JP2020117814A - Method for manufacturing three-dimensional molded article and apparatus for manufacturing three-dimensional molded article - Google Patents

Method for manufacturing three-dimensional molded article and apparatus for manufacturing three-dimensional molded article Download PDF

Info

Publication number
JP2020117814A
JP2020117814A JP2020074787A JP2020074787A JP2020117814A JP 2020117814 A JP2020117814 A JP 2020117814A JP 2020074787 A JP2020074787 A JP 2020074787A JP 2020074787 A JP2020074787 A JP 2020074787A JP 2020117814 A JP2020117814 A JP 2020117814A
Authority
JP
Japan
Prior art keywords
layer
dimensional structure
particles
constituent
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020074787A
Other languages
Japanese (ja)
Other versions
JP6950780B2 (en
Inventor
岡本 英司
Eiji Okamoto
英司 岡本
石田 方哉
Masaya Ishida
方哉 石田
平井 利充
Toshimitsu Hirai
利充 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015203487A external-priority patent/JP6751252B2/en
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2020074787A priority Critical patent/JP6950780B2/en
Publication of JP2020117814A publication Critical patent/JP2020117814A/en
Application granted granted Critical
Publication of JP6950780B2 publication Critical patent/JP6950780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To reduce post-treatment processes after a three-dimensional molded article is formed.SOLUTION: A method for manufacturing a three-dimensional molded article includes: a layer formation step of forming a layer by use of a fluidic composition comprising component particles of a three-dimensional molded article and a fluidic composition comprising support-forming particles for forming a support that supports the three-dimensional molded article during forming the three-dimensional molded article; and an energy imparting step of imparting energy to the component particles and the support-forming particles. In the energy imparting step, energy is imparted in such a manner that the temperature of the component particles and the support-forming particles is equal to or higher than the melting point of the component particles and lower than the melting point of the support-forming particles.SELECTED DRAWING: Figure 9

Description

本発明は、三次元造形物の製造方法及び三次元造形物の製造装置に関する。 The present invention relates to a method for manufacturing a three-dimensional structure and a manufacturing apparatus for a three-dimensional structure.

従来から、三次元造形物を製造する様々な方法が実施されている。このうち、流動性組成物を使用して三次元造形物を形成する方法が開示されている。
例えば、特許文献1には、流動性組成物としての金属ペーストを用いて層を形成し、三次元造形物の対応領域にレーザーを照射して焼結又は溶融しながら三次元造形物を製造する製造方法が開示されている。
Conventionally, various methods of manufacturing a three-dimensional structure are implemented. Among them, a method of forming a three-dimensional structure using a fluid composition is disclosed.
For example, in Patent Document 1, a layer is formed using a metal paste as a fluid composition, and a corresponding region of a three-dimensional structure is irradiated with a laser to be sintered or melted to manufacture a three-dimensional structure. A manufacturing method is disclosed.

特開2008−184622号公報JP, 2008-184622, A

しかしながら、三次元造形物の対応領域を焼結又は溶融しながら三次元造形物を製造する場合、焼結又は溶融する際の熱により、該三次元造形物の対応領域以外の部分も焼結又は溶融してしまい、三次元造形物を取り外す際の分離作業や取り外した後の成形作業などの負荷が大きい場合があった。すなわち、三次元造形物を製造する従来の製造方法では、製造される三次元造形物の後処理工程を減らすことが十分にできていなかった。 However, in the case of manufacturing a three-dimensional structure while sintering or melting the corresponding region of the three-dimensional structure, the heat of sintering or melting also causes the portion other than the corresponding region of the three-dimensional structure to sinter or melt. It may be melted and a heavy load such as a separating operation when removing the three-dimensional structure and a molding operation after the removing may be heavy. That is, in the conventional manufacturing method for manufacturing a three-dimensional structure, it has not been possible to sufficiently reduce the post-treatment process of the manufactured three-dimensional structure.

そこで、本発明の目的は、三次元造形物を形成した後の後処理工程を減らすことである。 Then, the objective of this invention is reducing the post-processing process after forming a three-dimensional molded object.

上記課題を解決するための本発明の第1の態様の三次元造形物の製造方法は、三次元造形物の構成材料粒子を含む流動性組成物と、前記三次元造形物を形成する際に該三次元造形物を支持する支持部を形成する支持部形成粒子を含む流動性組成物と、を用いて層を形成する層形成工程と、前記構成材料粒子及び前記支持部形成粒子にエネルギーを付与するエネルギー付与工程と、を有し、前記エネルギー付与工程は、前記構成材料粒子及び前記支持部形成粒子の温度が前記構成材料粒子の融点以上且つ前記支持部形成粒子の融点未満の温度となるように、エネルギーを付与することを特徴とする。 The method for producing a three-dimensional structure according to the first aspect of the present invention for solving the above-mentioned problems is a flowable composition containing particles of a constituent material of a three-dimensional structure, and a method for forming the three-dimensional structure. A layer forming step of forming a layer using a fluid composition containing support part forming particles forming a support part supporting the three-dimensional structure, and energy to the constituent material particles and the support part forming particles. An energy applying step of applying, wherein the energy applying step has a temperature of the constituent material particles and the supporting portion forming particles equal to or higher than a melting point of the constituent material particles and lower than a melting point of the supporting portion forming particles. Thus, it is characterized by applying energy.

本態様によれば、構成材料粒子及び支持部形成粒子の温度が構成材料粒子の融点以上且つ支持部形成粒子の融点未満の温度となるようにエネルギーを付与する。このため、三次元造形物の構成材料を溶融させつつ支持部の溶融を抑制することができる。このため、三次元造形物の対応領域以外の部分も溶融させてしまうことで三次元造形物を取り外す際の分離作業や取り外した後の成形作業などの負荷が大きくなるということを抑制できる。したがって、三次元造形物を形成した後の後処理工程を減らすことができる。 According to this aspect, energy is applied so that the temperature of the constituent material particles and the particles for forming the supporting portion is equal to or higher than the melting point of the constituent material particles and lower than the melting point of the supporting portion forming particles. Therefore, it is possible to suppress melting of the support portion while melting the constituent material of the three-dimensional structure. Therefore, it is possible to prevent the load of the separation work when removing the three-dimensional structure and the molding work after the removal from being increased by melting the part other than the corresponding region of the three-dimensional structure. Therefore, the post-treatment process after forming the three-dimensional structure can be reduced.

本発明の第2の態様の三次元造形物の製造方法は、前記第1の態様において、前記層形成工程は、前記構成材料粒子を含む流動性組成物及び前記支持部形成粒子を含む流動性組成物を液滴の状態で吐出して前記層を形成することを特徴とする。 In the method for producing a three-dimensional structure according to the second aspect of the present invention, in the first aspect, the layer forming step includes a fluid composition containing the constituent material particles and a fluid composition containing the support part forming particles. The composition is discharged in a droplet state to form the layer.

本態様によれば、構成材料粒子を含む流動性組成物及び支持部形成粒子を含む流動性組成物を液滴の状態で吐出して層を形成する。このため、層を形成することにより、簡単に、三次元造形物を形成できる。 According to this aspect, the fluid composition containing the constituent material particles and the fluid composition containing the support portion forming particles are discharged in the form of droplets to form a layer. Therefore, a three-dimensional structure can be easily formed by forming the layer.

本発明の第3の態様の三次元造形物の製造方法は、前記第1又は第2の態様において、前記層形成工程を繰り返す積層工程を有することを特徴とする。 The method for producing a three-dimensional structure according to the third aspect of the present invention is characterized in that, in the first or second aspect, it has a laminating step of repeating the layer forming step.

本態様によれば、層形成工程を繰り返す積層工程を有する。このため、層形成工程を繰り返すことにより、簡単に、三次元造形物を形成できる。 According to this aspect, there is a laminating step in which the layer forming step is repeated. Therefore, a three-dimensional structure can be easily formed by repeating the layer forming step.

本発明の第4の態様の三次元造形物の製造方法は、前記第第1から第3のいずれか1つの態様において、前記エネルギー付与工程は、前記構成材料粒子及び前記支持部形成粒子の温度が前記支持部形成粒子の焼結温度以上の温度となるように、エネルギーを付与することを特徴とする。 A method for manufacturing a three-dimensional structure according to a fourth aspect of the present invention is the method for producing a three-dimensional structure according to any one of the first to third aspects, wherein the energy application step is performed by the temperature of the constituent material particles and the support portion forming particles. Is applied so that the temperature becomes equal to or higher than the sintering temperature of the support portion forming particles.

本態様によれば、構成材料粒子及び支持部形成粒子の温度が支持部形成粒子の焼結温度以上の温度となるようにエネルギーを付与する。すなわち、構成材料粒子を溶融させ支持部形成粒子を焼結させる。溶融部分に対して焼結部分は簡単に分離できるため、三次元造形物を形成した後の後処理工程を減らすことができる。 According to this aspect, energy is applied so that the temperature of the constituent material particles and the particles for forming the supporting portion becomes equal to or higher than the sintering temperature of the particles for forming the supporting portion. That is, the constituent material particles are melted and the support portion forming particles are sintered. Since the sintered portion can be easily separated from the melted portion, the post-treatment process after forming the three-dimensional structure can be reduced.

本発明の第5の態様の三次元造形物の製造方法は、前記第1から第4のいずれか1つの態様において、前記層形成工程は、前記エネルギー付与工程後において、前記構成材料粒子で構成された層の厚みと該層と対応する前記支持部形成粒子で構成された層の厚みとが揃うように調整されていることを特徴とする。 In the method for producing a three-dimensional structure according to a fifth aspect of the present invention, in any one of the first to fourth aspects, the layer forming step includes the constituent material particles after the energy applying step. It is characterized in that the thickness of the formed layer and the thickness of the layer corresponding to the layer and formed of the support portion forming particles are adjusted to be uniform.

本態様によれば、エネルギー付与工程後において、構成材料粒子で構成された層の厚みと該層と対応する支持部形成粒子で構成された層の厚みとが揃うように調整されている。このため、支持層と構成層との層厚が異なることに伴う層厚の調整などが不要になり、簡単に、高精度な三次元造形物を製造することができる。 According to this aspect, after the energy applying step, the thickness of the layer made of the constituent material particles and the thickness of the layer made of the support portion forming particles corresponding to the layer are adjusted to be uniform. Therefore, it is not necessary to adjust the layer thickness due to the difference in layer thickness between the support layer and the constituent layer, and it is possible to easily manufacture a highly accurate three-dimensional structure.

本発明の第6の態様の三次元造形物の製造方法は、前記第1から第5のいずれか1つの態様において、前記エネルギー付与工程は、前記層形成工程を1層分又は複数層分実行した後に、実行されることを特徴とする。 In the method for manufacturing a three-dimensional structure according to a sixth aspect of the present invention, in any one of the first to fifth aspects, the energy applying step performs the layer forming step for one layer or a plurality of layers. After that, it is executed.

本態様によれば、エネルギー付与工程は、層形成工程を1層分又は複数層分実行した後に、実行される。例えば、複数層分層形成工程を実行した後にエネルギー付与工程を実行することで、構成層形成工程の回数を減らすことができ、迅速に三次元造形物を製造することができる。また1層毎にエネルギー付与工程を実行することで、斜面部等で一方の材料が他方の材料を覆う配置となる場合であっても、各層では両材料が同一面上に露出しているため、各材料に対して適正にエネルギーを付与することが可能となる。 According to this aspect, the energy applying step is performed after the layer forming step is performed for one layer or a plurality of layers. For example, by performing the energy application process after performing the multi-layered layer formation process, the number of constituent layer formation processes can be reduced and a three-dimensional structure can be rapidly manufactured. In addition, by performing the energy application step for each layer, both materials are exposed on the same surface in each layer even when one material is arranged to cover the other material on the slope portion or the like. Thus, it becomes possible to properly apply energy to each material.

本発明の第7の態様の三次元造形物の製造方法は、前記第1から第6のいずれか1つの態様において、前記エネルギー付与工程は、前記構成材料粒子及び前記支持部形成粒子に同一のエネルギーを付与することを特徴とする。 In the method for producing a three-dimensional structure according to a seventh aspect of the present invention, in any one of the first to sixth aspects, the energy applying step is the same for the constituent material particles and the support portion forming particles. It is characterized by giving energy.

本態様によれば、構成材料粒子及び支持部形成粒子に同一のエネルギーを付与する。このため、簡単に、エネルギー付与工程を実行できる。 According to this aspect, the same energy is applied to the constituent material particles and the support portion forming particles. Therefore, the energy application step can be easily executed.

本発明の第8の態様の三次元造形物の製造方法は、前記第1から第6のいずれか1つの態様において、前記エネルギー付与工程は、前記構成材料粒子及び前記支持部形成粒子に異なるエネルギーを付与することを特徴とする。 In the method for manufacturing a three-dimensional structure according to an eighth aspect of the present invention, in the energy imparting step according to any one of the first to sixth aspects, different energy is applied to the constituent material particles and the support portion forming particles. Is given.

