JP2020117440A - Nano-functional particles containing hydrophilic substance and method for producing the same - Google Patents

Nano-functional particles containing hydrophilic substance and method for producing the same Download PDF

Info

Publication number
JP2020117440A
JP2020117440A JP2017100202A JP2017100202A JP2020117440A JP 2020117440 A JP2020117440 A JP 2020117440A JP 2017100202 A JP2017100202 A JP 2017100202A JP 2017100202 A JP2017100202 A JP 2017100202A JP 2020117440 A JP2020117440 A JP 2020117440A
Authority
JP
Japan
Prior art keywords
liquid
hydrophilic substance
water
surfactant
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017100202A
Other languages
Japanese (ja)
Inventor
畑中 大輔
Daisuke Hatanaka
大輔 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP2017100202A priority Critical patent/JP2020117440A/en
Priority to PCT/JP2018/019041 priority patent/WO2018212264A1/en
Priority to TW107116894A priority patent/TW201906661A/en
Publication of JP2020117440A publication Critical patent/JP2020117440A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/67Vitamins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/04Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a gaseous medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nanotechnology (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Birds (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Cosmetics (AREA)
  • Medicinal Preparation (AREA)

Abstract

To provide nano-functional particles containing a hydrophilic substance, and to provide methods for producing the same.SOLUTION: Provided are: a nano-functional particle containing a hydrophilic substance that can be obtained by immediately before spraying, mixing a liquid in which a surfactant and a good water-soluble solute are dissolved in water, and a liquid in which a hydrophilic substance is dispersed in a liquid in which a surfactant is dissolved in a solvent, through each different channel, subsequently spraying in the state of liquid microparticles by pressurized gas, and evaporating and removing the water and the solvent; and a method for producing the same.SELECTED DRAWING: Figure 1

Description

本発明は、親水性物質を含むナノ機能性粒子及びその製造方法に関する。 The present invention relates to a nano-functional particle containing a hydrophilic substance and a method for producing the same.

近年、皮膚から活性成分を吸収させて皮膚に直接的に作用するように誘導する経皮吸収技術に関する研究が進んでいる。例えば、BCSでClass2及びClass4に分類される水難溶性薬物を含む難溶性薬物を、S/W、あるいはS/O、更にS/O/W製剤に製造することで、溶解度を高め、吸収性の向上を図った難溶性薬物−界面活性剤複合体製剤が報告がされている(特許文献1)。
また、マイクロ粒子中に分散したナノ粒子の製造方法及びナノ粒子製造用ノズルが知られており(特許文献2)、当該製造方法を用いて簡便に得られる、活性成分の経皮吸収性を向上させるナノ機能性粒子製剤が開示されている(特許文献3)。
In recent years, research on transdermal absorption technology in which an active ingredient is absorbed from the skin to induce it to directly act on the skin has been advanced. For example, a poorly water-soluble drug including a poorly water-soluble drug classified into Class 2 and Class 4 by BCS is manufactured into a S/W or S/O, and further S/O/W formulation to enhance solubility and absorbability. An improved sparingly soluble drug-surfactant complex preparation has been reported (Patent Document 1).
Further, a method for producing nanoparticles dispersed in microparticles and a nozzle for producing nanoparticles are known (Patent Document 2), and transdermal absorbability of an active ingredient, which is easily obtained by using the production method, is improved. A nano-functional particle formulation is disclosed (Patent Document 3).

ところで、ビタミンC(アスコルビン酸)は最もよく知られている抗酸化物質であるが、ビタミンCは安定性が低く水中で分解され易いため、種々のビタミンC誘導体が開発されている。近年、リン酸アスコルビルマグネシウム又はリン酸アスコルビルナトリウムといった水溶性のビタミンC誘導体が注目されており、これらが有効成分として配合されている化粧品や医薬部外品、医薬品が上市されている。 By the way, vitamin C (ascorbic acid) is the most well known antioxidant, but since vitamin C has low stability and is easily decomposed in water, various vitamin C derivatives have been developed. In recent years, water-soluble vitamin C derivatives such as magnesium ascorbyl phosphate or sodium ascorbyl phosphate have been attracting attention, and cosmetics, quasi drugs, and pharmaceuticals containing these as active ingredients have been put on the market.

また、これらビタミンCもしくはビタミンC誘導体の機能化製剤として、タンパク質とアスコルビン酸もしくはその誘導体を使用し、かつ、その浸透性を向上させたナノ粒子分散液及びその調製方法が開示されている(特許文献4)。 Further, as a functionalized preparation of these vitamin C or vitamin C derivatives, a nanoparticle dispersion liquid in which a protein and ascorbic acid or a derivative thereof are used, and its permeability is improved, and a preparation method thereof are disclosed. Reference 4).

国際公開番号WO2009/057808号公報International publication number WO2009/057808 特開2009−113169号公報JP, 2009-113169, A 国際公開番号WO2016/167327号公報International publication number WO2016/167327 特開2017−066095号公報JP, 2017-066095, A

従来のナノ機能性粒子は、疎水性物質を含むナノ機能性粒子及びその製造方法に関するものであり、親水性物質を含むナノ機能性粒子及びその製造方法は知られていなかった。 Conventional nano-functional particles relate to a nano-functional particle containing a hydrophobic substance and a method for producing the same, and a nano-functional particle containing a hydrophilic substance and a method for producing the same have not been known.

そこで本発明では、親水性物質を含むナノ機能性粒子及びその製造方法を得ることを目的とする。 Therefore, it is an object of the present invention to obtain a nano-functional particle containing a hydrophilic substance and a method for producing the same.

本発明の一例として、ビタミンC誘導体は比較的高価であるため、ビタミンCの製剤化による機能化や、ビタミンC誘導体の製剤化による更なる機能性付与が求められている。
しかしながら、上述のような従来のナノ粒子は、経皮浸透性は言及されているものの、抗酸化作用における特徴的な機能については言及されていない。そこで、本発明の一例としては、低用量でも抗酸化作用を示す、あるいは抗酸化物質の抗酸化作用を高めるナノ機能性粒子を得ることを目的とする。
As an example of the present invention, since a vitamin C derivative is relatively expensive, it is demanded that the vitamin C be functionalized by formulating it and that the vitamin C derivative be further functionalized.
However, the above-mentioned conventional nanoparticles, although mentioning the transdermal permeability, do not mention the characteristic function in the antioxidant action. Therefore, as an example of the present invention, it is an object of the present invention to obtain nano-functional particles that exhibit an antioxidant action even at a low dose or enhance the antioxidant action of an antioxidant.

発明者らが鋭意検討した結果、特定の2種の液体、すなわち良水溶性溶質を含む液体と、親水性物質を分散させた液体とを用いることで、親水性物質を含むナノ機能性粒子を得られることを見出し、本願発明を完成させた。このナノ機能性粒子は、例えば良好な抗酸化作用を有するナノ機能性粒子として有用である。 As a result of intensive studies by the inventors, nano-functional particles containing a hydrophilic substance are obtained by using two specific liquids, that is, a liquid containing a good water-soluble solute and a liquid in which a hydrophilic substance is dispersed. The inventors have found that they can be obtained and completed the present invention. The nano-functional particles are useful as, for example, nano-functional particles having a good antioxidant effect.

すなわち、本発明は、以下のとおりである:
[1]界面活性剤と、良水溶性溶質とを水に溶解した液体と、界面活性剤を溶媒に溶解した液体に親水性物質を分散させた液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記溶媒とを気化し除去することにより得られうる、前記良水溶性溶質を含むマイクロ粒子の中で分散する、及び/又は、前記マイクロ粒子の表面に存在する、前記親水性物質を含むナノ機能性粒子の製造方法。
[2]前記親水性物質が、化粧品用成分又は医薬品成分から選択される少なくとも一つを含む、[1]に記載の製造方法。
[3]上記親水性物質が、抗酸化能を有する親水性物質である、[1]又は[2]に記載の製造方法。
[4]前記界面活性剤がショ糖脂肪酸エステル類、ソルビタン脂肪酸エステル類又はそれらの組み合わせである、[1]に記載の製造方法。
[5]良水溶性溶質を水に溶解した液体が含む前記界面活性剤と、親水性物質を分散させた液体が含む前記界面活性剤が異なる、[1]に記載の製造方法。
[6][1]〜[5]何れかに記載の製造方法で得られた粒子を、溶媒中に分散させる工程を含む、粒子分散液の製造方法。
[7][1]〜[5]何れかに記載の製造方法を含む、皮膚外用剤の製造方法。
[8][3]に記載の製造方法で製造された粒子を使用して、抗酸化能を有する親水性物質の抗酸化作用を高める方法。
[9]界面活性剤と、良水溶性溶質とを水に溶解した液体と、界面活性剤を溶媒に溶解した液体に親水性物質を分散させた液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記溶媒とを気化し除去することにより得られうる、前記親水性物質を含むナノ機能性粒子。
[10][9]に記載の粒子が溶媒中に分散している、分散液。
[11][9]に記載の粒子を含有する、皮膚外用剤。
[12]上記親水性物質が、抗酸化能を有する親水性物質である、[9]に記載の粒子。
[13][12]に記載の粒子を使用して、抗酸化能を有する親水性物質の抗酸化作用を高める方法。
[14]界面活性剤と、良水溶性溶質とを水に溶解した液体と、界面活性剤を溶媒に溶解した液体に親水性物質を分散させた液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記溶媒とを気化し除去することにより得られうる、前記親水性物質を含むナノ機能性粒子の製造方法。
[15]界面活性剤と、良水溶性溶質とを水に溶解した液体と、界面活性剤を溶媒に溶解した液体に親水性物質を分散させた液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記溶媒とを気化し除去することにより得られうる、前記親水性物質を含むナノ機能性粒子を用いた、親水性物質の分解抑制方法。
That is, the present invention is as follows:
[1] A liquid in which a surfactant and a good water-soluble solute are dissolved in water, and a liquid in which a hydrophilic substance is dispersed in a liquid in which a surfactant is dissolved in a solvent are passed through different flow paths, Among the microparticles containing the good water-soluble solute, which can be obtained by spraying in the state of liquid fine particles by pressurized gas after mixing immediately before spraying and vaporizing and removing the water and the solvent. A method for producing nano-functional particles containing the hydrophilic substance, which are dispersed and/or are present on the surface of the micro particles.
[2] The production method according to [1], wherein the hydrophilic substance contains at least one selected from cosmetic ingredients or pharmaceutical ingredients.
[3] The production method according to [1] or [2], wherein the hydrophilic substance is a hydrophilic substance having antioxidant ability.
[4] The production method according to [1], wherein the surfactant is sucrose fatty acid ester, sorbitan fatty acid ester, or a combination thereof.
[5] The production method according to [1], wherein the surfactant contained in the liquid in which the good water-soluble solute is dissolved in water is different from the surfactant contained in the liquid in which the hydrophilic substance is dispersed.
[6] A method for producing a particle dispersion, which comprises a step of dispersing the particles obtained by the production method according to any one of [1] to [5] in a solvent.
[7] A method for producing an external preparation for skin, including the method according to any one of [1] to [5].
[8] A method for enhancing the antioxidant action of a hydrophilic substance having antioxidant ability, using the particles produced by the method according to [3].
[9] A liquid in which a surfactant and a good water-soluble solute are dissolved in water, and a liquid in which a hydrophilic substance is dispersed in a liquid in which a surfactant is dissolved in a solvent are passed through different flow paths, Nano-functional particles containing the hydrophilic substance, which can be obtained by spraying in a state of liquid fine particles by pressurized gas after mixing immediately before spraying and vaporizing and removing the water and the solvent.
[10] A dispersion liquid in which the particles according to [9] are dispersed in a solvent.
[11] A skin external preparation containing the particles according to [9].
[12] The particles according to [9], wherein the hydrophilic substance is a hydrophilic substance having antioxidant ability.
[13] A method for enhancing the antioxidant action of a hydrophilic substance having antioxidant ability, using the particles according to [12].
[14] A liquid in which a surfactant and a good water-soluble solute are dissolved in water, and a liquid in which a hydrophilic substance is dispersed in a liquid in which a surfactant is dissolved in a solvent are passed through different flow paths, respectively, Production of nano-functional particles containing the hydrophilic substance, which can be obtained by spraying in a state of liquid fine particles by pressurized gas after mixing just before spraying and vaporizing and removing the water and the solvent. Method.
[15] A surfactant, a liquid in which a good water-soluble solute is dissolved in water, and a liquid in which a hydrophilic substance is dispersed in a liquid in which a surfactant is dissolved in a solvent are passed through different flow paths, respectively, Use nano functional particles containing the hydrophilic substance, which can be obtained by spraying in the form of liquid fine particles by pressurized gas after mixing just before spraying and vaporizing and removing the water and the solvent. The method for suppressing the decomposition of hydrophilic substances.

