JP2020119802A - Negative electrode for all-solid lithium ion secondary battery - Google Patents

Negative electrode for all-solid lithium ion secondary battery Download PDF

Info

Publication number
JP2020119802A
JP2020119802A JP2019010967A JP2019010967A JP2020119802A JP 2020119802 A JP2020119802 A JP 2020119802A JP 2019010967 A JP2019010967 A JP 2019010967A JP 2019010967 A JP2019010967 A JP 2019010967A JP 2020119802 A JP2020119802 A JP 2020119802A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
solid
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019010967A
Other languages
Japanese (ja)
Other versions
JP7111005B2 (en
Inventor
正考 冨田
Masataka Tomita
正考 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019010967A priority Critical patent/JP7111005B2/en
Publication of JP2020119802A publication Critical patent/JP2020119802A/en
Application granted granted Critical
Publication of JP7111005B2 publication Critical patent/JP7111005B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a negative electrode for an all-solid lithium ion secondary battery, capable of using various negative electrode materials for improving battery energy density and capable of suppressing a decrease in battery performance after charge/discharge.SOLUTION: A negative electrode for an all-solid lithium ion secondary battery includes a negative electrode active material layer. Before initial charge, a peak diameter in the pore size distribution of the negative electrode active material layer measured by a mercury intrusion method is 0.1 μm or less, a porosity of the negative electrode active material layer is 10% or more and 25% or less, and a negative electrode active material contained in the negative electrode active material layer has a volume expansion rate at full charge compared to before initial charge of 15% or less.SELECTED DRAWING: Figure 2

Description

本開示は、全固体リチウムイオン二次電池用負極に関する。 The present disclosure relates to a negative electrode for an all solid lithium ion secondary battery.

リチウムイオン二次電池に用いる負極活物質として、従来広く使用されている炭素系の負極活物質に比べ、充放電に伴う体積変化が小さく、優れたサイクル特性が得られる負極活物質として、スピネル型チタン酸リチウムLiTi12が知られている。しかし、スピネル型チタン酸リチウムを負極活物質として用いた電池は、エネルギー密度が低下するという問題点がある。 As a negative electrode active material used in lithium-ion secondary batteries, spinel-type negative electrode active material that has less change in volume due to charge and discharge and excellent cycle characteristics compared to carbon-based negative electrode active materials that have been widely used in the past. Lithium titanate Li 4 Ti 5 O 12 is known. However, a battery using spinel type lithium titanate as a negative electrode active material has a problem that energy density is lowered.

特許文献1には、非水電解質として液状の非水電解質を用いるリチウムイオン二次電池用の負極において、重量当たりの理論容量がスピネル型チタン酸リチウムより大きいニオブチタン複合酸化物を負極活物質として用い、ニオブチタン複合酸化物を含む活物質粒子を含有する負極層において、水銀圧入法により得られる細孔径分布におけるモード径を0.1μm〜0.2μmの範囲内にすることが開示されている。 In Patent Document 1, in a negative electrode for a lithium ion secondary battery using a liquid non-aqueous electrolyte as a non-aqueous electrolyte, a niobium titanium composite oxide having a theoretical capacity per weight larger than spinel type lithium titanate is used as a negative electrode active material. In the negative electrode layer containing the active material particles containing the niobium titanium composite oxide, it is disclosed that the mode diameter in the pore size distribution obtained by the mercury intrusion method is within the range of 0.1 μm to 0.2 μm.

一方、リチウムイオン二次電池等の電池の分野において、液状の電解液の代わりに固体電解質を使用する全固体電池の開発が行われている。全固体電池は、電池内に可燃性の有機溶媒を用いないので、安全装置の簡素化が図れ、製造コストや生産性に優れると考えられている。
本出願人は、特許文献2に、特定の粒径のSi又はSnを含有する炭素材料を有する複合粒子を負極活物質として用いた全固体電池用の負極において、負極の空隙率を5%〜30%とすることを開示している。
On the other hand, in the field of batteries such as lithium-ion secondary batteries, development of all-solid-state batteries using a solid electrolyte instead of a liquid electrolyte has been underway. Since the all-solid-state battery does not use a flammable organic solvent in the battery, it is considered that the safety device can be simplified and the manufacturing cost and the productivity are excellent.
In the negative electrode for an all-solid-state battery using the composite particles having a carbon material containing Si or Sn having a specific particle size as a negative electrode active material in Patent Document 2, the present applicant has a porosity of the negative electrode of 5% to It discloses that it is 30%.

特許第6193285号Patent No. 6193285 特開2017−54720号公報JP, 2017-54720, A

しかしながら、特許文献1に開示されている液系電池の技術は、負極の空孔内に電解液を含浸させることでイオン伝導を確保しているため、全固体電池に適用すると、負極内の空孔により、固体電解質と負極活物質との接触が得られ難く、イオン伝導パス及び電子伝導パスが不十分になり、抵抗の増加や、容量の低下が問題になる。
特許文献2の全固体電池用負極は、充放電後の電池性能の低下が抑制されたものであるが、負極活物質として特定の複合粒子を用いる技術であるため、多様な負極活物質を使用可能な技術が望まれている。
However, the technology of the liquid battery disclosed in Patent Document 1 secures ion conduction by impregnating the pores of the negative electrode with the electrolytic solution. Due to the holes, it is difficult to obtain contact between the solid electrolyte and the negative electrode active material, the ion conduction path and the electron conduction path become insufficient, and there is a problem that resistance increases and capacity decreases.
The negative electrode for an all-solid-state battery of Patent Document 2 suppresses deterioration of battery performance after charge and discharge, but uses various negative electrode active materials because it is a technique that uses specific composite particles as the negative electrode active material. Possible technology is desired.

本開示は、上記実情に鑑み、電池のエネルギー密度を向上するための多様な負極活物質を使用可能であり、充放電後の電池性能の低下を抑制することができる全固体リチウムイオン二次電池用負極を提供することを目的とする。 In view of the above circumstances, the present disclosure can use various negative electrode active materials for improving the energy density of a battery, and can suppress a decrease in battery performance after charge and discharge, an all-solid-state lithium-ion secondary battery. It aims at providing the negative electrode for.

本開示の全固体リチウムイオン二次電池用負極は、負極活物質層を有する全固体リチウムイオン二次電池用負極であって、
初期充電前において、水銀圧入法により測定される前記負極活物質層の細孔径分布におけるピーク径が0.1μm以下であり、前記負極活物質層の空隙率が10%以上25%以下であり、
前記負極活物質層が含有する負極活物質は、初期充電前に対する満充電時の体積膨張率が15%以下であることを特徴とする。
An all-solid-state lithium-ion secondary battery negative electrode of the present disclosure is an all-solid-state lithium-ion secondary battery negative electrode having a negative electrode active material layer,
Before initial charging, the peak diameter in the pore size distribution of the negative electrode active material layer measured by mercury porosimetry is 0.1 μm or less, and the porosity of the negative electrode active material layer is 10% or more and 25% or less,
The negative electrode active material contained in the negative electrode active material layer has a volume expansion coefficient of 15% or less when fully charged with respect to before initial charging.

本開示によれば、初期充電前に対する満充電時の負極活物質の体積膨張率を前記特定値以下とした負極活物質層において、初期充電前の細孔径分布が前記特定値以下であり、初期充電前の空隙率が前記特定の範囲内であることにより、負極活物質の種類に関わらず、充放電後の電池性能の低下を抑制することができる全固体リチウムイオン二次電池用負極を提供することができる。 According to the present disclosure, in the negative electrode active material layer in which the volume expansion coefficient of the negative electrode active material at the time of full charge with respect to before initial charging is equal to or less than the specific value, the pore size distribution before initial charging is equal to or less than the specific value. Provided is a negative electrode for an all-solid-state lithium-ion secondary battery that can suppress deterioration of battery performance after charge and discharge regardless of the type of negative electrode active material, by having the porosity before charging within the specific range. can do.

本開示の全固体リチウムイオン二次電池用負極を備える全固体リチウムイオン二次電池の一例を示す断面模式図である。FIG. 3 is a schematic cross-sectional view showing an example of an all-solid-state lithium-ion secondary battery including the negative electrode for all-solid-state lithium-ion secondary battery of the present disclosure. 実施例1の全固体リチウムイオン二次電池用負極が有する負極活物質層について、水銀圧入法により測定した細孔径分布を示すグラフである。3 is a graph showing the pore size distribution of the negative electrode active material layer included in the negative electrode for an all-solid-state lithium ion secondary battery of Example 1, measured by mercury porosimetry.

本開示の全固体リチウムイオン二次電池用負極は、負極活物質層を有する全固体リチウムイオン二次電池用負極であって、
初期充電前において、水銀圧入法により測定される前記負極活物質層の細孔径分布におけるピーク径が0.1μm以下であり、前記負極活物質層の空隙率が10%以上25%以下であり、
前記負極活物質層が含有する負極活物質は、初期充電前に対する満充電時の体積膨張率が15%以下であることを特徴とする。
An all-solid-state lithium-ion secondary battery negative electrode of the present disclosure is an all-solid-state lithium-ion secondary battery negative electrode having a negative electrode active material layer,
Before initial charging, the peak diameter in the pore size distribution of the negative electrode active material layer measured by mercury porosimetry is 0.1 μm or less, and the porosity of the negative electrode active material layer is 10% or more and 25% or less,
The negative electrode active material contained in the negative electrode active material layer has a volume expansion coefficient of 15% or less when fully charged with respect to before initial charging.

