JP2020118325A - Multi-can installation boiler - Google Patents

Multi-can installation boiler Download PDF

Info

Publication number
JP2020118325A
JP2020118325A JP2019008116A JP2019008116A JP2020118325A JP 2020118325 A JP2020118325 A JP 2020118325A JP 2019008116 A JP2019008116 A JP 2019008116A JP 2019008116 A JP2019008116 A JP 2019008116A JP 2020118325 A JP2020118325 A JP 2020118325A
Authority
JP
Japan
Prior art keywords
combustion
units
boiler
amount
increase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019008116A
Other languages
Japanese (ja)
Other versions
JP7140356B2 (en
Inventor
享一 浅尾
Kyoichi Asao
享一 浅尾
西山 将人
Masato Nishiyama
将人 西山
佳征 松井
Yoshimasa Matsui
佳征 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAMSON CO Ltd
Original Assignee
SAMSON CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAMSON CO Ltd filed Critical SAMSON CO Ltd
Priority to JP2019008116A priority Critical patent/JP7140356B2/en
Publication of JP2020118325A publication Critical patent/JP2020118325A/en
Application granted granted Critical
Publication of JP7140356B2 publication Critical patent/JP7140356B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

To provide a multi-can installation boiler in which a unit-number increase pattern balanced in efficiency of boilers and load-following characteristics can be set.SOLUTION: A multi-can installation boiler has multiple boilers for performing step-by-step combustion control and a unit-number control device. In the multi-can installation boiler where a unit-number increase pattern is selected and used by setting multiple unit-number increase patterns different in the secured unit-number of low combustion boiler, the unit-number control device is configured such that a vapor usage in the multi-can installation boiler is calculated and a cumulative time of the vapor usage is calculated, the width of a vapor supply amount capable of being adjusted without changing the combustion unit-number is calculated for every setting value of the unit-number increase pattern, and the setting unit-number of the unit-number increase pattern is determined on the basis of a time ratio where the vapor usage stays in the width of the vapor supply amount capable of being adjusted without changing the combustion unit-number.SELECTED DRAWING: Figure 1

Description

本発明は、高燃焼・低燃焼・燃焼待機のように燃焼状態を段階的に調節するボイラを複数台設置しておき、ボイラが供給している蒸気の圧力値に基づいて各ボイラの燃焼状態を制御する台数制御を行っている多缶設置ボイラに関するものである。 The present invention has a plurality of boilers for gradually adjusting the combustion state such as high combustion, low combustion, and combustion standby, and the combustion state of each boiler is based on the pressure value of the steam supplied by the boiler. The present invention relates to a multi-can installed boiler that controls the number of units for controlling the number of boilers.

特開2015−117840号公報にあるように、複数台のボイラと、ボイラの燃焼台数を制御する台数制御装置からなる多缶設置ボイラが広く使用されている。台数制御装置は、ボイラが供給している蒸気の圧力値を圧力調節範囲内に維持するように、ボイラ全体での燃焼量を制御するものであり、蒸気圧力値が低くなるとボイラ全体での燃焼量を大きくして蒸気供給量を増加することで蒸気圧力値を高め、蒸気圧力値が高くなるとボイラ全体での燃焼量を小さくして蒸気供給量を減少することで蒸気圧力値が高くなりすぎにないようにする。そして台数制御装置では、ボイラ全体での燃焼量から個々のボイラでの燃焼状態を決定し、各ボイラに対して決定した燃焼状態とする燃焼指令を出力する。 As disclosed in JP-A-2005-117840, a multi-can installed boiler including a plurality of boilers and a unit number control device for controlling the number of burning boilers is widely used. The unit number control device controls the combustion amount in the entire boiler so that the pressure value of the steam supplied by the boiler is maintained within the pressure control range.When the steam pressure value becomes low, the combustion in the entire boiler is controlled. The steam pressure value is increased by increasing the amount of steam and the steam supply amount is increased, and when the steam pressure value is increased, the combustion amount in the entire boiler is decreased and the steam supply amount is decreased. Try not to. Then, the number-of-units control device determines the combustion state in each boiler from the combustion amount in the entire boiler, and outputs a combustion command to each boiler to bring it to the determined combustion state.

特開2015−117840号公報に記載しているボイラでの燃焼量の調節は、各ボイラでは、高燃焼・中燃焼・低燃焼・燃焼待機の四位置燃焼制御、あるいは高燃焼・低燃焼・燃焼待機の三位置燃焼制御のように段階的な制御を行うようにしており、台数制御装置は各ボイラに対してどの燃焼状態とするかを決定してその燃焼指令を出力することで行っている。その際、台数制御装置は、低燃焼で維持するボイラの台数を設定しておくようにしておき、ボイラ全体での燃焼量増加を行う場合は、現在の低燃焼ボイラ台数が設定台数未満である場合には、燃焼台数を増加させて低燃焼ボイラの台数を確保すること優先し、低燃焼ボイラの台数が設定台数以上あれば低燃焼ボイラを中燃焼に変更することで燃焼量を増加することを優先するようにしている。 The adjustment of the combustion amount in the boiler described in JP-A-2005-117840 is performed by four-position combustion control of high combustion, medium combustion, low combustion, and combustion standby, or high combustion, low combustion, and combustion in each boiler. It is configured to perform stepwise control such as standby three-position combustion control, and the unit number control device determines which combustion state to use for each boiler and outputs the combustion command. .. At that time, the number-of-units control device sets the number of boilers to maintain low combustion, and when increasing the combustion amount of the entire boiler, the current number of low-combustion boilers is less than the set number. In this case, priority should be given to increasing the number of combustion units to secure the number of low-combustion boilers, and if the number of low-combustion boilers is greater than the set number, increase the combustion amount by changing the low-combustion boilers to medium combustion. I am trying to give priority to.

図10を用いて具体的に説明する。図10は、高燃焼・中燃焼・低燃焼・燃焼待機の4位置で燃焼制御するボイラ3台で台数制御を行う場合の台数制御パターンを示している。図ではボイラの燃焼状態は、高燃焼の場合を「H」、中燃焼の場合を「M」、低燃焼の場合を「L」、燃焼待機の場合を「−」で示している。図では台数増加パターン1台、2台、3台のそれぞれでの燃焼パターンを示している。 This will be specifically described with reference to FIG. FIG. 10 shows a number-of-units control pattern when performing unit number control with three boilers that perform combustion control at four positions of high combustion, medium combustion, low combustion, and combustion standby. In the figure, the combustion state of the boiler is indicated by "H" for high combustion, "M" for medium combustion, "L" for low combustion, and "-" for combustion standby. In the figure, the number increase pattern is shown for each of the 1, 2 and 3 units.

ボイラの燃焼量は、全てのボイラで燃焼待機となっている「―――」の状態から、全てのボイラで高燃焼となる「HHH」まであり、ここでは10段階の燃焼パターンを設定している。この燃焼量は、ボイラから供給している蒸気の圧力値に対応させて設定しており、蒸気圧力値が高いほどボイラの燃焼量は小さくなるようにし、蒸気圧力値が低いほどボイラの燃焼量を大きくしていく。なお、実際の台数制御パターンでは燃焼量を減少する場合も設定する。しかし、燃焼量減少時の台数制御パターンを記載すると図は複雑となるため、ここでは全ボイラを燃焼待機としている状態からから全ボイラを高燃焼としている状態まで一方向へ変化していった場合のみをぬき出して記載している。 The amount of combustion in the boiler ranges from "---", which is in standby for combustion in all boilers, to "HHH", which results in high combustion in all boilers. Here, a 10-step combustion pattern is set. There is. This combustion amount is set according to the pressure value of the steam supplied from the boiler.The higher the steam pressure value, the smaller the combustion amount of the boiler, and the lower the steam pressure value, the combustion amount of the boiler. To increase. In addition, in the actual number-of-units control pattern, it is also set when reducing the combustion amount. However, the figure becomes complicated if the unit control pattern when the combustion amount is reduced is described, so here, in the case where there is a one-way change from the state where all boilers are in combustion standby to the state where all boilers are in high combustion. Only the contents are shown without being shown.

