンコート法により塗布し、ホットプレートにて100℃で10分間、150℃で1時間加熱し、400nmの厚さに絶縁層を形成した。続いて、絶縁層の上に、ソースおよびドレイン電極となる金を50nmの厚さに蒸着し、フォトリソグラフィー法により、チャネル幅500μm、チャネル長5μmのソースおよびドレイン電極を形成した。
[Example 10] Measurement of transfer characteristic of organic thin film transistor After ultrasonic cleaning of a glass substrate with a neutral detergent for 10 minutes, water for 10 minutes, acetone for 10 minutes and isopropyl alcohol for 10 minutes, an oven at 100°C was used. It was dried for 1 hour. Aluminum serving as a gate electrode was vapor-deposited on the surface of the substrate to a thickness of 50 nm using a metal mask. Then, a mixed solution of polyvinylphenol and melamine was applied by a spin coating method and heated on a hot plate at 100° C. for 10 minutes and 150° C. for 1 hour to form an insulating layer with a thickness of 400 nm. Subsequently, gold to be source and drain electrodes was evaporated to a thickness of 50 nm on the insulating layer, and a source and drain electrode having a channel width of 500 μm and a channel length of 5 μm was formed by photolithography.

化合物(A−1)に濃度が0.1質量%となるようにクロロホルムを加え、有機半導体溶液を調製した。基板に対して、UVオゾン処理を7分間行った後、有機半導体溶液をチャネル上にドロップキャスト法により塗布し、ホットプレートにて150℃で10分間加熱し、有機半導体層を形成した。 Chloroform was added to the compound (A-1) to a concentration of 0.1% by mass to prepare an organic semiconductor solution. After subjecting the substrate to UV ozone treatment for 7 minutes, an organic semiconductor solution was applied onto the channel by a drop casting method and heated at 150° C. for 10 minutes on a hot plate to form an organic semiconductor layer.

作成した有機薄膜トランジスタを、半導体アナライザー(ケースレー社製、4200-SCS型)を用いて、大気中遮光下、ゲート電圧が−40V〜80Vの範囲で有機薄膜トランジスタの伝達特性の測定行った。 The produced organic thin film transistor was subjected to measurement of transfer characteristics of the organic thin film transistor using a semiconductor analyzer (4200-SCS type, manufactured by Keithley Co., Ltd.) under a light shield in the air at a gate voltage of -40V to 80V.

測定値より、移動度μ(cm/Vs)は、下記式(a−2)および(a−3)を用いて算出を行った。この測定より求めた移動度の結果を表2に示す。 From the measured values, the mobility μ (cm 2 /Vs) was calculated using the following formulas (a-2) and (a-3). Table 2 shows the results of the mobility obtained from this measurement.

Figure 2020120031
ox=絶縁膜の厚さ
εox=真空の誘電率、ε=絶縁膜の誘電率
W=チャネル幅、L=チャネル長
Id=ドレイン電流、Vg=ゲート電圧
Figure 2020120031
d ox =thickness of insulating film ε ox =dielectric constant of vacuum, ε 0 =dielectric constant of insulating film W=channel width, L=channel length Id=drain current, Vg=gate voltage

[実施例11〜実施例16]有機薄膜トランジスタの伝達特性の測定
合成化合物(A−1)の代わりに(A−2)、(A−3)、(A−4)、(A−6)、(A−11)、(A−12)を用いて実施例10と同様に作製した有機薄膜トランジスタの伝達特性の測定行った。この測定より求めた移動度の結果を表2に示す。
[Examples 11 to 16] Measurement of transfer characteristics of organic thin film transistor Instead of the synthetic compound (A-1), (A-2), (A-3), (A-4), (A-6), The transfer characteristics of the organic thin film transistor manufactured in the same manner as in Example 10 using (A-11) and (A-12) were measured. Table 2 shows the results of the mobility obtained from this measurement.

[比較例2]
化合物として、(A−1)の代わりに本発明に属さない(B−1)を用いた以外は実施例10と同様に作製した有機薄膜トランジスタの伝達特性の測定行った。この測定より求めた移動度の結果を表2に示す。
[Comparative example 2]
The transfer characteristics of the organic thin film transistor produced in the same manner as in Example 10 were measured except that (B-1) which did not belong to the present invention was used instead of (A-1) as a compound. Table 2 shows the results of the mobility obtained from this measurement.