全固体リチウムイオン二次電池用負極において、電池のエネルギー密度を向上するために、充放電により体積変化を生じ得る負極活物質を用いた場合、充放電に伴う負極活物質の膨張収縮により、負極に割れが発生する場合がある。全固体電池では、物理的な接触により導通をとっているため、電極に割れが生じることで、イオン伝導パス及び電子伝導パスが切断されて、出力及び容量の低下が生じる等の電池性能の低下が問題となる。
本開示の全固体リチウムイオン二次電池用負極は、初期充電前に対する満充電時の負極活物質の体積膨張率が15%以下となるように、負極活物質の種類に応じて負極容量を調整して用いられる。本研究者は、初期充電前において、水銀圧入法により測定される負極活物質層の細孔径分布におけるピーク径(以下、細孔ピーク径と称する場合がある)が0.1μm以下であり、且つ、負極活物質層全体の空隙率が10%以上25%以下と特定の範囲内であることにより、イオン伝導パス及び電子伝導パスが良好に行われ、更に、負極活物質の体積膨張率が15%以下であると、充放電後も長期的に電池性能が維持されやすいことを見出した。
本開示の全固体リチウムイオン二次電池用負極は、初期充電前において、細孔ピーク径が0.1μm以下であることから、負極活物質層が有する各空孔のサイズが十分に小さく、イオン伝導パス及び電子伝導パスの切断が生じ難いため、電池性能の低下が抑制されると推定される。また、本開示の全固体リチウムイオン二次電池用負極は、初期充電前において、負極活物質層内全体の空隙率が10%以上25%以下であることにより、初期充電前から満充電時までの負極活物質の体積変化を受け入れるスペースが十分に確保されていると考えられる。そのため、本開示の全固体リチウムイオン二次電池用負極では、充放電により負極活物質が膨張収縮した後も、負極活物質層内の各空孔のサイズ及び空隙率が維持されやすく、充放電後も、負極の割れが抑制され、イオン伝導パス及び電子伝導パスの切断による電池性能の低下が抑制されると推定される。
充放電に伴う負極活物質の膨張収縮による負極の割れは、例えば電池パック内に電池を拘束する機構を設け、電池に十分な拘束圧を付与することによっても抑制することが可能である。しかし、電池パック内に電池以外の設備の割合が増えることで、電池パックのエネルギー密度が低下するという問題点がある。これに対し、本開示の全固体リチウムイオン二次電池用負極を用いることで、簡易的な拘束機構で十分に電池性能の低下を抑制することができるため、電池パック内に設ける拘束機構を簡易化して、電池パック内のエネルギー密度を向上させることができる。
以下、本開示の全固体リチウムイオン二次電池用負極について詳細に説明する。
In a negative electrode for an all-solid-state lithium ion secondary battery, when a negative electrode active material that can cause a volume change due to charge and discharge is used in order to improve the energy density of the battery, the negative electrode active material expands and contracts with charge and discharge, resulting in a negative electrode. May crack. In an all-solid-state battery, electrical contact is established by physical contact, so cracks in the electrodes cause disconnection of the ionic conduction path and the electronic conduction path, resulting in a decrease in output and capacity, and other deterioration in battery performance. Is a problem.
In the negative electrode for an all-solid-state lithium-ion secondary battery of the present disclosure, the negative electrode capacity is adjusted according to the type of the negative electrode active material such that the volume expansion coefficient of the negative electrode active material at the time of full charge is 15% or less before initial charging. Used. The present researcher found that the peak diameter in the pore diameter distribution of the negative electrode active material layer measured by the mercury penetration method before initial charging (hereinafter, sometimes referred to as pore peak diameter) was 0.1 μm or less, and When the porosity of the entire negative electrode active material layer is within a specific range of 10% or more and 25% or less, the ionic conduction path and the electron conduction path are well performed, and the negative electrode active material has a volume expansion coefficient of 15%. It was found that the battery performance is easily maintained for a long period of time even after charging/discharging when the content is less than or equal to %.
The negative electrode for an all-solid-state lithium-ion secondary battery of the present disclosure has a pore peak size of 0.1 μm or less before initial charging, so that the size of each hole in the negative electrode active material layer is sufficiently small, Since it is difficult for the conduction path and the electron conduction path to be disconnected, it is presumed that the deterioration of the battery performance is suppressed. In addition, the negative electrode for an all-solid-state lithium-ion secondary battery of the present disclosure has a porosity of 10% or more and 25% or less in the entire negative electrode active material layer before initial charging, so that before initial charging to full charge. It is considered that a sufficient space for accommodating the volume change of the negative electrode active material is secured. Therefore, in the all-solid-state lithium-ion secondary battery negative electrode of the present disclosure, even after the negative electrode active material expands and contracts by charge and discharge, the size and porosity of each pore in the negative electrode active material layer are easily maintained, and the charge and discharge Even after that, it is presumed that the cracking of the negative electrode is suppressed and the deterioration of the battery performance due to the disconnection of the ionic conduction path and the electronic conduction path is suppressed.
The cracking of the negative electrode due to the expansion and contraction of the negative electrode active material due to charge/discharge can also be suppressed by providing a mechanism for restraining the battery in the battery pack and applying sufficient restraining pressure to the battery. However, there is a problem in that the energy density of the battery pack decreases due to an increase in the ratio of equipment other than the battery in the battery pack. On the other hand, by using the negative electrode for the all-solid-state lithium-ion secondary battery of the present disclosure, it is possible to sufficiently suppress the deterioration of the battery performance with a simple restraint mechanism. Therefore, the restraint mechanism provided in the battery pack is simple. The energy density in the battery pack can be improved.
Hereinafter, the negative electrode for an all-solid-state lithium ion secondary battery of the present disclosure will be described in detail.

本開示の全固体リチウムイオン二次電池用負極は、少なくとも負極活物質層を有し、必要に応じ、負極集電体等の他の構成を更に備えるものであってもよい。
なお、本開示において負極は、電池に組み込まれる前のものであってもよいし、電池に組み込まれた後のものであってもよい。
The negative electrode for an all-solid-state lithium ion secondary battery of the present disclosure may have at least a negative electrode active material layer, and may further include other configurations such as a negative electrode current collector.
It should be noted that in the present disclosure, the negative electrode may be before being incorporated into the battery or after being incorporated into the battery.

<負極活物質層>
本開示の全固体リチウムイオン二次電池用負極が有する負極活物質層は、少なくとも負極活物質を含有し、必要に応じて、固体電解質、結着剤及び導電助剤等のその他の成分を更に含有していてもよい。
本開示の全固体リチウムイオン二次電池用負極においては、前記負極活物質層が特定の細孔ピーク径及び空隙率を有し、更に、前記負極活物質層が含有する負極活物質が特定の体積膨張率を有することを特徴とする。
<Negative electrode active material layer>
The negative electrode active material layer included in the negative electrode for an all-solid-state lithium ion secondary battery of the present disclosure contains at least a negative electrode active material, and if necessary, further contains other components such as a solid electrolyte, a binder and a conductive auxiliary agent. It may be contained.
In the all-solid-state lithium-ion secondary battery negative electrode of the present disclosure, the negative electrode active material layer has a specific pore peak diameter and porosity, further, the negative electrode active material contained in the negative electrode active material layer is a specific It is characterized by having a volume expansion coefficient.

(細孔ピーク径)
前記負極活物質層は、初期充電前において、水銀圧入法により測定される細孔径分布におけるピーク径、すなわち細孔ピーク径が0.1μm以下である。前記細孔ピーク径は、電池性能の低下が抑制されやすい点から、0.08μm以下であることが好ましい。
水銀圧入法では、水銀を加圧することによって固体試料の細孔に水銀を浸入させ、水銀に加える圧力及び細孔に圧入された水銀量から、細孔の直径と体積(容積)とを算出する。圧力Pが加えられた水銀が、直径Dの細孔に浸入しうるとき、下記数式1に従って、圧力Pと、水銀の接触角θと、水銀の表面張力σとから、細孔の直径Dが求められる。また、細孔に圧入された水銀量から、細孔体積が算出される。なお、本開示において、細孔径とは細孔の直径である。
(数式1)
−4σcosθ=PD
本開示において、前記水銀圧入法により測定される細孔径分布は、Log微分細孔体積(cm/g))を、各測定箇所の区間の平均細孔径(μm)に対してプロットしたグラフであり、横軸が細孔径(μ)で、縦軸がLog微分細孔体積(cm/g)である。
また、本開示において、細孔径分布におけるピーク径とは、細孔径分布において、最も高いピークの頂点の細孔径である。
前記負極活物質層の前記細孔ピーク径は、前記負極活物質層が含有する負極活物質の種類、大きさ及び配合量、並びに前記負極活物質層を形成する際のプレス時の圧力等によって調整することができる。
(Pore pore diameter)
Before the initial charging, the negative electrode active material layer has a peak diameter in a pore diameter distribution measured by mercury porosimetry, that is, a pore peak diameter of 0.1 μm or less. The pore peak diameter is preferably 0.08 μm or less from the viewpoint that deterioration of battery performance is easily suppressed.
In the mercury porosimetry, mercury is infiltrated into the pores of a solid sample by pressurizing the mercury, and the diameter and volume (volume) of the pores are calculated from the pressure applied to the mercury and the amount of mercury injected into the pores. .. When the mercury to which the pressure P is applied can infiltrate into the pores with the diameter D, the diameter D of the pores is calculated from the pressure P, the contact angle θ of the mercury, and the surface tension σ of the mercury according to the following mathematical formula 1. Desired. Further, the pore volume is calculated from the amount of mercury pressed into the pores. In addition, in this indication, a pore diameter is a diameter of a pore.
(Formula 1)
-4σ cos θ = PD
In the present disclosure, the pore size distribution measured by the mercury porosimetry is a graph in which Log differential pore volume (cm 3 /g)) is plotted with respect to the average pore size (μm) in the section of each measurement location. The horizontal axis represents the pore diameter (μ), and the vertical axis represents the Log differential pore volume (cm 3 /g).
In the present disclosure, the peak diameter in the pore size distribution is the pore size at the apex of the highest peak in the pore size distribution.
The pore peak diameter of the negative electrode active material layer depends on the type, size and blending amount of the negative electrode active material contained in the negative electrode active material layer, and the pressure at the time of pressing when forming the negative electrode active material layer. Can be adjusted.

前記水銀圧入法による細孔径分布の測定は、初期充電する前の前記負極活物質層について行う。例えば、電池に組み込まれている本開示の全固体リチウムイオン二次電池用負極を、初期充電する前に所定形状に打ち抜いて得られる測定用試料を用いて、当該測定用試料が有する前記負極活物質層について、前記水銀圧入法による細孔径分布の測定を行うことができる。なお、前記測定用試料は、少なくとも前記負極活物質層を表面に有していればよく、負極集電体等のその他の構成を更に有するものであってもよい。
前記細孔ピーク径の測定に用いる前記測定用試料の形状は、特に限定はされないが、例えばコイン型又は円筒型とすることができる。
The measurement of the pore size distribution by the mercury porosimetry is performed on the negative electrode active material layer before initial charging. For example, by using a measurement sample obtained by punching out the negative electrode for all-solid-state lithium ion secondary battery of the present disclosure incorporated in a battery into a predetermined shape before initial charging, the negative electrode activity that the measurement sample has The pore size distribution of the substance layer can be measured by the mercury intrusion method. The measurement sample may have at least the negative electrode active material layer on the surface, and may further have other configurations such as a negative electrode current collector.
The shape of the measurement sample used for measuring the pore peak diameter is not particularly limited, but may be, for example, a coin shape or a cylindrical shape.

前記水銀圧入法による細孔径分布の測定は、例えば、マイクロメルティックス社製のオートポアIV9500シリーズ等の装置を用いて行うことができる。測定の際には、不活性雰囲気下にて、前記測定用試料を試料容器に封入して、当該試料容器内に水銀を注入し、水銀に圧力を加える。ここで、水銀に加える圧力は、測定用試料が有し得る細孔径の大きさに応じて適宜調整され、特に限定はされないが、例えば、0.5psi(3.4kPa)から60000psi(413400kPa)まで圧力を変化させて測定することが、細孔径を広範囲に測定できる点から好ましい。 The measurement of the pore size distribution by the mercury porosimetry can be carried out, for example, by using a device such as Autopore IV9500 series manufactured by Micromertics. At the time of measurement, the measurement sample is sealed in a sample container under an inert atmosphere, mercury is injected into the sample container, and pressure is applied to the mercury. Here, the pressure applied to mercury is appropriately adjusted according to the size of the pore diameter that the measurement sample may have, and is not particularly limited, but for example, from 0.5 psi (3.4 kPa) to 60,000 psi (413400 kPa). It is preferable to measure by changing the pressure because the pore diameter can be measured in a wide range.

(空隙率)
前記負極活物質層は、初期充電前において、空隙率が10%以上25%以下である。前記空隙率は、電池性能の低下が抑制されやすい点から、10%以上24%以下であることが好ましい。
前記負極活物質層の空隙率は、本開示の全固体リチウムイオン二次電池用負極を、初期充電する前に所定形状に打ち抜いて得られる測定用試料を用いて、当該測定用試料が有する前記負極活物質層の重量及び体積に基づき、下記数式2に従って求められる。なお、下記数式2において、負極活物質層を構成する材料の理論比重は、各材料の真比重及び配合比から求められる。
(数式2)
空隙率[%]=100−{(負極活物質層の重量/負極活物質層の体積)/負極活物質層を構成する材料の理論比重}×100
前記負極活物質層の空隙率は、前記負極活物質層が含有する負極活物質の種類、大きさ及び配合量、並びに前記負極活物質層を形成する際のプレス時の圧力等によって調整することができる。
なお、前記空隙率を測定する際に用いる測定用試料としては、前記細孔ピーク径を求める際に用いる測定用試料と同様のものを用いることができる。
(Porosity)
The porosity of the negative electrode active material layer is 10% or more and 25% or less before initial charging. The porosity is preferably 10% or more and 24% or less from the viewpoint that deterioration of battery performance is easily suppressed.
The porosity of the negative electrode active material layer, the all-solid-state lithium-ion secondary battery negative electrode of the present disclosure, using a measurement sample obtained by punching into a predetermined shape before initial charging, the measurement sample has Based on the weight and volume of the negative electrode active material layer, it is calculated according to the following mathematical formula 2. In the following mathematical formula 2, the theoretical specific gravity of the material forming the negative electrode active material layer is obtained from the true specific gravity and the compounding ratio of each material.
(Formula 2)
Porosity [%]=100−{(weight of negative electrode active material layer/volume of negative electrode active material layer)/theoretical specific gravity of material forming negative electrode active material layer}×100
The porosity of the negative electrode active material layer may be adjusted by the type, size and blending amount of the negative electrode active material contained in the negative electrode active material layer, and the pressure at the time of pressing when forming the negative electrode active material layer. You can
As the measurement sample used when measuring the porosity, the same measurement sample used when determining the pore peak diameter can be used.