図10は、低燃焼の燃焼指令を出力しているボイラ数が台数増加パターンの設定値−1台以上の場合には、低燃焼ボイラの1台を中燃焼とし、低燃焼の燃焼指令を出力しているボイラ数が台数増加パターンの設定値−1台未満の場合は、燃焼指令を出力するボイラを1台ずつ増加するものである。3つの台数制御パターンはこの低燃焼の設定台数が異なるものである。この設定値は、蒸気使用側での蒸気使用量の変動状況に基づき設定する。 FIG. 10 shows that when the number of boilers outputting a low-combustion combustion command is equal to or greater than the set value of the number-of-units increase pattern-1 unit, one of the low-combustion boilers is set to medium combustion and the low-combustion combustion command is output. When the number of operating boilers is less than the set value of the number-of-units increase pattern minus one, the number of boilers that output the combustion command is increased by one. The three number control patterns differ in the set number of low combustion. This set value is set based on the fluctuation status of the steam usage amount on the steam usage side.

蒸気使用量の変動が急である場合、ボイラでは蒸気使用量の変化にあわせて短時間で蒸気供給量を増加することが必要となる。ボイラで燃焼状態の変更を行う場合、燃焼状態を減少する方向の変更は、燃料及び燃焼用空気の供給量を減少又は停止するだけであるために短時間で行える。そして燃焼状態を増加する方向の変更でも、低燃焼から中燃焼への変更や中燃焼から高燃焼への変更の場合には、燃料及び燃焼用空気の供給量を増加するだけであるために短時間で変更することができる。しかし、燃焼を停止している状態から燃焼を開始する場合は、炉内換気などの準備工程を行う必要がある。さらにボイラが冷えている場合、ボイラ水が蒸発温度に上昇するまでは蒸気を供給することができない。そのため、燃焼開始の燃焼指令出力から実際に蒸気供給を開始するまでにはタイムラグが発生する。 When the steam usage fluctuates rapidly, it is necessary for the boiler to increase the steam supply in a short time according to the change in steam usage. When the combustion state is changed in the boiler, the change in the direction of decreasing the combustion state can be performed in a short time because the supply amount of fuel and combustion air is only reduced or stopped. Even if the combustion condition is changed in the direction of increasing the combustion state, in the case of changing from low combustion to medium combustion or from medium combustion to high combustion, it is only necessary to increase the supply amount of fuel and combustion air. Can be changed in time. However, when starting the combustion from the state where the combustion is stopped, it is necessary to perform a preparation step such as ventilation in the furnace. Further, when the boiler is cold, steam cannot be supplied until the boiler water has reached the evaporation temperature. Therefore, there is a time lag from the output of the combustion command at the start of combustion to the actual start of steam supply.

そこで、蒸気使用量が急激に増加することのある場合には、燃焼状態の増加によって蒸気供給量をすぐに増加することのできるボイラを多く確保するようにしておき、蒸気使用量の急増に備えることを行っている。つまり、低燃焼のボイラを多く確保しておくと、低燃焼から中燃焼への増加及び中燃焼から高燃焼への増加はそれぞれ短時間で行えるため、蒸気使用量が急激に増加した場合でもすぐに蒸気供給量を増加することができる。 Therefore, if the steam usage may increase rapidly, it is necessary to secure a large number of boilers that can immediately increase the steam supply due to an increase in the combustion state, to prepare for a sharp increase in steam usage. I'm doing that. In other words, if a large number of low-combustion boilers are secured, the increase from low-combustion to medium-combustion and the increase from medium-combustion to high-combustion can be done in a short time respectively. The steam supply can be increased.

燃焼状態の増加によって蒸気供給量をすぐに増加することができるボイラの台数は、蒸気使用量の変化が急激(急負荷)であるほど多く必要となるため、急負荷時の台数制御パターンでは低燃焼ボイラを多く確保するように設定する。逆に、蒸気使用量の変化が緩やか(緩負荷)であれば低燃焼ボイラの台数は少なくて良いため、緩負荷時の台数制御パターンでは低燃焼ボイラ台数は少なくなるように設定する。図10で記載している3つの台数制御パターンの中では、台数増加パターン1台の場合が最も蒸気使用量の変化が緩やかな場合に設定するもの、台数増加パターン3台の場合が最も蒸気使用量の変化が急な場合に設定するもの、その中間である台数増加パターン2台は、蒸気使用量の変化がその中間の場合に設定するものである。 The number of boilers that can immediately increase the steam supply rate due to an increase in the combustion state is required as the steam usage rate changes rapidly (rapid load). Set to secure a large number of combustion boilers. On the contrary, if the change in steam consumption is gradual (slow load), the number of low-combustion boilers may be small, so the number of low-combustion boilers is set to be small in the unit control pattern during slow load. Of the three unit number control patterns described in FIG. 10, the one unit number increase pattern is set when the change in steam usage is the slowest, and the one unit number increase pattern is the most steam use. The one to be set when the change in the amount is abrupt, and the two-unit increase pattern, which is in the middle, is set when the change in the amount of steam used is in the middle.

台数増加パターンの設定台数が1台の場合での台数制御パターンを図に沿って説明する。台数増加パターンの設定台数が1台の場合、燃焼を行っているボイラで燃焼量を増加することができるのであれば、燃焼を行っているボイラでの燃焼量増加を優先する。そのため燃焼台数の増加は最小限となる。全てのボイラが燃焼を停止している「―――」から燃焼量を増加していく場合、まず1台目のボイラを燃焼待機から低燃焼に変更することで「L――」となる。次の燃焼量を増加する場合、燃焼台数は変更せずに燃焼量の増加を行う。1台目のボイラを低燃焼から中燃焼に変更することでボイラの燃焼状態は「M――」となる。次に燃焼量を増加する場合も、燃焼量を増加できる中燃焼のボイラがあるため、再び1台目ボイラの燃焼状態を増加する。1台目ボイラの燃焼状態を中燃焼から高燃焼に変更するため、燃焼状態は「H――」となる。次に燃焼量を増加する場合は、燃焼量を増加できるボイラがないため、今度は2台目のボイラで燃焼を開始させる。2台目のボイラを低燃焼にすると、燃焼状態は「HL―」となる。 The number-of-units control pattern when the number of units set in the number-of-units increase pattern is one will be described with reference to the drawings. When the number of units set in the unit number increase pattern is one, if the combustion amount can be increased in the burning boiler, the increase in the combustion amount in the burning boiler is prioritized. Therefore, the increase in the number of burned vehicles will be minimal. When increasing the amount of combustion from "----" where all the boilers have stopped burning, first change the combustion standby of the first boiler from low combustion to "L--". When increasing the next combustion amount, increase the combustion amount without changing the number of combustion units. The combustion state of the boiler becomes "M--" by changing the first boiler from low combustion to medium combustion. When the combustion amount is increased next time, the combustion state of the first boiler is increased again because there is a medium combustion boiler that can increase the combustion amount. Since the combustion state of the first boiler is changed from medium combustion to high combustion, the combustion state becomes "H--". Next, when increasing the combustion amount, since there is no boiler that can increase the combustion amount, the combustion is started by the second boiler this time. When the second boiler is set to low combustion, the combustion state becomes "HL-".

その後も同様であり、燃焼量を増加できるボイラがある状態で燃焼状態の増加を行う場合は、燃焼台数を増加せずに燃焼を行っているボイラで燃焼状態を一段階高くし、燃焼量を増加できるボイラがない場合は、燃焼台数を増加することで燃焼量を増加し、最終的には燃焼状態が「HHH」である最大の燃焼量となるまで行う。 After that, the same is true.If you want to increase the combustion state with a boiler that can increase the combustion amount, increase the combustion state by one step in the boiler that is performing combustion without increasing the number of combustion units, and increase the combustion amount. If there is no boiler that can be increased, the combustion amount is increased by increasing the number of combustion units, and finally the combustion state is "HHH" until the maximum combustion amount is reached.