本願発明によれば、特定の2種の液体、すなわち良水溶性溶質を含む液体と、親水性物質を分散させた液体とを用いることで、親水性物質を含むナノ機能性粒子を得ることができる。 According to the present invention, nano-functional particles containing a hydrophilic substance can be obtained by using two specific liquids, that is, a liquid containing a good water-soluble solute and a liquid in which a hydrophilic substance is dispersed. it can.

本発明のナノ機能性粒子は、例えば含有する抗酸化物質の抗酸化作用を向上させる。当該粒子を用いることで、例えば抗酸化物質の抗酸化作用を高めた皮膚外用剤を提供することもできる。 The nano-functional particles of the present invention improve, for example, the antioxidant action of the antioxidant contained therein. By using the particles, for example, an external preparation for skin in which the antioxidant action of an antioxidant substance is enhanced can be provided.

実施例1で作製したナノ粒子の透過型電子顕微鏡での観察像である。写真中の黒棒の長辺は、長さ:200nmを表す。3 is an image observed with a transmission electron microscope of nanoparticles produced in Example 1. The long side of the black bar in the photograph represents the length: 200 nm. 実施例1の粉末を水に懸濁させて1ヵ月静置後の外観を示す写真である(左写真:側面からの外観、右写真:底面からの外観(透明版上にサンプルを置き、下側から観察))。1 is a photograph showing the appearance of the powder of Example 1 suspended in water and allowed to stand still for 1 month (left photograph: outer appearance, right photograph: outer appearance (sample placed on transparent plate, bottom Observed from the side)). 実施例1及びリン酸アスコルビルマグネシウム(APM)水溶液の抗酸化作用評価におけるFRAP試験結果を示すグラフである。It is a graph which shows the FRAP test result in Example 1 and the antioxidant action evaluation of the magnesium ascorbyl phosphate (APM) aqueous solution. 実施例2及びL−アスコルビン酸(Asc)水溶液の抗酸化作用評価におけるFRAP試験結果を示すグラフである。It is a graph which shows the FRAP test result in Example 2 and the antioxidant action evaluation of L-ascorbic acid (Asc) aqueous solution. 実施例1及びAPM水溶液の抗酸化作用評価における細胞試験結果を示すグラフである。3 is a graph showing the results of cell tests in the antioxidant action evaluation of Example 1 and the APM aqueous solution. 実施例2及びAsc水溶液の抗酸化作用評価における細胞試験結果を示すグラフである。5 is a graph showing the cell test results in Example 2 and the evaluation of the antioxidant effect of the Asc aqueous solution. 実施例1及び高濃度のAPM水溶液の抗酸化作用評価における細胞試験結果を示すグラフである。It is a graph which shows the cell test result in Example 1 and the antioxidant action evaluation of a high concentration APM aqueous solution.

[ナノ機能性粒子の製造方法]
本発明のナノ機能性粒子は、「界面活性剤と、良水溶性溶質とを水に溶解した液体(以下、水相と表記することもある)」と、「界面活性剤を溶媒に溶解した液体に親水性物質を分散させた液体(以下、有機相と表記することもある)」とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記溶媒とを気化し除去することにより得られうる、前記親水性物質を含むナノ機能性粒子である。
前記親水性物質を含むナノ機能性粒子は、前記良水溶性溶質を含むマイクロ粒子の中で分散する、及び/又は、前記マイクロ粒子の表面に存在することが好ましい。
前記の「噴霧直前に混合をした」とは、噴霧する直前までは混合しておらず、それぞれ別の流路を流れていた「界面活性剤と、良水溶性溶質を水に溶解した液体」と、「界面活性剤を溶媒に溶解した液体に親水性物質を分散させた液体」とを、噴霧する直前に混合したことを意味する。例えばノズルを用いる場合、「界面活性剤と、良水溶性溶質を水に溶解した液体」と「界面活性剤を溶媒に溶解した液体に親水性物質を分散させた液体」とは、それぞれ独立してノズルに入り、ノズルの噴霧口の直前で両液体は混合し、混合した液体がノズルの噴霧口から噴霧される。本発明で使用されるノズルは、このような混合、噴霧を実現し得るものである。具体的には、例えば特許文献2に開示されたナノ粒子製造用ノズルを使用することができる。
[Method for producing nano-functional particles]
The nano-functional particles of the present invention include "a liquid in which a surfactant and a good water-soluble solute are dissolved in water (hereinafter, also referred to as an aqueous phase)" and "a surfactant in a solvent. A liquid in which a hydrophilic substance is dispersed (hereinafter, also referred to as an organic phase)" is mixed with each other through different flow paths immediately before spraying, and then, by a pressurized gas, liquid fine particles are formed. It is a nano-functional particle containing the hydrophilic substance, which can be obtained by spraying in the state and vaporizing and removing the water and the solvent.
The nano-functional particles containing the hydrophilic substance are preferably dispersed in the micro particles containing the good water-soluble solute and/or are present on the surface of the micro particles.
The above-mentioned "mixed just before spraying" means "a liquid in which a surfactant and a good water-soluble solute are dissolved in water", which were not mixed until just before spraying and flowed in different channels And "a liquid in which a hydrophilic substance is dispersed in a liquid in which a surfactant is dissolved in a solvent" are mixed together immediately before spraying. For example, when a nozzle is used, "a surfactant and a liquid in which a good water-soluble solute is dissolved in water" and "a liquid in which a hydrophilic substance is dispersed in a liquid in which a surfactant is dissolved in a solvent" are independent of each other. And enters the nozzle, the two liquids are mixed immediately before the spray port of the nozzle, and the mixed liquid is sprayed from the spray port of the nozzle. The nozzle used in the present invention can realize such mixing and spraying. Specifically, for example, the nanoparticle manufacturing nozzle disclosed in Patent Document 2 can be used.

また、液体の混合をしてから噴霧をされるまでの時間は、通常、数秒以内であり、例えば1秒以内、又は0.5秒以内、更には0.2秒以内とすることができる。 The time from mixing the liquids to spraying is usually within a few seconds, for example, within 1 second, within 0.5 seconds, or within 0.2 seconds.

また、加圧気体の圧力は、0.01〜0.5MPaであることが好ましく、0.03〜0.3MPaであることがより好ましく、0.05〜0.2MPaであることが特に好ましい。
本発明のナノ機能性粒子の製造方法では、混合をするまでの水相側の流速が、混合をするまでの有機相側の流速に比して、相対的に大きい(速い)ことが好ましい。
The pressure of the pressurized gas is preferably 0.01 to 0.5 MPa, more preferably 0.03 to 0.3 MPa, and particularly preferably 0.05 to 0.2 MPa.
In the method for producing nano-functional particles of the present invention, it is preferable that the flow rate on the aqueous phase side until mixing is relatively high (fast) as compared with the flow rate on the organic phase side until mixing.

本発明のナノ機能性粒子の製造方法では、水相が、有機相の流路に対して、旋回するように流入して混合をする態様を採ることができる。また、本発明のナノ機能性粒子の製造方法では、有機相が、水相の流路に対して、旋回するように流入して混合をする態様を採ることができる。そして、本発明に係るナノ機能性粒子の製造方法では、有機相と、水相とが、噴霧がなされる噴霧口の側の流路に対して、互いに旋回するように流入して、混合をする態様を採ることが可能である。 In the method for producing nano-functional particles of the present invention, a mode can be adopted in which the aqueous phase swirls into the flow path of the organic phase and is mixed. In addition, the method for producing nano-functional particles of the present invention can adopt a mode in which the organic phase swirls into the flow channel of the aqueous phase and is mixed. Then, in the method for producing nano-functional particles according to the present invention, the organic phase and the aqueous phase flow into the flow path on the side of the spray port where the spray is made so as to swirl with each other, and mixing It is possible to adopt the mode.

本発明のナノ機能性粒子の製造方法では、水相と、有機相とが、(旋回するように流入するのではなく)対向衝突をして混合をする態様を採ることもできる。 In the method for producing nano-functional particles of the present invention, it is possible to adopt a mode in which the aqueous phase and the organic phase are opposed to each other (rather than swirling in) and mixed.

本発明のナノ機能性粒子の製造方法では、水溶性物質の皮膚への浸透性を向上させたり、水溶性物質の抗酸化能を向上させたりするナノ機能性粒子が得られる点から、有機相が、水相の流路に対して、旋回するように流入して混合をする態様を採るのが好ましい。 In the method for producing nano-functional particles of the present invention, it is possible to obtain nano-functional particles that improve the permeability of the water-soluble substance into the skin or improve the antioxidant ability of the water-soluble substance, However, it is preferable to adopt a mode in which the mixture flows by swirling into the flow path of the aqueous phase to perform mixing.

本発明の製造方法で得られたマイクロ粒子は、ナノ機能性粒子を、当該マイクロ粒子の内部に分散している状態で、及び/又は、当該マイクロ粒子の表面に存在している状態で含んでもよい。特にマイクロ粒子の表面で、ナノ機能性粒子が分散して存在している状態が好ましい。ナノ機能性粒子の粒子径は、通常10〜500nmである。 The microparticles obtained by the production method of the present invention may contain nano-functional particles in a state of being dispersed inside the microparticles and/or in a state of existing on the surface of the microparticles. Good. In particular, it is preferable that the nano-functional particles are dispersed and present on the surface of the micro particles. The particle diameter of the nano-functional particles is usually 10 to 500 nm.

マイクロ粒子の粒子径が、1〜10μmの場合、ナノ機能性粒子の粒子径は、通常10〜500nmの範囲である。 When the particle size of the micro particles is 1 to 10 μm, the particle size of the nano-functional particles is usually in the range of 10 to 500 nm.