(負極活物質)
前記負極活物質層が含有する負極活物質としては、特に限定はされないが、充放電により体積変化が生じる負極活物質を用いることが、本開示による充放電後の電池性能の低下を抑制する効果が得られやすい点から好ましい。充放電により体積変化が生じる負極活物質としては、例えば、ニオブチタン複合酸化物、黒鉛等の炭素系負極活物質、ケイ素及び錫等の合金系負極活物質、SiOx、及びこれらの負極活物質を含有する複合材料等を挙げることができる。リチウムイオン吸蔵時の体積増加量がリチウムイオン放出時の体積の15%以下である負極活物質としては、例えば、ニオブチタン複合酸化物及び黒鉛等の炭素系負極活物質等を挙げることができる。
中でも、電池のエネルギー密度向上の観点及び容量増加の観点から、前記負極活物質層は、負極活物質としてニオブチタン複合酸化物を含有することが好ましく、単斜晶系構造を有するニオブチタン複合酸化物を含有することがより好ましい。なお、本開示において、前記ニオブチタン複合酸化物は、ニオブ(Nb)及びチタン(Ti)の一部が異種元素に置換されていてもよい。当該異種元素としては、例えば、Mg、Sr、Mo、W、Ta及びV等が挙げられる。また、前記ニオブチタン複合酸化物としては、例えば、TiNb、TiNb1029、TiNb2462、TiNb1437、及びTiNb等を挙げることができ、中でも、電池のエネルギー密度向上の観点及び容量増加の観点から、TiNbが好ましい。
(Negative electrode active material)
The negative electrode active material contained in the negative electrode active material layer is not particularly limited, but using a negative electrode active material that undergoes a volume change due to charge/discharge is an effect of suppressing deterioration of battery performance after charge/discharge according to the present disclosure. Is preferred because it is easily obtained. Examples of the negative electrode active material whose volume changes due to charge/discharge include niobium titanium composite oxide, carbon-based negative electrode active material such as graphite, alloy-based negative electrode active material such as silicon and tin, SiOx, and these negative electrode active materials. Examples thereof include composite materials. Examples of the negative electrode active material whose volume increase upon storage of lithium ions is 15% or less of the volume upon release of lithium ions include carbon-based negative electrode active materials such as niobium titanium composite oxide and graphite.
Among them, from the viewpoint of improving the energy density of the battery and increasing the capacity, the negative electrode active material layer preferably contains a niobium titanium composite oxide as a negative electrode active material, and a niobium titanium composite oxide having a monoclinic structure is used. It is more preferable to contain. In the present disclosure, part of niobium (Nb) and titanium (Ti) in the niobium titanium composite oxide may be replaced with a different element. Examples of the different element include Mg, Sr, Mo, W, Ta and V. Examples of the niobium titanium composite oxide include TiNb 2 O 7 , Ti 2 Nb 10 O 29 , TiNb 24 O 62 , TiNb 14 O 37 , and Ti 2 Nb 2 O 9, and the like. TiNb 2 O 7 is preferable from the viewpoint of improving the energy density and capacity of the battery.

本開示の負極において、前記負極活物質層が含有する負極活物質は、初期充電前に対する満充電時の体積膨張率が15%以下である。なお、前記体積膨張率は、前記負極活物質層が含有する全ての負極活物質において満たされる。
前記負極活物質の前記体積膨張率の下限は、特に限定はされないが、3%以上であると、充放電後の電池性能の低下を抑制する効果が得られやすい。
In the negative electrode of the present disclosure, the negative electrode active material contained in the negative electrode active material layer has a volume expansion coefficient of 15% or less when fully charged with respect to before initial charging. The volume expansion coefficient is satisfied in all the negative electrode active materials contained in the negative electrode active material layer.
The lower limit of the volume expansion coefficient of the negative electrode active material is not particularly limited, but if it is 3% or more, the effect of suppressing the deterioration of the battery performance after charge/discharge can be easily obtained.

初期充電前に対する満充電時の前記負極活物質の体積膨張率は、下記数式3に従って求められる。
(数式3)
体積膨張率[%]={(満充電時の負極活物質の体積−初期充電前の負極活物質の体積)/初期充電前の負極活物質の体積}×100
ここで、初期充電前とは、本開示の全固体リチウムイオン二次電池用負極を組み込んだ電池を初期充電する前である。満充電時とは、本開示の全固体リチウムイオン二次電池用負極を組み込んだ電池を、最高電圧まで充電した時点である。本開示の全固体リチウムイオン二次電池用負極を組み込んだ電池の充電は、0.1C以上0.5C以下のレートで行うことが、電池を十分に充電する点から好ましい。
なお、前記負極活物質の体積膨張率は、充電前後におけるX線回折より求められる格子定数変化及びSEMでの粒子サイズ観察より確認することができる。
The volume expansion coefficient of the negative electrode active material at the time of full charge with respect to before the initial charge is obtained according to the following mathematical formula 3.
(Formula 3)
Volume expansion rate [%]={(volume of negative electrode active material at full charge−volume of negative electrode active material before initial charging)/volume of negative electrode active material before initial charging}×100
Here, "before initial charge" means before initial charge of a battery incorporating the negative electrode for an all-solid-state lithium-ion secondary battery of the present disclosure. The time of full charge is the time when a battery incorporating the negative electrode for an all-solid-state lithium-ion secondary battery of the present disclosure is charged to the maximum voltage. It is preferable to charge the battery incorporating the negative electrode for the all-solid-state lithium-ion secondary battery of the present disclosure at a rate of 0.1 C or more and 0.5 C or less from the viewpoint of sufficiently charging the battery.
The volume expansion coefficient of the negative electrode active material can be confirmed by a change in lattice constant obtained by X-ray diffraction before and after charging and observation of particle size by SEM.

前記負極活物質の前記体積膨張率は、負極活物質の種類及び本開示の全固体リチウムイオン二次電池用負極の負極容量により調整することができる。例えば、リチウムイオン吸蔵時の体積増加量が、リチウムイオン放出時の体積の15%以下である負極活物質を用いることにより、前記負極活物質の前記体積膨張率を15%以下とすることができる。リチウムイオン吸蔵時の体積増加量が、リチウムイオン放出時の体積の15%超過である負極活物質を含有する場合は、例えば、前記負極活物質の前記体積膨張率が15%以下となるように、負極容量を抑えることにより、前記負極活物質の前記体積膨張率を15%以下とすることができる。なお、負極容量は、例えば、正極と負極の容量比により調整することができる。 The volume expansion coefficient of the negative electrode active material can be adjusted by the kind of the negative electrode active material and the negative electrode capacity of the negative electrode for the all-solid-state lithium-ion secondary battery of the present disclosure. For example, by using a negative electrode active material whose volume increase amount when occluding lithium ions is 15% or less of the volume when lithium ions are released, the volume expansion coefficient of the negative electrode active material can be made 15% or less. .. In the case where the negative electrode active material whose volume increase amount during lithium ion storage is more than 15% of the volume during lithium ion release is contained, for example, the volume expansion coefficient of the negative electrode active material should be 15% or less. By suppressing the negative electrode capacity, the volume expansion coefficient of the negative electrode active material can be set to 15% or less. The negative electrode capacity can be adjusted, for example, by the capacity ratio of the positive electrode and the negative electrode.

前記負極活物質の大きさは、特に限定はされないが、スラリー作製の観点からは、メジアン径(D50)が、0.1μm以上であることが好ましく、0.2μm以上であることがより好ましく、一方、前記負極活物質の固体内拡散の観点からは、メジアン径(D50)が、5μm以下であることが好ましく、3μm以下であることがより好ましい。
なお、前記メジアン径(D50)は、レーザー回折光散乱法に基づく体積基準の粒度分布において、粒径が小さい微粒子側からの累積頻度50体積%に相当する粒径である。
The size of the negative electrode active material is not particularly limited, but from the viewpoint of slurry preparation, the median diameter (D50) is preferably 0.1 μm or more, more preferably 0.2 μm or more, On the other hand, the median diameter (D50) is preferably 5 μm or less, and more preferably 3 μm or less from the viewpoint of diffusion of the negative electrode active material in the solid.
The median diameter (D50) is a particle diameter corresponding to a cumulative frequency of 50% by volume from the small particle side in the particle size distribution based on volume based on the laser diffraction light scattering method.

前記負極活物質の含有量は、特に限定されるものではないが、エネルギー密度を高める点から、前記負極活物質層の総量100質量部に対し、前記負極活物質の含有量が、30質量部以上であることが好ましく、40質量部以上であることが好ましく、一方、前記負極活物質層に前記負極活物質以外のその他の成分を十分に含有させる点から、90質量部以下であることが好ましく、80質量部以下であることがより好ましい。
また、前記負極活物質と後述する固体電解質との合計100質量部中における前記負極活物質の含有量は、エネルギー密度を高める点から、40質量部以上であることが好ましく、50質量部以上であることが好ましく、一方、固体電解質を十分に含有させてイオン伝導性を向上する点から、90質量部以下であることが好ましく、80質量部以下であることがより好ましい。
The content of the negative electrode active material is not particularly limited, but from the viewpoint of increasing the energy density, the content of the negative electrode active material is 30 parts by mass with respect to 100 parts by mass of the total amount of the negative electrode active material layer. The amount is preferably 40 parts by mass or more, and more preferably 40 parts by mass or more, while the amount is 90 parts by mass or less from the viewpoint of sufficiently containing other components other than the negative electrode active material in the negative electrode active material layer. It is preferably 80 parts by mass or less.
Further, the content of the negative electrode active material in the total 100 parts by mass of the negative electrode active material and the solid electrolyte described below is preferably 40 parts by mass or more, and 50 parts by mass or more from the viewpoint of increasing the energy density. On the other hand, it is preferably 90 parts by mass or less, and more preferably 80 parts by mass or less from the viewpoint of sufficiently containing the solid electrolyte to improve the ionic conductivity.

(固体電解質)
前記負極活物質層は、イオン伝導性を向上し、電池性能を向上する点から、更に固体電解質を含有することが好ましい。
前記負極活物質層が含有していてもよい固体電解質としては、例えば、硫化物固体電解質、酸化物固体電解質、窒化物固体電解質等の無機固体電解質を挙げることができ、中でもイオン伝導性が高い点から、硫化物固体電解質を好ましく用いることができる。
硫化物固体電解質としては、例えば、LiS−P、LiS−P−LiI、LiS−P−LiI−LiBr、LiS−P−LiO、LiS−P−LiO−LiI、LiS−SiS、LiS−SiS−LiI、LiS−SiS−LiBr、LiS−SiS−LiCl、LiS−SiS−B−LiI、LiS−SiS−P−LiI、LiS−B、LiS−P−Z(ただし、m、nは正の数を表し、Zは、Ge、Zn又はGaを表す。)、LiS−GeS、LiS−SiS−LiPO、LiS−SiS−LiMO(ただし、x、yは正の数を表し、Mは、P、Si、Ge、B、Al、Ga又はInを表す。)等を挙げることができる。中でも、イオン伝導性が高い点から、LiS−Pを含むものであることがより好ましく、LiS−P−LiI−LiBrが特に好ましい。なお、前記「LiS−P」の記載は、LiSおよびPを含む原料組成物を用いてなる硫化物固体電解質を意味し、他の記載についても同様である。
(Solid electrolyte)
The negative electrode active material layer preferably further contains a solid electrolyte from the viewpoint of improving ionic conductivity and battery performance.
Examples of the solid electrolyte that the negative electrode active material layer may contain include, for example, sulfide solid electrolytes, oxide solid electrolytes, inorganic solid electrolytes such as nitride solid electrolytes, and among others, high ion conductivity. From this point, a sulfide solid electrolyte can be preferably used.
The sulfide solid electrolyte, for example, Li 2 S-P 2 S 5, Li 2 S-P 2 S 5 -LiI, Li 2 S-P 2 S 5 -LiI-LiBr, Li 2 S-P 2 S 5 -Li 2 O, Li 2 S- P 2 S 5 -Li 2 O-LiI, Li 2 S-SiS 2, Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -LiBr, Li 2 S-SiS 2 -LiCl, Li 2 S-SiS 2 -B 2 S 3 -LiI, Li 2 S-SiS 2 -P 2 S 5 -LiI, Li 2 S-B 2 S 3, Li 2 S-P 2 S 5 - Z m S n (however, m, n represents a positive number, Z is, Ge,. representing a Zn or Ga), Li 2 S-GeS 2, Li 2 S-SiS 2 -Li 3 PO 4, Li 2 S-SiS 2 -Li x MO y ( provided that, x, y represents a positive number, M is, P, Si, Ge, B , Al,. represents a Ga or in) and the like can be given. Among these, from the viewpoint of high ionic conductivity, more preferably those containing Li 2 S-P 2 S 5 , Li 2 S-P 2 S 5 -LiI-LiBr is particularly preferred. The description of "Li 2 S-P 2 S 5 "means a sulfide solid electrolyte using a raw material composition containing Li 2 S and P 2 S 5, and the same applies to other descriptions. ..