次に台数増加パターンの設定台数が2台の場合での台数制御パターンを図に沿って説明する。台数増加パターンの設定台数が2台の場合、低燃焼ボイラが1台ある場合には低燃焼の1台を中燃焼へ増加、低燃焼ボイラが1台もない場合には燃焼台数を増加して低燃焼ボイラを確保するようにしている。全てのボイラが燃焼を停止している「―――」から燃焼量を増加していく場合、まず1台目のボイラを燃焼待機から低燃焼に変更することで「L――」となる。次の燃焼量を増加する場合、低燃焼ボイラが1台あるため、1台目の低燃焼ボイラを中燃焼として「M――」とする。次に燃焼量を増加する場合には、この時点で低燃焼ボイラの台数は0台であるため、燃焼台数の増加を行い、低燃焼のボイラを確保する。つまり燃焼待機としている2台目のボイラで燃焼を開始し、低燃焼とすることで燃焼量を増加して「ML−」とする。 Next, the number-of-units control pattern when the number of units set in the number-of-units increase pattern is two will be described with reference to the drawings. When the number of units set in the number increase pattern is two, if there is one low-combustion boiler, increase the number of low-combustion units to medium combustion, and if there is no low-combustion boiler, increase the number of combustion units. We try to secure a low combustion boiler. When increasing the amount of combustion from "----" where all the boilers have stopped burning, first change the combustion standby of the first boiler from low combustion to "L--". When the next combustion amount is increased, there is one low-combustion boiler, so the first low-combustion boiler is designated as medium combustion and designated as "M--". Next, when increasing the combustion amount, the number of low-combustion boilers is 0 at this point, so the number of combustions is increased to secure a low-combustion boiler. In other words, the combustion is started in the second boiler which is in the combustion standby state, and the combustion amount is increased to be "ML-" by making the combustion low.

その後も同様であり、次の燃焼量増加は、低燃焼が存在するため、今度は燃焼台数を増加せずに2台目ボイラの燃焼状態を低燃焼から中燃焼に変更、その次は燃焼台数を増加する。燃焼台数を増加することができなくなると、中燃焼から高燃焼への変更で燃焼量を増加し、最終的には燃焼状態が「HHH」である最大の燃焼量となるまで行う。 The situation is the same after that, because the next increase in the combustion amount is low combustion, so the combustion state of the second boiler was changed from low combustion to medium combustion without increasing the number of combustion this time. To increase. When the number of combustion cannot be increased, the combustion amount is increased by changing from medium combustion to high combustion until the combustion state reaches the maximum combustion amount of “HHH”.

台数増加パターンの設定台数が3台の場合は、低燃焼ボイラが2台になるまで低燃焼を確保していくものである。ただし燃焼台数が1台でその燃焼状態が低燃焼の場合は、例外的に1台目の低燃焼ボイラを中燃焼にすることを優先している。全てのボイラが燃焼を停止している「―――」から燃焼量を増加していく場合、まず1台目のボイラを燃焼待機から低燃焼に変更することで「L――」となる。次の燃焼量を増加する場合、1台目の低燃焼ボイラを中燃焼として「M――」とする。次に燃焼量を増加する場合には、この時点で低燃焼ボイラの台数は0台であるため、燃焼台数の増加を行い、「ML−」とする。次の燃焼量増加でも燃焼台数を増加して「MLL」とする。その後は燃焼台数の増加はできないため、燃焼台数は同じで順次ボイラの燃焼量を増加し、最終的には燃焼状態が「HHH」である最大の燃焼量となるまで行う。 When the number of units set in the number increase pattern is 3, low combustion is ensured until the number of low combustion boilers becomes 2. However, when the number of units of combustion is one and the combustion state is low, the priority is given to exceptionally setting the first unit of the low-combustion boiler to medium combustion. When increasing the amount of combustion from "---" where combustion is stopped in all boilers, first change the combustion standby of the first boiler from low-combustion to "L-". When the next combustion amount is increased, the first low-combustion boiler is designated as "M--" with medium combustion. Next, when the combustion amount is increased, the number of low-combustion boilers is 0 at this point, so the number of combustion is increased to “ML−”. Even with the next increase in the amount of combustion, the number of units burned will be increased to "MLL". After that, since the number of combustion cannot be increased, the number of combustion is the same and the combustion amount of the boiler is sequentially increased until the combustion state reaches the maximum combustion amount of “HHH”.

以上のように、多缶設置で燃焼量を増加していく場合には複数の台数増加パターンを考えることができる。蒸気使用量の急激な増加がある場合には、早い段階で燃焼台数が多くなる設定としておくことで、大きな変動にも対応することができる。しかし、燃焼しているボイラの台数が多くなり、低燃焼のボイラしかない状態で燃焼量を減少することになると、燃焼を行っているボイラの燃焼を停止することになる。ボイラでは燃焼の開始時と停止時に炉内を換気する必要があるため、燃焼の発停が多くなると熱の損失が増加して効率は低下する。逆に、蒸気使用量が比較的安定している場合には、燃焼台数が少ない設定にしておくことで、ボイラの発停を抑制することができる。しかし、燃焼している(低燃焼)のボイラ台数が少ないため、急激な蒸気負荷変動があった場合には、負荷追従に遅れが発生し、蒸気圧力の低下を招くことになる。そのため、複数ある台数増加パターンから負荷追従性と効率を両立することのできる台数増加パターンを選定することが必要となる。 As described above, when the combustion amount is increased by installing multiple cans, it is possible to consider a plurality of patterns of increasing the number of units. If there is a sudden increase in the amount of steam used, it is possible to cope with large fluctuations by setting the number of combustion units to increase at an early stage. However, when the number of burning boilers increases and the amount of combustion decreases when there are only low-burning boilers, the combustion of the burning boilers is stopped. Since it is necessary to ventilate the inside of the furnace at the start and stop of combustion in the boiler, the heat loss increases and the efficiency decreases when the start and stop of combustion increase. On the other hand, when the steam usage is relatively stable, it is possible to suppress the start/stop of the boiler by setting the number of combustion units to be small. However, since the number of boilers that are in combustion (low combustion) is small, if there is a rapid steam load change, a delay in load follow-up occurs and the steam pressure drops. Therefore, it is necessary to select a pattern of increasing the number of vehicles that can achieve both load followability and efficiency from multiple patterns of increasing the number of vehicles.

特開2015−117840号公報JP, 2005-117840, A

本発明が解決しようとする課題は、燃焼状態を段階的に調節することができるようにしたボイラを複数台設置しており、ボイラから供給する蒸気の圧力値を調節範囲内に維持するように各ボイラの燃焼状態を制御する多缶設置ボイラにおいて、ボイラの効率と負荷追従性のバランスがとれた台数増加パターンを設定することができるようにした多缶設置ボイラを提供することある。 The problem to be solved by the present invention is to install a plurality of boilers capable of gradually adjusting the combustion state, and to maintain the pressure value of the steam supplied from the boiler within the adjustment range. (EN) A multi-can installed boiler that controls the combustion state of each boiler and is capable of setting a pattern of increasing the number of units that balances boiler efficiency and load followability.

請求項1に記載の発明は、高燃焼・低燃焼・燃焼待機を含んだ段階的な燃焼制御を行うボイラを複数台設置しており、ボイラが供給している蒸気の圧力値に基づいて各ボイラの燃焼状態を制御する台数制御装置を持った多缶設置ボイラであって、台数制御装置は、燃焼量増加時に低燃焼の燃焼指令を出力しているボイラ数が所定台数以上であった場合は低燃焼のボイラに対して燃焼量増加の燃焼指令を出力し、低燃焼の燃焼指令を出力しているボイラ数が所定台数未満であって燃焼台数の増加が可能な場合には燃焼待機のボイラに対して低燃焼の燃焼指令を出力するようにしており、前記の所定台数は変更可能であって、所定台数毎に台数増加パターンを複数設定しておいて、台数制御を行う場合には複数ある台数増加パターンから使用する台数増加パターンを選択して行うようにしている多缶設置ボイラにおいて、台数増加パターンの選択は、多缶設置ボイラでの蒸気使用量を算出して蒸気使用量の累積時間を算出しておき、台数増加パターンの設定値ごとに、燃焼台数を変更せずに調節することのできる蒸気供給量の幅を算出し、計測しておいた蒸気使用量に燃焼台数を変更せずに調節することのできる蒸気供給量の幅を当てはめ、蒸気供給量の幅内に留まる時間の割合に基づいて台数増加パターンの設定台数を決定することを特徴とする。 The invention according to claim 1 is provided with a plurality of boilers that perform stepwise combustion control including high combustion, low combustion, and combustion standby, and each of them is based on the pressure value of steam supplied by the boiler. A multi-can installed boiler having a unit control device for controlling the combustion state of the boiler, where the unit control device outputs a low combustion combustion command when the combustion amount increases when the number of boilers is greater than or equal to a predetermined number. Outputs a combustion command to increase the amount of combustion to a low-combustion boiler, and outputs a low-combustion combustion command when the number of boilers is less than the specified number and the number of combustion can be increased, the combustion standby When a combustion command for low combustion is output to the boiler, the above-mentioned predetermined number of units can be changed, and a plurality of unit number increase patterns are set for each predetermined number of units, when performing unit number control. In a multi-can installation boiler that is configured to select and use a pattern for increasing the number of units to be used from multiple patterns for increasing the number of units, the selection of the pattern for increasing the number of units is performed by calculating the steam usage amount in the boiler in which multiple units are installed. Calculate the cumulative time, calculate the range of steam supply amount that can be adjusted without changing the number of combustion units for each set value of the number increase pattern, and set the measured number of combustion units to the number of combustion units. It is characterized in that the range of the steam supply amount that can be adjusted without changing is applied, and the set number of units in the unit increase pattern is determined based on the ratio of the time of staying within the range of the steam supply amount.