本態様によれば、構成材料粒子及び支持部形成粒子に異なるエネルギーを付与する。このため、効果的に、三次元造形物の対応領域以外の部分も溶融または過度に焼結させてしまうことで三次元造形物を取り外す際の分離作業や取り外した後の成形作業などの負荷が大きくなるということを、抑制できる。 According to this aspect, different energies are applied to the constituent material particles and the support portion forming particles. Therefore, effectively, by melting or excessively sintering the part other than the corresponding region of the three-dimensional structure, the load such as the separation work when removing the three-dimensional structure or the molding work after the removal is performed. It is possible to suppress the increase.

本発明の第9の態様の三次元造形物の製造方法は、前記第1から第8のいずれか1つの態様において、前記エネルギー付与工程後において、前記構成材料粒子で構成された層の空隙率が該層と対応する前記支持部形成粒子で構成された層の空隙率よりも小さくなるよう調整されていることを特徴とする。 The method for producing a three-dimensional structure according to a ninth aspect of the present invention is the method for manufacturing a three-dimensional structure according to any one of the first to eighth aspects, wherein, after the energy applying step, the porosity of the layer formed of the constituent material particles. Is adjusted to be smaller than the porosity of the layer composed of the support portion forming particles corresponding to the layer.

本態様によれば、エネルギー付与工程後において、構成材料粒子で構成された層の空隙率が該層と対応する支持部形成粒子で構成された層の空隙率よりも小さくなるよう調整されている。このため、支持部形成粒子で構成された層の空隙率が小さくなりすぎて三次元造形物を取り外す際の分離作業や取り外した後の成形作業などの負荷が大きくなるということを、抑制できる。 According to this aspect, after the energy application step, the porosity of the layer formed of the constituent material particles is adjusted to be smaller than the porosity of the layer formed of the support portion forming particles corresponding to the layer. .. For this reason, it is possible to prevent the porosity of the layer formed of the support portion forming particles from becoming too small and the load of the separating operation when removing the three-dimensional structure and the molding operation after the removing from becoming large.

本発明の第10の態様の三次元造形物の製造方法は、前記第1から第9のいずれか1つの態様において、前記支持部形成粒子で構成された層の空隙率は、前記エネルギー付与工程後の方が前記エネルギー付与工程前よりも小さくなるよう調整されていることを特徴とする。 The method for producing a three-dimensional structure according to a tenth aspect of the present invention is the method for producing a three-dimensional structure according to any one of the first to ninth aspects, wherein the porosity of the layer formed of the support portion forming particles is the energy applying step. It is characterized in that the latter is adjusted to be smaller than that before the energy applying step.

本態様によれば、支持部形成粒子で構成された層の空隙率は、エネルギー付与工程後の方がエネルギー付与工程前よりも小さくなるよう調整されている。このため、支持部の強度が向上し、三次元構造物を取り外す際の分離作業を行うまでの工程において、構造体の保持を確実に行うことが出来るという利点がある。 According to this aspect, the porosity of the layer formed of the support portion forming particles is adjusted to be smaller after the energy application step than before the energy application step. Therefore, there is an advantage that the strength of the support portion is improved, and the structure can be reliably held in the steps up to the separation work for removing the three-dimensional structure.

本発明の第11の態様の三次元造形物の製造方法は、前記第1から第10のいずれか1つの態様において、前記構成材料粒子はアルミ、チタン、鉄、銅、マグネシウム、ステンレス鋼、マルエージング鋼の少なくともいずれか1つの成分を含む粒子であり、前記支持部形成粒子はシリカ、アルミナ、酸化チタン、酸化ジルコンの少なくともいずれか1つの成分を含む粒子であることを特徴とする。 In the method for producing a three-dimensional structure according to an eleventh aspect of the present invention, in any one of the first to tenth aspects, the constituent material particles are aluminum, titanium, iron, copper, magnesium, stainless steel, or a circle. It is a particle containing at least one component of aging steel, and the support portion forming particles are particles containing at least one component of silica, alumina, titanium oxide, and zircon oxide.

本態様によれば、エネルギー付与工程により、構成材料粒子を溶融し、支持部材形成粒子を低い焼結密度とするように容易にコントロールすることができ、三次元造形物の強度を確保しつつ、三次元造形物を取り外す際の分離作業や取り外した後の成形作業などの負荷が大きくなるということを抑制できる。 According to this aspect, by the energy application step, it is possible to melt the constituent material particles and easily control the supporting member forming particles to have a low sintering density, while ensuring the strength of the three-dimensional structure, It is possible to suppress an increase in load such as separation work when removing the three-dimensional structure and molding work after the removal.

本発明の第12の態様の三次元造形物の製造装置は、三次元造形物の構成材料粒子を含む流動性組成物を吐出する吐出部と、前記三次元造形物を形成する際に該三次元造形物を支持する支持部を形成する支持部形成粒子を含む流動性組成物を吐出する吐出部と、前記構成材料粒子を含む流動性組成物と前記支持部形成粒子を含む流動性組成物とを用いて層を形成するよう制御する制御部と、前記構成材料粒子及び前記支持部形成粒子にエネルギーを付与するエネルギー付与部と、を有し、エネルギー付与部は、前記構成材料粒子及び前記支持部形成粒子の温度が前記構成材料粒子の融点以上且つ前記支持部形成粒子の融点未満の温度となるように、エネルギーを付与するよう調整されていることを特徴とする。 A manufacturing apparatus for a three-dimensional structure according to a twelfth aspect of the present invention includes a discharging unit configured to discharge a fluid composition containing material particles of the three-dimensional structure, and the three-dimensional structure when the three-dimensional structure is formed. A discharge part for discharging a fluid composition containing support part forming particles forming a support part supporting the original shaped object, a fluid composition containing the constituent material particles, and a fluid composition containing the support part forming particles. And a control unit for controlling to form a layer using, and an energy applying unit for applying energy to the constituent material particles and the support portion forming particles, the energy applying unit, the constituent material particles and the Energy is applied so that the temperature of the support portion forming particles is equal to or higher than the melting point of the constituent material particles and lower than the melting point of the support portion forming particles.

本態様によれば、構成材料粒子及び支持部形成粒子の温度が構成材料粒子の融点以上且つ支持部形成粒子の融点未満の温度となるようにエネルギーを付与する。このため、三次元造形物の構成材料を溶融させつつ支持部の溶融を抑制することができる。このため、三次元造形物の対応領域以外の部分も溶融させてしまうことで三次元造形物を取り外す際の分離作業や取り外した後の成形作業などの負荷が大きくなるということを抑制できる。したがって、三次元造形物を形成した後の後処理工程を減らすことができる。 According to this aspect, energy is applied so that the temperature of the constituent material particles and the particles for forming the supporting portion is equal to or higher than the melting point of the constituent material particles and lower than the melting point of the supporting portion forming particles. Therefore, it is possible to suppress melting of the support portion while melting the constituent material of the three-dimensional structure. Therefore, it is possible to prevent the load of the separation work when removing the three-dimensional structure and the molding work after the removal from being increased by melting the part other than the corresponding region of the three-dimensional structure. Therefore, the post-treatment process after forming the three-dimensional structure can be reduced.

(a)は本発明の一の実施形態に係る三次元造形物の製造装置の構成を示す概略構成図、(b)は(a)に示すC部の拡大図。(A) is a schematic block diagram which shows the structure of the manufacturing apparatus of the three-dimensional molded object which concerns on one Embodiment of this invention, (b) is an enlarged view of the C section shown in (a). (a)は本発明の一の実施形態に係る三次元造形物の製造装置の構成を示す概略構成図、(b)は(a)に示すC’部の拡大図。(A) is a schematic block diagram which shows the structure of the manufacturing apparatus of the three-dimensional molded object which concerns on one Embodiment of this invention, (b) is an enlarged view of C'section shown to (a). 本発明の一の実施形態に係るヘッドベースの図1(b)に示すD方向からの外観図。FIG. 1 is an external view of a head base according to an embodiment of the present invention as viewed from the direction D shown in FIG. 図3に示すE−E’部の断面図。Sectional drawing of the E-E' part shown in FIG. 本発明の一の実施形態に係るヘッドユニットの配置と、着弾部の形成形態と、の関係を概念的に説明する平面図。FIG. 3 is a plan view conceptually illustrating the relationship between the arrangement of head units and the form of landing portions according to the embodiment of the present invention. 本発明の一の実施形態に係るヘッドユニットの配置と、着弾部の形成形態と、の関係を概念的に説明する平面図。FIG. 3 is a plan view conceptually illustrating the relationship between the arrangement of the head units according to the embodiment of the present invention and the form of landing portions. 本発明の一の実施形態に係るヘッドユニットの配置と、着弾部の形成形態と、の関係を概念的に説明する平面図。FIG. 3 is a plan view conceptually illustrating the relationship between the arrangement of head units and the form of landing portions according to the embodiment of the present invention. ヘッドベースに配置されるヘッドユニットの、その他の配置の例を示す模式図。The schematic diagram which shows the example of other arrangement|positioning of the head unit arrange|positioned at a head base. 本発明の一実施例に係る三次元造形物の製造過程を表す概略図。Schematic which represents the manufacturing process of the three-dimensional molded item which concerns on one Example of this invention. 本発明の一実施例に係る三次元造形物の製造方法のフローチャート。The flowchart of the manufacturing method of the three-dimensional molded item which concerns on one Example of this invention. 本発明の一実施例に係る三次元造形物の製造過程を表す概略図。Schematic which represents the manufacturing process of the three-dimensional molded item which concerns on one Example of this invention. 本発明の一実施例に係る三次元造形物の製造方法のフローチャート。The flowchart of the manufacturing method of the three-dimensional molded item which concerns on one Example of this invention.

以下、図面を参照して、本発明に係る実施形態を説明する。
図1及び図2は本発明の一の実施形態に係る三次元造形物の製造装置の構成を示す概略構成図である。
ここで、本実施形態の三次元造形物の製造装置は、2種類の材料供給部(ヘッドベース)を備えているが、図1及び図2は、各々、一方の材料供給部のみを表した図であり、他方の材料供給部は省略して表している。また、図1の材料供給部は、三次元造形物の構成材料粒子を含む流動性組成物(構成材料)を供給する材料供給部である。そして、図2の材料供給部は、三次元造形物を形成する際に該三次元造形物を支持する支持部を形成する支持部形成粒子を含む流動性組成物(支持部形成用材料)を供給する材料供給部である。なお、本実施例の構成材料粒子を含む流動性組成物及び支持部形成粒子を含む流動性組成物は、何れも溶媒とバインダーとを含むものであるが、これらを含まないものを使用してもよい。
なお、本明細書における「三次元造形」とは、いわゆる立体造形物を形成することを示すものであって、例えば、平板状、いわゆる二次元形状の形状であっても厚みを有する形状を形成することも含まれる。また、「支持する」とは、下側から支持する場合の他、横側から支持する場合や、場合によっては上側から支持する場合も含む意味である。
Hereinafter, embodiments according to the present invention will be described with reference to the drawings.
1 and 2 are schematic configuration diagrams showing a configuration of a manufacturing apparatus for a three-dimensional structure according to an embodiment of the present invention.
Here, the manufacturing apparatus for a three-dimensional structure of this embodiment includes two types of material supply units (head bases), but FIGS. 1 and 2 each show only one material supply unit. It is a figure, and the other material supply part is abbreviate|omitted and represented. The material supply unit of FIG. 1 is a material supply unit that supplies a fluid composition (constituent material) containing constituent material particles of a three-dimensional structure. The material supply unit of FIG. 2 supplies a fluid composition (support portion forming material) containing support portion forming particles that form a support portion that supports the three-dimensional structure when forming the three-dimensional structure. It is a material supply unit for supplying. The fluid composition containing the constituent material particles and the fluid composition containing the support portion forming particles of this example both contain a solvent and a binder, but those not containing them may be used. ..
In addition, the "three-dimensional modeling" in the present specification refers to forming a so-called three-dimensional model, and for example, a flat shape, a so-called two-dimensional shape, or a shape having a thickness is formed. It also includes doing. In addition, “supporting” means not only supporting from the lower side but also supporting from the lateral side and, in some cases, supporting from the upper side.