前記固体電解質の含有量は、特に限定されるものではないが、前記負極活物質と前記固体電解質との合計100質量部中における前記固体電解質の含有量が、イオン伝導性を向上する点から、10質量部以上であることが好ましく、20質量部以上であることがより好ましく、一方、前記負極活物質を十分に含有させてエネルギー密度を高める点から、70質量部以下であることが好ましく、60質量部以下であることがより好ましい。 The content of the solid electrolyte is not particularly limited, the content of the solid electrolyte in the total 100 parts by mass of the negative electrode active material and the solid electrolyte, from the viewpoint of improving ionic conductivity, The amount is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, while it is preferably 70 parts by mass or less from the viewpoint of sufficiently containing the negative electrode active material to increase energy density. It is more preferably 60 parts by mass or less.

前記負極活物質層が、固体電解質として硫化物固体電解質以外の固体電解質を含有する場合は、イオン伝導性を向上する点から、前記負極活物質層が含有する固体電解質の総量100質量部中、硫化物固体電解質の割合が、70質量部以上であることが好ましく、80質量部以上であることがより好ましく、90質量部以上であることがより更に好ましい。 When the negative electrode active material layer contains a solid electrolyte other than a sulfide solid electrolyte as a solid electrolyte, from the viewpoint of improving ionic conductivity, in the total amount of 100 parts by mass of the solid electrolyte contained in the negative electrode active material layer, The proportion of the sulfide solid electrolyte is preferably 70 parts by mass or more, more preferably 80 parts by mass or more, and further preferably 90 parts by mass or more.

(結着剤)
前記負極活物質層は、更に結着剤を含有していてもよい。
前記負極活物質層が含有していてもよい結着剤としては、例えば、ポリフッ化ビニリデン(PVDF)、ビニリデンフルオライド(VDF)とヘキサフルオロプロピレン(HFP)との共重合体(PVDF−HFP)、ポリテトラフルオロエチレン(PTFE)、ブチレンゴム(BR)、スチレン−ブタジエンゴム(SBR)、ポリビニルブチラール(PVB)、アクリル樹脂等を挙げることができる。
(Binder)
The negative electrode active material layer may further contain a binder.
Examples of the binder that the negative electrode active material layer may contain include, for example, polyvinylidene fluoride (PVDF), a copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP) (PVDF-HFP). , Polytetrafluoroethylene (PTFE), butylene rubber (BR), styrene-butadiene rubber (SBR), polyvinyl butyral (PVB), acrylic resin and the like.

前記結着剤の含有量は、特に限定されないが、結着剤としての機能を十分に発現させる点から、前記負極活物質層の総量100質量部中における前記結着剤の含有量が、0.3質量部以上であることが好ましく、0.5質量部以上であることがより好ましく、一方、他の材料を十分に含有させる点から、5質量部以下であることが好ましい。 The content of the binder is not particularly limited, but the content of the binder in 100 parts by mass of the total amount of the negative electrode active material layer is 0 in order to sufficiently exhibit the function as the binder. The amount is preferably 0.3 parts by mass or more, more preferably 0.5 parts by mass or more, and preferably 5 parts by mass or less from the viewpoint of sufficiently containing other materials.

(導電助剤)
前記負極活物質層は、電子伝導性を向上する点から、導電助剤を更に含有していてもよい。
前記負極活物質層が含有していてもよい導電助剤としては、従来全固体電池に使用されているものを適宜選択して用いることができ、特に制限はされず、例えば、VGCF(気相法炭素繊維)等のカーボンナノチューブ及びカーボンナノファイバー等の炭素材料等が挙げられる。
(Conductive agent)
The negative electrode active material layer may further contain a conductive auxiliary agent from the viewpoint of improving electron conductivity.
The conductive auxiliary agent that may be contained in the negative electrode active material layer may be appropriately selected and used from those conventionally used in all-solid-state batteries, and is not particularly limited, and examples thereof include VGCF (gas phase). Carbon materials such as carbon nanotubes) and carbon materials such as carbon nanofibers.

前記導電助剤の含有量は、特に限定はされないが、負極中の電子伝導パスを多く確保することができる点から、前記負極活物質層の総量100質量部中における前記導電助剤の含有量が、1.0質量部以上であることが好ましく、一方、他の材料を十分に含有させる点から、15質量部以下であることが好ましい。 The content of the conductive additive is not particularly limited, but from the viewpoint that a large number of electron conduction paths in the negative electrode can be secured, the content of the conductive additive in the total amount of 100 parts by mass of the negative electrode active material layer. Is preferably 1.0 part by mass or more, while it is preferably 15 parts by mass or less from the viewpoint of sufficiently containing other materials.

前記負極活物質層の厚さは、特に限定されないが、例えば、10μm以上100μm以下とすることができ、10μm以上50μm以下であってもよい。 The thickness of the negative electrode active material layer is not particularly limited, but may be, for example, 10 μm or more and 100 μm or less, and may be 10 μm or more and 50 μm or less.

<負極集電体>
本開示の全固体リチウムイオン二次電池用負極は、更に負極集電体を有していても良い。負極集電体は、前記負極活物質層の集電を行う機能を有するものである。
本開示において、前記負極集電体としては、全固体電池に使用可能な公知の負極集電体を適宜選択して用いることができ、特に限定はされない。
前記負極集電体の材料としては、例えば、SUS、Cu、Ni、Fe、Ti、Co、Zn等を挙げることができる。
負極集電体の形状としては、例えば、箔状、板状、メッシュ状等が挙げられる。
本開示の全固体リチウムイオン二次電池用負極は、更に、前記負極集電体に接続された負極リードを備えていてもよい。
<Negative electrode current collector>
The negative electrode for all-solid-state lithium ion secondary battery of the present disclosure may further have a negative electrode current collector. The negative electrode current collector has a function of collecting current from the negative electrode active material layer.
In the present disclosure, as the negative electrode current collector, a known negative electrode current collector that can be used in all-solid-state batteries can be appropriately selected and used, and is not particularly limited.
Examples of the material of the negative electrode current collector include SUS, Cu, Ni, Fe, Ti, Co and Zn.
Examples of the shape of the negative electrode current collector include a foil shape, a plate shape, and a mesh shape.
The negative electrode for an all-solid-state lithium ion secondary battery of the present disclosure may further include a negative electrode lead connected to the negative electrode current collector.

<全固体リチウムイオン二次電池用負極の製造方法>
本開示の全固体リチウムイオン二次電池用負極の製造方法は、前述した本開示の全固体リチウムイオン二次電池用負極を製造可能な方法であればよく、特に制限はされない。中でも、前記負極活物質層が前記特定の細孔ピーク径及び空隙率となりやすい点から、前記負極活物質層を形成する方法が、スラリー又はペースト状の負極活物質層用組成物を、支持体に塗布し、乾燥することにより、負極活物質層用塗膜を形成する工程と、当該負極活物質層用塗膜をプレスすることにより、前記負極活物質層を形成する工程とを有する方法であることが好ましい。
前記負極活物質層用組成物は、前記負極活物質層を構成する各成分に更に分散媒を加えて混合し、スラリー状又はペースト状とすることにより得られる。
前記負極活物質層を形成する方法において、前記支持体として前記負極集電体を用いることにより、前記負極集電体の少なくとも一方に、前記負極活物質層を有する本開示の全固体リチウムイオン二次電池用負極を容易に得ることができる。
<Method for producing negative electrode for all-solid-state lithium-ion secondary battery>
The method for manufacturing the negative electrode for all-solid-state lithium-ion secondary battery of the present disclosure may be any method as long as it can manufacture the negative electrode for all-solid-state lithium-ion secondary battery of the present disclosure described above, and is not particularly limited. Among them, since the negative electrode active material layer is likely to have the specific pore peak diameter and porosity, the method of forming the negative electrode active material layer is a slurry or paste composition for the negative electrode active material layer, a support. And a step of forming a negative electrode active material layer coating film by drying, and a step of forming the negative electrode active material layer by pressing the negative electrode active material layer coating film. It is preferable to have.
The composition for the negative electrode active material layer can be obtained by further adding a dispersion medium to each component constituting the negative electrode active material layer and mixing them to obtain a slurry or paste.
In the method for forming the negative electrode active material layer, by using the negative electrode current collector as the support, at least one of the negative electrode current collectors has the negative electrode active material layer, and thus the all-solid-state lithium-ion battery of the present disclosure. A negative electrode for a secondary battery can be easily obtained.

前記負極活物質層用塗膜をプレスする工程において、プレス処理は、例えば、前記支持体上に前記負極活物質層用塗膜を有する負極構造体に対して行うことができる。また、前記負極活物質層用塗膜をプレスする工程は、前記負極構造体を電池に組み込む前に行ってもよいし、電池に組み込んだ後に行ってもよい。前記負極構造体を電池に組み込む前に、前記プレスする工程を行う場合、本開示の全固体リチウムイオン二次電池用負極は、電池に組み込まれる前のものとして得られる。前記負極構造体を電池に組み込んだ後に、前記プレスする工程を行う場合、本開示の全固体リチウムイオン二次電池用負極は、電池に組み込まれた後のものとして得られる。中でも、前記プレスする工程は、前記負極構造体を電池に組み込んだ後に行うことが、電池内において、負極活物質層と固体電解質層との間のイオン伝導パス及び電子伝導パスが良好になりやすい点から好ましい。前記プレスの圧力は、特に限定はされず、例えば、20MPa以上1000MPa以下とすることができる。 In the step of pressing the coating film for the negative electrode active material layer, the pressing treatment can be performed, for example, on the negative electrode structure having the coating film for the negative electrode active material layer on the support. The step of pressing the coating film for the negative electrode active material layer may be performed before the negative electrode structure is incorporated in a battery or after it is incorporated in the battery. When the pressing step is performed before incorporating the negative electrode structure into a battery, the negative electrode for an all-solid-state lithium ion secondary battery of the present disclosure is obtained before being incorporated into a battery. When the pressing step is performed after incorporating the negative electrode structure into a battery, the negative electrode for an all-solid-state lithium-ion secondary battery of the present disclosure is obtained after being incorporated into a battery. Among them, the pressing step may be performed after the negative electrode structure is incorporated in the battery, and the ion conduction path and the electron conduction path between the negative electrode active material layer and the solid electrolyte layer are likely to be good in the battery. It is preferable from the point. The pressure of the press is not particularly limited and may be, for example, 20 MPa or more and 1000 MPa or less.