(界面活性剤)
前記の界面活性剤としては、ショ糖ステアリン酸エステル、ショ糖パルミチン酸エステル、ショ糖オレイン酸エステル、ショ糖ラウリン酸エステル、ショ糖ベヘニン酸エステル、ショ糖エルカ酸エステルなどのショ糖脂肪酸エステル類、ソルビタンモノステアレート、ソルビタントリステアレート、ソルビタンモノオレート、ソルビタントリオレート、ソルビタンセスキオレートなどのソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタン脂肪酸エステル類、ポリエチレングリコール脂肪酸エステル類、ポリオキシエチレンヒマシ油(polyethoxylatedcastor oil)、ポリオキシエチレン硬化ヒマシ油(polyethoxylated hydrogenated castor oil)、ポリオキシエチレンポリプロピレングリコール共重合体、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステルなどが好ましく使用される。
(Surfactant)
Examples of the surfactant include sucrose fatty acid esters such as sucrose stearate, sucrose palmitate, sucrose oleate, sucrose laurate, sucrose behenate, and sucrose erucate. , Sorbitan monostearate, sorbitan tristearate, sorbitan monooleate, sorbitan trioleate, sorbitan sesquioleate, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyethylene glycol fatty acid esters, polyoxyethylene castor oil (polyethoxylated castor) oil), polyoxyethylene hydrogenated castor oil, polyoxyethylene polypropylene glycol copolymer, glycerin fatty acid ester, polyglycerin fatty acid ester and the like are preferably used.

ソルビタン脂肪酸エステルとしては、特に、オレイン酸ソルビタン(例えば商品名:NIKKOL SO-10V、日光ケミカルズ(株))、パルミチン酸ソルビタン(例えば商品名:NIKKOL SP-10V、日光ケミカルズ(株))などが好適である。
ポリオキシエチレンソルビタン脂肪酸エステルとしては、特に、オレイン酸POE(20)ソルビタン(例えば商品名:NIKKOLTO-10V、日光ケミカルズ(株))、ポリソルベート20、40、60、80などが好適である。ポリエチレングリコール脂肪酸エステルとしては、特に、モノラウリン酸ポリエチレングリコールなどが好適である。ショ糖脂肪酸エステルとしては、特に、ショ糖オレイン酸エステル類(例えば商品名:O-1570、三菱化学フーズ(株))、ショ糖パルミチン酸エステル類(例えば商品名:P-1670、三菱化学フーズ(株))、ショ糖ステアリン酸エステル類(例えば商品名:S-1670、三菱化学フーズ(株))、ショ糖ラウリン酸エステル類(例えば商品名:L-1695、三菱化学フーズ(株))などが好適である。ポリオキシエチレンヒマシ油(polyethoxylatedcastor oil)としては、特に、ポリオキシエチレングリセロールトリリシノレート35(Polyoxy35Castor Oil、商品名:クレモホールELもしくはEL−P、ビーエーエスエフジャパン(株))などが好適である。ポリオキシエチレン硬化ヒマシ油(polyethoxylated hydrogenatd castor oil)としては、特に、ポリオキシエチレン硬化ヒマシ油50(PolyoxyethyleneHydrogenated Castor Oil50)、ポリオキシエチレン硬化ヒマシ油60(Polyoxyethylene Hydrogenated CastorOil60)などが好適である。ポリオキシエチレンポリオキシプロピレングリコール共重合体としては、特に、ポリオキシエチレン(160)ポリオキシプロピレン(30)グリコール(商品名:アデカプルロニックF-68、旭電化工業(株))などが好適である。ポリグリセリン脂肪酸エステルとしては、デカグリセリンモノラウリン酸(Decaglyn1-L、日光ケミカルズ(株))などが好適である。
As the sorbitan fatty acid ester, sorbitan oleate (for example, trade name: NIKKOL SO-10V, Nikko Chemicals Co., Ltd.), sorbitan palmitate (for example, trade name: NIKKOL SP-10V, Nikko Chemicals Co., Ltd.) and the like are particularly preferable. Is.
As the polyoxyethylene sorbitan fatty acid ester, POE(20) sorbitan oleate (eg, trade name: NIKKOLTO-10V, Nikko Chemicals Co., Ltd.), polysorbate 20, 40, 60, 80 and the like are particularly preferable. As the polyethylene glycol fatty acid ester, polyethylene glycol monolaurate is particularly preferable. As sucrose fatty acid ester, sucrose oleic acid ester (for example, trade name: O-1570, Mitsubishi Chemical Foods Co., Ltd.), sucrose palmitate ester (for example, trade name: P-1670, Mitsubishi Chemical Foods) Ltd.), sucrose stearates (eg trade name: S-1670, Mitsubishi Kagaku Foods Co., Ltd.), sucrose laurate esters (eg trade name: L-1695, Mitsubishi Kagaku Foods Co., Ltd.) Are suitable. As the polyoxyethylene castor oil, polyoxyethylene glycerol triricinolate 35 (Polyoxy35Castor Oil, trade name: Cremophor EL or EL-P, BSF Japan Co., Ltd.) is particularly suitable. As the polyoxyethylene hydrogenated castor oil, particularly, polyoxyethylene hydrogenated castor oil 50 and polyoxyethylene hydrogenated castor oil 60 are suitable. As the polyoxyethylene polyoxypropylene glycol copolymer, polyoxyethylene (160) polyoxypropylene (30) glycol (trade name: ADEKA Pluronic F-68, Asahi Denka Kogyo Co., Ltd.) and the like are particularly preferable. .. As the polyglycerin fatty acid ester, decaglycerin monolauric acid (Decaglyn1-L, Nikko Chemicals Co., Ltd.) and the like are preferable.

これらの界面活性剤は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。
界面活性剤は、良水溶性溶質を水に溶解した液体が含む前記界面活性剤と、親水性物質を分散させた液体が含む前記界面活性剤が異なるものを用いることが好ましい。異なる界面活性剤の組み合わせとして、本発明のナノ機能性粒子が水中で安定に分散し得る、及び抗酸化物質の抗酸化作用を向上させる点で、ショ糖脂肪酸エステル類(特にショ糖オレイン酸エステル)、ソルビタン脂肪酸エステル類(特にソルビタンオレイン酸エステル)及びポリオキシエチレンソルビタン脂肪酸エステル類(特にポリオキシエチレンソルビタンオレイン酸エステル)各々から選ばれることが好ましく、特にソルビタン脂肪酸エステル類とポリオキシエチレンソルビタン脂肪酸エステル類との組み合わせ、特にソルビタン脂肪酸エステル類とポリオキシエチレンソルビタンオレイン酸エステルとの組み合わせ、特にソルビタンオレイン酸エステルとポリオキシエチレンソルビタンオレイン酸エステルとの組み合わせが好ましい。
These surfactants may be used alone or in combination of two or more.
As the surfactant, it is preferable to use one in which the surfactant contained in the liquid in which a water-soluble solute is dissolved is different from the surfactant contained in the liquid in which a hydrophilic substance is dispersed. As a combination of different surfactants, the sucrose fatty acid esters (particularly sucrose oleic acid ester) can be used because the nano-functional particles of the present invention can be stably dispersed in water, and the antioxidant effect of the antioxidant is improved. ), sorbitan fatty acid esters (particularly sorbitan oleic acid ester) and polyoxyethylene sorbitan fatty acid esters (particularly polyoxyethylene sorbitan oleic acid ester), and particularly sorbitan fatty acid esters and polyoxyethylene sorbitan fatty acid A combination with an ester, particularly a combination of sorbitan fatty acid ester and a polyoxyethylene sorbitan oleic acid ester, particularly a combination of sorbitan oleic acid ester and a polyoxyethylene sorbitan oleic acid ester is preferable.

特にソルビタン脂肪酸エステル類とポリオキシエチレンソルビタン脂肪酸エステル類との組み合わせにおいては、ソルビタン脂肪酸エステル類を上記有機相に、ポリオキシエチレンソルビタン脂肪酸エステル類を上記水相に用いることが好ましい。 Particularly in the combination of sorbitan fatty acid ester and polyoxyethylene sorbitan fatty acid ester, it is preferable to use sorbitan fatty acid ester in the organic phase and polyoxyethylene sorbitan fatty acid ester in the aqueous phase.

また、本発明のナノ機能性粒子が水中で安定に分散し得る及び抗酸化物質の抗酸化作用を向上させる点に加えて、抗酸化物質の皮膚への浸透性を向上させるための異なる界面活性剤の組み合わせとしては、ショ糖脂肪酸エステル類とソルビタン脂肪酸エステル類との組み合わせ、特にショ糖オレイン酸エステルとソルビタンオレイン酸エステルとの組み合わせが好ましい。 Further, in addition to the point that the nano-functional particles of the present invention can be stably dispersed in water and improve the antioxidant effect of the antioxidant, different surface active agents for improving the permeability of the antioxidant into the skin As a combination of agents, a combination of sucrose fatty acid ester and sorbitan fatty acid ester, particularly a combination of sucrose oleic acid ester and sorbitan oleic acid ester is preferable.

(良水溶性溶質)
本発明で使用される良水溶性物質には、水に可溶な物質を挙げることができる。例えば、マンニトール、デキストラン、乳糖、デンプン、キシリトール、ソルビトール、デキストリン、白糖、ポリビニルアルコール、ポリビニルピロリドン、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース、プルラン、ゼラチン、コラーゲン、カンテン、アルギン酸ナトリウム、キサンタンガム、ポリエチレングリコール、アラビアゴムなどである。これら良水溶性溶質は、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
良水溶性溶質は、水に溶解して液体を構成し、溶媒が蒸発することによって凝固して固体となり、マイクロ粒子となり得る。良水溶性溶質を水に溶解した液体における良水溶性溶質(物質)の濃度は、0.5〜10質量%であることが好ましく、1〜5質量%であることがより好ましく、2〜4質量%であることが特に好ましい。
(Good water-soluble solute)
The water-soluble substance used in the present invention may include a substance soluble in water. For example, mannitol, dextran, lactose, starch, xylitol, sorbitol, dextrin, sucrose, polyvinyl alcohol, polyvinylpyrrolidone, methylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxyethylcellulose, pullulan, gelatin, collagen, agar, sodium alginate, xanthan gum, Examples include polyethylene glycol and gum arabic. These good water-soluble solutes may be used alone or in combination of two or more.
The good water-soluble solute may be dissolved in water to form a liquid, and when the solvent evaporates, the solute solidifies to become a solid and may become a microparticle. The concentration of the good water-soluble solute (substance) in the liquid obtained by dissolving the good water-soluble solute in water is preferably 0.5 to 10% by mass, more preferably 1 to 5% by mass, and 2 to 4 It is particularly preferable that the content is% by mass.

(親水性物質)
本発明で定義される親水性物質とは、固体の粉末1gを水中に入れ、20±0.5℃で5分毎に強く30秒間振り混ぜるとき、30分以内に溶かすのに必要な水の量が100ミリリットル未満のものを言う。
本発明で使用される親水性物質には、例えば水溶性の抗酸化物質を好適に用いることができる。例えば、アスコルビン酸、アスコルビン酸誘導体(リン酸アスコルビルマグネシウム、リン酸アスコルビルナトリウム、L-アスコルビン酸-2グルコシド、3-O-エチルアスコルビン酸、パルミチン酸アスコルビルリン酸3ナトリウム)、グルタチオン、システイン、リポ酸、フィチン酸、ポリフェノール、リボフラビン、尿酸、ウロビリノーゲン、メラトニン、ビリルビン、メラノイジン、スーパーオキシドジスムターゼ、グルタチオンペルオキシダーゼ、ペルオキシダーゼ、カタラーゼのようなものが挙げられる。
(Hydrophilic substance)
The hydrophilic substance defined in the present invention means that when 1 g of solid powder is put in water and shaken vigorously at 20±0.5° C. for 5 minutes every 30 seconds, the water required for dissolution within 30 minutes is required. The amount is less than 100 ml.
As the hydrophilic substance used in the present invention, for example, a water-soluble antioxidant substance can be preferably used. For example, ascorbic acid, ascorbic acid derivative (ascorbyl magnesium phosphate, ascorbyl sodium phosphate, L-ascorbic acid-2 glucoside, 3-O-ethylascorbic acid, ascorbyl palmitate trisodium phosphate), glutathione, cysteine, lipoic acid , Phytic acid, polyphenols, riboflavin, uric acid, urobilinogen, melatonin, bilirubin, melanoidin, superoxide dismutase, glutathione peroxidase, peroxidase, catalase.