図1及び図2に示す三次元造形物の製造装置2000(以下、形成装置2000という)は、基台110と、基台110に備える駆動手段としての駆動装置111によって、図示するX,Y,Z方向の移動、あるいはZ軸を中心とする回転方向に駆動可能に備えられたステージ120を備えている。
そして、図1で表されるように、一方の端部が基台110に固定され、他方の端部に構成材料を吐出する構成材料吐出部を備えるヘッドユニット1400を複数保持するヘッドベース1100が保持固定される、ヘッドベース支持部130を備えている。
また、図2で表されるように、一方の端部が基台110に固定され、他方の端部に支持部形成用材料を吐出する支持部形成用材料吐出部を備えるヘッドユニット1400’を複数保持するヘッドベース1100’が保持固定される、ヘッドベース支持部130’を備えている。
ここで、ヘッドベース1100及びヘッドベース1100’は、XY平面において並列に設けられている。
なお、構成材料吐出部1230及び支持部形成用材料吐出部1230’は、吐出される材料(構成材料及び支持部形成用材料)が異なること以外は同様の構成のものである。ただし、このような構成に限定されない。
1 and 2, the three-dimensional structure manufacturing apparatus 2000 (hereinafter, referred to as a forming apparatus 2000) includes a base 110 and a driving device 111 as a driving unit included in the base 110, which is shown in FIG. The stage 120 is provided so as to be movable in the Z direction or driven in the rotation direction around the Z axis.
Then, as shown in FIG. 1, a head base 1100 having a plurality of head units 1400 having one end fixed to the base 110 and the other end having a constituent material discharging portion for discharging constituent material is provided. The head base support portion 130 is held and fixed.
In addition, as shown in FIG. 2, a head unit 1400′ having one end fixed to the base 110 and the other end provided with a support forming material discharge section for discharging the support forming material is provided. A head base support part 130' is provided to hold and fix a plurality of head bases 1100'.
Here, the head base 1100 and the head base 1100′ are provided in parallel on the XY plane.
The constituent material discharge part 1230 and the support part formation material discharge part 1230′ have the same configuration except that the discharged materials (the constituent material and the support part formation material) are different. However, the configuration is not limited to this.

ステージ120上には、三次元造形物500が形成される過程での層501、502及び503が形成される。また、ステージ120に対向する領域には、後述する制御ユニット400に接続された加熱部コントローラー1710によって熱エネルギーの照射のオン・オフが制御され、ステージ120全体の領域を加熱可能な加熱部1700が設けられている。
三次元造形物500の形成には、加熱部1700による熱エネルギーの照射(エネルギー付与)がなされるため、ステージ120の熱からの保護のため、耐熱性を有する試料プレート121を用いて、試料プレート121の上に三次元造形物500を形成してもよい。試料プレート121としては、例えばセラミック板を用いることで、高い耐熱性を得ることができ、更に溶融される三次元造形物の構成材料との反応性も低く、三次元造形物500の変質を防止することができる。なお、図1(a)及び図2(a)では、説明の便宜上、層501、502及び503の3層を例示したが、所望の三次元造形物500の形状まで(図1(a)及び図2(a)中の層50nまで)積層される。
ここで、層501、502、503、・・・50nは、各々、支持部形成用材料吐出部1230’から吐出される支持部形成用材料で形成される支持層300と、構成材料吐出部1230から吐出される構成材料で形成される構成層310(三次元造形物500の構成領域に対応する層)と、で構成される。また、構成材料吐出部1230から吐出された構成材料と、支持部形成用材料吐出部1230’から吐出された支持部形成用材料とで、1層分の層を形成した後に、該層全体に加熱部1700から熱エネルギーを照射して、層毎に溶融させることができる。さらには、構成層310と支持層300とを複数層形成することで三次元造形物の形状を完成させて、これを形成装置2000とは別体で設けられた恒温槽(加熱部)において溶融させることも可能である。
Layers 501, 502, and 503 are formed on the stage 120 during the process of forming the three-dimensional structure 500. Further, in a region facing the stage 120, a heating unit controller 1710 connected to a control unit 400 described later controls on/off of irradiation of thermal energy, and a heating unit 1700 capable of heating the entire region of the stage 120 is provided. It is provided.
In order to form the three-dimensional structure 500, heat energy is applied (energy is applied) by the heating unit 1700. Therefore, in order to protect the stage 120 from heat, the sample plate 121 having heat resistance is used. The three-dimensional structure 500 may be formed on the 121. By using, for example, a ceramic plate as the sample plate 121, high heat resistance can be obtained, and the reactivity with the constituent material of the three-dimensional structure to be melted is low, and the alteration of the three-dimensional structure 500 can be prevented. can do. In addition, in FIG. 1A and FIG. 2A, for convenience of description, three layers 501, 502, and 503 are illustrated, but up to a desired shape of the three-dimensional structure 500 (see FIG. 1A and The layers 50n in FIG. 2A are stacked.
Here, each of the layers 501, 502, 503,..., 50n is a support layer 300 formed of a supporting part forming material discharged from a supporting part forming material discharging part 1230′, and a constituent material discharging part 1230. And a constituent layer 310 (a layer corresponding to a constituent region of the three-dimensional structure 500) formed of a constituent material ejected from. In addition, after forming a layer for one layer with the constituent material discharged from the constituent material discharging portion 1230 and the supporting portion forming material discharged from the supporting portion forming material discharging portion 1230′, the entire layer is formed. Heat energy can be applied from the heating unit 1700 to melt each layer. Furthermore, the shape of the three-dimensional structure is completed by forming a plurality of layers of the constituent layer 310 and the support layer 300, and this is melted in a thermostatic chamber (heating unit) provided separately from the forming apparatus 2000. It is also possible to let.

また、図1(b)は、図1(a)に示すヘッドベース1100を示すC部拡大概念図である。図1(b)に示すように、ヘッドベース1100は、複数のヘッドユニット1400が保持されている。詳細は後述するが、1つのヘッドユニット1400は、構成材料供給装置1200に備える構成材料吐出部1230が保持治具1400aに保持されることで構成される。構成材料吐出部1230は、吐出ノズル1230aと、材料供給コントローラー1500によって吐出ノズル1230aから構成材料を吐出させる吐出駆動部1230bと、を備えている。 Further, FIG. 1B is an enlarged conceptual view of a C portion showing the head base 1100 shown in FIG. As shown in FIG. 1B, the head base 1100 holds a plurality of head units 1400. As will be described later in detail, one head unit 1400 is configured by holding the constituent material discharging unit 1230 included in the constituent material supply device 1200 on a holding jig 1400a. The constituent material discharge unit 1230 includes a discharge nozzle 1230a and a discharge drive unit 1230b that discharges the constituent material from the discharge nozzle 1230a by the material supply controller 1500.

また、図2(b)は、図2(a)に示すヘッドベース1100’を示すC’部拡大概念図である。図2(b)に示すように、ヘッドベース1100’は、複数のヘッドユニット1400’が保持されている。ヘッドユニット1400’は、支持部形成用材料供給装置1200’に備える支持部形成用材料吐出部1230’が保持治具1400a’に保持されることで構成される。支持部形成用材料吐出部1230’は、吐出ノズル1230a’と、材料供給コントローラー1500によって吐出ノズル1230a’から支持部形成用材料を吐出させる吐出駆動部1230b’と、を備えている。 Further, FIG. 2B is an enlarged conceptual view of the C′ portion showing the head base 1100′ shown in FIG. As shown in FIG. 2B, the head base 1100' holds a plurality of head units 1400'. The head unit 1400' is configured by holding a supporting part forming material discharge part 1230' provided in the supporting part forming material supply device 1200' on a holding jig 1400a'. The support part forming material discharge part 1230' includes a discharge nozzle 1230a' and a discharge drive part 1230b' for discharging the support part forming material from the discharge nozzle 1230a' by the material supply controller 1500.

加熱部1700は、本実施形態では熱エネルギーとして電磁波を照射するエネルギー照射部により説明する。照射される熱エネルギーに電磁波を用いることにより、ターゲットとなる供給材料に効率よくエネルギーを照射することができ、品質の良い三次元造形物を形成することができる。また、例えば吐出される材料の種類に合わせて、照射エネルギー量(パワー、走査速度)を制御することが容易に行うことができ、所望の品質の三次元造形物を得ることができる。ただし、このような構成に限定されず、他の方法で加熱する構成としてもよい。また、電磁波により溶融されることに限るものではないことは言うまでもない。 In the present embodiment, the heating unit 1700 will be described as an energy irradiation unit that irradiates electromagnetic waves as heat energy. By using electromagnetic waves as the thermal energy for irradiation, the target supply material can be efficiently irradiated with energy, and a high-quality three-dimensional structure can be formed. Further, for example, the irradiation energy amount (power, scanning speed) can be easily controlled in accordance with the type of material to be ejected, and a three-dimensional structure with desired quality can be obtained. However, the structure is not limited to such a structure, and the structure may be heated by another method. Needless to say, it is not limited to melting by electromagnetic waves.

図1で表されるように、構成材料吐出部1230は、ヘッドベース1100に保持されるヘッドユニット1400それぞれに対応させた構成材料を収容した構成材料供給ユニット1210と供給チューブ1220により接続されている。そして、所定の構成材料が構成材料供給ユニット1210から構成材料吐出部1230に供給される。構成材料供給ユニット1210には、本実施形態に係る形成装置2000によって造形される三次元造形物500の原料を含む材料(金属粒子(構成材料粒子)を含むペースト状の構成材料)が供給材料として構成材料収容部1210aに収容され、個々の構成材料収容部1210aは、供給チューブ1220によって、個々の構成材料吐出部1230に接続されている。このように、個々の構成材料収容部1210aを備えることにより、ヘッドベース1100から、複数の異なる種類の材料を供給することができる。 As shown in FIG. 1, the constituent material discharge unit 1230 is connected by a constituent tube supply unit 1210 containing constituent materials corresponding to the head units 1400 held by the head base 1100 and a supply tube 1220. .. Then, the predetermined constituent material is supplied from the constituent material supply unit 1210 to the constituent material discharge unit 1230. In the constituent material supply unit 1210, a material (paste constituent material including metal particles (constituent material particles)) including the raw material of the three-dimensional structure 500 that is molded by the forming apparatus 2000 according to the present embodiment is used as a supply material. The constituent material container 1210a is accommodated, and each constituent material container 1210a is connected to each constituent material discharger 1230 by a supply tube 1220. As described above, by providing the individual constituent material containing portions 1210a, it is possible to supply a plurality of different types of materials from the head base 1100.

図2で表されるように、支持部形成用材料吐出部1230’は、ヘッドベース1100’に保持されるヘッドユニット1400’それぞれに対応させた支持部形成用材料を収容した支持部形成用材料供給ユニット1210’と供給チューブ1220’により接続されている。そして、所定の支持部形成用材料が支持部形成用材料供給ユニット1210’から支持部形成用材料吐出部1230’に供給される。支持部形成用材料供給ユニット1210’は、三次元造形物500を造形する際の支持部を構成する支持部形成用材料(セラミックス粒子(支持部形成粒子)を含むペースト状の支持部形成用材料)が供給材料として支持部形成用材料収容部1210a’に収容され、個々の支持部形成用材料収容部1210a’は、供給チューブ1220’によって、個々の支持部形成用材料吐出部1230’に接続されている。このように、個々の支持部形成用材料収容部1210a’を備えることにより、ヘッドベース1100’から、複数の異なる種類の支持部形成用材料を供給することができる。 As shown in FIG. 2, the support part forming material discharge part 1230′ includes a support part forming material containing a support part forming material corresponding to each head unit 1400′ held by the head base 1100′. The supply unit 1210' and the supply tube 1220' are connected. Then, a predetermined support portion forming material is supplied from the support portion forming material supply unit 1210' to the support portion forming material discharge portion 1230'. The support part forming material supply unit 1210 ′ is a support part forming material (a paste-like support part forming material containing ceramic particles (support part forming particles)) that constitutes a support part when modeling the three-dimensional structure 500. ) Is accommodated in the supporting part forming material accommodating part 1210a′ as a supply material, and each supporting part forming material accommodating part 1210a′ is connected to each supporting part forming material ejecting part 1230′ by a supply tube 1220′. Has been done. As described above, by providing the individual support part forming material accommodating parts 1210a', a plurality of different kinds of support part forming materials can be supplied from the head base 1100'.