<全固体リチウムイオン二次電池>
本開示の全固体リチウムイオン二次電池用負極が用いられる全固体リチウムイオン二次電池は、負極として、前述した本開示の全固体リチウムイオン二次電池用負極を備える。前述した本開示の負極を備える全固体リチウムイオン二次電池は、充放電後においても負極の性能の低下が抑制されるため、電池性能の低下が抑制される。また、本開示の負極を備える全固体リチウムイオン二次電池は、負極の割れが抑制されたものであり、イオン伝導パス及び電子伝導パスの切断による電池性能の低下が抑制されたものであるため、電池に拘束圧を付与するための拘束機構を簡易化することができる。電池パック内に設ける拘束機構を簡易化することにより、電池パック内のエネルギー密度を向上させることができる。
なお、本開示の負極を備える全固体リチウムイオン二次電池において、負極以外の構成は、公知の全固体リチウムイオン二次電池と同様の構成を採用することができ、特に限定はされない。
<All-solid-state lithium-ion secondary battery>
An all-solid-state lithium-ion secondary battery in which the negative electrode for all-solid-state lithium-ion secondary battery of the present disclosure is used includes the above-described negative electrode for all-solid-state lithium-ion secondary battery of the present disclosure as a negative electrode. In the all-solid-state lithium-ion secondary battery including the above-described negative electrode of the present disclosure, the deterioration of the performance of the negative electrode is suppressed even after charging/discharging, and thus the deterioration of the battery performance is suppressed. Further, the all-solid-state lithium-ion secondary battery including the negative electrode of the present disclosure is one in which cracking of the negative electrode is suppressed, and deterioration in battery performance due to disconnection of the ion conduction path and the electron conduction path is suppressed. It is possible to simplify the restraint mechanism for applying the restraint pressure to the battery. The energy density in the battery pack can be improved by simplifying the restraint mechanism provided in the battery pack.
In the all-solid-state lithium-ion secondary battery including the negative electrode of the present disclosure, the configuration other than the negative electrode may be the same as that of the known all-solid-state lithium-ion secondary battery, and is not particularly limited.

本開示の負極を備える全固体リチウムイオン二次電池としては、例えば、前述した本開示の負極と、正極と、前記負極と前記正極との間に配置された固体電解質層とを有する全固体リチウムイオン二次電池を挙げることができる。図1は、本開示の負極を備える全固体リチウムイオン二次電池の一例を示す断面模式図である。図1に示す全固体リチウムイオン二次電池100は、正極活物質層12及び正極集電体14を含む正極16と、負極活物質層13及び負極集電体15を含む負極17と、正極16と負極17の間に配置された固体電解質層11を備え、前記負極17が、前述した本開示の全固体リチウムイオン二次電池用負極である。
本開示の負極を備える全固体リチウムイオン二次電池は、図1に示すような単セルを複数集積して電気的に接続することによりセル集合体としたものであってもよく、この場合、複数ある負極のうち、少なくとも1つが本開示の全固体リチウムイオン二次電池用負極であればよいが、全ての負極が本開示の全固体リチウムイオン二次電池用負極であることが、充放電後の電池性能の低下が抑制されやすい点から好ましい。
Examples of the all-solid-state lithium ion secondary battery including the negative electrode of the present disclosure include, for example, all-solid lithium having the above-described negative electrode of the present disclosure, a positive electrode, and a solid electrolyte layer disposed between the negative electrode and the positive electrode. An ion secondary battery can be mentioned. FIG. 1 is a schematic cross-sectional view showing an example of an all-solid-state lithium-ion secondary battery including the negative electrode of the present disclosure. The all-solid-state lithium-ion secondary battery 100 shown in FIG. 1 includes a positive electrode 16 including a positive electrode active material layer 12 and a positive electrode current collector 14, a negative electrode 17 including a negative electrode active material layer 13 and a negative electrode current collector 15, and a positive electrode 16 The negative electrode 17 is the negative electrode for an all-solid-state lithium ion secondary battery according to the present disclosure, which includes the solid electrolyte layer 11 disposed between the negative electrode 17 and the negative electrode 17.
The all-solid-state lithium-ion secondary battery including the negative electrode of the present disclosure may be a cell assembly by integrating a plurality of single cells as shown in FIG. 1 and electrically connecting them, and in this case, At least one of the plurality of negative electrodes may be the negative electrode for the all-solid-state lithium-ion secondary battery of the present disclosure, but all negative electrodes are negative electrodes for the all-solid-state lithium-ion secondary battery of the present disclosure. It is preferable because the subsequent deterioration of battery performance is easily suppressed.

以下に、実施例を挙げて、本開示を更に具体的に説明するが、本開示は、この実施例のみに限定されるものではない。 Hereinafter, the present disclosure will be described more specifically with reference to examples, but the present disclosure is not limited to the examples.

[実施例1]
(1)負極活物質の合成
酸化チタン(アナターゼ型、富士フイルム和光純薬(株)製)と、酸化ニオブ(キシダ化学(株)製)とを、チタン(Ti)とニオブ(Nb)のモル比(Ti:Nb)が1:2になるよう秤量した。これらの原料と、直径5mmのジルコニアビーズと、エタノールとを、遊星型ボールミル(フリッチェ製)に投入し、回転数を200rpmとして、2時間混合した。混合後、乾燥させたものを、大気中で1100℃、12時間の条件で焼成し、TiNbの粉末を得た。得られたTiNbの粉末と、直径0.5mmのジルコニアビーズと、エタノールとを、遊星型ボールミルに投入し、回転数を400rpmとして、3時間湿式粉砕した後、乾燥した。その後、粉砕処理により低下した結晶性を復元するため、700℃、5時間の条件で再焼成を行い、単斜晶系構造を含むメジアン径(D50)が0.3μmのTiNbを得た。
[Example 1]
(1) Synthesis of Negative Electrode Active Material Titanium oxide (anatase type, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) and niobium oxide (manufactured by Kishida Chemical Co., Ltd.) were mixed with titanium (Ti) and niobium (Nb) in moles. Weighed so that the ratio (Ti:Nb) was 1:2. These raw materials, zirconia beads having a diameter of 5 mm, and ethanol were put into a planetary ball mill (manufactured by Fritsch), and the number of rotations was 200 rpm, followed by mixing for 2 hours. After mixing, the dried product was fired in the atmosphere at 1100° C. for 12 hours to obtain a TiNb 2 O 7 powder. The obtained TiNb 2 O 7 powder, zirconia beads having a diameter of 0.5 mm, and ethanol were put into a planetary ball mill, the number of revolutions was set to 400 rpm, and wet pulverization was performed for 3 hours, followed by drying. Then, in order to restore the crystallinity reduced by the pulverization treatment, re-firing is performed at 700° C. for 5 hours to obtain TiNb 2 O 7 having a median diameter (D50) of 0.3 μm including a monoclinic structure. It was

(2)負極構造体の作製
硫化物固体電解質として、LiS:P:LiBr:LiIのモル比が56.25:18.75:15:10となるように、各原料を配合して硫化物固体電解質(10LiI−15LiBr−75(0.75LiS−0.25P)を得た。
負極活物質としての前記TiNb(D50が0.3μm)と、前記硫化物固体電解質(10LiI−15LiBr−75(0.75LiS−0.25P)とを、負極活物質:硫化物固体電解質の質量比が75:25となるように秤量した。更に、負極活物質100質量部に対して、結着剤としてのPVDF−HFPバインダー(Solvay社製、Soref(登録商標)21510)を1.5質量部秤量した。更に、主溶媒としてのメチルイソブチルケトン(脱水グレード、ナカライテスク(株)製)と、モレキュラーシーブにて脱水処理した副溶媒としてのn−デカン(東京化成工業(株)製)とを、主溶媒:副溶媒の体積比が90:10となるように混合した。これらの各原料を混合し、超音波ホモジナイザーを用いて1分間混練することにより、スラリー状の負極活物質層用組成物を作製した。その後、負極集電体としてのNi箔の表面に、ドクターブレードを用いて前記負極活物質層用組成物を塗工し、30分間自然乾燥させた後、100℃で30分間加熱乾燥することにより、負極活物質層用塗膜を形成し、負極構造体を得た。
(2) Preparation of Negative Electrode Structure As a sulfide solid electrolyte, each raw material was blended so that the molar ratio of Li 2 S:P 2 S 5 :LiBr:LiI would be 56.25:18.75:15:10. to obtain a sulfide solid electrolyte (10LiI-15LiBr-75 (0.75Li 2 S-0.25P 2 S 5).
The TiNb 2 O 7 (D50 is 0.3 μm) as a negative electrode active material, and the sulfide solid electrolyte (10LiI-15LiBr-75 (0.75Li 2 S-0.25P 2 S 5 )) were used as a negative electrode active material. : PVDF-HFP binder (manufactured by Solvay, Soref (registered trademark)) as a binder with respect to 100 parts by mass of the negative electrode active material, wherein the mass ratio of the sulfide solid electrolyte was 75:25. 21510) was weighed in an amount of 1.5 parts by mass, and methyl isobutyl ketone (dehydrated grade, manufactured by Nacalai Tesque, Inc.) as a main solvent, and n-decane (Tokyo Kasei Co., Ltd.) as a subsolvent dehydrated by molecular sieves. (Manufactured by Kogyo Co., Ltd.) were mixed so that the volume ratio of the main solvent: the sub-solvent was 90:10.These raw materials were mixed and kneaded for 1 minute using an ultrasonic homogenizer to obtain a slurry. Then, a negative electrode active material layer composition was prepared, and then the negative electrode active material layer composition was applied to the surface of the Ni foil as the negative electrode current collector using a doctor blade and naturally dried for 30 minutes. After that, the coating film for the negative electrode active material layer was formed by heating and drying at 100° C. for 30 minutes to obtain a negative electrode structure.

(3)正極構造体の作製
正極活物質としてのLiNi1/3Co1/3Mn1/3(日亜化学工業(株)製)と、前記硫化物固体電解質(10LiI−15LiBr−75(0.75LiS−0.25P)とを、正極活物質:硫化物固体電解質の質量比が75:25となるように秤量した。更に、正極活物質100質量部に対して、PVDF−HFPバインダー(Solvay社製、Soref(登録商標)21510)1.5質量部、及び導電助剤(気相法炭素繊維、昭和電工(株)製)3.0質量部を秤量した。更に、主溶媒としてのメチルイソブチルケトン(脱水グレード、ナカライテスク(株)製)と、モレキュラーシーブにて脱水処理した副溶媒としてのn−デカン(東京化成工業(株)製)とを、主溶媒:副溶媒の体積比が90:10となるように混合した。これらの各原料を混合し、超音波ホモジナイザーを用いて1分間混練することにより、スラリー状の正極活物質層用組成物を作製した。その後、正極集電体としてのアルミニウム箔(昭和電工(株)製)の表面に、ドクターブレードを用いて前記正極活物質層用組成物を塗工し、30分間自然乾燥させた後、100℃で30分間加熱乾燥することにより、正極活物質層用塗膜を形成し、正極構造体を得た。
(3) Preparation of positive electrode structure LiNi 1/3 Co 1/3 Mn 1/3 O 2 (manufactured by Nichia Corporation) as a positive electrode active material, and the sulfide solid electrolyte (10LiI-15LiBr-75). and (0.75Li 2 S-0.25P 2 S 5), the positive electrode active material:. the weight ratio of the sulfide solid electrolyte were weighed so as to 75:25 further, the positive electrode active material 100 parts by weight , PVDF-HFP binder (manufactured by Solvay, Soref (registered trademark) 21510) 1.5 parts by mass, and a conductive additive (gas phase carbon fiber, manufactured by Showa Denko KK) 3.0 parts by mass were weighed. Furthermore, methyl isobutyl ketone (dehydrated grade, manufactured by Nacalai Tesque, Inc.) as a main solvent, and n-decane (manufactured by Tokyo Chemical Industry Co., Ltd.) as a secondary solvent dehydrated by molecular sieves were used as main solvents. : Subsolvents were mixed in a volume ratio of 90:10. These raw materials were mixed and kneaded for 1 minute using an ultrasonic homogenizer to prepare a slurry-like composition for a positive electrode active material layer. After that, the composition for a positive electrode active material layer was applied to the surface of an aluminum foil (manufactured by Showa Denko KK) as a positive electrode current collector using a doctor blade, and naturally dried for 30 minutes, A coating film for a positive electrode active material layer was formed by heating and drying at 100° C. for 30 minutes to obtain a positive electrode structure.