(化粧品用成分)
本発明で使用される親水性物質には、例えば親水性の化粧品用成分を好適に用いることができる。化粧品用成分としては、例えば、保湿剤、美白剤、育毛剤、養毛剤、発毛剤、抗白髪剤、アンチエイジング剤、抗酸化剤、コラーゲン合成促進剤、抗しわ剤、抗にきび剤、ビタミン剤、紫外線吸収剤、香料、色素剤、制汗剤、冷感剤、温感剤、メラニン生成抑制剤、メラノサイト活性化剤、クレンジング剤、痩身剤などを挙げることができる。
親水性とは、上記に記載の通りである。
(Cosmetic ingredients)
As the hydrophilic substance used in the present invention, for example, a hydrophilic cosmetic ingredient can be preferably used. Examples of cosmetic ingredients include moisturizers, whitening agents, hair restorers, hair nourishing agents, hair growth agents, anti-hair graying agents, anti-aging agents, antioxidants, collagen synthesis promoters, anti-wrinkle agents, anti-acne agents, vitamin agents. , UV absorbers, fragrances, coloring agents, antiperspirants, cooling agents, warming agents, melanin production inhibitors, melanocyte activators, cleansing agents, slimming agents and the like.
Hydrophilic is as described above.

(医薬品成分)
本発明で使用される親水性物質には、例えば親水性の医薬品成分を好適に用いることができる。医薬品成分としては、例えば、育毛剤、養毛剤、発毛剤、抗生剤、制癌剤、抗炎症剤、抗アレルギー剤、ホルモン剤、抗血栓剤、免疫抑制剤、皮膚疾患治療薬、抗真菌薬、核酸医薬、麻酔薬、解熱剤、鎮痛剤、鎮痒剤、抗浮腫剤、鎮咳裾痰剤、抗てんかん剤、抗パーキンソン剤、催眠鎮静剤、抗不安剤、興奮剤、精神神経用剤、筋弛緩剤、抗鬱剤、総合感冒薬剤、自律神経系剤、鎮けい剤、発汗剤、止汗剤、強心剤、不整脈用剤、抗不整脈剤、血管収縮剤、血管拡張剤、抗不整脈剤、血圧降下剤、糖尿治療剤、高脂血漿剤、呼吸促進剤、鎮咳剤、ビタミン剤、寄生性皮膚疾患用剤、恒常性剤、ポリペプチド、ホルモン、不全角化抑制剤、ワクチン、又は皮膚軟化剤などを挙げることができる。
親水性とは、上記に記載の通りである。
(Pharmaceutical ingredients)
For the hydrophilic substance used in the present invention, for example, a hydrophilic drug component can be preferably used. Examples of the pharmaceutical component include hair growth agents, hair nourishing agents, hair growth agents, antibiotics, anticancer agents, anti-inflammatory agents, antiallergic agents, hormone agents, antithrombotic agents, immunosuppressive agents, skin disease therapeutic agents, antifungal agents, nucleic acids. Drugs, anesthetics, antipyretics, analgesics, antipruritics, antiedema agents, antitussive agents, antiepileptics, antiparkinsonics, hypnotics, anxiolytics, stimulants, neuropsychiatric agents, muscle relaxants, Antidepressants, general cold drugs, autonomic nervous system agents, anticonvulsants, antiperspirants, antiperspirants, inotropic agents, antiarrhythmic agents, antiarrhythmic agents, vasoconstrictors, vasodilators, antiarrhythmic agents, antihypertensive agents, diabetes Examples include therapeutic agents, high-lipid plasma agents, respiratory stimulants, antitussives, vitamins, agents for parasitic skin diseases, homeostatic agents, polypeptides, hormones, parakeratosis inhibitors, vaccines, or emollients. it can.
Hydrophilic is as described above.

(抗酸化能を有する粒子)
抗酸化能とは、例えば、脂質の過酸化反応を抑制するなど酸素が関与する有害な反応を減弱もしくは除去する能力のことを指し、特に生体においては酸化ストレスあるいは活性酸素種(酸素フリーラジカル、ヒドロキシルラジカル、スーパーオキシドアニオン、過酸化水素など)を捕捉することによって無害化する反応に寄与することを指す。抗酸化能を有する粒子とは、このような作用を示す抗酸化物質を内包あるいは含有した粒子形態をとり、かつ上述の抗酸化能を発揮する粒子のことをいう。
(Particles having antioxidant ability)
Antioxidant capacity, for example, refers to the ability to reduce or eliminate harmful reactions involving oxygen, such as suppressing lipid peroxidation reactions, especially in living organisms oxidative stress or reactive oxygen species (oxygen free radicals, By trapping hydroxyl radicals, superoxide anions, hydrogen peroxide, etc.), it contributes to the detoxifying reaction. The particles having an antioxidant ability refer to particles having a particle form containing or containing an antioxidant having such an action and exhibiting the above-mentioned antioxidant ability.

[粒子分散液の製造方法]
本発明の粒子分散液は、本発明のナノ機能性粒子を溶媒中に添加し撹拌するだけで良好に安定な分散状態を保ち、製造することができる。本発明の分散液の製造に使用される溶媒は、本発明のナノ機能性粒子を分散させ得るものであれば、特に制限されず、例えば、水、ジメチルスルホキシド、エタノールなどのアルコール、及びこれらの混合溶媒が挙げられる。好ましくは水である。
[Method for producing particle dispersion]
The particle dispersion of the present invention can be produced by simply adding the nano-functional particles of the present invention to a solvent and stirring the dispersion, while maintaining a good stable dispersion state. The solvent used for producing the dispersion of the present invention is not particularly limited as long as it can disperse the nano-functional particles of the present invention, and examples thereof include water, dimethyl sulfoxide, alcohols such as ethanol, and the like. A mixed solvent may be used. Water is preferred.

[皮膚外用剤の製造方法]
(皮膚外用剤)
本発明の粒子分散液は、皮膚外用剤への使用、とりわけ水性皮膚外用剤への使用に好適であり、例えば、粒子分散液を増粘多糖類などの基材に配合することで容易に外用剤化できる。
[Method for producing external preparation for skin]
(External skin preparation)
The particle dispersion of the present invention is suitable for use in external preparations for skin, particularly for use in external preparations for aqueous skin. For example, by adding the particle dispersion to a base material such as a thickening polysaccharide, external application is facilitated. Can be made into a drug.

[抗酸化能を有する親水性物質の抗酸化作用を高める方法]
抗酸化能を有する親水性物質を使用して、前記のナノ機能性粒子の製造方法により得られたナノ機能性粒子を水に分散させることで、単独の抗酸化能を有する親水性物質の水溶液と比較して同等もしくはより高い抗酸化作用を示す。
[Method for enhancing the antioxidative effect of hydrophilic substances having antioxidative ability]
Using a hydrophilic substance having an antioxidant ability, by dispersing the nano-functional particles obtained by the method for producing nano-functional particles in water, a single aqueous solution of a hydrophilic substance having an antioxidant ability is obtained. It shows the same or higher antioxidant effect as compared with.

[ナノ機能性粒子]
本発明のナノ機能性粒子は、粒子径がナノサイズオーダー(1〜999nm)であり、またマイクロ粒子は、粒子径がマイクロサイズオーダー(1〜999μm)である。本発明のナノ機能性粒子は、マイクロ粒子の内部に分散している、及び/又は、前記マイクロ粒子の表面に存在、例えば、分散して存在しており、マイクロ粒子中に分散する及び/又は前記マイクロ粒子表面に存在するナノ機能性粒子を含んだマイクロ粒子を複合粉末ともいう。本発明のナノ機能性粒子は、その粒子径が10〜500nm、好ましくは20〜450nm、さらに好ましくは30〜400nmのものが、マイクロ粒子に対し0.1〜15重量%、好ましくは0.2〜13重量%、さらに好ましくは0.3〜10重量%を占めるものであることが好ましい。
[Nano-functional particles]
The nano-functional particles of the present invention have a particle size of the nano size order (1 to 999 nm), and the micro particles have a particle size of the micro size order (1 to 999 μm). The nano-functional particles of the present invention are dispersed inside the microparticles and/or are present on the surface of the microparticles, for example dispersedly present and dispersed in the microparticles and/or Microparticles containing nano-functional particles existing on the surface of the microparticles are also referred to as composite powder. The nano-functional particles of the present invention have a particle size of 10 to 500 nm, preferably 20 to 450 nm, more preferably 30 to 400 nm, and are 0.1 to 15% by weight, preferably 0.2 to the microparticles. It is preferable to occupy 13 to 13% by weight, more preferably 0.3 to 10% by weight.

本発明のナノ機能性粒子は、その粒子径が30〜400nmのものが、マイクロ粒子に対し0.3〜10重量%を占めるものであることが最も好ましい。 It is most preferable that the nano-functional particles of the present invention have a particle diameter of 30 to 400 nm occupying 0.3 to 10% by weight with respect to the micro particles.

本発明のマイクロ粒子は、その粒子径が1〜10μmであることが好ましい。 The microparticles of the present invention preferably have a particle size of 1 to 10 μm.

本発明のナノ機能性粒子及びマイクロ粒子の粒子径は、実施例に記載のDLS測定及び/又はTEM観察により求められる。 The particle diameters of the nano-functional particles and the micro particles of the present invention are determined by DLS measurement and/or TEM observation described in the examples.

(分散液)
本発明の粒子分散液は、本発明のナノ機能性粒子が溶媒中に安定して分散した液体である。分散液中の粒子濃度は0.003〜50mg/mLであることが好ましい。製造方法としては、上記の粒子分散液の製造方法に記載の方法で製造されるが、これに限定されない。本発明の分散液の製造に使用される溶媒は、本発明のナノ機能性粒子を分散させ得るものであれば、特に制限されず、例えば、水、ジメチルスルホキシド、エタノールなどのアルコール、及びこれらの混合溶媒が挙げられる。好ましくは水である。
(Dispersion liquid)
The particle dispersion liquid of the present invention is a liquid in which the nano-functional particles of the present invention are stably dispersed in a solvent. The particle concentration in the dispersion is preferably 0.003 to 50 mg/mL. The production method is not limited to the method described in the above method for producing a particle dispersion. The solvent used for producing the dispersion of the present invention is not particularly limited as long as it can disperse the nano-functional particles of the present invention, and examples thereof include water, dimethyl sulfoxide, alcohols such as ethanol, and the like. A mixed solvent may be used. Water is preferred.