構成材料としては、例えばマグネシウム(Mg)、鉄(Fe)、コバルト(Co)やクロム(Cr)、アルミニウム(Al)、チタン(Ti)、銅(Cu)、ニッケル(Ni)の単体粉末、もしくはこれらの金属を1つ以上含む合金(マルエージング鋼、ステンレス、コバルトクロムモリブデン、チタニウム合金、ニッケル合金、アルミニウム合金、コバルト合金、コバルトクロム合金)などの混合粉末を、溶剤と、バインダーとを含むスラリー状(あるいはペースト状)の混合材料などにして用いることが可能である。
また、ポリアミド、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリエチレンテレフタレートなどの汎用エンジニアリングプラスチックを用いることが可能である。その他、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリアリレート、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトンなどのエンジニアリングプラスチックも用いることが可能である。
このように、構成材料に特に限定はなく、上記金属以外の金属やセラミックスや樹脂等も使用可能である。
溶剤としては、例えば、水;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等の(ポリ)アルキレングリコールモノアルキルエーテル類;酢酸エチル、酢酸n−プロピル、酢酸iso−プロピル、酢酸n−ブチル、酢酸iso−ブチル等の酢酸エステル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;メチルエチルケトン、アセトン、メチルイソブチルケトン、エチル−n−ブチルケトン、ジイソプロピルケトン、アセチルアセトン等のケトン類;エタノール、プロパノール、ブタノール等のアルコール類;テトラアルキルアンモニウムアセテート類;ジメチルスルホキシド、ジエチルスルホキシド等のスルホキシド系溶剤;ピリジン、γ−ピコリン、2,6−ルチジン等のピリジン系溶剤;テトラアルキルアンモニウムアセテート(例えば、テトラブチルアンモニウムアセテート等)等のイオン液体等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。
バインダーとしては、例えば、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、セルロース系樹脂或いはその他の合成樹脂又はPLA(ポリ乳酸)、PA(ポリアミド)、PPS(ポリフェニレンサルファイド)或いはその他の熱可塑性樹脂である。
As the constituent material, for example, magnesium (Mg), iron (Fe), cobalt (Co), chromium (Cr), aluminum (Al), titanium (Ti), copper (Cu), nickel (Ni) simple substance powder, or Slurry containing mixed powder of an alloy containing one or more of these metals (maraging steel, stainless steel, cobalt chrome molybdenum, titanium alloy, nickel alloy, aluminum alloy, cobalt alloy, cobalt chrome alloy), a solvent and a binder. It is possible to use it as a mixed material in the form of a paste (or a paste).
Further, general-purpose engineering plastics such as polyamide, polyacetal, polycarbonate, modified polyphenylene ether, polybutylene terephthalate, and polyethylene terephthalate can be used. In addition, engineering plastics such as polysulfone, polyether sulfone, polyphenylene sulfide, polyarylate, polyimide, polyamide imide, polyether imide, and polyether ether ketone can also be used.
Thus, the constituent materials are not particularly limited, and metals other than the above metals, ceramics, resins, and the like can be used.
Examples of the solvent include water; (poly)alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether; ethyl acetate, n-propyl acetate, acetic acid. Acetic acid esters such as iso-propyl, n-butyl acetate and iso-butyl acetate; aromatic hydrocarbons such as benzene, toluene and xylene; methyl ethyl ketone, acetone, methyl isobutyl ketone, ethyl-n-butyl ketone, diisopropyl ketone, acetylacetone Such as ketones; alcohols such as ethanol, propanol, butanol; tetraalkylammonium acetates; sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide; pyridine solvents such as pyridine, γ-picoline and 2,6-lutidine; tetra Examples thereof include ionic liquids such as alkylammonium acetate (eg, tetrabutylammonium acetate) and the like, and one kind or a combination of two or more kinds selected from these can be used.
The binder is, for example, acrylic resin, epoxy resin, silicone resin, cellulosic resin or other synthetic resin, PLA (polylactic acid), PA (polyamide), PPS (polyphenylene sulfide) or other thermoplastic resin.

本実施形態においては、支持部形成用材料は、セラミックスを含有している。該支持部形成用材料としては、例えば金属酸化物、金属アルコキシド、金属などの混合粉末と、溶剤と、バインダーとを含むスラリー状(あるいはペースト状)の混合材料として用いることが可能である。
ただし、支持部形成用材料に特に限定はなく、上記の構成材料の例のような、セラミックス以外の金属や樹脂等も使用可能である。
In the present embodiment, the support portion forming material contains ceramics. As the material for forming the supporting portion, it is possible to use, for example, a mixed material in the form of a slurry (or paste) containing a mixed powder of a metal oxide, a metal alkoxide, a metal, etc., a solvent, and a binder.
However, the material for forming the supporting portion is not particularly limited, and metals, resins, and the like other than ceramics such as the above examples of the constituent materials can be used.

形成装置2000には、図示しない、例えばパーソナルコンピューター等のデータ出力装置から出力される三次元造形物の造形用データに基づいて、上述したステージ120、構成材料供給装置1200に備える構成材料吐出部1230、加熱部1700、並びに、支持部形成用材料供給装置1200’に備える支持部形成用材料吐出部1230’を制御する制御手段としての制御ユニット400を備えている。そして、制御ユニット400には、図示しないが、ステージ120及び構成材料吐出部1230、並びに、ステージ120及び支持部形成用材料供給装置1200’が連携して駆動及び動作するよう制御する制御部を備えている。 In the forming apparatus 2000, the constituent material ejecting unit 1230 provided in the stage 120 and the constituent material supplying apparatus 1200 described above is based on the modeling data output from a data output apparatus (not shown) such as a personal computer. The heating unit 1700 and the control unit 400 as a control unit that controls the support-portion-forming material supply unit 1200 ′ and the support-portion-forming material discharge unit 1230 ′ are provided. The control unit 400 includes a control unit (not shown) that controls the stage 120 and the constituent material discharging unit 1230, and the stage 120 and the support portion forming material supply device 1200′ so as to drive and operate in cooperation with each other. ing.

基台110に移動可能に備えられているステージ120は、制御ユニット400からの制御信号に基づき、ステージコントローラー410においてステージ120の移動開始と停止、移動方向、移動量、移動速度などを制御する信号が生成され、基台110に備える駆動装置111に送られ、図示するX,Y,Z方向にステージ120が移動する。ヘッドユニット1400に備える構成材料吐出部1230では、制御ユニット400からの制御信号に基づき、材料供給コントローラー1500において構成材料吐出部1230に備える吐出駆動部1230bにおける吐出ノズル1230aからの材料吐出量などを制御する信号が生成され、生成された信号により吐出ノズル1230aから所定量の構成材料が吐出される。
同様に、ヘッドユニット1400’に備える支持部形成用材料吐出部1230’では、制御ユニット400からの制御信号に基づき、材料供給コントローラー1500において支持部形成用材料吐出部1230’に備える吐出駆動部1230b’における吐出ノズル1230a’からの材料吐出量などを制御する信号が生成され、生成された信号により吐出ノズル1230a’から所定量の支持部形成用材料が吐出される。
The stage 120 movably provided on the base 110 is a signal for controlling the movement start and stop of the stage 120, the movement direction, the movement amount, the movement speed, etc. in the stage controller 410 based on the control signal from the control unit 400. Is generated and sent to the drive device 111 provided on the base 110, and the stage 120 moves in the illustrated X, Y, and Z directions. The constituent material ejecting unit 1230 included in the head unit 1400 controls the material ejection amount and the like from the ejection nozzle 1230a in the ejection driving unit 1230b included in the constituent material ejecting unit 1230 in the material supply controller 1500 based on the control signal from the control unit 400. Is generated, and a predetermined amount of the constituent material is discharged from the discharge nozzle 1230a by the generated signal.
Similarly, in the support part forming material discharge part 1230′ provided in the head unit 1400′, the discharge drive part 1230b provided in the support part forming material discharge part 1230′ in the material supply controller 1500 based on the control signal from the control unit 400. A signal for controlling the amount of material discharged from the discharge nozzle 1230a in the'is generated, and the generated signal discharges a predetermined amount of the support portion forming material from the discharge nozzle 1230a'.

また、加熱部1700は、制御ユニット400から制御信号が加熱部コントローラー1710に送られ、加熱部コントローラー1710から、加熱部1700に電磁波を照射させる出力信号が送られる。 In the heating unit 1700, a control signal is sent from the control unit 400 to the heating unit controller 1710, and an output signal that causes the heating unit 1700 to emit electromagnetic waves is sent from the heating unit controller 1710.

次に、ヘッドユニット1400についてさらに詳細に説明する。なお、ヘッドユニット1400’は、構成材料吐出部1230の代わりに支持部形成用材料吐出部1230’が同様の配置で構成されており、ヘッドユニット1400と同様の構成である。このため、ヘッドユニット1400’についての詳細な構成の説明は省略する。
図3及び図4は、ヘッドベース1100に複数保持されるヘッドユニット1400及びヘッドユニット1400に保持される構成材料吐出部1230の保持形態の一例を示し、図3は図1(b)に示す矢印D方向からのヘッドベース1100の外観図、図4は図3に示すE−E’部の概略断面図である。
Next, the head unit 1400 will be described in more detail. The head unit 1400 ′ has the same configuration as the head unit 1400, except that the support portion forming material discharge portion 1230 ′ is configured in the same arrangement instead of the constituent material discharge portion 1230. Therefore, detailed description of the configuration of the head unit 1400′ is omitted.
FIGS. 3 and 4 show an example of a holding form of a plurality of head units 1400 held by the head base 1100 and the constituent material discharge part 1230 held by the head unit 1400, and FIG. 3 shows an arrow shown in FIG. FIG. 4 is an external view of the head base 1100 from the D direction, and FIG. 4 is a schematic cross-sectional view of a portion EE′ shown in FIG.

図3に示すように、ヘッドベース1100に複数のヘッドユニット1400が、図示しない固定手段によって保持されている。本実施形態に係る形成装置2000のヘッドベース1100では、図下方より第1列目のヘッドユニット1401及び1402、第2列目のヘッドユニット1403及び1404、第3列目のヘッドユニット1405及び1406、そして第4列目のヘッドユニット1407及び1408の、8ユニットのヘッドユニット1400を備えている。そして、図示しないが、それぞれのヘッドユニット1401〜1408に備える構成材料吐出部1230は、吐出駆動部1230bを介して構成材料供給ユニット1210に供給チューブ1220で繋がれ、保持治具1400aに保持される構成となっている。 As shown in FIG. 3, a plurality of head units 1400 are held on the head base 1100 by fixing means (not shown). In the head base 1100 of the forming apparatus 2000 according to the present embodiment, the head units 1401 and 1402 in the first row, the head units 1403 and 1404 in the second row, the head units 1405 and 1406 in the third row, from the bottom of the figure. The head units 1407 and 1408 in the fourth row are provided with eight head units 1400. Although not shown, the constituent material discharging unit 1230 provided in each of the head units 1401 to 1408 is connected to the constituent material supply unit 1210 via the discharge driving unit 1230b by the supply tube 1220 and is held by the holding jig 1400a. It is composed.

図4に示すように、構成材料吐出部1230は吐出ノズル1230aから、ステージ120上に載置された試料プレート121上に向けて三次元造形物の構成材料である材料Mが吐出される。ヘッドユニット1401では、材料Mが液滴状で吐出される吐出形態を例示し、ヘッドユニット1402では、材料Mが連続体状で供給される吐出形態を例示している。本実施形態の形成装置2000における材料Mの吐出形態は液滴状である。しかしながら、吐出ノズル1230aが連続体状で構成材料を供給可能なものも使用可能である。 As shown in FIG. 4, the constituent material discharging unit 1230 discharges the material M, which is the constituent material of the three-dimensional structure, from the discharge nozzle 1230 a toward the sample plate 121 mounted on the stage 120. The head unit 1401 exemplifies an ejection mode in which the material M is ejected in the form of droplets, and the head unit 1402 exemplifies an ejection mode in which the material M is supplied in a continuous state. The ejection mode of the material M in the forming apparatus 2000 of the present embodiment is a droplet shape. However, it is also possible to use a discharge nozzle 1230a that is continuous and can supply the constituent materials.

吐出ノズル1230aから液滴状に吐出された材料Mは、略重力方向に飛翔し、試料プレート121上に着弾する。そして、着弾した材料Mは着弾部50を形成する。この着弾部50の集合体が、試料プレート121上に形成される三次元造形物500の構成層310(図1参照)として形成される。 The material M ejected in a droplet form from the ejection nozzle 1230a flies in the direction of substantially gravity and lands on the sample plate 121. Then, the landed material M forms the landing portion 50. The aggregate of the landing portions 50 is formed as a constituent layer 310 (see FIG. 1) of the three-dimensional structure 500 formed on the sample plate 121.

図5、図6及び図7は、ヘッドユニット1400の配置と、着弾部50の形成形態と、の関係を概念的に説明する平面図(図1に示すD方向矢視)である。先ず、図5(a)に示すように試料プレート121上の造形起点q1において、ヘッドユニット1401及び1402の吐出ノズル1230aから材料Mが吐出され、試料プレート121に着弾した材料Mにより、着弾部50a及び50bが形成される。なお、説明の便宜上、平面図であるが着弾部50にはハッチングを施し、試料プレート121の上面に形成される1層目の層501の構成層310を例示して説明する。 5, 6 and 7 are plan views (viewed in the direction of the arrow D shown in FIG. 1) for conceptually explaining the relationship between the arrangement of the head unit 1400 and the form of formation of the landing portion 50. First, as shown in FIG. 5A, at the modeling start point q1 on the sample plate 121, the material M is discharged from the discharge nozzles 1230a of the head units 1401 and 1402, and the material M that has landed on the sample plate 121 causes the landing portion 50a. And 50b are formed. It should be noted that, for convenience of explanation, the landing portion 50 is hatched to illustrate the constituent layer 310 of the first layer 501 formed on the upper surface of the sample plate 121, although it is a plan view.

先ず、図5(a)に示すように試料プレート121上の層501の構成層310の造形起点q1において、図示下方の第1列目のヘッドユニット1401及び1402に備える構成材料吐出部1230から、材料Mが吐出される。吐出された材料Mにより、着弾部50a及び50bが形成される。 First, as shown in FIG. 5A, at the modeling starting point q1 of the constituent layer 310 of the layer 501 on the sample plate 121, from the constituent material discharge portion 1230 provided in the head units 1401 and 1402 in the first row on the lower side in the drawing, The material M is discharged. The ejected material M forms the landing portions 50a and 50b.