(4)全固体リチウムイオン二次電池の作製
Ar雰囲気のグローブボックス内で、前記硫化物固体電解質(10LiI−15LiBr−75(0.75LiS−0.25P)100質量部に対して、PVDF−HFPバインダー(Solvay社製、Soref(登録商標)21510)1質量部を秤量した。更に、主溶媒としてのメチルイソブチルケトン(脱水グレード、ナカライテスク(株)製)を固形分が35質量%となるように加え、超音波ホモジナイザーを用いて混練することにより、固体電解質層用スラリーを得た。アルミニウム箔の表面に、ドクターブレードを用いて前記固体電解質層用スラリーを塗工し、乾燥することにより、固体電解質層を形成した。その後、前記正極構造体と前記負極構造体とを、ロールプレスによりラミネートした。具体的には、前記固体電解質層と、前記正極構造体の前記正極活物質層用塗膜とが対向するように、前記正極構造体を積層し、室温にて、4.3ton/cmでコールドプレスを行った。その後、固体電解質層と接するアルミニウム箔を剥がし、前記負極構造体の前記負極活物質層用塗膜と、前記固体電解質層とが対向するように、前記負極構造体を積層し、135℃にて、4.3ton/cmでホットプレスを行った。その後、ラミネートに封止することで、実施例1の全固体リチウムイオン二次電池を得た。
(4) in a glove box in Preparation Ar atmosphere of the all-solid-state lithium-ion secondary battery, the sulfide solid electrolyte (10LiI-15LiBr-75 (0.75Li 2 S-0.25P 2 S 5) 100 parts by mass with respect to Then, 1 part by mass of PVDF-HFP binder (Solvay Inc., Soref (registered trademark) 21510) was weighed in. Further, methyl isobutyl ketone (dehydrated grade, manufactured by Nacalai Tesque, Inc.) as a main solvent had a solid content of 35. The solid electrolyte layer slurry was obtained by kneading with an ultrasonic homogenizer so that the solid electrolyte layer slurry was applied to the surface of the aluminum foil by using a doctor blade. A solid electrolyte layer was formed by drying, and then the positive electrode structure and the negative electrode structure were laminated by roll pressing, specifically, the solid electrolyte layer and the positive electrode of the positive electrode structure. The positive electrode structure was laminated so that the coating film for the active material layer faced, and cold pressed at room temperature at 4.3 ton/cm 2. Thereafter, the aluminum foil in contact with the solid electrolyte layer was peeled off, The negative electrode structure was laminated so that the negative electrode active material layer coating film of the negative electrode structure and the solid electrolyte layer faced each other , and hot pressing was performed at 135° C. and 4.3 ton/cm 2. Then, by sealing in a laminate, an all-solid-state lithium-ion secondary battery of Example 1 was obtained.

[実施例2]
実施例1で得られた全固体リチウムイオン二次電池に、更に拘束機構を設け、電池セルに5MPaの拘束圧を付与したものを、実施例2の全固体リチウムイオン二次電池とした。
[Example 2]
The all-solid-state lithium-ion secondary battery obtained in Example 1 was further provided with a restraint mechanism and a restraining pressure of 5 MPa was applied to the battery cells to obtain the all-solid-state lithium-ion secondary battery of Example 2.

[実施例3]
実施例1の前記「(1)負極活物質の合成」において、TiNbの粉末を湿式粉砕する際に、直径0.5mmのジルコニアビーズに代えて、直径1mmのジルコニアビーズを用いた以外は、実施例1と同様にして、単斜晶系構造を含むメジアン径(D50)が0.9μmのTiNbを得た。
実施例1において、負極活物質として、単斜晶系構造を含むメジアン径(D50)が0.3μmのTiNbに代えて、単斜晶系構造を含むメジアン径(D50)が0.9μmのTiNbを用いた以外は、実施例1と同様にして、実施例3の全固体リチウムイオン二次電池を得た。
[Example 3]
In "(1) Synthesis of Negative Electrode Active Material" of Example 1, except that zirconia beads having a diameter of 1 mm were used in place of the zirconia beads having a diameter of 0.5 mm when the powder of TiNb 2 O 7 was wet pulverized. In the same manner as in Example 1, TiNb 2 O 7 containing a monoclinic structure and having a median diameter (D50) of 0.9 μm was obtained.
In Example 1, the negative electrode active material was replaced with TiNb 2 O 7 having a monoclinic structure and a median diameter (D50) of 0.3 μm, and the median diameter (D50) including the monoclinic structure was 0. An all-solid-state lithium-ion secondary battery of Example 3 was obtained in the same manner as in Example 1, except that 9 μm TiNb 2 O 7 was used.

[実施例4]
実施例3で得られた全固体リチウムイオン二次電池に、更に拘束機構を設け、電池セルに5MPaの拘束圧を付与したものを、実施例4の全固体リチウムイオン二次電池とした。
[Example 4]
The all-solid-state lithium-ion secondary battery obtained in Example 3 was further provided with a restraint mechanism and a restraining pressure of 5 MPa was applied to the battery cells to obtain the all-solid-state lithium-ion secondary battery of Example 4.

[実施例5]
実施例1の前記「(1)負極活物質の合成」において、TiNbの粉末を湿式粉砕する際に、直径0.5mmのジルコニアビーズに代えて、直径1.5mmのジルコニアビーズを用いた以外は、実施例1と同様にして、実施例5の全固体リチウムイオン二次電池を得た。
[Example 5]
In the above-mentioned “(1) Synthesis of Negative Electrode Active Material” of Example 1, when the powder of TiNb 2 O 7 was wet-milled, zirconia beads having a diameter of 1.5 mm were used instead of zirconia beads having a diameter of 0.5 mm. An all-solid-state lithium-ion secondary battery of Example 5 was obtained in the same manner as in Example 1 except that the above was used.

[実施例6]
実施例5で得られた全固体リチウムイオン二次電池に、更に拘束機構を設け、電池セルに5MPaの拘束圧を付与したものを、実施例6の全固体リチウムイオン二次電池とした。
[Example 6]
The all-solid-state lithium-ion secondary battery obtained in Example 5 was further provided with a restraint mechanism and a restraining pressure of 5 MPa was applied to the battery cells to obtain the all-solid-state lithium-ion secondary battery of Example 6.

[比較例1]
実施例1の前記「(4)全固体リチウムイオン二次電池の作製」において、ホットプレス時の圧力を4.3ton/cmから5.0ton/cmに変更した以外は、実施例1と同様にして、比較例1の全固体リチウムイオン二次電池を得た。
[Comparative Example 1]
In “(4) Preparation of all-solid-state lithium-ion secondary battery” of Example 1, except that the pressure during hot pressing was changed from 4.3 ton/cm 2 to 5.0 ton/cm 2. Similarly, an all-solid-state lithium ion secondary battery of Comparative Example 1 was obtained.

[比較例2]
比較例1で得られた全固体リチウムイオン二次電池に、更に拘束機構を設け、電池セルに5MPaの拘束圧を付与したものを、比較例2の全固体リチウムイオン二次電池とした。
[Comparative example 2]
The all-solid-state lithium-ion secondary battery obtained in Comparative Example 1 was further provided with a restraint mechanism and a restraining pressure of 5 MPa was applied to the battery cells, to obtain an all-solid-state lithium-ion secondary battery in Comparative Example 2.

[比較例3]
実施例3において、ホットプレス時の圧力を4.3ton/cmから3.2ton/cmに変更した以外は、実施例3と同様にして、比較例3の全固体リチウムイオン二次電池を得た。
[Comparative Example 3]
An all-solid-state lithium-ion secondary battery of Comparative Example 3 was prepared in the same manner as in Example 3 except that the pressure during hot pressing was changed from 4.3 ton/cm 2 to 3.2 ton/cm 2. Obtained.

[比較例4]
比較例3で得られた全固体リチウムイオン二次電池に、更に拘束機構を設け、電池セルに5MPaの拘束圧を付与したものを、比較例4の全固体リチウムイオン二次電池とした。
[Comparative Example 4]
The all-solid-state lithium-ion secondary battery obtained in Comparative Example 3 was further provided with a restraining mechanism and a restraining pressure of 5 MPa was applied to the battery cells, to obtain an all-solid-state lithium-ion secondary battery of Comparative Example 4.

[比較例5]
実施例5において、ホットプレス時の圧力を4.3ton/cmから3.2ton/cmに変更した以外は、実施例5と同様にして、比較例5の全固体リチウムイオン二次電池を得た。
[Comparative Example 5]
An all-solid-state lithium-ion secondary battery of Comparative Example 5 was prepared in the same manner as in Example 5 except that the pressure during hot pressing was changed from 4.3 ton/cm 2 to 3.2 ton/cm 2. Obtained.

[比較例6]
比較例5で得られた全固体リチウムイオン二次電池に、更に拘束機構を設け、電池セルに5MPaの拘束圧を付与したものを、比較例6の全固体リチウムイオン二次電池とした。
[Comparative Example 6]
The all-solid-state lithium-ion secondary battery obtained in Comparative Example 5 was further provided with a restraint mechanism and a restraining pressure of 5 MPa was applied to the battery cells to obtain an all-solid-state lithium-ion secondary battery in Comparative Example 6.

[実施例7]
実施例1において、負極活物質として、単斜晶系構造を含むメジアン径(D50)が0.3μmのTiNbに代えて、Si粉末(高純度化学研究所製、製品名:SIE23PB、純度:3N、サイズ:約5μm)を用い、初期充電前に対する満充電時のSiの体積膨張率が15%となるように負極容量を調整した以外は、実施例1と同様にして、実施例7の全固体リチウムイオン二次電池を得た。
[Example 7]
In Example 1, as the negative electrode active material, instead of TiNb 2 O 7 having a median diameter (D50) of 0.3 μm including a monoclinic structure, Si powder (manufactured by Kojundo Chemical Laboratory, product name: SIE23PB, (Purity: 3 N, size: about 5 μm) was used in the same manner as in Example 1 except that the negative electrode capacity was adjusted so that the volume expansion coefficient of Si at the time of full charge was 15% before the initial charge. An all-solid-state lithium ion secondary battery of No. 7 was obtained.

[実施例8]
実施例7で得られた全固体リチウムイオン二次電池に、更に拘束機構を設け、電池セルに5MPaの拘束圧を付与したものを、実施例8の全固体リチウムイオン二次電池とした。
[Example 8]
The all-solid-state lithium-ion secondary battery obtained in Example 7 was further provided with a restraining mechanism and a restraining pressure of 5 MPa was applied to the battery cells to obtain the all-solid-state lithium-ion secondary battery of Example 8.

[比較例7]
実施例7において、初期充電前に対する満充電時のSiの体積膨張率が25%となるように負極容量を調整した以外は、実施例7と同様にして、比較例7の全固体リチウムイオン二次電池を得た。
[Comparative Example 7]
In the same manner as in Example 7 except that the negative electrode capacity was adjusted so that the volume expansion coefficient of Si at the time of full charge was 25% before the initial charging, the all-solid-state lithium ion electrolyte of Comparative Example 7 was obtained. The next battery was obtained.

[比較例8]
比較例7で得られた全固体リチウムイオン二次電池に、更に拘束機構を設け、電池セルに5MPaの拘束圧を付与したものを、比較例8の全固体リチウムイオン二次電池とした。
[Comparative Example 8]
The all-solid-state lithium-ion secondary battery obtained in Comparative Example 7 was further provided with a restraint mechanism and a restraining pressure of 5 MPa was applied to the battery cells, to obtain an all-solid-state lithium-ion secondary battery in Comparative Example 8.

[比較例9]
実施例7において、初期充電前に対する満充電時のSiの体積膨張率が20%となるように負極容量を調整した以外は、実施例7と同様にして、比較例9の全固体リチウムイオン二次電池を得た。
[Comparative Example 9]
In the same manner as in Example 7 except that the negative electrode capacity was adjusted so that the volume expansion coefficient of Si at the time of full charge was 20% before the initial charging, the all-solid-state lithium ion dielectrolyte of Comparative Example 9 was obtained. The next battery was obtained.