(皮膚外用剤)
本発明の皮膚外用剤とは、本発明のナノ機能性粒子を含む、皮膚へ直接又は間接に塗布することにより疾患を治療するための外用剤である。本発明の皮膚外用剤は、例えば本発明のナノ機能性粒子を媒体に分散させて製造される。媒体としては、水又はゲルが挙げられる。性状としては、液状(特に水系)、軟膏状又はゲル状である。本願の皮膚外用剤は、親水性物質を水等の媒体に溶解させるのではなく、分散させることができるため、親水性物質の効能維持及び保存安定性に優れる。本発明の皮膚外用剤は、抗酸化能を有する皮膚外用剤であることが好ましい。本発明の皮膚外用剤は、本発明の効果を損なわない限り、活性物質の皮膚への浸透性を向上させるための物質を添加してもよい。
(External skin preparation)
The external preparation for skin of the present invention is an external preparation containing the nano-functional particles of the present invention for treating a disease by directly or indirectly applying to the skin. The external preparation for skin of the present invention is produced, for example, by dispersing the nano-functional particles of the present invention in a medium. Water or gel is mentioned as a medium. The properties are liquid (especially aqueous), ointment or gel. Since the external preparation for skin of the present application can disperse a hydrophilic substance in a medium such as water instead of dissolving it, it is excellent in the effect maintenance and the storage stability of the hydrophilic substance. The external preparation for skin of the present invention is preferably an external preparation for skin having antioxidant ability. The external preparation for skin of the present invention may contain a substance for improving the penetration of the active substance into the skin, as long as the effect of the present invention is not impaired.

また、本発明の皮膚外用剤は、本発明の効果を損なわない限り、皮膚外用剤に通常配合され得る成分を含有することができる。そのような成分としては、グリセリン、プロピレングリコールなどの多価アルコール、流動パラフィン、スクワラン、高級脂肪酸、高級アルコールなどの油分、クエン酸、乳酸などの有機酸類、苛性ソーダ、トリエタノールアミンなどのアルカリ類、カチオン性界面活性剤、両性界面活性剤、非イオン性界面活性剤、粉末、顔料、染料、防腐防黴剤、樹脂、pH調整剤、酸化防止剤、紫外線吸収剤、キレート剤、増粘剤、保湿剤、アルコール、水、香料などが例示される。 Further, the external preparation for skin of the present invention can contain components that can be usually added to the external preparation for skin, as long as the effects of the present invention are not impaired. Such components include glycerin, polyhydric alcohols such as propylene glycol, liquid paraffin, squalane, higher fatty acids, oils such as higher alcohols, citric acid, organic acids such as lactic acid, caustic soda, alkalis such as triethanolamine, Cationic surfactant, amphoteric surfactant, nonionic surfactant, powder, pigment, dye, antiseptic and fungicide, resin, pH adjusting agent, antioxidant, ultraviolet absorber, chelating agent, thickener, Moisturizers, alcohol, water, fragrances, etc. are exemplified.

以下、実施例を挙げて本発明をさらに詳しく具体的に説明するが、本発明はこれらに限定されるものではない。
1.粒子の調製
実施例で粒子の調製に使用した試薬及び装置を以下に示す。
・試薬
リン酸アスコルビルマグネシウム(以下APMと表記、I・T・O社製)
L-アスコルビン酸(以下Ascと表記、東京化成社製)
モノオレイン酸ソルビタン(製品名:SO-10V、以下SO-10Vと表記、日光ケミカルズ社製)
モノオレイン酸POE(20)ソルビタン(製品名:TO-10V、以下TO-10Vと表記、日光ケミカルズ社製)
マンニトール(東京化成社製)
・装置
スプレードライノズル:ツインジェットノズル RJ-10-TLM(大川原化工機社製)
スプレードライノズルへの送液ポンプ:EHN-B11SH9R(イワキ社製)
スプレードライ本体:CL-8(大川原化工機社製)
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
1. Preparation of Particles The reagents and equipment used for the preparation of particles in the examples are shown below.
・Reagent magnesium ascorbyl phosphate (hereinafter referred to as APM, manufactured by Ito Corporation)
L-ascorbic acid (hereinafter referred to as Asc, manufactured by Tokyo Kasei)
Sorbitan monooleate (Product name: SO-10V, referred to as SO-10V below, manufactured by Nikko Chemicals)
POE(20) sorbitan monooleate (Product name: TO-10V, hereinafter referred to as TO-10V, manufactured by Nikko Chemicals)
Mannitol (made by Tokyo Kasei)
・Apparatus spray dry nozzle: Twin jet nozzle RJ-10-TLM (Okawara Kakohki Co., Ltd.)
Liquid feed pump to spray dry nozzle: EHN-B11SH9R (manufactured by Iwaki)
Spray dry body: CL-8 (Okawara Kakoki Co., Ltd.)

実施例1 APM内包粒子の調製
SO-10Vを溶解したトルエンを撹拌し、そこにAPM水溶液を滴下して混合することで、連続相がトルエンの乳化液を調製し、これを有機相とした(仕込比:SO-10V/トルエン/APM/水=2/150/1/50(w/w/w/w))。水相は、TO-10Vを溶解した水にマンニトールを溶解させることで調製した(仕込比:TO-10V/水/マンニトール=2/875.5/22.5(w/w/w))。これら有機相と水相が約1:4 w/wの比率となるように送液ポンプを用いてスプレードライノズルへと送液して、標記の粒子(複合粉末)を得た。スプレードライ本体の入口温度は180℃とした。また、ノズルに供給する圧縮窒素は0.15MPaとした。
実施例2 Asc内包粒子の調製
SO-10Vを溶解したトルエンを撹拌し、そこにAsc水溶液を滴下して混合することで、連続相がトルエンの乳化液を調製し、これを有機相とした(仕込比:SO-10V/トルエン/APM/水=2/150/1/50(w/w/w/w))。水相は、TO-10Vを溶解した水にマンニトールを溶解させることで調製した(仕込比:TO-10V/水/マンニトール=2/875.5/22.5(w/w/w))。これら有機相と水相が約1:4 w/wの比率となるように送液ポンプを用いてスプレードライノズルへと送液して、標記の粒子(複合粉末)を得た。スプレードライ本体の入口温度は180℃とした。また、ノズルに供給する圧縮窒素は0.15MPaとした。
Example 1 Preparation of APM-encapsulating particles
The toluene in which SO-10V was dissolved was stirred, and the APM aqueous solution was added dropwise to the mixture to prepare an emulsion in which the continuous phase was toluene, and this was used as the organic phase (charge ratio: SO-10V/toluene). /APM/water = 2/150/1/50 (w/w/w/w)). The aqueous phase was prepared by dissolving mannitol in water in which TO-10V was dissolved (charge ratio: TO-10V/water/mannitol=2/875.5/22.5 (w/w/w)). The organic phase and the aqueous phase were fed to a spray-dry nozzle using a feed pump so that the ratio was about 1:4 w/w to obtain the title particles (composite powder). The inlet temperature of the spray dry body was 180°C. The compressed nitrogen supplied to the nozzle was 0.15 MPa.
Example 2 Preparation of Asc-encapsulated particles
The toluene in which SO-10V was dissolved was stirred, and the Asc aqueous solution was added dropwise to the mixture to prepare an emulsion in which the continuous phase was toluene, and this was used as the organic phase (charge ratio: SO-10V/toluene). /APM/water = 2/150/1/50 (w/w/w/w)). The aqueous phase was prepared by dissolving mannitol in water in which TO-10V was dissolved (charge ratio: TO-10V/water/mannitol=2/875.5/22.5 (w/w/w)). The organic phase and the aqueous phase were fed to a spray-dry nozzle using a feed pump so that the ratio was about 1:4 w/w to obtain the title particles (composite powder). The inlet temperature of the spray dry body was 180°C. The compressed nitrogen supplied to the nozzle was 0.15 MPa.

2.粉末中の有効成分(APMまたはAsc)含有量の定量及び粒子径測定
前記実施例1及び2にて得られた粉末中のAPMまたはAsc濃度及び水中での粒子径を、HPLC及びDLS測定により評価した。使用した装置及び条件は以下のとおりである。
(1) HPLC測定
実施例1及び2の粉末0.10gを正確に量りとり、水10mLに加え試料を作製した。得られた試料を以下の条件のHPLCにかけ、分析した。得られた結果を表1に示す。
2. Quantification of active ingredient (APM or Asc) content in powder and particle size measurement The APM or Asc concentration in the powder and the particle size in water obtained in Examples 1 and 2 were evaluated by HPLC and DLS measurement. did. The equipment and conditions used are as follows.
(1) HPLC measurement 0.10 g of the powder of Examples 1 and 2 was accurately weighed and added to 10 mL of water to prepare a sample. The obtained sample was subjected to HPLC under the following conditions and analyzed. The results obtained are shown in Table 1.

<HPLC条件>
カラム:TSK-gel ODS-120T(4.6×150mm)
温度 :40℃
検出 :UV 244nm
流速 :1.0mL/min
注入量:10μL
溶離液:20mM 酢酸アンモニウム/5mM テトラブチルアンモニウムブロミド/アセトニトリル 80:20 (v/v)(プレミックス)
(2) DLS測定
実施例1及び2で得られた粉末を水に溶解させて試料を作製した。その試料中の粒子径を動的光散乱装置(DLS:ZETASIZER Nano series Nano-ZS;マルバーン社製)を用いて測定した。得られた結果を表1に示す。表1には、個数分布のメインピークを記載した。
<HPLC conditions>
Column: TSK-gel ODS-120T (4.6 x 150 mm)
Temperature: 40℃
Detection: UV 244nm
Flow rate: 1.0 mL/min
Injection volume: 10 μL
Eluent: 20 mM ammonium acetate/5 mM tetrabutylammonium bromide/acetonitrile 80:20 (v/v) (premix)
(2) DLS measurement The powders obtained in Examples 1 and 2 were dissolved in water to prepare samples. The particle diameter in the sample was measured using a dynamic light scattering device (DLS: ZETASIZER Nano series Nano-ZS; manufactured by Malvern Instruments Ltd.). The results obtained are shown in Table 1. Table 1 shows the main peaks of the number distribution.


(3) TEM観察
実施例1で得られた粉末を水に溶解後、遠心限外ろ過容器(Centrisart MWCO5,000;ザルトリウス社製)を用いて水分散液から単離したナノ粒子を透過型電子顕微鏡(TEM:;日本電子社製)にて観察した。観察画像を図1に示す。
(3) TEM observation After dissolving the powder obtained in Example 1 in water, the nanoparticles isolated from the aqueous dispersion were subjected to a transmission electron using a centrifugal ultrafiltration container (Centrisart MWCO5,000; manufactured by Sartorius). It was observed with a microscope (TEM: manufactured by JEOL Ltd.). The observed image is shown in FIG.

表1及び図1から、実施例で得られた粒子は、粒子サイズ(粒子直径)が例えば80nm程度のナノメートルオーダーのナノ粒子であることが認められた。
3.水に対する分散安定性
実施例1及び2の粉末を、APMまたはAsc濃度が200ppmになるよう水に加え、それぞれ分散液を調製した。得られた分散液を1ヵ月静置した後、その外観を観察したところ、沈殿物は確認されず、良好な分散状態を保っていた(1ヵ月静置した実施例1の水分散液の外観写真を図2に示す)。このことから、当該ナノ粒子は水中で良好な分散安定性が認められた。
From Table 1 and FIG. 1, it was confirmed that the particles obtained in the examples were nanoparticles of the nanometer order having a particle size (particle diameter) of, for example, about 80 nm.
3. Dispersion Stability in Water The powders of Examples 1 and 2 were added to water so that the APM or Asc concentration was 200 ppm to prepare dispersions. The resulting dispersion was allowed to stand for 1 month, and then its appearance was observed. No precipitate was observed and a good dispersion state was maintained (appearance of the aqueous dispersion of Example 1 left to stand for 1 month). The photograph is shown in Fig. 2). From this, it was confirmed that the nanoparticles had good dispersion stability in water.