ヘッドユニット1401及び1402の構成材料吐出部1230からの材料Mの吐出を継続しながら、試料プレート121を、ヘッドベース1100に対して相対的にY(+)方向の、図5(b)に示す造形起点q1が2列目のヘッドユニット1403及び1404に対応する位置まで、移動させる。これによって、着弾部50a及び50bは、造形起点q1から試料プレート121の相対移動後の位置q2まで幅tを保持して延設される。さらに、造形起点q1に対応した2列目のヘッドユニット1403及び1404から材料Mが吐出され、着弾部50c及び50dが形成され始める。 FIG. 5B shows the sample plate 121 in the Y (+) direction relative to the head base 1100 while continuing to discharge the material M from the constituent material discharging portions 1230 of the head units 1401 and 1402. The modeling starting point q1 is moved to a position corresponding to the head units 1403 and 1404 in the second row. As a result, the landing portions 50a and 50b are extended from the modeling starting point q1 to the position q2 after the relative movement of the sample plate 121 while maintaining the width t. Further, the material M is ejected from the head units 1403 and 1404 in the second row corresponding to the modeling starting point q1, and the landing portions 50c and 50d start to be formed.

図5(b)に示すように着弾部50c及び50dが形成され始め、ヘッドユニット1403及び1404の構成材料吐出部1230からの材料Mの吐出を継続しながら、試料プレート121を、ヘッドベース1100に対して相対的にY(+)方向の、図5(c)に示す造形起点q1が3列目のヘッドユニット1405及び1406に対応する位置まで、移動させる。これによって、着弾部50c及び50dは、造形起点q1から試料プレート121の移動後の位置q2まで幅tを保持して延設される。同時に、着弾部50a及び50bは、造形起点q1から試料プレート121の相対移動後の位置q3まで幅tを保持して延設される。造形起点q1に対応した3列目のヘッドユニット1405及び1406から材料Mが吐出され、着弾部50e及び50fが形成され始める。 As shown in FIG. 5B, the landing parts 50c and 50d start to be formed, and while the material M is continuously discharged from the constituent material discharge parts 1230 of the head units 1403 and 1404, the sample plate 121 is moved to the head base 1100. On the other hand, the molding origin q1 shown in FIG. 5C in the Y(+) direction is moved to a position corresponding to the head units 1405 and 1406 in the third row. As a result, the landing portions 50c and 50d are extended from the modeling starting point q1 to the position q2 after the movement of the sample plate 121 while maintaining the width t. At the same time, the landing portions 50a and 50b are extended from the modeling starting point q1 to the position q3 after the relative movement of the sample plate 121 while maintaining the width t. The material M is ejected from the head units 1405 and 1406 in the third row corresponding to the modeling starting point q1, and the landing portions 50e and 50f start to be formed.

図5(c)に示すように着弾部50e及び50fが形成され始め、ヘッドユニット1405及び1406の構成材料吐出部1230からの材料Mの吐出を継続しながら、試料プレート121を、ヘッドベース1100に対して相対的にY(+)方向の、図6(d)に示す造形起点q1が4列目のヘッドユニット1407及び1408に対応する位置まで、移動させる。これによって、着弾部50e及び50fは、造形起点q1から試料プレート121の移動後の位置q2まで幅tを保持して延設される。同時に、着弾部50a及び50bは造形起点q1から試料プレート121の相対移動後の位置q4まで、着弾部50c及び50dは造形起点q1から試料プレート121の相対移動後の位置q3まで、幅tを保持して延設される。造形起点q1に対応した4列目のヘッドユニット1407及び1408から材料Mが吐出され、着弾部50g及び50hが形成され始める。 As shown in FIG. 5C, the landing portions 50e and 50f start to be formed, and the sample plate 121 is moved to the head base 1100 while continuing to discharge the material M from the constituent material discharging portion 1230 of the head units 1405 and 1406. In contrast, the modeling origin q1 shown in FIG. 6D in the Y(+) direction is moved to a position corresponding to the head units 1407 and 1408 in the fourth row. As a result, the landing portions 50e and 50f are extended while maintaining the width t from the modeling start point q1 to the position q2 after the movement of the sample plate 121. At the same time, the landing portions 50a and 50b hold the width t from the modeling start point q1 to the position q4 after the relative movement of the sample plate 121, and the landing portions 50c and 50d maintain the width t from the modeling start point q1 to the position q3 after the relative movement of the sample plate 121. And extended. The material M is ejected from the head units 1407 and 1408 in the fourth row corresponding to the modeling starting point q1, and the landing portions 50g and 50h start to be formed.

位置q5を造形終了位置とした場合(以下、位置q5を造形終点q5という)、図6(e)に示すように、試料プレート121を相対的にヘッドユニット1401及び1402が造形終点q5に到達するまで移動させることで、着弾部50g及び50hは延設される。そして、造形終点q5に到達したヘッドユニット1401及び1402では、ヘッドユニット1401及び1402の構成材料吐出部1230からの材料Mの吐出が停止される。さらに、相対的に試料プレート121をY(+)方向に移動させながら、ヘッドユニット1403、1404、1405、1406、1407及び1408が造形終点q5に到達するまで構成材料吐出部1230から材料Mが吐出される。すると、図7に示すように、着弾部50a、50b、50c、50d、50e、50f、50g及び50hは、幅tを保持して造形起点q1から造形終点q5まで形成される。このようにして、造形起点q1から造形終点q5まで試料プレート121を移動させながら、ヘッドユニット1401、1402、1403、1404、1405、1406、1407及び1408から順次、材料Mの吐出供給をさせることで、幅T、長さJの、本実施形態の例示では略矩形の着弾部50を形成することができる。そして、着弾部50の集合体として第1層目の層501の構成層310を成形、構成することができる。 When the position q5 is the modeling end position (hereinafter, the position q5 is referred to as the modeling end point q5), as shown in FIG. 6E, the head units 1401 and 1402 relatively reach the modeling end point q5 with respect to the sample plate 121. By moving up to, the landing portions 50g and 50h are extended. Then, in the head units 1401 and 1402 that have reached the modeling end point q5, the discharge of the material M from the constituent material discharging unit 1230 of the head units 1401 and 1402 is stopped. Further, while moving the sample plate 121 relatively in the Y (+) direction, the material M is ejected from the constituent material ejecting unit 1230 until the head units 1403, 1404, 1405, 1406, 1407 and 1408 reach the modeling end point q5. To be done. Then, as shown in FIG. 7, the landing portions 50a, 50b, 50c, 50d, 50e, 50f, 50g, and 50h are formed from the modeling start point q1 to the modeling end point q5 while maintaining the width t. In this way, by moving the sample plate 121 from the modeling starting point q1 to the modeling ending point q5, the material M is sequentially discharged and supplied from the head units 1401, 1402, 1403, 1404, 1405, 1406, 1407 and 1408. , The width T and the length J, the landing portion 50 having a substantially rectangular shape in the example of this embodiment can be formed. Then, the constituent layer 310 of the first layer 501 can be molded and configured as an assembly of the landing portions 50.

上述したように、本実施形態に係る形成装置2000は、試料プレート121を備えるステージ120の移動に同期させ、ヘッドユニット1401、1402、1403、1404、1405、1406、1407及び1408に備える構成材料吐出部1230からの材料Mの吐出供給を選択的に行うことで、試料プレート121上に所望の形状の構成層310を形成することができる。また、上述したように、ステージ120の移動は、本例ではY軸方向に沿った一方向へ移動させるだけで、図7に示す幅T×長さJの領域内で所望の形状の着弾部50、そして着弾部50の集合体としての構成層310を得ることができる。 As described above, the forming apparatus 2000 according to this embodiment synchronizes with the movement of the stage 120 including the sample plate 121, and discharges the constituent materials included in the head units 1401, 1402, 1403, 1404, 1405, 1406, 1407, and 1408. By selectively discharging and supplying the material M from the portion 1230, the constituent layer 310 having a desired shape can be formed on the sample plate 121. Further, as described above, in the present example, the movement of the stage 120 is performed only in one direction along the Y-axis direction, and the landing portion having a desired shape within the region of width T×length J shown in FIG. 7 is obtained. 50, and the constituent layer 310 as an assembly of the landing portions 50 can be obtained.

また、構成材料吐出部1230から吐出される材料Mを、ヘッドユニット1401、1402、1403、1404、1405、1406、1407及び1408のいずれか1ユニット、あるいは2ユニット以上からその他ヘッドユニットと異なる構成材料を吐出供給することもできる。従って、本実施形態に係る形成装置2000を用いることによって、異種材料から形成される三次元造形物を得ることができる。 In addition, the material M discharged from the constituent material discharging unit 1230 may be one unit of the head units 1401, 1402, 1403, 1404, 1405, 1406, 1407, and 1408, or two or more units of constituent material different from other head units. Can also be discharged and supplied. Therefore, by using the forming apparatus 2000 according to this embodiment, it is possible to obtain a three-dimensional structure formed from different materials.

なお、第1層目の層501において、上述したように構成層310を形成する前或いは後に、支持部形成用材料吐出部1230’から支持部形成用材料を吐出させて、上記と同様の方法で、支持層300を形成することができる。そして、層501に積層させて層502、503、・・・50nを形成する際にも、同様に、構成層310及び支持層300を形成することができる。 Note that, in the first layer 501, before or after the constituent layer 310 is formed as described above, the supporting part forming material is ejected from the supporting part forming material ejecting part 1230 ′, and the same method as described above is performed. Then, the support layer 300 can be formed. Then, when the layers 502, 503,..., 50n are laminated on the layer 501, the constituent layer 310 and the support layer 300 can be similarly formed.

上述の本実施形態に係る形成装置2000が備えるヘッドユニット1400及び1400’の数及び配列は、上述した数及び配列に限定されない。図8に、その例として、ヘッドベース1100に配置されるヘッドユニット1400の、その他の配置の例を模式図的に示す。 The number and arrangement of the head units 1400 and 1400' included in the forming apparatus 2000 according to the present embodiment described above are not limited to the number and arrangement described above. FIG. 8 schematically shows another example of the arrangement of the head unit 1400 arranged on the head base 1100, as an example.

図8(a)は、ヘッドベース1100にヘッドユニット1400をX軸方向に複数、並列させた形態を示す。図8(b)は、ヘッドベース1100にヘッドユニット1400を格子状に配列させた形態を示す。なお、いずれも配列されるヘッドユニットの数は、図示の例に限定されない。 FIG. 8A shows a form in which a plurality of head units 1400 are arranged side by side in the X-axis direction on the head base 1100. FIG. 8B shows a form in which the head units 1400 are arranged in a grid on the head base 1100. The number of head units arranged in each case is not limited to the illustrated example.

次に、上述の本実施形態に係る形成装置2000を用いて行う三次元造形物の製造方法の一実施例について説明する。
図9は、形成装置2000を用いて行う三次元造形物の製造過程の一例を表す概略図である。なお、本例は、形成装置2000が備える加熱部1700を用いて、構成材料吐出部1230及び支持部形成用材料吐出部1230’から構成材料及び支持部形成用材料を吐出させて1層分の層を形成する毎に、該層を加熱して三次元造形物を製造する三次元造形物の製造方法の例である。また、本実施例の三次元造形物の製造方法では、溶融された状態の三次元造形物を製造する。
なお、図9には、支持層300及び構成層310の厚みが分かりやすいように、Z方向に複数の補助線が引いてある。
Next, an example of a method of manufacturing a three-dimensional structure using the forming apparatus 2000 according to the present embodiment described above will be described.
FIG. 9 is a schematic diagram illustrating an example of a manufacturing process of a three-dimensional structure using the forming apparatus 2000. In this example, by using the heating unit 1700 included in the forming apparatus 2000, the constituent material and the supporting portion forming material are discharged from the constituent material discharging portion 1230 and the supporting portion forming material discharging portion 1230′, and one layer is formed. This is an example of a method for manufacturing a three-dimensional structure by heating the layer each time a layer is formed to manufacture a three-dimensional structure. Further, in the method for manufacturing a three-dimensional structure according to this embodiment, a three-dimensional structure in a melted state is manufactured.
Note that in FIG. 9, a plurality of auxiliary lines are drawn in the Z direction so that the thicknesses of the support layer 300 and the constituent layer 310 can be easily understood.

最初に、図9(a)で表されるように、構成材料吐出部1230から構成材料を吐出させ、支持部形成用材料吐出部1230’から支持部形成用材料を吐出させて、第1層目の層501において、構成層310及び支持層300を形成する。ここで、支持層300は、該層における三次元造形物の形成領域(構成層310に対応する領域)以外の領域に形成される。
次に、図9(b)で表されるように、第1層目の層501を加熱部1700により加熱し、該層の構成層310を溶融させるとともに支持層300を焼結する。なお、本実施例における加熱部1700の加熱温度は、構成材料に含有される金属粒子(構成材料粒子)が溶融する温度(融点以上)であり、かつ、支持部形成用材料に含有されるセラミックス粒子(支持部形成粒子)が焼結する温度(融点未満)に設定してある。
First, as shown in FIG. 9A, the constituent material is ejected from the constituent material ejecting section 1230, and the supporting section forming material is ejected from the supporting section forming material ejecting section 1230 ′ to form the first layer. In the eye layer 501, the constituent layer 310 and the support layer 300 are formed. Here, the support layer 300 is formed in a region other than the formation region (region corresponding to the constituent layer 310) of the three-dimensional structure in the layer.
Next, as shown in FIG. 9B, the first layer 501 is heated by the heating unit 1700 to melt the constituent layers 310 of the first layer 501 and sinter the support layer 300. The heating temperature of the heating unit 1700 in the present embodiment is the temperature (melting point or higher) at which the metal particles (constituent material particles) contained in the constituent material melt, and the ceramic contained in the material for forming the support portion. The temperature (below the melting point) at which the particles (supporting part forming particles) sinter is set.