[比較例10]
比較例9で得られた全固体リチウムイオン二次電池に、更に拘束機構を設け、電池セルに5MPaの拘束圧を付与したものを、比較例10の全固体リチウムイオン二次電池とした。
[Comparative Example 10]
The all-solid-state lithium-ion secondary battery obtained in Comparative Example 9 was further provided with a restraint mechanism and a restraining pressure of 5 MPa was applied to the battery cells, to obtain an all-solid-state lithium-ion secondary battery in Comparative Example 10.

[実施例9]
実施例1において、負極活物質として、単斜晶系構造を含むメジアン径(D50)が0.3μmのTiNbに代えて、天然黒鉛(C)(三菱化学(株)製、グラファイト、平均粒径:10μm)を用いた以外は、実施例1と同様にして、実施例9の全固体リチウムイオン二次電池を得た。
[Example 9]
In Example 1, instead of TiNb 2 O 7 having a median diameter (D50) of 0.3 μm including a monoclinic structure as the negative electrode active material, natural graphite (C) (manufactured by Mitsubishi Chemical Corporation, graphite, An all-solid-state lithium-ion secondary battery of Example 9 was obtained in the same manner as in Example 1 except that the average particle size: 10 μm) was used.

[実施例10]
実施例9で得られた全固体リチウムイオン二次電池に、更に拘束機構を設け、電池セルに5MPaの拘束圧を付与したものを、実施例10の全固体リチウムイオン二次電池とした。
[Example 10]
The all-solid-state lithium-ion secondary battery obtained in Example 9 was further provided with a restraint mechanism and a restraining pressure of 5 MPa was applied to the battery cells to obtain the all-solid-state lithium-ion secondary battery of Example 10.

[比較例11]
実施例9において、ホットプレス時の圧力を4.3ton/cmから5.0ton/cmに変更した以外は、実施例9と同様にして、比較例11の全固体リチウムイオン二次電池を得た。
[Comparative Example 11]
An all-solid-state lithium-ion secondary battery of Comparative Example 11 was prepared in the same manner as in Example 9 except that the pressure during hot pressing was changed from 4.3 ton/cm 2 to 5.0 ton/cm 2. Obtained.

[比較例12]
比較例11で得られた全固体リチウムイオン二次電池に、更に拘束機構を設け、電池セルに5MPaの拘束圧を付与したものを、比較例12の全固体リチウムイオン二次電池とした。
[Comparative Example 12]
The all-solid-state lithium-ion secondary battery of Comparative Example 12 was obtained by further providing a binding mechanism to the all-solid-state lithium-ion secondary battery obtained in Comparative Example 11 and applying a binding pressure of 5 MPa to the battery cells.

[比較例13]
実施例1の前記「(1)負極活物質の合成」において、負極活物質として、単斜晶系構造を含むメジアン径(D50)が0.3μmのTiNbに代えて、スピネル型チタン酸リチウムLiTi12を用いた以外は、実施例1と同様にして、比較例13の全固体リチウムイオン二次電池を得た。
[Comparative Example 13]
In the above “(1) Synthesis of Negative Electrode Active Material” of Example 1, spinel titanium was used as the negative electrode active material instead of TiNb 2 O 7 having a monoclinic structure and a median diameter (D50) of 0.3 μm. An all-solid-state lithium-ion secondary battery of Comparative Example 13 was obtained in the same manner as in Example 1 except that lithium oxide Li 4 Ti 5 O 12 was used.

[比較例14]
比較例13で得られた全固体リチウムイオン二次電池に、更に拘束機構を設け、電池セルに5MPaの拘束圧を付与したものを、比較例14の全固体リチウムイオン二次電池とした。
[Comparative Example 14]
The all-solid-state lithium-ion secondary battery of Comparative Example 14 was obtained by further providing a restraining mechanism on the all-solid-state lithium-ion secondary battery obtained in Comparative Example 13 and applying a restraining pressure of 5 MPa to the battery cells.

[評価]
(1)細孔ピーク径の測定
初期充電前の全固体リチウムイオン二次電池から、内径15mmの円筒状の型を用いて5箇所から負極を打ち抜き、負極集電体の片面に負極活物質層を有する円筒状の測定用試料を、1つの負極につき合計5個得た。不活性雰囲気下にて、測定用試料を6枚ガラス製の試料容器に封入し、下記測定条件で測定を行い、細孔径分布を得た。一例として、図2に、実施例1の全固体リチウムイオン二次電池が有する負極活物質層の細孔径分布を示す。
(測定条件)
・装置(オートポアIV9510、マイクロメルティックス社製)
・圧力:初期圧0.5psi、終止圧60000psi
・水銀接触角:141.3℃
・水銀表面張力:484dyn/cm
1つの負極につき5個の測定用試料について細孔径ピークを測定し、それらの平均を、当該負極が有する負極活物質層の細孔径ピークとした。
[Evaluation]
(1) Measurement of pore peak diameter From the all-solid-state lithium-ion secondary battery before initial charging, a negative electrode was punched out at 5 points using a cylindrical mold having an inner diameter of 15 mm, and a negative electrode active material layer was formed on one surface of the negative electrode current collector. A total of 5 cylindrical measurement samples having the above were obtained for each negative electrode. Under an inert atmosphere, the measurement sample was enclosed in a 6-glass sample container, and measurement was performed under the following measurement conditions to obtain a pore size distribution. As an example, FIG. 2 shows the pore size distribution of the negative electrode active material layer included in the all-solid-state lithium-ion secondary battery of Example 1.
(Measurement condition)
・Device (Autopore IV9510, manufactured by MicroMeltics)
-Pressure: initial pressure 0.5 psi, final pressure 60000 psi
・Mercury contact angle: 141.3℃
・Mercury surface tension: 484 dyn/cm
The pore diameter peaks were measured for five measurement samples for each negative electrode, and the average thereof was used as the pore diameter peak of the negative electrode active material layer of the negative electrode.

(2)空隙率の測定
初期充電前の全固体リチウムイオン二次電池から、内径15mmの円筒状の型を用いて5箇所から負極を打ち抜き、負極集電体の片面に負極活物質層を有する円筒状の測定用試料を、1つの負極につき合計5個得た。測定用試料が有する負極活物質層の重量及び膜厚を測定し、前記数式2に従って負極活物質層の空隙率を算出した。なお、負極活物質層の重量は、測定用試料の重量から、負極集電体の重量を差し引いて求めた。負極活物質層の体積は、円筒状の測定用試料の底面(直径15mmの円形)の面積と負極活物質層の膜厚から算出した。負極活物質層を構成する材料の理論比重は、負極活物質層用組成物中の溶媒以外の成分について、真比重及び配合比から算出した。
1つの負極につき5個の測定用試料について空隙率を測定し、それらの平均を、当該負極が有する負極活物質層の空隙率とした。
(2) Measurement of porosity From an all-solid-state lithium-ion secondary battery before initial charging, a negative electrode was punched out at 5 points using a cylindrical mold having an inner diameter of 15 mm, and a negative electrode active material layer was provided on one surface of the negative electrode current collector. A total of 5 cylindrical measurement samples were obtained for each negative electrode. The weight and the film thickness of the negative electrode active material layer included in the measurement sample were measured, and the porosity of the negative electrode active material layer was calculated according to Formula 2 above. The weight of the negative electrode active material layer was determined by subtracting the weight of the negative electrode current collector from the weight of the measurement sample. The volume of the negative electrode active material layer was calculated from the area of the bottom surface (circle having a diameter of 15 mm) of the cylindrical measurement sample and the film thickness of the negative electrode active material layer. The theoretical specific gravity of the material forming the negative electrode active material layer was calculated from the true specific gravity and the compounding ratio of the components other than the solvent in the composition for the negative electrode active material layer.
The porosity was measured for five measurement samples for each negative electrode, and the average thereof was used as the porosity of the negative electrode active material layer of the negative electrode.

(3)初期出力維持率の測定
25℃の温度条件下、全固体リチウムイオン二次電池に対し、SOC100%まで定電流定電圧(CCCV)充電を行った後、電流密度を0.2C又は2.0Cとして、各々SOC0%まで定電流(CC)放電を行い、電流密度を0.2Cとして放電したときの初期放電容量と、電流密度を2.0Cとして放電したときの初期放電容量を求め、下記式により初期出力維持率を求めた。
初期出力維持率[%]=(2.0Cでの初期放電容量/0.2Cでの初期放電容量)×100
(3) Measurement of initial output retention ratio After constant-current constant-voltage (CCCV) charging was performed on the all-solid-state lithium-ion secondary battery to a SOC of 100% under a temperature condition of 25° C., the current density was 0.2 C or 2. Constant current (CC) discharge up to SOC 0% as 0.0 C, and an initial discharge capacity when discharged at a current density of 0.2 C and an initial discharge capacity when discharged at a current density of 2.0 C, The initial output maintenance rate was calculated by the following formula.
Initial output retention rate [%]=(initial discharge capacity at 2.0 C/initial discharge capacity at 0.2 C)×100

(4)サイクル後容量維持率の測定
25℃の温度条件下、全固体リチウムイオン二次電池に対し、SOC100%までCCCV充電を行った後、SOC0%までCC放電(電流密度:0.2C)を行い、当該CC放電時の放電容量を初期容量とした。
次いで、25℃の温度条件下、SOC100%までCCCV充電を行った後、SOC0%までCC放電(電流密度:1C)を行う充放電を1サイクルとし、100サイクル行った。100サイクル目の放電容量をサイクル後容量とし、下記式によりサイクル後容量維持率を求めた。
サイクル後容量維持率[%]=(サイクル後容量/初期容量)×100
(4) Measurement of capacity retention ratio after cycle Under the temperature condition of 25° C., CCCV charging was performed up to SOC 100% with respect to the all-solid-state lithium ion secondary battery, and then CC discharge was performed up to SOC 0% (current density: 0.2C). The discharge capacity during the CC discharge was taken as the initial capacity.
Then, under a temperature condition of 25° C., CCCV charging was performed up to SOC 100%, and then CC discharging (current density: 1C) was performed up to SOC 0%, which was 100 cycles. The discharge capacity at the 100th cycle was taken as the capacity after cycle, and the capacity retention rate after cycle was determined by the following formula.
Capacity retention after cycle [%]=(Capacity after cycle/initial capacity)×100

(5)サイクル後出力維持率の測定
25℃の温度条件下、全固体リチウムイオン二次電池に対し、SOC100%までCCCV充電を行った後、SOC0%までCC放電(電流密度:1C)を行う充放電を1サイクルとし、100サイクル行った。その後、25℃の温度条件下、SOC100%までCCCV充電を行った後、電流密度を0.2C又は2.0Cとして、各々SOC0%まで定電流(CC)放電を行い、電流密度を0.2Cとして放電したときのサイクル後放電容量と、電流密度を2.0Cとして放電したときのサイクル後放電容量とを求め、下記式によりサイクル後出力維持率を求めた。
サイクル後出力維持率[%]=(2.0Cでのサイクル後放電容量/0.2Cでのサイクル後放電容量)×100
(5) Measurement of output retention rate after cycle Under the temperature condition of 25° C., CCCV charging is performed up to SOC 100%, and then CC discharge (current density: 1C) is performed up to SOC 0% with respect to the all-solid-state lithium ion secondary battery. Charging/discharging was 1 cycle, and 100 cycles were performed. Then, under a temperature condition of 25° C., CCCV charging was performed up to SOC 100%, and then constant current (CC) discharge was performed up to SOC 0% with a current density of 0.2 C or 2.0 C, and a current density was 0.2 C. The post-cycle discharge capacity when discharged as and the post-cycle discharge capacity when discharged at a current density of 2.0 C were obtained, and the post-cycle output retention rate was obtained by the following formula.
Output retention rate after cycle [%]=(discharge capacity after cycle at 2.0 C/discharge capacity after cycle at 0.2 C)×100

前記初期出力維持率、サイクル後容量維持率及びサイクル後出力維持率について、電池セルに5MPaの拘束圧を付与した電池(5MPa拘束時)の結果に対する、電池セルに拘束圧を付与しなかった電池(無拘束時)の結果の比(表1中、0MPa/5MPaと示す)を算出した。5MPa拘束時の結果に対する無拘束時の結果の比が1に近いほど、負極活物質の体積変化による電池性能の低下が抑制されており、電池パック内の拘束機構の簡易化が可能であることを意味する。
前記初期出力維持率、サイクル後容量維持率及びサイクル後出力維持率の各結果について、5MPa拘束時の結果に対する無拘束時の結果の比(0MPa/5MPa)は、0.95以上であることが望ましい。
Regarding the initial output retention rate, the post-cycle capacity maintenance rate, and the post-cycle output maintenance rate, the result of the battery in which the constraint pressure of 5 MPa was applied to the battery cells (at the time of 5 MPa constraint) was the battery in which the constraint pressure was not applied to the battery cells. The ratio (indicated as 0 MPa/5 MPa in Table 1) of the results (without restraint) was calculated. The closer the ratio of the result of unconstrained to the result of 5 MPa constrained is closer to 1, the lower the battery performance due to the volume change of the negative electrode active material is suppressed, and the restraint mechanism in the battery pack can be simplified. Means
Regarding each of the results of the initial output maintenance rate, the post-cycle capacity maintenance rate, and the post-cycle output maintenance rate, the ratio (0 MPa/5 MPa) of the result when unrestrained to the result when constrained at 5 MPa is 0.95 or more. desirable.