4.抗酸化能評価
実施例1及び2にて得られたナノ粒子の抗酸化能を、APMまたはAsc水溶液の抗酸化作用と比較することで評価した。抗酸化試験は、Cell Biolabs, Inc.社製 OxiSelectTM Ferric Reducing Ability of Plasmaアッセイキットを用いた試験(以下、FRAP試験と表記)及びOxiSelectTM 細胞内抗酸化活性アッセイキットを用いた試験(以下、細胞試験と表記)にて行った。FRAP試験では、吸光度を効果の指標に用いた。細胞試験では、コントロールに対する蛍光強度の減少量を効果の指標に用いた。
4. Evaluation of antioxidative ability The antioxidative ability of the nanoparticles obtained in Examples 1 and 2 was evaluated by comparing with the antioxidative action of the APM or Asc aqueous solution. Antioxidant test, a test using Cell Biolabs, Inc. OxiSelect TM Ferric Reducing Ability of Plasma assay kit (hereinafter, referred to as FRAP test) and a test using OxiSelect TM intracellular antioxidant activity assay kit (hereinafter, Cell test). In the FRAP test, the absorbance was used as an index of the effect. In the cell test, the amount of decrease in fluorescence intensity with respect to the control was used as an index of effect.

(1)FRAP試験:実施例1
アッセイバッファーにAPMを溶解して200ppmのAPM溶液を調製し、さらに、これを希釈することで100,50,20ppmのAPM溶液をそれぞれ調製した。また、アッセイバッファーに実施例1の粉末を加えてAPM濃度換算で200ppmのAPM内包粒子の水分散液を調製し、さらに、これを希釈することで100,50,20ppmのAPM内包粒子水分散液をそれぞれ調製した。つぎに、調製した200,100,50,20ppmの溶液及び分散液を96wellプレート(Corning社製 96 Well Flat Clear Bottom BlackPolystyrene TC-Treated Microplates 3603)にそれぞれ100μL×6wellずつ入れ、そのうち3wellにReaction Reagent溶液(Colorimetric Probe/IronChloride)を100μLずつ加え、残りの3wellにはアッセイバッファーを100μLずつ加えた。上記手順で調製したwell中の吸光度をプレートリーダー(TECAN社製)にて測定し、サンプル自身の吸光度を引くことで正味の吸光度を算出した。試験の結果を図3に示す。試験結果から、実施例1のサンプルは各濃度においてAPM水溶液と同等の抗酸化能を示し、ナノ粒子化しても活性を阻害せず抗酸化作用を示すことが確認された。
(1) FRAP test: Example 1
APM was dissolved in the assay buffer to prepare a 200 ppm APM solution, and this was further diluted to prepare 100, 50, and 20 ppm APM solutions, respectively. In addition, the powder of Example 1 was added to the assay buffer to prepare an aqueous dispersion of APM-encapsulated particles of 200 ppm in terms of APM concentration, and this was further diluted to 100,50,20 ppm APM-encapsulated particle aqueous dispersion. Were prepared respectively. Next, the prepared 200, 100, 50, 20 ppm solution and dispersion were put in 96 well plates (Corning Co. 96 Well Flat Clear Bottom Black Polystyrene TC-Treated Microplates 3603) 100 μL × 6 wells, respectively, and the Reaction Reagent solution (Colorimetric) in 3 wells of them. Probe/Iron Chloride) was added 100 μL each, and assay buffer was added 100 μL each to the remaining 3 wells. The absorbance in the well prepared by the above procedure was measured by a plate reader (manufactured by TECAN), and the absorbance of the sample itself was subtracted to calculate the net absorbance. The test results are shown in FIG. From the test results, it was confirmed that the sample of Example 1 exhibited an antioxidant ability equivalent to that of the APM aqueous solution at each concentration, and did not inhibit the activity even when made into nanoparticles and exhibited an antioxidant action.

(2)FRAP試験:実施例2
アッセイバッファーにAscを溶解して200ppmのAsc溶液を調製し、これを希釈することで100,40ppmのAsc溶液をそれぞれ調製した。また、アッセイバッファーに実施例2の粉末を加えてAsc濃度換算で200ppmのAsc内包粒子水分散液を調製し、これを希釈することで100,40ppmのAsc内包粒子水分散液を調製した。つぎに、調製した100,40ppmの溶液及び分散液を96wellプレート(Corning社製 96 Well Flat Clear Bottom BlackPolystyrene TC-Treated Microplates 3603)にそれぞれ100μL×6wellずつ入れ、そのうち3wellにReaction Reagent溶液(Colorimetric Probe/IronChloride)を100μLずつ加え、残りの3wellにはアッセイバッファーを100μLずつ加えた。上記手順で調製したwell中の吸光度をプレートリーダー(TECAN社製)にて測定し、サンプル自身の吸光度を引くことで正味の吸光度を算出した。試験の結果を図4に示す。試験結果から、実施例2のサンプルは各濃度においてAsc水溶液と同等の抗酸化能を示し、ナノ粒子化しても活性を阻害せず抗酸化作用を示すことが確認された。
(2) FRAP test: Example 2
Asc was dissolved in the assay buffer to prepare a 200 ppm Asc solution, and this was diluted to prepare 100 and 40 ppm Asc solutions, respectively. Further, the powder of Example 2 was added to the assay buffer to prepare a 200 ppm Asc-encapsulated particle aqueous dispersion in terms of Asc concentration, and this was diluted to prepare 100,40 ppm Asc-encapsulated particle aqueous dispersion. Next, the prepared 100 and 40 ppm solution and dispersion were put in 96 well plates (Corning Co. 96 Well Flat Clear Bottom Black Polystyrene TC-Treated Microplates 3603) 100 μL x 6 wells, respectively, and Reaction Reagent solution (Colorimetric Probe/ IronChloride) was added by 100 μL, and assay buffer was added by 100 μL by the remaining 3 wells. The absorbance in the well prepared by the above procedure was measured by a plate reader (manufactured by TECAN), and the absorbance of the sample itself was subtracted to calculate the net absorbance. The test results are shown in FIG. From the test results, it was confirmed that the sample of Example 2 exhibited an antioxidant ability equivalent to that of the Asc aqueous solution at each concentration, and did not inhibit the activity even when made into nanoparticles and exhibited an antioxidant action.

(3)細胞試験:実施例1
・試験プレートの調製
細胞試験には、HuMeda-KG2培地(倉敷紡績社製)で培養した正常ヒト表皮角化細胞(以下、NHEK細胞と表記)を使用した。4継代したNHEK細胞80×104cellsを遠沈管に加え、遠心分離(300xg, 3min)後、上清を除去し、それぞれにHuMeda-KG2培地を8mLずつ添加した。ピペッティングで細胞を懸濁して得られた懸濁液を1.0×104cells/100μL/wellずつ96wellプレート(Corning社製96 Well Flat Clear Bottom Black Polystyrene TC-TreatedMicroplates 3603)に播種し、5%CO2存在下37℃で24時間インキュベートした。つぎに、試験試料を下記の手順で調製した。
(3) Cell test: Example 1
-Preparation of test plate For the cell test, normal human epidermal keratinocytes (hereinafter referred to as NHEK cells) cultured in HuMeda-KG2 medium (Kurashiki Spinning Co., Ltd.) were used. NHEK cells of 4 passages of 80×10 4 cells were added to a centrifuge tube, centrifuged (300×g, 3 min), the supernatant was removed, and 8 mL of HuMeda-KG2 medium was added to each. The suspension obtained by suspending the cells by pipetting was inoculated into a 96-well plate (Corning 96 Well Flat Clear Bottom Black Polystyrene TC-Treated Microplates 3603) at 1.0 × 10 4 cells/100 μL/well, and 5% CO Incubated in the presence of 2 at 37° C. for 24 hours. Next, a test sample was prepared by the following procedure.

・評価培地の調製
HuMeda-KG2培地にAPMを溶解して1000ppmのAPM含有培地を調製し、これを希釈することで40,30,20,10ppmのAPM含有培地をそれぞれ調製した。また、HuMeda-KG2培地に実施例1の粉末を加えてAPM濃度換算で100ppmのAPM内包粒子分散培地を調製し、これを希釈することで40,30,20,10ppmのAPM内包粒子分散培地をそれぞれ調製した。
・Free Radical Initiator; 2.8% HEPES溶液の調製
FreeRadical Initiator(28mg)をHEPES(1000μL)に溶解させ、Free Radical Initiator (100x)を調製した。使用する直前に、Free Radical Initiator (100x)(250μL)をHEPES(25mL)に溶解し、2.8% HEPES溶液を調製した。
・Preparation of evaluation medium
APM-containing medium of 1000 ppm was prepared by dissolving APM in HuMeda-KG2 medium, and 40, 30, 20, and 10 ppm of APM-containing medium were prepared by diluting the medium. Also, the powder of Example 1 was added to HuMeda-KG2 medium to prepare 100 ppm APM-encapsulated particle dispersion medium in terms of APM concentration, and 40,30,20,10 ppm APM-encapsulated particle dispersion medium was diluted by diluting this. Each was prepared.
・Free Radical Initiator; Preparation of 2.8% HEPES solution
FreeRadical Initiator (28 mg) was dissolved in HEPES (1000 μL) to prepare Free Radical Initiator (100x). Immediately before use, Free Radical Initiator (100x) (250 μL) was dissolved in HEPES (25 mL) to prepare a 2.8% HEPES solution.

・試験方法
試験プレート各well内の培地を除去し、DCFH-DA Probe (1000x)(40μL) をHuMeda-KG2培地(20mL)に溶解させて調製したDCFH-DA Probe(2x)(50uL)を各wellに添加した。つぎに評価培地(50uL)を各wellに添加し、24時間インキュベートした。なお、当該試料濃度において評価培地が細胞の生存に影響を与えないことをWST評価により実証済みである。インキュベート後、評価培地を除去し、HEPESにて3回洗浄を行った。Free Radical Initiator(1x)(100uL)を添加し、直ちに、プレートリーダーにて蛍光強度の測定を行った。抗酸化能の評価は、測定開始60分後のコントロール(サンプル無添加)の蛍光強度を0としたときの蛍光強度の減少量により判定した。試験結果を図5に示す。コントロールと比較して、実施例1は蛍光強度の有意な減少が確認されたのに対し、APM水溶液では蛍光強度の減少は見られなかった。このことから、実施例1の試料はAPMが5ppmから20ppmと非常に希薄な濃度域においても有意な抗酸化能を示すことが確認された。
・Test method The culture medium in each well of the test plate was removed, and DCFH-DA Probe (2x) (50uL) prepared by dissolving DCFH-DA Probe (1000x) (40μL) in HuMeda-KG2 medium (20mL) was added. well. Next, an evaluation medium (50 uL) was added to each well and incubated for 24 hours. In addition, it has been proved by WST evaluation that the evaluation medium does not affect cell survival at the sample concentration. After the incubation, the evaluation medium was removed and washed with HEPES three times. Free Radical Initiator (1x) (100uL) was added, and the fluorescence intensity was immediately measured with a plate reader. The antioxidant capacity was evaluated by the amount of decrease in fluorescence intensity when the fluorescence intensity of the control (no sample added) 60 minutes after the start of measurement was set to 0. The test results are shown in FIG. Compared with the control, in Example 1, a significant decrease in fluorescence intensity was confirmed, whereas no decrease in fluorescence intensity was observed in the APM aqueous solution. From this, it was confirmed that the sample of Example 1 exhibits significant antioxidant ability even in a very dilute concentration range of 5 ppm to 20 ppm of APM.