請求項2に記載の発明は、前記の多缶設置ボイラにおいて、算出した蒸気供給量の幅内に留まる時間の割合が基準値以上となる組合せを抽出し、抽出された組合せのうち、最も台数増加パターン設定台数が大きなものを台数増加パターンの設定台数とすることを特徴とする。 In the invention according to claim 2, in the above-mentioned multi-can installed boiler, a combination in which the ratio of the time staying within the calculated steam supply amount is equal to or more than a reference value is extracted, and the number of the extracted combinations is the highest. A feature is that a large number of increase patterns is set as a set number of increase patterns.

本発明を実施することで、ボイラの効率と負荷追従性を両立させた台数制御を行うことができるようになる。 By implementing the present invention, it becomes possible to perform unit number control that achieves both boiler efficiency and load followability.

本発明の一実施例での多缶設置ボイラのフロー図Flow diagram of a multi-can installed boiler in one embodiment of the present invention 本発明の一実施例での台数増加パターン7台とした場合の燃焼状態と蒸気供給量と蒸気供給量の幅内に留まる時間の割合を示した説明図Explanatory diagram showing the combustion state, the steam supply amount, and the ratio of the time staying within the range of the steam supply amount when the number of units increase pattern is 7 in one embodiment of the present invention. 本発明の一実施例での台数増加パターン6台とした場合の燃焼状態と蒸気供給量と蒸気供給量の幅内に留まる時間の割合を示した説明図Explanatory drawing showing the combustion state, the steam supply amount, and the ratio of the time staying within the range of the steam supply amount when the number increase pattern is set to 6 in one embodiment of the present invention. 本発明の一実施例での台数増加パターン5台とした場合の燃焼状態と蒸気供給量と蒸気供給量の幅内に留まる時間の割合を示した説明図Explanatory diagram showing the combustion state, the steam supply amount, and the ratio of the time staying within the range of the steam supply amount when the number increase pattern is set to 5 in one embodiment of the present invention. 本発明の一実施例での台数増加パターン4台とした場合の燃焼状態と蒸気供給量と蒸気供給量の幅内に留まる時間の割合を示した説明図Explanatory drawing showing the combustion state, the steam supply amount, and the ratio of the time staying within the range of the steam supply amount when the number of units increase pattern is set to 4 in one embodiment of the present invention. 本発明の一実施例での台数増加パターン7台とした場合の燃焼台数毎の蒸気供給量の幅内に留まる時間の割合を説明する説明図Explanatory drawing explaining the ratio of the time which stays within the range of the amount of steam supply for each number of combustion when the number increase pattern is set to 7 in one embodiment of the present invention. 本発明の一実施例での台数増加パターン6台とした場合の燃焼台数毎の蒸気供給量の幅内に留まる時間の割合を説明する説明図Explanatory drawing explaining the ratio of the time which stays within the range of the amount of steam supply for each number of combustion when the number increase pattern is set to 6 in one embodiment of the present invention. 本発明の一実施例での台数増加パターン5台とした場合の燃焼台数毎の蒸気供給量の幅内に留まる時間の割合を説明する説明図Explanatory drawing explaining the ratio of the time which stays within the range of the amount of steam supply for each number of combustion when the number increase pattern is set to 5 in one embodiment of the present invention. 本発明の一実施例での台数増加パターン4台とした場合の燃焼台数毎の蒸気供給量の幅内に留まる時間の割合を説明する説明図Explanatory drawing explaining the ratio of the time which stays within the range of the amount of steam supply for every number of combustion when the number of units increase pattern is set to 4 in one Example of this invention. 台数制御での台数増加パターン1台時から3台時での台数制御パターン説明図Number increase pattern in number control Number of units control pattern from 1 to 3

本発明の一実施例を図面を用いて説明する。図1は本発明の一実施例での多缶設置ボイラのフロー図、図2から図5は本発明の一実施例での台数増加パターンごとの燃焼状態と蒸気供給量と蒸気供給量の幅内に留まる時間の割合を示した説明図、図6から図9は本発明の一実施例での台数増加パターン毎での燃焼台数毎の蒸気供給量の幅内に留まる時間の割合を説明する説明図である。 An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a flow chart of a multi-can installed boiler according to an embodiment of the present invention, and FIGS. 2 to 5 are diagrams showing a combustion state, a steam supply amount, and a steam supply amount range for each number-increasing pattern according to the embodiment of the present invention. 6 to 9 are explanatory views showing the ratio of the time staying within the range, and FIGS. 6 to 9 explain the ratio of the time staying within the range of the steam supply amount for each combustion number in each pattern of increasing the number in one embodiment of the present invention. FIG.

図1では1号缶から7号缶の7台のボイラ1を並列に設置しており、各ボイラ1で発生させた蒸気を集合させるスチームヘッダ4を設けている。各ボイラ1とスチームヘッダ4の間を蒸気配管5で結んでおき、各ボイラ1で発生させた蒸気はスチームヘッダ4に集合させた後で蒸気使用部(図示せず)へ送る。スチームヘッダ4には、蒸気圧力値を検出する圧力検出装置6を設け、圧力検出装置6で検出した蒸気圧力値は台数制御装置3へ送る。台数制御装置3には、蒸気圧力値に応じてボイラの燃焼台数を定めている台数制御パターンを設定しておき、台数制御装置3が各ボイラにおける燃焼の有無及び燃焼状態を決定し、各ボイラへ燃焼指令を出力する。各ボイラには、それぞれに運転制御装置2を設けており、運転制御装置2は台数制御装置3からの燃焼指令を受けてボイラの燃焼を行う。 In FIG. 1, seven boilers 1 to 7 are installed in parallel, and a steam header 4 that collects steam generated in each boiler 1 is provided. A steam pipe 5 is connected between each boiler 1 and the steam header 4, and steam generated in each boiler 1 is collected in the steam header 4 and then sent to a steam use unit (not shown). The steam header 4 is provided with a pressure detection device 6 for detecting the steam pressure value, and the steam pressure value detected by the pressure detection device 6 is sent to the unit number control device 3. In the number-of-units control device 3, a number-of-units control pattern that determines the number of boilers to be burned according to the steam pressure value is set, and the number of units control device 3 determines the presence/absence of combustion and the state of combustion in each boiler. The combustion command is output to. Each boiler is provided with an operation control device 2, and the operation control device 2 receives a combustion command from the unit number control device 3 and burns the boiler.