表1より、実施例1〜10では、全固体リチウムイオン二次電池が備える負極が、初期充電前において、負極活物質層の水銀圧入法により測定される細孔ピーク径が0.1μm以下であり、負極活物質層の空隙率が10%以上25%以下であり、初期充電前に対する満充電時の負極活物質の体積膨張率が15%以下であったため、負極活物質として、TiNb、Si及び天然黒鉛(C)のいずれを用いた場合も、初期出力維持率、並びにサイクル後の容量維持率及び出力維持率が高く、充放電後の電池性能の低下が抑制されたものであった。また、実施例1〜10において、電池セルに付与した拘束圧以外を同じ条件にした電池について、初期出力維持率、並びにサイクル後の容量維持率及び出力維持率の結果を対比すると、5MPa拘束時の結果に対する無拘束時の結果の比がいずれも0.95以上であり、無拘束状態でも優れた電池性能を発揮することができ、電池パック内の拘束機構の簡易化によって、電池パック内のエネルギー密度を向上させることができる電池であることが明らかにされた。
比較例1〜6は、初期充電前における負極活物質層の空隙率が10%未満又は25%超過であるか、細孔ピーク径が0.1μm超過であったため、同じ種類の負極活物質を用いた実施例1〜6のうち、電池セルに付与した拘束圧が同じものと対比すると、初期出力維持率、並びにサイクル後の容量維持率及び出力維持率のいずれも低下しており、電池性能が低下していた。
比較例7〜10は、初期充電前に対する満充電時の負極活物質の体積膨張率が15%超過であったため、同じ種類の負極活物質を用いた実施例7、8のうち、電池セルに付与した拘束圧が同じものと対比すると、初期出力維持率、並びにサイクル後の容量維持率及び出力維持率のいずれも低下しており、電池性能が低下していた。
比較例11〜12は、初期充電前における負極活物質層の空隙率が10%未満であったため、同じ種類の負極活物質を用いた実施例9、10のうち、電池セルに付与した拘束圧が同じものと対比すると、初期出力維持率、並びにサイクル後の容量維持率及び出力維持率のいずれも低下しており、電池性能が低下していた。
比較例13〜14は、負極活物質としてLiTi12を用いたため、充放電による負極活物質の体積変化が小さかったことから、充放電後も電池性能が維持されていたが、エネルギー密度が不十分な電池であった。
なお、比較例において、電池セルに5MPaの拘束圧を付与したものは、電池セルに拘束圧を付与しなかったものに比べて電池性能が向上していたが、これは、拘束圧を付与したことにより、負極活物質の膨張収縮により発生する負極の割れが抑制されたため、又は、負極活物質と固体電解質等との接触が良好になり、イオン伝導性等が向上したためと推定される。
From Table 1, in Examples 1 to 10, the negative electrode included in the all-solid-state lithium-ion secondary battery had a pore peak diameter of 0.1 μm or less measured by the mercury intrusion method of the negative electrode active material layer before initial charging. Since the porosity of the negative electrode active material layer was 10% or more and 25% or less, and the volume expansion coefficient of the negative electrode active material at the time of full charge before initial charging was 15% or less, TiNb 2 O was used as the negative electrode active material. 7. In any case of using Si, natural graphite (C), the initial output retention rate and the capacity retention rate and the output retention rate after the cycle were high, and the deterioration of the battery performance after charging and discharging was suppressed. there were. Further, in Examples 1 to 10, for the batteries under the same conditions except for the constraint pressure applied to the battery cells, the results of the initial output retention rate and the capacity retention rate and the output retention rate after the cycle were compared, and when 5 MPa was constrained. The ratios of the results in the non-restraint to the results in 0.95 or more are all 0.95 or more, and excellent battery performance can be exhibited even in the non-restrained state. By simplifying the restraint mechanism in the battery pack, It was revealed that the battery can improve the energy density.
In Comparative Examples 1 to 6, since the porosity of the negative electrode active material layer before initial charging was less than 10% or more than 25% or the pore peak diameter was more than 0.1 μm, the same type of negative electrode active material was used. When compared with the used Examples 1 to 6 in which the constraint pressure applied to the battery cells is the same, both the initial output retention rate and the capacity retention rate and the output retention rate after the cycle are decreased, and the battery performance is decreased. Was falling.
In Comparative Examples 7 to 10, since the volume expansion coefficient of the negative electrode active material at the time of full charge was more than 15% as compared with that before the initial charging, the battery cell was selected from Examples 7 and 8 using the same type of negative electrode active material. When compared with the same applied constraint pressure, both the initial output retention rate and the capacity retention rate and the output retention rate after the cycle were reduced, and the battery performance was reduced.
In Comparative Examples 11 to 12, since the porosity of the negative electrode active material layer before initial charging was less than 10%, the binding pressure applied to the battery cell among Examples 9 and 10 using the same type of negative electrode active material. , The initial output retention rate, and the capacity retention rate and the output retention rate after the cycle were both decreased, and the battery performance was decreased.
In Comparative Examples 13 to 14, since Li 4 Ti 5 O 12 was used as the negative electrode active material, the volume change of the negative electrode active material due to charging/discharging was small, so that the battery performance was maintained even after charging/discharging. The battery had an insufficient density.
In the comparative example, the battery cell to which the constraint pressure of 5 MPa was applied had improved battery performance as compared to the battery cell to which the constraint pressure was not applied. It is presumed that this is because cracking of the negative electrode caused by the expansion and contraction of the negative electrode active material was suppressed, or the contact between the negative electrode active material and the solid electrolyte and the like was improved, and the ionic conductivity and the like were improved.

11 固体電解質層
12 正極活物質層
13 負極活物質層
14 正極集電体
15 負極集電体
16 正極
17 負極
100 全固体リチウムイオン二次電池
11 Solid Electrolyte Layer 12 Positive Electrode Active Material Layer 13 Negative Electrode Active Material Layer 14 Positive Electrode Current Collector 15 Negative Current Collector 16 Positive Electrode 17 Negative Electrode 100 All Solid Lithium Ion Secondary Battery

Claims (1)

負極活物質層を有する全固体リチウムイオン二次電池用負極であって、
初期充電前において、水銀圧入法により測定される前記負極活物質層の細孔径分布におけるピーク径が0.1μm以下であり、前記負極活物質層の空隙率が10%以上25%以下であり、
前記負極活物質層が含有する負極活物質は、初期充電前に対する満充電時の体積膨張率が15%以下であることを特徴とする、全固体リチウムイオン二次電池用負極。
A negative electrode for an all-solid-state lithium-ion secondary battery having a negative electrode active material layer,
Before initial charging, the peak diameter in the pore size distribution of the negative electrode active material layer measured by mercury porosimetry is 0.1 μm or less, and the porosity of the negative electrode active material layer is 10% or more and 25% or less,
The negative electrode active material contained in the negative electrode active material layer has a volume expansion coefficient of 15% or less when fully charged compared to before initial charging, which is an anode for an all-solid-state lithium ion secondary battery.
JP2019010967A 2019-01-25 2019-01-25 Negative electrode for all-solid-state lithium-ion secondary battery Active JP7111005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019010967A JP7111005B2 (en) 2019-01-25 2019-01-25 Negative electrode for all-solid-state lithium-ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019010967A JP7111005B2 (en) 2019-01-25 2019-01-25 Negative electrode for all-solid-state lithium-ion secondary battery

Publications (2)

Publication Number Publication Date
JP2020119802A true JP2020119802A (en) 2020-08-06
JP7111005B2 JP7111005B2 (en) 2022-08-02

Family

ID=71892167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019010967A Active JP7111005B2 (en) 2019-01-25 2019-01-25 Negative electrode for all-solid-state lithium-ion secondary battery

Country Status (1)

Country Link
JP (1) JP7111005B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018020668A1 (en) * 2016-07-29 2018-02-01 株式会社 東芝 Electrode, nonaqueous electrolyte battery and battery pack
WO2018088522A1 (en) * 2016-11-11 2018-05-17 日本碍子株式会社 Secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018020668A1 (en) * 2016-07-29 2018-02-01 株式会社 東芝 Electrode, nonaqueous electrolyte battery and battery pack
WO2018088522A1 (en) * 2016-11-11 2018-05-17 日本碍子株式会社 Secondary battery

Also Published As

Publication number Publication date
JP7111005B2 (en) 2022-08-02

Similar Documents

Publication Publication Date Title
US11362366B2 (en) Secondary battery composite electrolyte, secondary battery, and battery pack
JP2023011777A (en) Ion-conducting battery containing solid electrolyte material
JP6493313B2 (en) Manufacturing method of all solid state battery
US11196082B2 (en) Anode mixture, anode comprising the anode mixture, and all-solid-state lithium ion secondary battery comprising the anode
WO2015068268A1 (en) All-solid-state cell, electrode for all-solid-state cell, and method for manufacturing same
KR20190017661A (en) Lithium solid battery
JP2011134691A (en) Electrode for nonaqueous electrolyte secondary battery, method for manufacturing the same, and non-aqueous secondary battery
JP7010697B2 (en) Composite electrolyte for secondary batteries, secondary batteries and battery packs
JP2015204179A (en) Method for manufacturing electrode for all-solid battery, and method for manufacturing all-solid battery
JP2018181702A (en) Method for manufacturing all-solid lithium ion secondary battery
KR102256295B1 (en) Negative active material, negative electrode and lithium secondary battery including the same, and method of preparing the negative active material
KR101504050B1 (en) Method for producing lithium ion secondary battery
JP2015176856A (en) Negative electrode, method of manufacturing the same, and power storage device
JP6840946B2 (en) Solid electrolytes, all-solid-state batteries, and how to make them
JP2017224427A (en) Solid electrolyte and battery
KR20170105873A (en) Positive active material composition for lithium secondary battery, and positive electrode and lithium secondary battery including the same
JP6674072B1 (en) Current collecting layer for all-solid-state battery, all-solid-state battery, and carbon material
JP6965860B2 (en) All solid state battery
JP2020024779A (en) Electrode for secondary battery, secondary battery, and manufacturing method thereof
JP2012199097A (en) Sintered type positive electrode and battery equipped with the sintered type positive electrode
JP2020080247A (en) Solid-state battery
KR20220136146A (en) All solid state battery
JP7111005B2 (en) Negative electrode for all-solid-state lithium-ion secondary battery
JP2020194739A (en) Lithium ion secondary battery and manufacturing method thereof
JP7136063B2 (en) Sodium ion conductor and sodium ion solid state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220704

R151 Written notification of patent or utility model registration

Ref document number: 7111005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151