以下、図9(a)で表される動作と図9(b)で表される動作とを繰り返し、三次元造形物を完成させる。
具体的には、図9(c)で表されるように、構成材料吐出部1230から構成材料を吐出させ、支持部形成用材料吐出部1230’から支持部形成用材料を吐出させて、第2層目の層502において、構成層310及び支持層300を形成する。そして、図9(d)で表されるように、第2層目の層501を加熱部1700により加熱する。
さらに、図9(e)で表されるように第3層目の層502において構成層310及び支持層300を形成し、図9(f)で表されるように第3層目の層501を加熱部1700により加熱し、図9(g)で表されるように第4層目の層502において構成層310及び支持層300を形成し、図9(h)で表されるように第4層目の層501を加熱部1700により加熱して三次元造形物(溶融された状態の構成層310)を完成させる。
Hereinafter, the operation shown in FIG. 9A and the operation shown in FIG. 9B are repeated to complete the three-dimensional structure.
Specifically, as shown in FIG. 9C, the constituent material discharging section 1230 discharges the constituent material, and the supporting section forming material discharging section 1230′ discharges the supporting section forming material. In the second layer 502, the component layer 310 and the support layer 300 are formed. Then, as shown in FIG. 9D, the second layer 501 is heated by the heating unit 1700.
Further, as shown in FIG. 9E, the constituent layer 310 and the support layer 300 are formed in the third layer 502, and as shown in FIG. 9F, the third layer 501. Is heated by the heating unit 1700 to form the constituent layer 310 and the support layer 300 in the fourth layer 502 as shown in FIG. 9(g), and as shown in FIG. 9(h). The fourth layer 501 is heated by the heating unit 1700 to complete the three-dimensional structure (constituent layer 310 in a molten state).

次に、図9で表される三次元造形物の製造方法の一実施例についてフローチャートを用いて説明する。
ここで、図10は、本実施例に係る三次元造形物の製造方法のフローチャートである。
Next, an example of a method of manufacturing the three-dimensional structure shown in FIG. 9 will be described using a flowchart.
Here, FIG. 10 is a flowchart of the method for manufacturing a three-dimensional structure according to the present embodiment.

図10で表されるように、本実施例の三次元造形物の製造方法においては、最初にステップS110で、三次元造形物のデータを取得する。詳細には、例えばパーソナルコンピューターにおいて実行されているアプリケーションプログラム等から、三次元造形物の形状を表すデータを取得する。 As shown in FIG. 10, in the method for manufacturing a three-dimensional structure according to this embodiment, first, in step S110, the data of the three-dimensional structure is acquired. Specifically, for example, data representing the shape of the three-dimensional structure is acquired from an application program or the like executed on a personal computer.

次に、ステップS120で、層毎のデータを作成する。詳細には、三次元造形物の形状を表すデータにおいて、Z方向の造形解像度に従ってスライスし、断面毎にビットマップデータ(断面データ)を生成する。
この際、生成されるビットマップデータは、三次元造形物の形成領域と三次元造形物の非形成領域とで区別されたデータになっている。
Next, in step S120, data for each layer is created. Specifically, data representing the shape of the three-dimensional model is sliced according to the modeling resolution in the Z direction, and bitmap data (section data) is generated for each section.
At this time, the generated bitmap data is data that is distinguished between the formation area of the three-dimensional structure and the non-formation area of the three-dimensional structure.

次に、ステップS130で、三次元造形物の形成領域を形成するデータに基づいて構成材料吐出部1230から構成材料を吐出(供給)させ、構成層310を形成する。 Next, in step S130, the constituent material is discharged (supplied) from the constituent material discharging unit 1230 based on the data for forming the formation area of the three-dimensional structure, and the constituent layer 310 is formed.

次に、ステップS140で、三次元造形物の非形成領域を形成するデータに基づいて支持部形成用材料吐出部1230’から支持部形成用材料を吐出(供給)させ、ステップS130で構成される構成層310と同じ層に対応する支持層300を形成する。
なお、ステップS130とステップS140の順番は、逆でもよく、また、同時でもよい。
Next, in step S140, the supporting part forming material is ejected (supplied) from the supporting part forming material ejecting part 1230' based on the data for forming the non-formation region of the three-dimensional structure. The supporting layer 300 corresponding to the same layer as the constituent layer 310 is formed.
The order of step S130 and step S140 may be reversed or may be simultaneous.

次に、ステップS150で、ステップS130で構成される構成層310及びステップS140で構成される支持層300に対応する層に対して、加熱部1700から電磁波を照射(熱エネルギーを付与)させ、該層における構成層310を溶融するとともに支持層300を焼結する。
なお、本ステップでは、構成層310を溶融させ支持層300を焼結させたが、支持層300を焼結させなくてもよい。
Next, in step S150, the layer corresponding to the constituent layer 310 formed in step S130 and the support layer 300 formed in step S140 is irradiated with electromagnetic waves (heat energy is applied) from the heating unit 1700, The constituent layers 310 in the layers are melted and the support layer 300 is sintered.
In this step, the support layer 300 is sintered by melting the constituent layer 310, but the support layer 300 may not be sintered.

そして、ステップS160により、ステップS120において生成された各層に対応するビットマップデータに基づく三次元造形物の造形が終了するまで、ステップS130からステップS160までが繰り返される。 Then, in step S160, steps S130 to S160 are repeated until the modeling of the three-dimensional model based on the bitmap data corresponding to each layer generated in step S120 is completed.

そして、三次元造形物の造形が終了すると、ステップS170で、三次元造形物の現像(三次元造形物の形成領域である構成層310に対応する部分から三次元造形物の非形成領域である支持層300に対応する部分を取り除くこと、すなわち、三次元造形物をクリーニングすること)を行い、本実施例の三次元造形物の製造方法を終了する。 When the modeling of the three-dimensional structure is completed, in step S170, the development of the three-dimensional structure (from the portion corresponding to the constituent layer 310, which is the formation region of the three-dimensional structure, to the non-formation region of the three-dimensional structure). The portion corresponding to the support layer 300 is removed, that is, the three-dimensional structure is cleaned), and the method for manufacturing the three-dimensional structure of this embodiment is completed.

次に、上述の本実施形態に係る形成装置2000を用いて行う三次元造形物の製造方法の別の一実施例について説明する。
図11は、形成装置2000を用いて行う三次元造形物の製造過程の一例を表す概略図である。なお、本例は、形成装置2000が備える加熱部1700を用いず、形成装置2000とは別体で設けられた不図示の恒温槽(加熱部)において、構成材料吐出部1230及び支持部形成用材料吐出部1230’から構成材料及び支持部形成用材料を吐出させて三次元造形物の形状の形成が終了してから、該三次元造形物の形成物を加熱して三次元造形物を製造する三次元造形物の製造方法の例である。また、本実施例の三次元造形物の製造方法では、溶融された状態の三次元造形物を製造する。
なお、図11には、支持層300及び構成層310の厚みが分かりやすいように、Z方向に複数の補助線が引いてある。
Next, another example of the method for manufacturing a three-dimensional structure using the forming apparatus 2000 according to the present embodiment described above will be described.
FIG. 11 is a schematic view illustrating an example of a manufacturing process of a three-dimensional structure using the forming apparatus 2000. In this example, the heating unit 1700 included in the forming apparatus 2000 is not used, and in the constant temperature tank (heating unit) (not shown) provided separately from the forming apparatus 2000, the constituent material discharging unit 1230 and the support unit forming unit are formed. After the formation of the shape of the three-dimensional structure is completed by discharging the constituent material and the material for forming the support part from the material discharging unit 1230', the formed product of the three-dimensional structure is heated to manufacture the three-dimensional structure. It is an example of a manufacturing method of a three-dimensional molded article. Further, in the method for manufacturing a three-dimensional structure according to this embodiment, a three-dimensional structure in a melted state is manufactured.
Note that in FIG. 11, a plurality of auxiliary lines are drawn in the Z direction so that the thicknesses of the support layer 300 and the constituent layer 310 can be easily understood.

最初に、図11(a)で表されるように、構成材料吐出部1230から構成材料を吐出させ、支持部形成用材料吐出部1230’から支持部形成用材料を吐出させて、第1層目の層501において、構成層310及び支持層300を形成する。ここで、支持層300は、該層における三次元造形物の形成領域(構成層310に対応する領域)以外の領域に形成される。
次に、図11(b)で表されるように、構成材料吐出部1230から構成材料を吐出させ、支持部形成用材料吐出部1230’から支持部形成用材料を吐出させて、第2層目の層502において、構成層310及び支持層300を形成する。
そして、図11(c)及び図11(d)で表されるように、図11(a)及び図11(b)で表される動作を繰り返し、三次元造形物の形状を完成させる。
そして、図11(e)で表されるように、該三次元造形物の形成物を不図示の恒温槽において加熱し、該三次元造形物の形成物の構成層310を溶融させるとともに支持層300を焼結させて、三次元造形物(溶融された状態の構成層310)を完成させる。なお、本実施例における該恒温槽における加熱温度は、構成材料に含有される金属粒子(構成材料粒子)が溶融する温度(融点以上)であり、かつ、支持部形成用材料に含有されるセラミックス粒子(支持部形成粒子)が焼結する温度(融点未満)に設定してある。
First, as shown in FIG. 11A, the constituent material is ejected from the constituent material ejecting section 1230, and the supporting section forming material is ejected from the supporting section forming material ejecting section 1230 ′ to form the first layer. In the eye layer 501, the constituent layer 310 and the support layer 300 are formed. Here, the support layer 300 is formed in a region other than the formation region (region corresponding to the constituent layer 310) of the three-dimensional structure in the layer.
Next, as shown in FIG. 11B, the constituent material is ejected from the constituent material ejecting section 1230, and the supporting section forming material is ejected from the supporting section forming material ejecting section 1230′ to form the second layer. In the eye layer 502, the constituent layer 310 and the support layer 300 are formed.
Then, as shown in FIGS. 11C and 11D, the operations shown in FIGS. 11A and 11B are repeated to complete the shape of the three-dimensional structure.
Then, as shown in FIG. 11(e), the formed product of the three-dimensional structure is heated in a thermostat (not shown) to melt the constituent layer 310 of the formed product of the three-dimensional structure and the support layer. The 300 is sintered to complete a three-dimensional structure (a constituent layer 310 in a molten state). The heating temperature in the constant temperature bath in this example is the temperature (melting point or higher) at which the metal particles (constituent material particles) contained in the constituent material melt, and the ceramic contained in the material for forming the support portion. The temperature (below the melting point) at which the particles (supporting part forming particles) sinter is set.

次に、図11で表される三次元造形物の製造方法の一実施例についてフローチャートを用いて説明する。
ここで、図12は、本実施例に係る三次元造形物の製造方法のフローチャートである。
なお、図12のステップS110からステップS140までとステップS170は、図9のステップS110からステップS140までとステップS170と同様であるので説明は省略する。
Next, an example of a method of manufacturing the three-dimensional structure shown in FIG. 11 will be described with reference to a flowchart.
Here, FIG. 12 is a flowchart of the method for manufacturing a three-dimensional structure according to the present embodiment.
Note that steps S110 to S140 and step S170 in FIG. 12 are the same as steps S110 to S140 and step S170 in FIG. 9, so description thereof will be omitted.

図12で表されるように、本実施例の三次元造形物の製造方法においては、ステップS140の終了後、ステップS160に進む。
そして、ステップS160により、ステップS120において生成された各層に対応するビットマップデータに基づく三次元造形物の形成物の造形が終了するまで、ステップS130からステップS160までが繰り返され、三次元造形物の形成物の造形が終了すると、ステップS165に進む。
ステップS165では、ステップS130からステップS160までが繰り返されて形成された三次元造形物の形成体を、不図示の恒温槽において、構成層310を溶融するとともに支持層300を焼結する。なお、本ステップでは、構成層310を溶融させ支持層300を焼結させたが、支持層300を焼結させなくてもよい。そして、本ステップの終了後、ステップS170を実行し、本実施例の三次元造形物の製造方法を終了する。
As shown in FIG. 12, in the method for manufacturing a three-dimensional structure according to this embodiment, after step S140 ends, the process proceeds to step S160.
Then, in step S160, steps S130 to S160 are repeated until the formation of the formed object of the three-dimensional structure based on the bitmap data corresponding to each layer generated in step S120 is completed. When the formation of the formed object is completed, the process proceeds to step S165.
In step S165, the formation layer of the three-dimensional structure formed by repeating steps S130 to S160 is melted in the constant temperature bath (not shown), and the support layer 300 is sintered. In this step, the support layer 300 is sintered by melting the constituent layer 310, but the support layer 300 may not be sintered. Then, after the completion of this step, step S170 is executed, and the method for manufacturing the three-dimensional structure of this embodiment is completed.