各ボイラは、高燃焼、中燃焼、低燃焼、燃焼待機の四位置燃焼制御を行う。各ボイラでの蒸気発生量は、高燃焼時1.7t/h、中燃焼時0.85t/h、低燃焼時0.255t/hのように、燃焼量によって蒸気の発生量が異なるものとしている。ボイラ全体での蒸気供給量は、7台全てが停止の0t/hから7台全てが高燃焼での11.9t/hとなる。しかしこれは、点検による休止分などを考慮した過大なものであるため、それほど多くの蒸気が必要なものではない。実際の蒸気使用量の傾向は、蒸気流量を数日間計測することで把握することができる。本実施例では、数日間の蒸気流量を計測した結果、その間の蒸気使用量最大値3.78t/h、最小値0.53t/hで、ボイラが全て低燃焼となる蒸気使用量(0.255t/h×7台=1.785t/h)未満で運転していた時間が約93%であったとする。 Each boiler performs four-position combustion control of high combustion, medium combustion, low combustion, and combustion standby. The amount of steam generated in each boiler is 1.7 t/h during high combustion, 0.85 t/h during medium combustion, and 0.255 t/h during low combustion, and the amount of steam generated varies depending on the amount of combustion. The steam supply rate for the entire boiler will be 0t/h when all 7 units are stopped to 11.9t/h when all 7 units are in high combustion. However, this is an excessive amount in consideration of the pauses due to inspection, so that not much steam is required. The actual trend of steam consumption can be grasped by measuring the steam flow rate for several days. In the present embodiment, as a result of measuring the steam flow rate for several days, the maximum steam usage amount of 3.78 t/h and the minimum steam usage value during that period of 0.53 t/h, and the steam usage amount (0.255 t/h) at which the boiler has low combustion. ×7 units = 1.785t/h) It is assumed that the operation time was less than 93%.

図2から図5は7台のボイラで台数制御を行う場合であって、台数増加パターンの設定値を異ならせた場合のボイラ台数制御のパターンを記載している。燃焼状態の欄は対象となっている7台のボイラのそれぞれでの燃焼状態を示しており、「−」は燃焼停止、「L」は低燃焼、「M」は中燃焼、「H」は高燃焼であって、それぞれの個数がその状態でのボイラの台数を現している。 2 to 5 show a case where the number of units is controlled by seven boilers, and the patterns of the number of boilers control when the set values of the number of units increasing pattern are different are described. The column of combustion state shows the combustion state of each of the seven target boilers, "-" indicates combustion stop, "L" indicates low combustion, "M" indicates medium combustion, and "H" indicates The combustion is high and each number represents the number of boilers in that state.

燃焼量を増加していく時の台数制御パターンは、燃焼増加パターンの設定台数毎に異なっており、燃焼台数を早く増加することを優先するものか、燃焼しているボイラでの燃焼量増加を優先するかを設定することができる。図2で示している台数増加パターン7台の場合は、燃焼台数を増加することを優先するものである。図3から図5で示している台数増加パターンは、燃焼量の増加と燃焼台数の増加を組み合わせて蒸気供給量を増加させるものであり、低燃焼の台数を何台確保するかが異なるものとなっている。燃焼増加パターン台数が減少するほど、燃焼台数を変更せず、燃焼中であるボイラの燃焼量を増加することで蒸気供給量を増加することを優先するものとなる。 The unit control pattern when increasing the combustion amount differs depending on the number of units set in the combustion increase pattern.Therefore, priority should be given to increasing the number of units burned, or the amount of combustion in the burning boiler should be increased. You can set whether to give priority. In the case of the number increase pattern of 7 units shown in FIG. 2, increasing the number of combustion units is prioritized. The number increase patterns shown in FIG. 3 to FIG. 5 are for increasing the steam supply amount by combining the increase of the combustion amount and the increase of the combustion number, and the number of low combustion units is different. Has become. As the number of combustion increase patterns decreases, it is prioritized to increase the amount of steam supply by increasing the amount of combustion of the boiler that is in combustion without changing the number of combustion.

図2から図5の記載基づいて説明する。図2から図5で燃焼台数0台から燃焼量を増加していく場合、「MLLL―――」までは共通となっている。0から燃焼量を増加していく場合、まず稼働優先順位が第1位のボイラを燃焼停止から低燃焼とすることで1段階目の蒸気供給量増加とし、次にそのボイラを中燃焼とすることで2段階目の蒸気供給量増加とする。3段階目の蒸気供給量増加は稼働優先順位が第2位のボイラを低燃焼とし、以降は低燃焼が3台になるまではボイラの燃焼台数を増加することで蒸気供給量を増加していく。「MLLL―――」までは各燃焼増加パターン台数で同じであるが、台数増加パターンが4台の場合は稼働優先順位が第4位のボイラが低燃焼となった以降は低燃焼ボイラの中燃焼への燃焼量増加と燃焼台数増加を交互に行い、5台の場合は稼働優先順位が第5位のボイラが低燃焼となった以降に低燃焼ボイラの中燃焼への燃焼量増加と燃焼台数増加を交互、6台の場合は稼働優先順位が第6位のボイラが低燃焼となった以降に低燃焼ボイラの中燃焼への燃焼量増加と燃焼台数増加を交互、7台の場合は7台目のボイラが燃焼を開始するまで低燃焼を増加するものとなっている。そのため台数増加パターンの設定台数が大きいほど早い段階で燃焼台数が多くなり、台数増加パターンの設定台数が小さいと燃焼台数の増加は緩やかになる。 A description will be given based on the description of FIGS. 2 to 5. 2 to 5, when the combustion amount is increased from the number of combustion units of 0, "MLLL---" is common. When increasing the combustion amount from 0, first change the boiler with the first operation priority from combustion stop to low combustion to increase the steam supply amount in the first stage, and then change the boiler to medium combustion. This will increase the steam supply in the second stage. The third stage of steam supply increase is to increase the steam supply by increasing the number of boilers burned until the number of low-combustion boilers is set to low-combustion and the number of low-combustion boilers is reduced to three. Go Up to "MLLL--", the number of combustion increase patterns is the same, but if the number of increase patterns is 4, the boiler with the fourth operation priority will be in the low combustion boiler after the combustion becomes low. Increasing the combustion amount to combustion and increasing the number of combustions alternately, and in the case of 5 units, the combustion amount increase and combustion to the middle combustion of the low combustion boiler after the boiler with the fifth operation priority becomes low combustion In the case of 6 units, increasing the number of units alternately, the combustion amount increase to the middle combustion of the low combustion boiler and the increase in the number of combustion units alternately after the boiler with the sixth operation priority becomes low combustion, and in the case of 7 units Low combustion is increased until the 7th boiler starts combustion. Therefore, the larger the number set in the number increase pattern, the larger the number of combustion units at an early stage, and the smaller the number set in the number increase pattern, the slower the increase in the number of combustion units.

燃焼量を減少していく場合は、その時点で燃焼しているボイラの全てが低燃焼になるまでは燃焼台数の変更は行わずに燃焼量の変更で対応し、低燃焼への変更ができなくなると燃焼台数を減少する。台数増加パターンの設定値を小さくしている場合、早い段階で中燃焼の台数が多くなるため、燃焼台数を変更せずに燃焼量の変更で対応することのできる蒸気供給量の幅が広くなる。 When decreasing the combustion amount, change the combustion amount without changing the number of combustion until all the boilers burning at that time become low combustion, and change to low combustion. When it disappears, the number of burning units decreases. When the set value for the number of units increase pattern is set to a small value, the number of units with medium combustion increases at an early stage, so the range of steam supply that can be handled by changing the amount of combustion without changing the number of units of combustion increases. ..

燃焼台数が6台に注目して各燃焼増加パターン台数を比較する。台数増加パターン7台(図2)の場合は5台燃焼時の「MLLLL――」から燃焼量増加で「MLLLLL−」の6台燃焼となり、次の燃焼量増加では「MLLLLLL」の7台燃焼となる。そして燃焼台数6台の「MLLLLL−」の状態からの燃焼量減少時は、燃焼台数6台のまま「LLLLLL−」となり、次の燃焼量減少では「LLLLL――」の燃焼台数5台となる。燃焼台数6台の場合の蒸気供給量の幅は、「LLLLLL−」(0.255t/h×6台=1.53t/h)と「MLLLLL−」(0.85t/h+0.255t/h×5台=2.125t/h)の間であるため、1.53〜2.125t/hとなる。 Paying attention to the number of combustion units, we compare the number of combustion increase patterns. In the case of the number increase pattern of 7 units (Fig. 2), 6 units of "MLLLLL-" are burned from "MLLLLL--" when 5 units are burned, and 7 units of "MLLLLLL" are burned in the next increase of burning amount. Becomes When the combustion amount decreases from the state of "MLLLLL-" where the number of combustion units is 6, the number of combustion units remains "LLLLLL-" and the number of combustion units becomes "LLLLLL--" when the combustion amount decreases next. .. When the number of combustion units is 6, the range of steam supply is "LLLLLL-" (0.255t/h x 6 units = 1.53t/h) and "MLLLLL-" (0.85t/h + 0.255t/h x 5 units = Since it is between 2.125t/h), it will be 1.53 to 2.125t/h.