(4)細胞試験:実施例2
・試験プレートの調製
細胞試験には、HuMeda-KG2培地(倉敷紡績社製)で培養した正常ヒト表皮角化細胞(以下、NHEK細胞と表記)を使用した。4継代したNHEK細胞80×104cellsを遠沈管に加え、遠心分離(300xg, 3min)後、上清を除去し、それぞれにHuMeda-KG2培地を8mLずつ添加した。ピペッティングで細胞を懸濁して得られた懸濁液を1.0×104cells/100μL/wellずつ96wellプレート(Corning社製96 Well Flat Clear Bottom Black Polystyrene TC-TreatedMicroplates 3603)に播種し、5%CO2存在下37℃で24時間インキュベートした。つぎに、試験試料を下記の手順で調製した。
(4) Cell test: Example 2
-Preparation of test plate For the cell test, normal human epidermal keratinocytes (hereinafter referred to as NHEK cells) cultured in HuMeda-KG2 medium (Kurashiki Spinning Co., Ltd.) were used. NHEK cells of 4 passages of 80×10 4 cells were added to a centrifuge tube, centrifuged (300×g, 3 min), the supernatant was removed, and 8 mL of HuMeda-KG2 medium was added to each. The suspension obtained by suspending the cells by pipetting was inoculated into a 96-well plate (Corning 96 Well Flat Clear Bottom Black Polystyrene TC-Treated Microplates 3603) at 1.0 × 10 4 cells/100 μL/well, and 5% CO Incubated in the presence of 2 at 37° C. for 24 hours. Next, a test sample was prepared by the following procedure.

・評価培地の調製
HuMeda-KG2培地にAscを溶解して1000ppmのAsc含有培地を調製し、これを希釈することで40,30,20,10ppmのAsc含有培地をそれぞれ調製した。また、HuMeda-KG2培地に実施例2の粉末を加えてAsc濃度換算で100ppmのAsc内包粒子分散培地を調製し、これを希釈することで40,30,20,10ppmのAsc内包粒子分散培地をそれぞれ調製した。
・Free Radical Initiator; 2.8% HEPES溶液の調製
FreeRadical Initiator(28mg)をHEPES(1000μL)に溶解させ、Free Radical Initiator (100x)を調製した。使用する直前に、Free Radical Initiator (100x)(250μL)をHEPES(25mL)に溶解し、2.8% HEPES溶液を調製した。
・Preparation of evaluation medium
Asc was dissolved in HuMeda-KG2 medium to prepare 1000 ppm Asc-containing medium, which was diluted to prepare 40, 30, 20, and 10 ppm Asc-containing medium, respectively. Further, the powder of Example 2 was added to HuMeda-KG2 medium to prepare 100 ppm Asc-encapsulated particle dispersion medium in terms of Asc concentration, and 40, 30, 20, 10 ppm Asc-encapsulated particle dispersion medium was diluted by diluting the Asc-encapsulated particle dispersion medium. Each was prepared.
・Free Radical Initiator; Preparation of 2.8% HEPES solution
FreeRadical Initiator (28 mg) was dissolved in HEPES (1000 μL) to prepare Free Radical Initiator (100x). Immediately before use, Free Radical Initiator (100x) (250 μL) was dissolved in HEPES (25 mL) to prepare a 2.8% HEPES solution.


・試験方法
試験プレート各well内の培地を除去し、DCFH-DA Probe (1000x)(40μL) をHuMeda-KG2培地(20mL)に溶解させて調製したDCFH-DA Probe(2x)(50uL)を各wellに添加した。つぎに評価培地(50uL)を各wellに添加し、24時間インキュベートした。なお、当該試料濃度において評価培地が細胞の生存に影響を与えないことをWST評価により実証済みである。インキュベート後、評価培地を除去し、HEPESにて3回洗浄を行った。Free Radical Initiator(1x)(100uL)を添加し、直ちに、プレートリーダーにて蛍光強度の測定を行った。抗酸化能の評価は、測定開始60分後のコントロール(サンプル無添加)の蛍光強度を0としたときの蛍光強度の減少量により判定した。試験結果を図6に示す。コントロールと比較して、実施例2は蛍光強度の有意な減少が確認されたのに対し、Asc水溶液では蛍光強度の減少はわずかであった。このことから、実施例2の試料はAscが5ppmから20ppmと非常に希薄な濃度域においても有意な抗酸化能を示すことが確認された。

・Test method The culture medium in each well of the test plate was removed, and DCFH-DA Probe (2x) (50uL) prepared by dissolving DCFH-DA Probe (1000x) (40μL) in HuMeda-KG2 medium (20mL) was added. well. Next, an evaluation medium (50 uL) was added to each well and incubated for 24 hours. In addition, it has been proved by WST evaluation that the evaluation medium does not affect cell survival at the sample concentration. After the incubation, the evaluation medium was removed and washed with HEPES three times. Free Radical Initiator (1x) (100uL) was added, and the fluorescence intensity was immediately measured with a plate reader. The antioxidant capacity was evaluated by the amount of decrease in fluorescence intensity when the fluorescence intensity of the control (no sample added) 60 minutes after the start of measurement was set to 0. The test results are shown in FIG. Compared with the control, in Example 2, a significant decrease in the fluorescence intensity was confirmed, whereas in the Asc aqueous solution, the decrease in the fluorescence intensity was slight. From this, it was confirmed that the sample of Example 2 showed significant antioxidant ability even in a very dilute concentration range of 5 to 20 ppm Asc.

(5)細胞試験:比較例
・試験プレートの調製
細胞試験には、HuMeda-KG2培地(倉敷紡績社製)で培養した正常ヒト表皮角化細胞(以下、NHEK細胞と表記)を使用した。4継代したNHEK細胞80×104cellsを遠沈管に加え、遠心分離(300xg, 3min)後、上清を除去し、それぞれにHuMeda-KG2培地を8mLずつ添加した。ピペッティングで細胞を懸濁して得られた懸濁液を1.0×104cells/100μL/wellずつ96wellプレート(Corning社製96 Well Flat Clear Bottom Black Polystyrene TC-TreatedMicroplates 3603)に播種し、5%CO2存在下37℃で24時間インキュベートした。つぎに、試験試料を下記の手順で調製した。
(5) Cell Test: Comparative Examples/Preparation of Test Plate For the cell test, normal human epidermal keratinocytes (hereinafter referred to as NHEK cells) cultured in HuMeda-KG2 medium (Kurashiki Spinning Co., Ltd.) were used. NHEK cells of 4 passages of 80×10 4 cells were added to a centrifuge tube, centrifuged (300×g, 3 min), the supernatant was removed, and 8 mL of HuMeda-KG2 medium was added to each. The suspension obtained by suspending the cells by pipetting was inoculated into a 96-well plate (Corning 96 Well Flat Clear Bottom Black Polystyrene TC-Treated Microplates 3603) at 1.0 × 10 4 cells/100 μL/well, and 5% CO Incubated in the presence of 2 at 37° C. for 24 hours. Next, a test sample was prepared by the following procedure.

・評価培地の調製
HuMeda-KG2培地にAPMを溶解して2000ppmのAPM含有培地を調製し、さらに、これを希釈することで400ppmのAPM含有培地を調製した。また、HuMeda-KG2培地に実施例1の粉末を加えてAPM濃度換算で100ppmのAPM内包粒子分散培地を調製し、これを希釈することで40,20ppmのAPM内包粒子分散培地をそれぞれ調製した。
・Free Radical Initiator; 2.8% HEPES溶液の調製
FreeRadical Initiator(28mg)をHEPES(1000μL)に溶解させ、Free Radical Initiator (100x)を調製した。使用する直前に、Free Radical Initiator (100x)(250μL)をHEPES(25mL)に溶解し、2.8% HEPES溶液を調製した。
・Preparation of evaluation medium
APM was dissolved in HuMeda-KG2 medium to prepare a 2000 ppm APM-containing medium, which was further diluted to prepare a 400 ppm APM-containing medium. Further, the powder of Example 1 was added to HuMeda-KG2 medium to prepare 100 ppm APM-encapsulated particle dispersion medium in terms of APM concentration, and this was diluted to prepare 40,20 ppm APM-encapsulated particle dispersion medium, respectively.
・Free Radical Initiator; Preparation of 2.8% HEPES solution
FreeRadical Initiator (28 mg) was dissolved in HEPES (1000 μL) to prepare Free Radical Initiator (100x). Immediately before use, Free Radical Initiator (100x) (250 μL) was dissolved in HEPES (25 mL) to prepare a 2.8% HEPES solution.

・試験方法
試験プレート各well内の培地を除去し、DCFH-DAProbe (1000x)(40μL) をHuMeda-KG2培地(20mL)に溶解させて調製したDCFH-DA Probe(2x)(50uL)を各wellに添加した。つぎに評価培地(50uL)を各wellに添加し、24時間インキュベートした。なお、当該試料濃度において評価培地が細胞の生存に影響を与えないことをWST評価により実証済みである。インキュベート後、評価培地を除去し、HEPESにて3回洗浄を行った。Free Radical Initiator(1x)(100uL)を添加し、直ちに、プレートリーダーにて蛍光強度の測定を行った。抗酸化能の評価は、測定開始60分後のコントロール(サンプル無添加)の蛍光強度を0としたときの蛍光強度の減少量により判定した。試験結果を図7に示す。コントロールと比較して、いずれの試料においても蛍光強度が減少したが、同程度の減少量において、実施例1では濃度10ppmと非常に希薄溶液だったのに対し、APM水溶液では1000ppmであり、実施例1と比較して100倍高濃度であった。このことから、当該抗酸化物質内包ナノ粒子は、高い抗酸化能を示すことが示された。
・Test method Test plate The medium in each well was removed, and DCFH-DA Probe(2x) (50uL) prepared by dissolving DCFH-DAProbe (1000x) (40μL) in HuMeda-KG2 medium (20mL) was added to each well. Was added to. Next, an evaluation medium (50 uL) was added to each well and incubated for 24 hours. In addition, it has been proved by WST evaluation that the evaluation medium does not affect cell survival at the sample concentration. After the incubation, the evaluation medium was removed and washed with HEPES three times. Free Radical Initiator (1x) (100uL) was added, and the fluorescence intensity was immediately measured with a plate reader. The antioxidant capacity was evaluated by the amount of decrease in fluorescence intensity when the fluorescence intensity of the control (no sample added) 60 minutes after the start of measurement was set to 0. The test results are shown in FIG. Compared to the control, the fluorescence intensity decreased in all the samples, but at the same level of decrease, the concentration was 10 ppm in Example 1, which was a very dilute solution, whereas the APM aqueous solution showed 1000 ppm. The concentration was 100 times higher than that in Example 1. From this, it was shown that the antioxidant-encapsulated nanoparticles have high antioxidant ability.