上記の2例で表されるように、本実施例の三次元造形物の製造方法は、三次元造形物の構成材料粒子を含む流動性組成物(構成材料)と、三次元造形物を形成する際に該三次元造形物を支持する支持部を形成する支持部形成粒子を含む流動性組成物(支持部形成用材料)と、を用いて層を形成する層形成工程(ステップS130及びステップS140)を有する。そして、構成材料粒子及び支持部形成粒子にエネルギーを付与するエネルギー付与工程(ステップS150及びステップS165)を有する。また、エネルギー付与工程では、構成材料粒子及び支持部形成粒子の温度が構成材料粒子の融点以上且つ支持部形成粒子の融点未満の温度となるように、エネルギーを付与する。
このため、三次元造形物の構成材料を溶融させつつ支持部の溶融を抑制することができ、三次元造形物の対応領域以外の部分も溶融させてしまうことで三次元造形物を取り外す際の分離作業や取り外した後の成形作業などの負荷が大きくなるということを抑制できる。したがって、三次元造形物を形成した後の後処理工程を減らすことができる。
As shown in the above two examples, the method for manufacturing a three-dimensional structure according to the present embodiment forms a three-dimensional structure with a fluid composition (constituent material) containing constituent material particles of the three-dimensional structure. A layer forming step of forming a layer using a fluid composition (supporting part forming material) containing supporting part forming particles forming a supporting part that supports the three-dimensional structure (step S130 and step) S140). Then, there is an energy applying step (step S150 and step S165) of applying energy to the constituent material particles and the support portion forming particles. Further, in the energy applying step, energy is applied so that the temperature of the constituent material particles and the supporting portion forming particles becomes equal to or higher than the melting point of the constituent material particles and lower than the melting point of the supporting portion forming particles.
For this reason, it is possible to suppress the melting of the support portion while melting the constituent material of the three-dimensional structure, and to melt the part other than the corresponding region of the three-dimensional structure to remove the three-dimensional structure. It is possible to suppress an increase in the load of separation work and molding work after removal. Therefore, the post-treatment process after forming the three-dimensional structure can be reduced.

別の表現をすると、本実施例の三次元造形物の製造装置(形成装置2000)は、三次元造形物の構成材料粒子を含む流動性組成物(構成材料)を吐出する吐出部(構成材料吐出部1230)と、三次元造形物を形成する際に該三次元造形物を支持する支持部を形成する支持部形成粒子を含む流動性組成物(支持部形成用材料)を吐出する吐出部(支持部形成用材料吐出部1230’)と、構成材料粒子を含む流動性組成物と支持部形成粒子を含む流動性組成物とを用いて層を形成するよう制御する制御部(制御ユニット400)と、構成材料粒子及び支持部形成粒子にエネルギーを付与するエネルギー付与部(加熱部1700)と、を有している。そして、エネルギー付与部は、構成材料粒子及び支持部形成粒子の温度が構成材料粒子の融点以上且つ支持部形成粒子の融点未満の温度となるように、エネルギーを付与するよう調整されている。
このため、三次元造形物の構成材料を溶融させつつ支持部の溶融を抑制することができ、三次元造形物の対応領域以外の部分も溶融させてしまうことで三次元造形物を取り外す際の分離作業や取り外した後の成形作業などの負荷が大きくなるということを抑制できる。したがって、三次元造形物を形成した後の後処理工程を減らすことができる。
In other words, the apparatus for forming a three-dimensional structure (forming apparatus 2000) according to the present embodiment includes a discharging unit (a constituent material) that discharges a fluid composition (constituent material) containing constituent material particles of the three-dimensional model. And a discharge part for discharging a fluid composition (support part forming material) containing support part forming particles forming a support part for supporting the three-dimensional structure when forming the three-dimensional structure. A control unit (control unit 400) that controls to form a layer using (support portion forming material discharge portion 1230′), a fluid composition containing constituent material particles, and a fluid composition containing supporting portion forming particles. ) And an energy imparting portion (heating portion 1700) that imparts energy to the constituent material particles and the support portion forming particles. The energy applying unit is adjusted to apply energy so that the temperatures of the constituent material particles and the support portion forming particles are equal to or higher than the melting point of the constituent material particles and lower than the melting point of the support portion forming particles.
For this reason, it is possible to suppress the melting of the support portion while melting the constituent material of the three-dimensional structure, and to melt the part other than the corresponding region of the three-dimensional structure to remove the three-dimensional structure. It is possible to suppress an increase in the load of separation work and molding work after removal. Therefore, the post-treatment process after forming the three-dimensional structure can be reduced.

また、本実施例の三次元造形物の製造方法における層形成工程(ステップS130及びステップS140)は、構成材料粒子を含む流動性組成物及び支持部形成粒子を含む流動性組成物を液滴の状態で吐出して層を形成する。このため、層を形成するという簡単な方法により、三次元造形物を形成できる。 In the layer forming step (step S130 and step S140) in the method for manufacturing a three-dimensional structure of this example, the fluid composition containing the constituent material particles and the fluid composition containing the support part forming particles are formed into droplets. A layer is formed by discharging in the state. Therefore, a three-dimensional structure can be formed by a simple method of forming layers.

また、本実施例の三次元造形物の製造方法では、層形成工程(ステップS130及びステップS140)を繰り返す積層工程(ステップS130からステップS160)を有する。このため、層形成工程を繰り返すことにより、簡単に、三次元造形物を形成できる。 In addition, the method for manufacturing a three-dimensional structure of the present embodiment includes a stacking process (steps S130 to S160) in which the layer forming process (steps S130 and S140) is repeated. Therefore, a three-dimensional structure can be easily formed by repeating the layer forming step.

また、本実施例の三次元造形物の製造方法におけるエネルギー付与工程(ステップS150及びステップS165)は、構成材料粒子及び支持部形成粒子の温度が支持部形成粒子の焼結温度以上の温度となるように、エネルギーを付与する。すなわち、構成材料粒子を溶融させ支持部形成粒子を焼結させる。溶融部分に対して焼結部分は簡単に分離できるため、三次元造形物を形成した後の後処理工程を減らすことができる。 Further, in the energy applying step (step S150 and step S165) in the method for manufacturing a three-dimensional structure according to the present embodiment, the temperature of the constituent material particles and the support portion forming particles is equal to or higher than the sintering temperature of the support portion forming particles. To give energy. That is, the constituent material particles are melted and the support portion forming particles are sintered. Since the sintered portion can be easily separated from the melted portion, the post-treatment process after forming the three-dimensional structure can be reduced.

また、本実施例の三次元造形物の製造方法における層形成工程(ステップS130及びステップS140)は、エネルギー付与工程(ステップS150及びステップS165)後において、構成材料粒子で構成された層の厚みと該層と対応する支持部形成粒子で構成された層の厚みとが揃うように調整されている。詳細には、溶融されることによる構成層の厚み変化(減少度合い)と焼結されることによる支持層の厚み変化(減少度合い)が予め計算されており、両者の変化の違いを計算して各々の層厚(液滴の吐出量)が調整されている。このため、支持層と構成層との層厚が異なることに伴う層厚の調整などが不要になり、簡単に、高精度な三次元造形物を製造することができる。 In addition, the layer forming step (step S130 and step S140) in the method for manufacturing a three-dimensional structure of the present example is performed after the energy applying step (step S150 and step S165), and the layer thickness of the layer formed of the constituent material particles It is adjusted so that the layer and the thickness of the layer composed of the corresponding support-part-forming particles are uniform. In detail, the thickness change (decrease degree) of the constituent layer due to melting and the thickness change (decrease degree) of the supporting layer due to sintering are calculated in advance, and the difference between the two is calculated. Each layer thickness (droplet discharge amount) is adjusted. Therefore, it is not necessary to adjust the layer thickness due to the difference in layer thickness between the support layer and the constituent layer, and it is possible to easily manufacture a highly accurate three-dimensional structure.

また、図10で表される本実施例の三次元造形物の製造方法におけるエネルギー付与工程(ステップS150)は、1層分の積層工程(ステップS130からステップS160)の終了毎に実行される。そして、図12で表される本実施例の三次元造形物の製造方法におけるエネルギー付与工程(ステップS165)は、積層工程(ステップS130からステップS160)が全て終了した後に実行される。別の表現をすると、本実施例の三次元造形物の製造方法におけるエネルギー付与工程は、層形成工程(ステップS130及びステップS140)を1層分又は複数層分実行した後に、実行される。例えば、複数層分層形成工程を実行した後にエネルギー付与工程を実行することで、構成層形成工程の回数を減らすことができ、迅速に三次元造形物を製造することができる。また1層毎にエネルギー付与工程を実行することで、斜面部等で一方の材料が他方の材料を覆う配置となる場合であっても、各層では両材料が同一面上に露出しているため、各材料に対して適正にエネルギーを付与することが可能となる。 Further, the energy applying step (step S150) in the method for manufacturing a three-dimensional structure according to the present embodiment shown in FIG. 10 is performed every time the stacking step for one layer (steps S130 to S160) is completed. Then, the energy applying step (step S165) in the method for manufacturing a three-dimensional structure of the present embodiment shown in FIG. 12 is executed after all the stacking steps (steps S130 to S160) are completed. In other words, the energy applying step in the method for manufacturing a three-dimensional structure according to this embodiment is performed after the layer forming step (steps S130 and S140) has been performed for one layer or a plurality of layers. For example, by performing the energy application process after performing the multi-layered layer formation process, the number of constituent layer formation processes can be reduced and a three-dimensional structure can be rapidly manufactured. In addition, by performing the energy application step for each layer, both materials are exposed on the same surface in each layer even when one material is arranged to cover the other material on the slope portion or the like. Thus, it becomes possible to properly apply energy to each material.

また、本実施例の三次元造形物の製造方法におけるエネルギー付与工程(ステップS150及びステップS165)は、構成材料粒子及び支持部形成粒子に同一のエネルギーを付与する(ステップS150では構成材料粒子及び支持部形成粒子の両方に加熱部1700から電磁波を照射し、ステップS165では構成材料粒子及び支持部形成粒子を不図示の恒温槽で一括して加熱する)。このため、簡単に、エネルギー付与工程を実行できる。 Further, in the energy applying step (step S150 and step S165) in the method for manufacturing a three-dimensional structure of this example, the same energy is applied to the constituent material particles and the support portion forming particles (in step S150, the constituent material particles and the supporting material particles are supported). Both the part-forming particles are irradiated with an electromagnetic wave from the heating unit 1700, and the constituent material particles and the support-part forming particles are collectively heated in a thermostat (not shown) in step S165). Therefore, the energy application step can be easily executed.

ただし、エネルギー付与工程において、構成材料粒子及び支持部形成粒子に異なるエネルギーを付与してもよい。異なるエネルギーを付与することで、効果的に、三次元造形物の対応領域以外の部分も溶融させてしまうことで三次元造形物を取り外す際の分離作業や取り外した後の成形作業などの負荷が大きくなるということを抑制できるためである。 However, in the energy applying step, different energies may be applied to the constituent material particles and the support portion forming particles. By applying different energies, the parts other than the corresponding area of the 3D object are effectively melted, and the load such as the separation work when removing the 3D object and the molding work after the removal is removed. This is because it can be suppressed from becoming large.

また、本実施例の三次元造形物の製造方法では、エネルギー付与工程(ステップS150及びステップS165)後において、構成材料粒子で構成された層の空隙率が該層と対応する支持部形成粒子で構成された層の空隙率よりも小さくなるよう調整されている。このため、支持部形成粒子で構成された層の空隙率が小さくなりすぎて三次元造形物を取り外す際の分離作業や取り外した後の成形作業などの負荷が大きくなるということを、抑制できる。 In addition, in the method for manufacturing a three-dimensional structure according to this example, after the energy applying step (step S150 and step S165), the porosity of the layer formed of the constituent material particles is the support portion forming particles corresponding to the layer. It is adjusted to be smaller than the porosity of the constituted layer. For this reason, it is possible to prevent the porosity of the layer formed of the support portion forming particles from becoming too small and the load of the separating operation when removing the three-dimensional structure and the molding operation after the removing from becoming large.

また、本実施例の三次元造形物の製造方法では、支持部形成粒子で構成された層の空隙率は、エネルギー付与工程(ステップS150及びステップS165)後の方がエネルギー付与工程前よりも小さくなるよう調整されている。このため、支持部の強度が向上し、三次元構造物を取り外す際の分離作業を行うまでの工程において、構造体の保持を確実に行うことが出来るという利点がある。 In addition, in the method for manufacturing a three-dimensional structure of this example, the porosity of the layer formed of the support portion forming particles is smaller after the energy application step (step S150 and step S165) than before the energy application step. Has been adjusted. Therefore, there is an advantage that the strength of the support portion is improved, and the structure can be reliably held in the steps up to the separation work for removing the three-dimensional structure.