これが台数増加パターン4台(図5)の場合は、5台燃焼時の「MMMLL――」から燃焼量増加で「MMMLLL−」の6台燃焼となり、次の燃焼量増加では「MMMMLL−」で燃焼台数は6台のまま、更に次の燃焼量増加で「MMMMLLL」の7台燃焼となる。そして燃焼台数6台の「MMMMLL−」の状態からの燃焼量減少時は、燃焼台数6台のまま「MMMLLL−」となり、さらに「MMLLLLL−」「MLLLLL―」「LLLLLL−」となった後の燃焼量減少で「LLLLL――」の燃焼台数5台となる。燃焼台数6台の場合の蒸気供給量の幅は、「LLLLLL−」(0.255t/h×6台=1.53t/h)と「MMMMLL−」(0.85t/h×4台+0.255t/h×2台=3.91t/h)の間であるため、1.53〜3.91t/hとなる。 In the case of the number increase pattern of 4 units (Fig. 5), the combustion amount increases from "MMMMLL--" to 6 units of "MMMLLL-" when the combustion amount increases, and "MMMMLL-" occurs when the next combustion amount increases. The number of units burned remains at 6 units, and the next increase in the amount of combustion will result in 7 units of "MMMMLLL". Then, when the combustion amount decreases from the state of "MMMMLL-" with 6 units of combustion, "MMMLLL-" remains with 6 units of combustion, and "MMLLLLL-" "MLLLLL-" "LLLLLL-" With the decrease in the amount of combustion, the number of "LLLLLL--" burned will be five. When the number of combustion units is 6, the range of steam supply is "LLLLLL-" (0.255t/h x 6 units = 1.53t/h) and "MMMMLL-" (0.85t/h x 4 units +0.255t/h). ×2 units = 3.91t/h), so 1.53 to 3.91t/h.

図2から図5での蒸気供給量欄は、燃焼台数ごとに記載している。燃焼台数が6台の蒸気供給量は、台数増加パターン7台の図2では1.53〜2.125t/h、台数増加パターン6台の図3では1.53〜2.72t/h、台数増加パターン5台の図4では1.53〜3.315t/h、台数増加パターン4台の図5では1.53〜3.91t/hとなる。台数増加パターンの台数が大きいと、より早い段階で燃焼台数が多くしていくため、同じ燃焼台数で維持できる幅は狭くなる。逆に台数増加パターンの台数が小さいと、燃焼台数の増加は遅くなって、同じ燃焼台数で維持できる幅が広くなる傾向がある。 The vapor supply amount column in FIGS. 2 to 5 is described for each number of combustion units. The steam supply amount when the number of burning units is 6 is 1.53 to 2.125t/h in Fig. 2 where the number of units increasing pattern is 7 and 1.53 to 2.72t/h in Fig. 3 where the number of growing units number is 6 and the number of unit increasing pattern is 5 units. No. 4 is 1.53 to 3.315 t/h, and in Fig. 5 with four units increasing pattern, it is 1.53 to 3.91 t/h. When the number of vehicles in the number-of-units increase pattern is large, the number of vehicles that burn increases at an earlier stage, so the range that can be maintained with the same number of burning becomes narrow. On the contrary, when the number of vehicles in the number increase pattern is small, the increase in the number of burned vehicles tends to be slow, and the range in which the same number of burned vehicles can be maintained tends to be wide.

蒸気使用量が少ない段階で燃焼台数を増加しておくと、蒸気使用量が急増した場合にすぐに蒸気供給量の増加を行える。しかし、低燃焼のボイラしかない状態で蒸気使用量が低下した場合には、燃焼を行っているボイラで燃焼を停止させることになる。ボイラでは燃焼の発停時にボイラ内の換気を行うため、燃焼の発停が多くなるとは効率が低下する。そのため蒸気使用量に対する追従性が良いことと燃焼台数の増減が少なく効率が良いことのバランスがとれた台数増加パターンの設定台数を選定することが重要となるが、蒸気の使用状況によって最適な設定台数は異なる。 If the number of combustion units is increased when the steam usage is low, the steam supply can be immediately increased when the steam usage rapidly increases. However, when the amount of steam used decreases with only a low-combustion boiler, the combustion is stopped in the burning boiler. Since the boiler ventilates the inside of the boiler when starting and stopping combustion, the efficiency decreases when the starting and stopping of combustion increases. Therefore, it is important to select the number of units that has a pattern of increasing the number of units that balances good followability with the amount of steam used and good efficiency with little increase or decrease in the number of combustion units. The number is different.

蒸気使用量に対する追従性とボイラ効率を両立させる設定は、事前に収集した蒸気流量のデータに基づき定める。一定期間における多缶設置ボイラでの蒸気使用量を算出しておき、蒸気使用量ごとの累積時間から台数増加パターンの設定台数を決定する。台数増加パターンの設定値ごとに、燃焼台数を変更せずに調節することのできる蒸気供給量の幅を算出しておき、計測しておいた蒸気使用量を当てはめた際に前記蒸気供給量の幅内に留まる時間の割合を算出する。この算出した蒸気供給量の幅内に留まる時間の割合が基準値以上となる組合せを抽出し、抽出された組合せのうち、最も台数増加パターン設定台数が大きなものを台数増加パターンの設定台数とする。 The setting that balances the ability to follow steam consumption and boiler efficiency is determined based on the steam flow rate data collected in advance. The amount of steam used in the multi-can installed boiler for a certain period of time is calculated, and the set number of units in the unit increase pattern is determined from the cumulative time for each amount of steam used. For each set value of the number of units increase pattern, calculate the range of steam supply amount that can be adjusted without changing the number of combustion units, and apply the measured steam usage amount to the above steam supply amount. Calculate the percentage of time remaining within the width. A combination in which the ratio of the time staying within the calculated steam supply amount range is equal to or greater than the reference value is extracted, and among the extracted combinations, the one with the largest set number of units increase pattern is set as the set number of units increase pattern. ..

この制御をより具体的に説明する。まず、燃焼台数を変更せず燃焼量の調節だけで維持できる蒸気供給量の基準値を定めておく必要があり、本実施例では基準値を50%としておく。この基準値はより高い値にするほど燃焼台数の変更が少なくなるパターンを探すことになり、ボイラの効率が高い台数制御パターンとすることができるが、燃焼台数の増加が抑制されるため蒸気使用量が急激に増加した場合に蒸気供給量の増加が追従できなくなる可能性が高くなっていく。 This control will be described more specifically. First, it is necessary to set the reference value of the steam supply amount that can be maintained only by adjusting the combustion amount without changing the number of combustion units, and in this embodiment, the reference value is set to 50%. It is possible to find a pattern in which the number of combustion units changes less as the reference value becomes higher, and it is possible to set a unit control pattern with high boiler efficiency, but since the increase in the number of combustion units is suppressed, steam usage is reduced. If the amount increases sharply, it becomes more likely that the increase in the steam supply amount will not be able to follow.

図6から図9は事前に測定した蒸気使用量ごとの累積時間と、燃焼台数を変更せずに調節することのできる蒸気供給量の幅を示したものであり、図6、図7、図8、図9はそれぞれ図2、図3、図4、図5に対応させている。横軸は蒸気流量、縦軸はその蒸気流量が検出された時間の累積を現しており、燃焼台数を変更せずに調節することのできる蒸気供給量の幅を重ねている。 FIGS. 6 to 9 show cumulative time for each amount of steam used measured in advance and the range of the amount of steam supply that can be adjusted without changing the number of combustion units. 8 and 9 correspond to FIGS. 2, 3, 4, and 5, respectively. The horizontal axis represents the steam flow rate, and the vertical axis represents the accumulation of the time when the steam flow rate was detected, and the range of the steam supply rate that can be adjusted without changing the number of combustion is overlapped.