Figure 2020120031
Figure 2020120031

表2より、実施例で表される化合物を有機半導体層に用いた有機薄膜トランジスタは、比較例よりも高い電子移動度を有することが明らかである。 From Table 2, it is clear that the organic thin film transistor using the compound represented by the example in the organic semiconductor layer has higher electron mobility than the comparative example.

本発明によるペリレン誘導体化合物は、溶液プロセスに対応した溶解性を有するn型有機半導体材料を提供することができる。さらに該有機半導体材料を含有する有機半導体用組成物を用いることにより、電子輸送性に優れた有機薄膜トランジスタを提供することができる。 The perylene derivative compound according to the present invention can provide an n-type organic semiconductor material having solubility corresponding to a solution process. Further, by using the composition for organic semiconductor containing the organic semiconductor material, it is possible to provide an organic thin film transistor having an excellent electron transporting property.

1:基板
2:ゲート電極
3:ゲート絶縁層
4:ドレイン電極
5:有機半導体層
6:ソース電極
1: Substrate 2: Gate electrode 3: Gate insulating layer 4: Drain electrode 5: Organic semiconductor layer 6: Source electrode

Claims (10)

下記一般式(1)で表されるペリレン誘導体化合物。
Figure 2020120031
[式中、RとR10は、互いに異なるものとして、
水素原子、ハロゲン原子、
置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルキル基、
置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルケニル基、
置換基を有していてもよい炭素原子数6〜36の芳香族炭化水素基、
または置換基を有していてもよい炭素原子数2〜36の複素環基を表す。
〜Rは、同一でも異なっていてもよく、
水素原子、ハロゲン原子、シアノ基、水酸基、ニトロ基、ニトロソ基、チオ基、アミノ基、
置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルキル基、
または置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルケニル基を表し、
とR、RとR、RとR、RとR、RとR、RとR、は互いに結合して環を形成していてもよい。]
A perylene derivative compound represented by the following general formula (1).
Figure 2020120031
[Wherein R 1 and R 10 are different from each other,
Hydrogen atom, halogen atom,
A linear or branched alkyl group having 1 to 20 carbon atoms, which may have a substituent,
A linear or branched alkenyl group having 1 to 20 carbon atoms which may have a substituent,
An aromatic hydrocarbon group having 6 to 36 carbon atoms which may have a substituent,
Alternatively, it represents a heterocyclic group having 2 to 36 carbon atoms, which may have a substituent.
R 2 to R 9 may be the same or different,
Hydrogen atom, halogen atom, cyano group, hydroxyl group, nitro group, nitroso group, thio group, amino group,
A linear or branched alkyl group having 1 to 20 carbon atoms, which may have a substituent,
Or represents a linear or branched alkenyl group having 1 to 20 carbon atoms which may have a substituent,
R 2 and R 3 , R 3 and R 4 , R 4 and R 5 , R 6 and R 7 , R 7 and R 8 , and R 8 and R 9 may be bonded to each other to form a ring. ]
前記一般式(1)において、RまたはR10は下記一般式(2)で表される1価基である、請求項1に記載の化合物。
Figure 2020120031
[式中、R11〜R15は、同一でも異なっていてもよく、水素原子、ハロゲン原子、
置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルキル基、
置換基を有していてもよい炭素原子数1〜20の直鎖状もしくは分岐状のアルケニル基、
または置換基を有していてもよい炭素原子数6〜36の芳香族炭化水素基を表す。
nは0〜5の整数を表す。
11〜R15の少なくとも1つがフッ素原子で置換されていてもよいものとする。]
The compound according to claim 1, wherein in the general formula (1), R 1 or R 10 is a monovalent group represented by the following general formula (2).