また、構成材料粒子はアルミ、チタン、鉄、銅、マグネシウム、ステンレス鋼、マルエージング鋼の少なくともいずれか1つの成分を含む粒子であり、支持部形成粒子はシリカ、アルミナ、酸化チタン、酸化ジルコンの少なくともいずれか1つの成分を含む粒子であることが好ましい。エネルギー付与工程により、構成材料粒子を溶融し、支持部材形成粒子を低い焼結密度とするように容易にコントロールすることができ、三次元造形物の強度を確保しつつ、三次元造形物を取り外す際の分離作業や取り外した後の成形作業などの負荷が大きくなるということを抑制できるからである。 The constituent material particles are particles containing at least one component of aluminum, titanium, iron, copper, magnesium, stainless steel, and maraging steel, and the support part forming particles are silica, alumina, titanium oxide, zircon oxide. Particles containing at least one component are preferred. By the energy application process, the constituent material particles can be melted and the supporting member forming particles can be easily controlled to have a low sintering density, and the three-dimensional structure is removed while ensuring the strength of the three-dimensional structure. This is because it is possible to suppress an increase in load such as separation work at the time of molding and molding work after removal.

本発明は、上述の実施例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施例中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。 The present invention is not limited to the above-described embodiments, but can be implemented in various configurations without departing from the spirit of the invention. For example, the technical features in the embodiments corresponding to the technical features in each mode described in the section of the summary of the invention are provided in order to solve some or all of the above-mentioned problems, or one of the effects described above. It is possible to appropriately replace or combine in order to achieve a part or all. If the technical features are not described as essential in this specification, they can be deleted as appropriate.

50、50a、50b、50c、50d、50e、50f、50g及び50h着弾部、
110 基台、111 駆動装置、120 ステージ(支持体)、
121 試料プレート、130、130’ ヘッドベース支持部、
300 支持層(支持部)、310 構成層、400 制御ユニット(制御部)、
410 ステージコントローラー、430 レーザーコントローラー、
500 三次元造形物、501、502及び503 層、
1100、1100’ ヘッドベース、
1200 構成材料供給装置、1200’ 支持部形成用材料供給装置、
1210 構成材料供給ユニット、1210’ 支持部形成用材料供給ユニット、
1210a 構成材料収容部、1210a’ 支持部形成用材料収容部、
1220、1220’ 供給チューブ、
1230 構成材料吐出部、1230’ 支持部形成用材料吐出部、
1230a、1230a’ 吐出ノズル、1230b、1230b’ 吐出駆動部、
1400、1400’ ヘッドユニット、
1401、1402、1403、1404、1405、1406、1407及び1408 ヘッドユニット、
1400a、1400a’ 保持治具、1500 材料供給コントローラー、
1600、1600’ ヘッドベース、1700 加熱部(エネルギー付与部)、
1710 加熱部コントローラー、2000 形成装置(三次元造形物の製造装置)、
L レーザー、M 材料(構成材料)
50, 50a, 50b, 50c, 50d, 50e, 50f, 50g and 50h landing section,
110 base, 111 drive, 120 stage (support),
121 sample plate, 130, 130' head base support,
300 support layer (support section), 310 constituent layer, 400 control unit (control section),
410 stage controller, 430 laser controller,
500 three-dimensional model 501, 502 and 503 layers,
1100, 1100' head base,
1200 constituent material supplying device, 1200′ support part forming material supplying device,
1210 constituent material supply unit, 1210′ support portion forming material supply unit,
1210a constituent material storage portion, 1210a' support portion forming material storage portion,
1220, 1220' supply tube,
1230 constituent material discharging section, 1230′ support section forming material discharging section,
1230a, 1230a' ejection nozzles, 1230b, 1230b' ejection drive unit,
1400, 1400' head unit,
1401, 1402, 1403, 1404, 1405, 1406, 1407 and 1408 head units,
1400a, 1400a' holding jig, 1500 material supply controller,
1600, 1600′ head base, 1700 heating unit (energy applying unit),
1710 heating unit controller, 2000 forming device (manufacturing device for three-dimensional model),
L laser, M material (constituent material)

Claims (6)

構成材料粒子を含む構成材料を連続体形状で吐出して構成層を形成する工程と、
支持部形成粒子を含む支持部形成用材料を連続体形状で吐出して、三次元造形物を生成する際に前記三次元造形物を支持する支持層を形成する工程と、
前記構成層を形成する工程、及び、前記支持層を形成する工程を繰り返す積層工程と、
前記構成層及び前記支持層にエネルギーを付与するエネルギー付与工程と、を有し、
前記支持部形成粒子の融点は、前記構成材料粒子の融点よりも高く、
前記エネルギー付与工程は、前記構成材料粒子の融点以上且つ前記支持部形成粒子の融点未満の温度で、前記構成層及び前記支持層にエネルギーを付与し、
前記積層工程は、前記エネルギー付与工程後において、前記構成層の厚みと前記構成層と対応する前記支持層の厚みとが揃うように前記構成層及び前記支持層を形成し、
前記エネルギー付与工程後において、前記構成層の空隙率は、前記構成層と対応する前記支持層の空隙率よりも小さくなることを特徴とする三次元造形物の製造方法。
A step of discharging a constituent material containing constituent material particles in a continuous shape to form a constituent layer;
Discharging a support part forming material containing support part forming particles in a continuous body shape, and forming a support layer that supports the three-dimensional structure when generating a three-dimensional structure,
A step of repeating the step of forming the constituent layer, and the step of forming the support layer,
An energy applying step of applying energy to the constituent layer and the support layer,
The melting point of the support portion forming particles is higher than the melting point of the constituent material particles,
The energy applying step applies energy to the constituent layer and the support layer at a temperature not lower than the melting point of the constituent material particles and lower than the melting point of the support portion forming particles,
In the laminating step, after the energy applying step, the constituent layer and the supporting layer are formed so that the thickness of the constituent layer and the thickness of the supporting layer corresponding to the constituent layer are aligned,
After the energy application step, the porosity of the constituent layer is smaller than the porosity of the support layer corresponding to the constituent layer.
請求項1に記載された三次元造形物の製造方法において、
前記エネルギー付与工程は、前記構成材料粒子及び前記支持部形成粒子の温度が前記支持部形成粒子の焼結温度以上の温度となるように、エネルギーを付与することを特徴とする三次元造形物の製造方法。
The method for manufacturing a three-dimensional structure according to claim 1,
The energy applying step applies energy so that the temperatures of the constituent material particles and the support portion forming particles are equal to or higher than the sintering temperature of the support portion forming particles. Production method.
請求項1又は2のいずれか1項に記載された三次元造形物の製造方法において、
前記エネルギー付与工程は、前記積層工程の終了後に、積層した前記構成材料粒子及び前記支持部形成粒子に同一のエネルギーを付与することを特徴とする三次元造形物の製造方法。
A method for manufacturing a three-dimensional structure according to any one of claims 1 and 2,
In the energy applying step, the same energy is applied to the laminated constituent material particles and the support portion forming particles after the completion of the laminating step.
請求項1から3のいずれか1項に記載された三次元造形物の製造方法において、
前記支持層の空隙率は、前記エネルギー付与工程後の方が前記エネルギー付与工程前よりも小さくなることを特徴とする三次元造形物の製造方法。
The method for manufacturing a three-dimensional structure according to any one of claims 1 to 3,
The method of manufacturing a three-dimensional structure, wherein the porosity of the support layer is smaller after the energy application step than before the energy application step.
請求項1から4のいずれか1項に記載された三次元造形物の製造方法において、
前記構成材料粒子はアルミ、チタン、鉄、銅、マグネシウム、ステンレス鋼、マルエージング鋼の少なくともいずれか1つの成分を含む粒子であり、前記支持部形成粒子はシリカ、アルミナ、酸化チタン、酸化ジルコンの少なくともいずれか1つの成分を含む粒子であることを特徴とする三次元造形物の製造方法。
The method for manufacturing a three-dimensional structure according to any one of claims 1 to 4,
The constituent material particles are particles containing at least one component of aluminum, titanium, iron, copper, magnesium, stainless steel, and maraging steel, and the support portion forming particles are silica, alumina, titanium oxide, or zircon oxide. A method for producing a three-dimensional structure, comprising particles comprising at least one component.
構成材料粒子を含み、構成層を形成するための構成材料を、連続体形状で吐出する第1の吐出部と、
支持部形成粒子を含み、三次元造形物を生成する際に前記三次元造形物を支持する支持層を形成するための支持部形成用材料を、連続体形状で吐出する第2の吐出部と、
前記構成層の形成と前記支持層の形成とを繰り返す積層工程を実行する制御部と、
前記構成層及び前記支持層にエネルギーを付与するエネルギー付与部と、を有し、
前記支持部形成粒子の融点は、前記構成材料粒子の融点よりも高く、
前記エネルギー付与部は、
前記構成材料粒子の融点以上且つ前記支持部形成粒子の融点未満の温度で、前記構成層及び前記支持層にエネルギーを付与し、
前記制御部は、
前記エネルギー付与部により前記エネルギーが付与された後において、前記構成層の厚みと前記構成層と対応する前記支持層の厚みとが揃うように、前記積層工程を実行することを特徴とする三次元造形物の製造装置。
A first discharge part which discharges a constituent material containing constituent material particles to form a constituent layer in a continuous shape;
A second discharge part for discharging a support part forming material, which contains support part forming particles, for forming a support layer that supports the three-dimensional structure when generating the three-dimensional structure, in a continuous shape; ,
A control unit that executes a laminating step of repeating the formation of the constituent layer and the formation of the support layer,
An energy application unit for applying energy to the constituent layer and the support layer,
The melting point of the support portion forming particles is higher than the melting point of the constituent material particles,
The energy applying unit,
At a temperature equal to or higher than the melting point of the constituent material particles and lower than the melting point of the support part forming particles, energy is applied to the constituent layer and the support layer,
The control unit is
After the energy is applied by the energy applying unit, the laminating step is performed so that the thickness of the constituent layer and the thickness of the support layer corresponding to the constituent layer are equal to each other. Equipment for manufacturing shaped objects.
JP2020074787A 2015-10-15 2020-04-20 Manufacturing method of 3D model Active JP6950780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020074787A JP6950780B2 (en) 2015-10-15 2020-04-20 Manufacturing method of 3D model

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015203487A JP6751252B2 (en) 2015-10-15 2015-10-15 Three-dimensional model manufacturing method and three-dimensional model manufacturing apparatus
JP2020074787A JP6950780B2 (en) 2015-10-15 2020-04-20 Manufacturing method of 3D model

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015203487A Division JP6751252B2 (en) 2015-10-15 2015-10-15 Three-dimensional model manufacturing method and three-dimensional model manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2020117814A true JP2020117814A (en) 2020-08-06
JP6950780B2 JP6950780B2 (en) 2021-10-13

Family

ID=71890162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020074787A Active JP6950780B2 (en) 2015-10-15 2020-04-20 Manufacturing method of 3D model

Country Status (1)

Country Link
JP (1) JP6950780B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141032A1 (en) * 2014-03-18 2015-09-24 株式会社 東芝 Additive layer manufacturing device and method for manufacturing additive layer manufacturing article

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141032A1 (en) * 2014-03-18 2015-09-24 株式会社 東芝 Additive layer manufacturing device and method for manufacturing additive layer manufacturing article

Also Published As

Publication number Publication date
JP6950780B2 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
JP6836101B2 (en) Manufacturing method of 3D model
JP7168035B2 (en) Fluid composition set and fluid composition
JP6669985B2 (en) Manufacturing method of three-dimensional objects
JP6642790B2 (en) Method for manufacturing three-dimensional object and apparatus for manufacturing three-dimensional object
US20210154743A1 (en) Method of manufacturing three-dimensionally formed object and three-dimensionally formed object manufacturing apparatus
US20210162730A1 (en) Method of manufacturing three-dimensionally formed object and three-dimensionally formed object manufacturing apparatus
JP6981558B2 (en) 3D modeling stage, 3D modeling equipment and 3D modeling method
JP6972811B2 (en) Manufacturing method of 3D model
JP6802517B2 (en) Modeling stage of 3D model, 3D model manufacturing device and 3D model manufacturing method
JP6950498B2 (en) Manufacturing method of 3D model
JP6826321B2 (en) Modeling stage of 3D model, 3D model manufacturing device and 3D model manufacturing method
JP6950780B2 (en) Manufacturing method of 3D model
JP2017075369A (en) Method for manufacturing three-dimensional molded article and apparatus for manufacturing three-dimensional molded article
JP6931205B2 (en) Manufacturing method of 3D model
JP6924380B2 (en) 3D model manufacturing equipment and 3D model manufacturing method
JP7040651B2 (en) Manufacturing method of 3D model
JP2019099859A (en) Method for manufacturing three-dimensional molded article
JP2018141222A (en) Composition for producing three-dimensional molded article, and method for producing three-dimensional molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210906

R150 Certificate of patent or registration of utility model

Ref document number: 6950780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150