台数増加パターンの設定値を定める場合、台数増加パターンの台数が大きいものから試算していく。まず台数増加パターンの設定台数が最も大きい7台の図6で見る。この場合の燃焼台数が3台から6台での蒸気供給量の幅は、図2に記載しているように3台時0.765〜1.36t/h、4台時1.02〜1.615t/h、5台時1.275〜1.87t/h、6台時1.53〜2.125t/hとなる。図6の累積時間のグラフには、この幅を重ねている。なお、2台以下の場合と7台の場合は、蒸気供給量の幅内に留まる時間は明らかに短くなることより記載は省略している。燃焼台数が3台、4台、5台、6台での蒸気供給量調節範囲における蒸気流量が検出された時間の累積時間を算出すると、それぞれ48.7%、48.7%、49.2%、40.0%であったとする。この場合、いずれも基準値の50%に満たないため、台数増加パターン7台は採用しないことを決定する。 When setting the set value of the number-of-units increase pattern, trial calculation is performed from the number of units of the number-of-units increase pattern that is large. First, let us look at the seven units with the largest number of units set in the number increase pattern in FIG. In this case, the range of the steam supply amount when the number of burning units is 3 to 6 is 0.765 to 1.36t/h for 3 units and 1.02 to 1.615t/h for 4 units as shown in FIG. It will be 1.275 to 1.87t/h for unit and 1.53 to 2.125t/h for 6 units. This width is superimposed on the graph of the cumulative time in FIG. It should be noted that, in the case of two or less units and in the case of seven units, the description is omitted because the time to stay within the range of the steam supply amount is obviously shortened. The cumulative time of detecting the steam flow rate in the steam supply control range when the number of burning units is 3, 4, 5 and 6 is 48.7%, 48.7%, 49.2% and 40.0%, respectively. Suppose In this case, since none of them are less than 50% of the reference value, it is decided not to adopt the seven-unit increase pattern.

次に台数増加パターンを1台減らして6台で試算する。図7は台数増加パターンを6台とした場合のものである。台数増加パターン6台時の燃焼台数が3台から6台での蒸気供給量の幅は、図3に記載しているように3台時0.765〜1.36t/h、4台時1.02〜1.615t/h、5台時1.275〜1.87t/h、6台時1.53〜2.72t/hとなる。燃焼台数が3台、4台、5台、6台での蒸気供給量調節範囲における蒸気流量が検出された時間の累積時間を算出すると、それぞれ48.7%、48.7%、49.2%、42.5%であったとすると、いずれの場合もまだ基準値の50%に満たないため、台数増加パターン6台も採用しないことを決定する。 Next, reduce the number increase pattern by 1 and make a trial calculation with 6 units. FIG. 7 shows the case in which the number of vehicles increase pattern is six. As shown in Fig. 3, the range of the steam supply amount when the number of burning units is 3 to 6 when the number of units is 6 is 0.765 to 1.36t/h for 3 units and 1.02 to 1.615t for 4 units. /h, 1.275-1.87t/h for 5 vehicles, 1.53-2.72t/h for 6 vehicles. The cumulative time of detecting the steam flow rate in the steam supply control range when the number of burning units is 3, 4, 5 and 6 is 48.7%, 48.7%, 49.2% and 42.5%, respectively. If so, in any case, since it is still less than 50% of the standard value, it is decided not to adopt the number increase pattern of 6 units.

さらに台数増加パターンを1台減らして5台で試算する。図8は台数増加パターンを5台とした場合のものである。台数増加パターン5台時の燃焼台数が3台から6台での蒸気供給量の幅は、図4に記載しているように3台時0.765〜1.36t/h、4台時1.02〜1.615t/h、5台時1.275〜2.465t/h、6台時1.53〜3.315t/hとなる。燃焼台数が3台、4台、5台、6台での蒸気供給量調節範囲における蒸気流量が検出された時間の累積時間を算出すると、それぞれ48.7%、48.7%、55.6%、44.1%であったとする。この場合、燃焼台数5台での蒸気供給量調節範囲における蒸気流量(グラフ内の斜線を入れた部分の面積)は、検出された累積時間が基準値の50%を超えている。基準値を超える設定が見つかると、この台数増加パターンの値で確定する。なお、基準値を超える台数増加パターンは、後で記載する4台の場合にも現れるが、基準値以上で台数増加パターンの設定台数が最も大きなものとするため、設定台数の大きい側から試算して最初に見つかった基準値以上で確定している。 Furthermore, the pattern of increasing the number of vehicles will be reduced by one to make a trial calculation with five vehicles. FIG. 8 shows a case in which the number of vehicles increase pattern is five. As shown in Fig. 4, the range of steam supply amount when the number of burning units is 3 to 6 when the number of units is 5 is 0.765 to 1.36t/h for 3 units and 1.02 to 1.615t for 4 units /h: 1.275 to 2.465t/h for 5 vehicles, 1.53 to 3.315t/h for 6 vehicles. The cumulative time of detecting the steam flow rate in the steam supply amount control range when the number of burning units is 3, 4, 5, and 6 is 48.7%, 48.7%, 55.6%, and 44.1%, respectively. Suppose In this case, for the steam flow rate (area of the hatched portion in the graph) in the steam supply amount adjustment range when the number of burning units is 5, the detected cumulative time exceeds 50% of the reference value. When a setting that exceeds the reference value is found, the value of this number increase pattern is used for confirmation. Note that the number-of-units increase pattern that exceeds the reference value also appears in the case of four units, which will be described later, but since the number of units set in the number-of-units increase pattern is the largest above the reference value, the trial calculation is performed from the side with the largest number of units. It is confirmed that it is above the standard value found first.

また、基準値が50%の場合は台数増加パターン5台で確定したが、基準値がより高い60%であると、台数増加パターン5台では基準値60%に達していないため、さらに適正値を探すことになる。図9は台数増加パターンを4台とした場合のものである。台数増加パターン4台時の燃焼台数が3台から6台での蒸気供給量の幅は、図5に記載しているように3台時0.765〜1.36t/h、4台時1.02〜2.215t/h、5台時1.275〜3.06t/h、6台時1.53〜3.91t/hとなる。燃焼台数が3台、4台、5台、6台での蒸気供給量調節範囲における蒸気流量が検出された時間の累積時間を算出すると、それぞれ48.7%、68.2%、57.5%、43.4%であったとする。この場合、4台での蒸気供給量調節範囲における蒸気流量が検出された時間(グラフ内の斜線を入れた部分の面積)は基準値の60%を超えている。基準値を超える設定が見つかると、この台数増加パターンの値で確定する。 Also, when the standard value is 50%, it was confirmed by the number increase pattern of 5 units, but when the standard value is 60%, which is higher, the standard value 60% is not reached with the number increase pattern of 5 units. Will be looking for. FIG. 9 shows a case where the number of units increase pattern is four. Number increase pattern The range of steam supply amount when the number of combustion is 4 to 3 when the number of combustion is 3 to 6, as shown in Fig. 5, 0.765 to 1.36t/h for 3 units and 1.02 to 2.215t for 4 units. /h: 1.275 to 3.06t/h for 5 cars and 1.53 to 3.91t/h for 6 cars. The cumulative time of the time when the steam flow rate was detected in the steam supply amount control range when the number of burning units was 3, 4, 5 and 6 was 48.7%, 68.2%, 57.5% and 43.4%, respectively. Suppose In this case, the time when the steam flow rate is detected in the steam supply amount adjustment range of the four units (the area of the hatched portion in the graph) exceeds 60% of the reference value. When a setting that exceeds the reference value is found, the value of this number increase pattern is used for confirmation.