Figure 2020120031
[In the formula, R 11 to R 15 may be the same or different and each represents a hydrogen atom, a halogen atom,
A linear or branched alkyl group having 1 to 20 carbon atoms, which may have a substituent,
A linear or branched alkenyl group having 1 to 20 carbon atoms which may have a substituent,
Alternatively, it represents an aromatic hydrocarbon group having 6 to 36 carbon atoms which may have a substituent.
n represents an integer of 0 to 5.
At least one of R 11 to R 15 may be substituted with a fluorine atom. ]
前記一般式(2)において、下記一般式(3)または(4)で表される1価基である、請求項2に記載の化合物。
Figure 2020120031
Figure 2020120031
[式中、nは0〜5の整数を表し、mは0〜10の整数を表す。]
The compound according to claim 2, which is a monovalent group represented by the following general formula (3) or (4) in the general formula (2).
Figure 2020120031
Figure 2020120031
[In formula, n represents the integer of 0-5 and m represents the integer of 0-10. ]
前記一般式(1)において、R〜R10が少なくとも1個のフッ素原子を含有する、請求項1〜請求項3のいずれか一項に記載の化合物。 The compound according to any one of claims 1 to 3, wherein in the general formula (1), R 1 to R 10 each contain at least one fluorine atom. 前記一般式(1)において、R、R、R、Rが少なくとも1個のシアノ基、または置換基を有していてもよい炭素原子数1〜4の直鎖状もしくは分岐状のアルキル基である、請求項1〜請求項4のいずれか一項に記載の化合物。 In the general formula (1), R 3 , R 4 , R 7 , and R 8 are at least one cyano group, or a linear or branched C1 to C4 optionally substituted group. The compound according to any one of claims 1 to 4, which is an alkyl group of. 25±2℃における芳香族系有機溶媒またはハロゲン系有機溶媒への溶解度が0.02〜5質量%濃度である、請求項1〜請求項5のいずれか一項に記載の化合物。 The compound according to claim 1, wherein the solubility in an aromatic organic solvent or a halogen organic solvent at 25±2° C. is 0.02 to 5 mass% concentration. 請求項1〜請求項6のいずれか一項に記載の化合物を含有する有機半導体用組成物。 A composition for an organic semiconductor, which comprises the compound according to any one of claims 1 to 6. 請求項7に記載の有機半導体用組成物を用いた有機半導体素子。 An organic semiconductor device using the composition for organic semiconductor according to claim 7. 移動度が10−3cm/Vs以上である、請求項8に記載の有機半導体素子。 The organic semiconductor device according to claim 8, which has a mobility of 10 −3 cm 2 /Vs or more. 請求項9に記載の有機半導体素子を用いた有機薄膜トランジスタ。 An organic thin film transistor using the organic semiconductor element according to claim 9.
JP2019011117A 2019-01-25 2019-01-25 Perylene derivative compound, composition for organic semiconductor using said compound, organic thin film transistor using said composition for organic semiconductor Active JP7290948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019011117A JP7290948B2 (en) 2019-01-25 2019-01-25 Perylene derivative compound, composition for organic semiconductor using said compound, organic thin film transistor using said composition for organic semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019011117A JP7290948B2 (en) 2019-01-25 2019-01-25 Perylene derivative compound, composition for organic semiconductor using said compound, organic thin film transistor using said composition for organic semiconductor