本発明は、特定の2種の液体を用いて製造される、親水性物質を含むナノ機能性粒子、及びその製造方法である。本発明の粒子は、例えば抗酸化物質が少量でも、抗酸化能が強化された抗酸化剤として使用できる。 The present invention is a nano-functional particle containing a hydrophilic substance, which is produced by using two specific types of liquids, and a production method thereof. The particles of the present invention can be used as an antioxidant having an enhanced antioxidant ability even with a small amount of antioxidant.

Claims (15)

界面活性剤と、良水溶性溶質とを水に溶解した液体と、界面活性剤を溶媒に溶解した液体に親水性物質を分散させた液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記溶媒とを気化し除去することにより得られうる、前記良水溶性溶質を含むマイクロ粒子の中で分散する、及び/又は、前記マイクロ粒子の表面に存在する、前記親水性物質を含むナノ機能性粒子の製造方法。 A surfactant, a liquid in which a good water-soluble solute is dissolved in water, and a liquid in which a hydrophilic substance is dispersed in a liquid in which a surfactant is dissolved in a solvent are passed through separate channels, respectively, immediately before spraying. After mixing, by pressurized gas, spraying in the state of liquid fine particles, which can be obtained by vaporizing and removing the water and the solvent, dispersed in the microparticles containing the good water-soluble solute, And/or a method for producing nano-functional particles containing the hydrophilic substance, which are present on the surface of the micro particles. 前記親水性物質が、化粧品用成分又は医薬品成分から選択される少なくとも一つを含む、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the hydrophilic substance contains at least one selected from cosmetic ingredients and pharmaceutical ingredients. 上記親水性物質が、抗酸化能を有する親水性物質である、請求項1又は2に記載の製造方法。 The method according to claim 1 or 2, wherein the hydrophilic substance is a hydrophilic substance having an antioxidant ability. 前記界面活性剤がショ糖脂肪酸エステル類、ソルビタン脂肪酸エステル類又はそれらの組み合わせである、請求項1に記載の製造方法。 The production method according to claim 1, wherein the surfactant is sucrose fatty acid ester, sorbitan fatty acid ester, or a combination thereof. 良水溶性溶質を水に溶解した液体が含む前記界面活性剤と、親水性物質を分散させた液体が含む前記界面活性剤が異なる、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the surfactant contained in the liquid in which the good water-soluble solute is dissolved is different from the surfactant contained in the liquid in which the hydrophilic substance is dispersed. 請求項1〜5何れか1項に記載の製造方法で得られた粒子を、溶媒中に分散させる工程を含む、粒子分散液の製造方法。 A method for producing a particle dispersion liquid, comprising a step of dispersing the particles obtained by the production method according to claim 1 in a solvent. 請求項1〜5何れか1項に記載の製造方法を含む、皮膚外用剤の製造方法。 A method for producing an external preparation for skin, comprising the method according to claim 1. 請求項3に記載の製造方法で製造された粒子を使用して、抗酸化能を有する親水性物質の抗酸化作用を高める方法。 A method for enhancing the antioxidant action of a hydrophilic substance having antioxidant ability, using the particles produced by the method according to claim 3. 界面活性剤と、良水溶性溶質とを水に溶解した液体と、界面活性剤を溶媒に溶解した液体に親水性物質を分散させた液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記溶媒とを気化し除去することにより得られうる、前記親水性物質を含むナノ機能性粒子。 A surfactant, a liquid in which a good water-soluble solute is dissolved in water, and a liquid in which a hydrophilic substance is dispersed in a liquid in which a surfactant is dissolved in a solvent are passed through separate flow paths and immediately before spraying. Nano-functional particles containing the hydrophilic substance, which can be obtained by, after mixing, spraying in a state of liquid fine particles with a pressurized gas to vaporize and remove the water and the solvent. 請求項9に記載の粒子が溶媒中に分散している、分散液。 A dispersion liquid in which the particles according to claim 9 are dispersed in a solvent. 請求項9に記載の粒子を含有する、皮膚外用剤。 A skin external preparation containing the particles according to claim 9. 上記親水性物質が、抗酸化能を有する親水性物質である、請求項9に記載の粒子。 The particle according to claim 9, wherein the hydrophilic substance is a hydrophilic substance having an antioxidant ability. 請求項12に記載の粒子を使用して、抗酸化能を有する親水性物質の抗酸化作用を高める方法。 A method for enhancing the antioxidant activity of a hydrophilic substance having antioxidant capacity, using the particles according to claim 12. 界面活性剤と、良水溶性溶質とを水に溶解した液体と、界面活性剤を溶媒に溶解した液体に親水性物質を分散させた液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記溶媒とを気化し除去することにより得られうる、前記親水性物質を含むナノ機能性粒子の製造方法。 A surfactant, a liquid in which a good water-soluble solute is dissolved in water, and a liquid in which a hydrophilic substance is dispersed in a liquid in which a surfactant is dissolved in a solvent are passed through separate flow paths and immediately before spraying. A method for producing nano-functional particles containing the hydrophilic substance, which can be obtained by, after mixing, spraying in a state of liquid fine particles with a pressurized gas to vaporize and remove the water and the solvent. 界面活性剤と、良水溶性溶質とを水に溶解した液体と、界面活性剤を溶媒に溶解した液体に親水性物質を分散させた液体とを、それぞれ別の流路を経て、噴霧直前に混合をした後に、加圧気体によって、液状微粒子の状態で噴霧し、前記水と前記溶媒とを気化し除去することにより得られうる、前記親水性物質を含むナノ機能性粒子を用いた、親水性物質の分解抑制方法。 A surfactant, a liquid in which a good water-soluble solute is dissolved in water, and a liquid in which a hydrophilic substance is dispersed in a liquid in which a surfactant is dissolved in a solvent are passed through separate flow paths and immediately before spraying. After mixing, by pressurized gas, it is sprayed in the state of liquid fine particles, which can be obtained by vaporizing and removing the water and the solvent, using the nano-functional particles containing the hydrophilic substance, hydrophilic. Method for suppressing decomposition of volatile substances.
JP2017100202A 2017-05-19 2017-05-19 Nano-functional particles containing hydrophilic substance and method for producing the same Pending JP2020117440A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017100202A JP2020117440A (en) 2017-05-19 2017-05-19 Nano-functional particles containing hydrophilic substance and method for producing the same
PCT/JP2018/019041 WO2018212264A1 (en) 2017-05-19 2018-05-17 Nano-functional particles including hydrophilic substance and method for producing nano-functional particles
TW107116894A TW201906661A (en) 2017-05-19 2018-05-18 Nano-functional particles including hydrophilic substance and method for producing nano-functional particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017100202A JP2020117440A (en) 2017-05-19 2017-05-19 Nano-functional particles containing hydrophilic substance and method for producing the same

Publications (1)

Publication Number Publication Date
JP2020117440A true JP2020117440A (en) 2020-08-06

Family

ID=64273834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017100202A Pending JP2020117440A (en) 2017-05-19 2017-05-19 Nano-functional particles containing hydrophilic substance and method for producing the same

Country Status (3)

Country Link
JP (1) JP2020117440A (en)
TW (1) TW201906661A (en)
WO (1) WO2018212264A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3955088B2 (en) * 1995-12-06 2007-08-08 東和化成工業株式会社 Method for producing mixed powder composition of ascorbic acid and maltitol having high fluidity
US20040022862A1 (en) * 2000-12-22 2004-02-05 Kipp James E. Method for preparing small particles
JP2006045491A (en) * 2004-07-01 2006-02-16 Erubu:Kk Functional material, method for producing functional material, functional member and environment modification apparatus using the functional material
JP2007099631A (en) * 2005-09-30 2007-04-19 Hosokawa Funtai Gijutsu Kenkyusho:Kk Method for producing anionic medicine-encapsulated nanoparticle and pharmaceutical formulation using the same
JP4787807B2 (en) * 2007-11-08 2011-10-05 大川原化工機株式会社 Method for producing nanoparticles dispersed in microparticles and nozzle for producing nanoparticles
JP6004882B2 (en) * 2012-10-15 2016-10-12 三菱商事フードテック株式会社 Mannitol excipient for use in compression molding and tablets containing the same
EP2925163A1 (en) * 2012-11-27 2015-10-07 DSM IP Assets B.V. Process for the production of discrete solid extruded particles
JP6801646B2 (en) * 2015-04-14 2020-12-16 日産化学株式会社 Nano-functional particles
JP6627380B2 (en) * 2015-09-30 2020-01-08 ユーハ味覚糖株式会社 Nanoparticle dispersion liquid with improved permeability of ascorbic acid or ascorbic acid derivative

Also Published As

Publication number Publication date
TW201906661A (en) 2019-02-16
WO2018212264A1 (en) 2018-11-22

Similar Documents

Publication Publication Date Title
Chen et al. Development and evaluation of resveratrol, Vitamin E, and epigallocatechin gallate loaded lipid nanoparticles for skin care applications
Trotta et al. Brain targeting of resveratrol by nasal administration of chitosan-coated lipid microparticles
Saez et al. Lipid nanoparticles (SLN & NLC) for delivery of vitamin E: A comprehensive review
CN1187035C (en) Composition containing N-vinyl iminazole polymer or copolymer and oxidation sensitive hydrophilic active ingredients for cosmetics and/or dermatology
CN107411983B (en) Water-soluble fullerene external composition
Paleco et al. Enhancement of the in vitro penetration of quercetin through pig skin by combined microneedles and lipid microparticles
Hong et al. Development of a carboxymethyl chitosan functionalized nanoemulsion formulation for increasing aqueous solubility, stability and skin permeability of astaxanthin using low-energy method
CN1856294A (en) Penetrating pharmaceutical foam
CN101583339A (en) Compositions comprising macromolecular assemblies of lipid and surfactant
Liu et al. Novel albendazole–chitosan nanoparticles for intestinal absorption enhancement and hepatic targeting improvement in rats
Kalariya et al. Clobetasol propionate solid lipid nanoparticles cream for effective treatment of eczema: formulation and clinical implications
Nehal et al. Chitosan coated synergistically engineered nanoemulsion of Ropinirole and nigella oil in the management of Parkinson's disease: Formulation perspective and In vitro and In vivo assessment
CN106619163A (en) Glabridin nanosuspension and preparation method thereof
CN102210653B (en) Burdock aglycone microemulsion
Vaz et al. Hesperetin loaded proposomal gel for topical antioxidant activity
CN104955460B (en) Emulsification composition
Bhattacharya et al. Strategic development to stabilize bioactive diallyl thiosulfinate by pH responsive non ionic micelle carrier system
CN109432021A (en) A kind of the astaxanthin nanometer formulation and its preparation method of electrostatic spraying processes preparation
CN102657610A (en) 3,5-dihydroxyl4-isopropyl diphenylethylene micro-emulsion and preparation method thereof
CN102397242A (en) Hydrogel containing coenzyme Q10, and cataplasm prepared by hydrogel
EP4114355A1 (en) Topical composition comprising cannabidiol
JP6757130B2 (en) A composition having an azulene compound, and a discoloration inhibitor and a discoloration prevention method for the azulene compound.
JP2020117440A (en) Nano-functional particles containing hydrophilic substance and method for producing the same
CN108553417B (en) Osthole self-emulsifying drug release system and preparation method and application thereof
JP6801646B2 (en) Nano-functional particles