このようにして設定値を定めるようにすると、燃焼台数を変更せずに蒸気供給量を調節することのできる時間が長く、かつ台数増加パターンの設定台数が大きなものを見つけることができる。蒸気供給量調節範囲の時間が長くなると燃焼台数の変更が行われず、燃焼の発停が少なくなるということであるため、効率の高い台数制御が行える。また蒸気供給幅内で維持される時間が基準値以上となる台数増加パターンのうち、最も台数増加パターン設定台数が大きなものを台数増加パターン設定台数とすることで、発停回数を少なくした状態で、低燃焼の確保台数を可能な限り多くすることができる。このようにすることで、蒸気必要量の変化に対する追従性と効率のバランスがとれた最適な台数制御を行うことができる。 By setting the set value in this way, it is possible to find the one in which the steam supply amount can be adjusted for a long time without changing the number of combustion and the set number of the number increase pattern is large. If the time in the steam supply amount adjustment range becomes long, the number of combustion units will not be changed, and the start and stop of combustion will decrease, so that highly efficient unit control can be performed. In addition, among the number-of-units increase pattern in which the time maintained within the steam supply width is equal to or greater than the reference value, the one with the largest number-of-units increase pattern set number is set as the number-of-units increase pattern set number, and It is possible to increase the number of low combustion units secured. By doing so, it is possible to perform the optimum number of units control in which the followability to changes in the required steam amount and the efficiency are balanced.

なお、本発明は以上説明した実施例に限定されるものではなく、多くの変形が本発明の技術的思想内で当分野において通常の知識を有する者により可能である。 It should be noted that the present invention is not limited to the embodiments described above, and many modifications can be made by a person having ordinary skill in the art within the technical idea of the present invention.

1 ボイラ
2 運転制御装置
3 台数制御装置
4 スチームヘッダ
5 蒸気配管
6 圧力検出装置


1 boiler
2 Operation control device
3 Number control device 4 Steam header 5 Steam piping 6 Pressure detection device


Claims (2)

高燃焼・低燃焼・燃焼待機のように段階的な燃焼制御を行うボイラを複数台設置しており、ボイラが供給している蒸気の圧力値に基づいて各ボイラの燃焼状態を制御する台数制御装置を持った多缶設置ボイラであって、台数制御装置は、燃焼量増加時に低燃焼の燃焼指令を出力しているボイラ数が所定台数以上であった場合は低燃焼のボイラに対して燃焼量増加の燃焼指令を出力し、低燃焼の燃焼指令を出力しているボイラ数が所定台数未満であって燃焼台数の増加が可能な場合には燃焼待機のボイラに対して低燃焼の燃焼指令を出力するようにしており、前記の所定台数は変更可能であって、所定台数毎に台数増加パターンを複数設定しておいて、台数制御を行う場合には複数ある台数増加パターンから使用する台数増加パターンを選択して行うようにしている多缶設置ボイラにおいて、台数増加パターンの選択は、多缶設置ボイラでの蒸気使用量を算出して蒸気使用量の累積時間を算出しておき、台数増加パターンの設定値ごとに、燃焼台数を変更せずに調節することのできる蒸気供給量の幅を算出し、計測しておいた蒸気使用量に前記の燃焼台数を変更せずに調節することのできる蒸気供給量の幅を当てはめ、蒸気供給量の幅内に留まる時間の割合に基づいて台数増加パターンの設定台数を決定することを特徴とする多缶設置ボイラ。 We have installed multiple boilers that perform stepwise combustion control such as high combustion, low combustion, and combustion standby, and control the number of boilers to control the combustion state of each boiler based on the pressure value of the steam supplied by the boiler. In a multi-can installed boiler with a device, the number-of-units control device burns against a low-combustion boiler if the number of boilers that output a low-combustion combustion command when the combustion amount increases is greater than a predetermined number. If the number of boilers that output the combustion command for increasing the amount and output the combustion command for low combustion is less than the specified number and the number of combustion can be increased, the combustion command for low combustion is issued to the boilers in standby for combustion. The above-mentioned predetermined number of units can be changed, and when a plurality of unit number increase patterns are set for each predetermined number of units and the number of units is controlled, the number of units to be used from the plurality of unit number increase patterns is used. In the multi-can installation boiler that is configured to select an increase pattern, the number of increase patterns is selected by calculating the steam usage amount in the multi-can installation boiler and calculating the cumulative time of steam usage. For each set value of the increase pattern, calculate the range of the steam supply amount that can be adjusted without changing the number of combustion units, and adjust it to the measured steam usage amount without changing the number of combustion units. A multi-can installation boiler characterized by fitting the range of steam supply amount that can be achieved and determining the set number of units in the unit increase pattern based on the ratio of the time of staying within the range of steam supply amount. 請求項1に記載の多缶設置ボイラにおいて、算出した蒸気供給量の幅内に留まる時間の割合が基準値以上となる組合せを抽出し、抽出された組合せのうち、最も台数増加パターン設定台数が大きなものを台数増加パターンの設定台数とすることを特徴とする多缶設置ボイラ。

In the multi-can installed boiler according to claim 1, a combination in which the ratio of the time staying within the calculated steam supply amount range is equal to or more than a reference value is extracted, and among the extracted combinations, the maximum number of units increase pattern setting number is A boiler with multiple cans, characterized in that a large number is set as the set number of units.

JP2019008116A 2019-01-22 2019-01-22 Multi-can boiler Active JP7140356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019008116A JP7140356B2 (en) 2019-01-22 2019-01-22 Multi-can boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019008116A JP7140356B2 (en) 2019-01-22 2019-01-22 Multi-can boiler

Publications (2)

Publication Number Publication Date
JP2020118325A true JP2020118325A (en) 2020-08-06
JP7140356B2 JP7140356B2 (en) 2022-09-21

Family

ID=71890439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019008116A Active JP7140356B2 (en) 2019-01-22 2019-01-22 Multi-can boiler

Country Status (1)

Country Link
JP (1) JP7140356B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336404A (en) * 1989-06-30 1991-02-18 Miura Co Ltd Automatic setting of control pattern for number of boilers in automatic controller of number of boilers
US5732664A (en) * 1996-08-30 1998-03-31 Badeaux, Jr.; Joseph W. Boiler control system
JP2008224127A (en) * 2007-03-12 2008-09-25 Miura Co Ltd Method for controlling number of boiler group
JP2014153010A (en) * 2013-02-12 2014-08-25 Ihi Packaged Boiler Co Ltd Device for setting operation condition of boiler
JP2015117840A (en) * 2013-12-16 2015-06-25 株式会社サムソン Multi-can installation boiler

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336404A (en) * 1989-06-30 1991-02-18 Miura Co Ltd Automatic setting of control pattern for number of boilers in automatic controller of number of boilers
US5732664A (en) * 1996-08-30 1998-03-31 Badeaux, Jr.; Joseph W. Boiler control system
JP2008224127A (en) * 2007-03-12 2008-09-25 Miura Co Ltd Method for controlling number of boiler group
JP2014153010A (en) * 2013-02-12 2014-08-25 Ihi Packaged Boiler Co Ltd Device for setting operation condition of boiler
JP2015117840A (en) * 2013-12-16 2015-06-25 株式会社サムソン Multi-can installation boiler

Also Published As

Publication number Publication date
JP7140356B2 (en) 2022-09-21

Similar Documents

Publication Publication Date Title
JP5251356B2 (en) Control system, control system program, combustion control method, and boiler system
KR101778123B1 (en) Controller and boiler system
JP2010043768A (en) Control method of boiler and boiler system using the control method
WO2015025729A1 (en) Boiler system
JP2016223686A (en) Multi-can installed boiler
JP5343935B2 (en) Boiler system
JP2007120785A (en) Multi-can installed boiler for performing number control
JP5916194B2 (en) Multi-can boiler
JP4632361B2 (en) Multi-can installation boiler with unit control
JP5692807B2 (en) Multi-can boiler
JP2013234775A (en) System for controlling number of multi-boiler type through-flow boiler
JP5679908B2 (en) Multi-can boiler
JP2020118325A (en) Multi-can installation boiler
JP2012037146A (en) Multiple can installed boiler
JP5668807B2 (en) Boiler system
JP6550999B2 (en) Boiler system
JP6220256B2 (en) Multi-can boiler
JP2005055014A (en) Method of controlling number of boilers
JP6102357B2 (en) Boiler system
JP6528494B2 (en) Boiler system
JP6044314B2 (en) Boiler system
JP6028608B2 (en) Boiler system
JP5991156B2 (en) Boiler system
JP2001201001A (en) Multi-boiler installing system provded with device for controlling the number of boilers
JP6399579B2 (en) Multi-can boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211206

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220831

R150 Certificate of patent or registration of utility model

Ref document number: 7140356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150