Publications (2)

Publication Number Publication Date
JP2020120031A true JP2020120031A (en) 2020-08-06
JP7290948B2 JP7290948B2 (en) 2023-06-14

Family

ID=71891238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019011117A Active JP7290948B2 (en) 2019-01-25 2019-01-25 Perylene derivative compound, composition for organic semiconductor using said compound, organic thin film transistor using said composition for organic semiconductor

Country Status (1)

Country Link
JP (1) JP7290948B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021125476A (en) * 2020-01-31 2021-08-30 保土谷化学工業株式会社 Perylene derivative compound, organic semiconductor composition using the compound, and organic thin film transistor using the organic semiconductor composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088507A (en) * 2007-09-27 2009-04-23 Commissariat A L'energie Atomique Hybrid matrix for thin-layer transistor
JP2014029500A (en) * 2012-06-29 2014-02-13 Canon Inc Electrophotographic photoreceptor, process cartridge, and electrophotographic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088507A (en) * 2007-09-27 2009-04-23 Commissariat A L'energie Atomique Hybrid matrix for thin-layer transistor
JP2014029500A (en) * 2012-06-29 2014-02-13 Canon Inc Electrophotographic photoreceptor, process cartridge, and electrophotographic device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LOU ROCARD ET AL.: "Templated Chromophore Assembly by Dynamic Covalent Bonds", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 54, no. 52, JPN6023014381, 4 December 2015 (2015-12-04), pages 15739 - 15743, XP072080814, ISSN: 0005051098, DOI: 10.1002/anie.201507186 *
LOU ROCARD ET AL.: "Templated Chromophore Assembly on Peptide Scaffolds: A Structural Evolution", CHEMISTRY - A EUROPEAN JOURNAL, vol. 24, no. 60, JPN6023014380, 4 October 2018 (2018-10-04), pages 16136 - 16148, XP071847657, ISSN: 0005051097, DOI: 10.1002/chem.201803205 *
MAXWELL J. ROBB, BRANDON NEWTON, BRETT P. FORS, AND CRAIG J. HAWKER: "One-Step Synthesis of Unsymmetrical N-Alkyl-N′-aryl Perylene Diimides", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 79, JPN6023000545, 13 June 2014 (2014-06-13), pages 6360 - 6365, ISSN: 0004976743 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021125476A (en) * 2020-01-31 2021-08-30 保土谷化学工業株式会社 Perylene derivative compound, organic semiconductor composition using the compound, and organic thin film transistor using the organic semiconductor composition
JP7464397B2 (en) 2020-01-31 2024-04-09 保土谷化学工業株式会社 Perylene derivative compound, organic semiconductor composition using said compound, and organic thin film transistor using said organic semiconductor composition

Also Published As

Publication number Publication date
JP7290948B2 (en) 2023-06-14

Similar Documents

Publication Publication Date Title
JP6008158B2 (en) Chalcogen-containing organic compounds and uses thereof
EP2975017B1 (en) Leaving substituent-containing compound, organic semiconductor material, organic semiconductor film containing the material, organic electronic device containing the film, method for producing film-like product, pi-electron conjugated compound and method for producing the pi-electron conjugated compound
KR101429370B1 (en) Organic semiconductor material, organic semiconductor thin film, and organic thin film transistor
US8710225B2 (en) Thiocyanato or isothiocyanato substituted naphthalene diimide and rylene diimide compounds and their use as n-type semiconductors
Dai et al. Diacenopentalene dicarboximides as new n-type organic semiconductors for field-effect transistors
KR20120043009A (en) Novel organic semiconductive material and electronic device using the same
KR20130030803A (en) Organic semiconductive material precursor containing dithienobenzodithiophene derivative, ink, insulating member, charge-transporting member, and organic electronic device
JP5569774B2 (en) Tetrathiafulvalene derivative
WO2010131764A1 (en) Organic semiconductor material, organic semiconductor thin film, and organic thin-film transistor
JP7290948B2 (en) Perylene derivative compound, composition for organic semiconductor using said compound, organic thin film transistor using said composition for organic semiconductor
JP2012041327A (en) METHOD FOR PRODUCING FILM-LIKE PRODUCT COMPRISING BENZENE RING-CONTAINING π ELECTRON CONJUGATED COMPOUND AND METHOD FOR PRODUCING THE π ELECTRON CONJUGATED COMPOUND
US20230118116A1 (en) Arylamine compound and organic electroluminescent device
JP2013035814A (en) Novel organic semiconductor material and electronic device using the same
US8901543B2 (en) Organic semiconductor device and its production method, and compound
JP2011222974A (en) Organic semiconductor material and organic semiconductor element
JP7464397B2 (en) Perylene derivative compound, organic semiconductor composition using said compound, and organic thin film transistor using said organic semiconductor composition
WO2020241582A1 (en) Organic transistor material and organic transistor
JP5637985B2 (en) Diazaborol compound and field effect transistor containing the same
JP2012184196A (en) Pyrrole-containing heteroacene compound, method for producing the same, thin film containing the same, and organic semiconductor device including the thin film
KR100865703B1 (en) Organic semiconductor containing arylacetylene group, and Organic thin film transistor
JP2008094838A (en) Pentacene compound having high solubility and organic semiconductor element using the same
JP2019052111A (en) Heteroacene derivative, organic semiconductor layer, and organic thin film transistor
JP6093493B2 (en) Organic semiconductor devices using chrysene compounds.
WO2021054161A1 (en) Fused polycyclic aromatic compound
JP6783254B2 (en) Cyclic urea compounds for electronic devices

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230602

R150 Certificate of patent or registration of utility model

Ref document number: 7290948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150