JP2020116788A - Composition for hot melt laminating type three-dimensional printer - Google Patents

Composition for hot melt laminating type three-dimensional printer Download PDF

Info

Publication number
JP2020116788A
JP2020116788A JP2019008378A JP2019008378A JP2020116788A JP 2020116788 A JP2020116788 A JP 2020116788A JP 2019008378 A JP2019008378 A JP 2019008378A JP 2019008378 A JP2019008378 A JP 2019008378A JP 2020116788 A JP2020116788 A JP 2020116788A
Authority
JP
Japan
Prior art keywords
styrene
composition
dimensional printer
ethylene
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019008378A
Other languages
Japanese (ja)
Other versions
JP7012368B2 (en
Inventor
増田 政彦
Masahiko Masuda
政彦 増田
裕一 白鳥
Yuichi Shiratori
裕一 白鳥
宣弘 笹澤
Norihiro Sasazawa
宣弘 笹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taika Corp
Original Assignee
Taika Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taika Corp filed Critical Taika Corp
Priority to JP2019008378A priority Critical patent/JP7012368B2/en
Publication of JP2020116788A publication Critical patent/JP2020116788A/en
Application granted granted Critical
Publication of JP7012368B2 publication Critical patent/JP7012368B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a composition for a hot melt laminating type three-dimensional printer capable of forming a three-dimensional object excellent in flexibility, transparency, adhesiveness and mechanical strength, and a filament or pellet containing the composition.SOLUTION: A composition for a hot melt laminating type three-dimensional printer includes a styrenic thermoplastic elastomer (A) and a softening agent (B). The styrenic thermoplastic elastomer (A) contains, at least, styrene-ethylene-butylene-styrene block copolymer (a1), amine-modified styrene-ethylene-butylene-styrene block copolymer (a2) and styrene-ethylene-ethylene-propylene-styrene block copolymer (a3). A weight average molecular weights Mw of the block copolymers a1 to a3 are 50,000 to 200,000, respectively. A styrene content of the styrene-ethylene-butylene-styrene block copolymer (a1) or the amine-modified styrene-ethylene-butylene-styrene block copolymer (a2) is 20 to 55 wt.%. A blending ratio of the block copolymers a1 to a3 is a2/(a1+a2+a3)=0.08 to 0.8 and a3/a1=0.35 to 3.5 in weight ratio. A blending ratio of the styrene thermoplastic elastomer (A) and the softening agent (B) is B/(A+B)=0.5 to 0.7 in weight ratio.SELECTED DRAWING: None

Description

本発明は、3次元プリンタで造形する際に用いられる樹脂組成物に関するものであり、より具体的には、熱溶解積層型3次元プリンタを用いて造形するための樹脂組成物に関する。 The present invention relates to a resin composition used when molding with a three-dimensional printer, and more specifically, to a resin composition for molding with a hot melt laminated three-dimensional printer.

近年、3D(3次元)プリンタと呼ばれる立体造形機器が様々な分野で適用されてきている。特に熱溶解積層型(FDM方式)の3Dプリンタは他の方式の3Dプリンタと比べて比較的安価であることから、工業用のみならず家庭用としても普及してきている。熱溶解積層方式とは、熱可塑性樹脂からなるペレット又はフィラメントをノズルから溶融した状態で吐出し、平面にパターンを描写しながら高さ方向に積層させることで立体物を造形する方式である。FDM方式の3Dプリンタにおいて、所望の色や硬さ、強度等の物性を有する造形物を得るため、様々なペレットやフィラメント等の造形用材料が上市されている。これらペレットやフィラメント等の造形用材料を構成する熱可塑性樹脂としては、ポリカーボネート樹脂、ポリフェニルスルホン樹脂、ポリカーボネート/アクリロニトリル−ブタジエン−スチレン樹脂、ABS樹脂などの比較的硬質な樹脂が主に用いられているが、近年は柔軟な造形物の需要の増加に伴って、FDM方式の3Dプリンタの造形用材料として用いることができる軟質な樹脂材料が求められている。 In recent years, a three-dimensional modeling device called a 3D (three-dimensional) printer has been applied in various fields. In particular, the heat-dissolving laminated type (FDM type) 3D printer is relatively inexpensive as compared with other type 3D printers, and is therefore becoming popular not only for industrial use but also for home use. The hot melt laminating method is a method in which pellets or filaments made of a thermoplastic resin are ejected in a molten state from a nozzle and laminated in the height direction while drawing a pattern on a plane to form a three-dimensional object. In the FDM type 3D printer, various molding materials such as pellets and filaments are put on the market in order to obtain a molded article having desired physical properties such as color, hardness and strength. As the thermoplastic resin constituting the molding material such as pellets and filaments, relatively hard resins such as polycarbonate resin, polyphenylsulfone resin, polycarbonate/acrylonitrile-butadiene-styrene resin, and ABS resin are mainly used. However, in recent years, along with the increase in demand for flexible shaped objects, there has been a demand for a soft resin material that can be used as a material for forming an FDM 3D printer.

そこで、このニーズに対して、様々な樹脂材料が開発され、提案されている。例えば、特許文献1では、オレフィン系ゴム等の軟質成分を含有した軟質性ポリプロピレン系樹脂を特定のフィラメント形状とした樹脂材料が記載され、特許文献2では、ポリアミド重合体を主成分として含む樹脂材料が提案されている。また、特許文献3では、ポリ乳酸系樹脂と熱可塑性エラストマーから構成されるコアーシェル型ゴムとを含有するフィラメントが提案され、特許文献4では、生分解性熱可塑性樹脂とアクリル系ブロック重合体とを含むフィラメントが提案されている。さらに、特許文献5では、ビニル芳香族化合物に由来する重合体ブロックと共役ジエン及びイソブチレンに由来する重合体ブロックの少なくとも一方を含むブロック共重合体並びにこれらのブロック共重合体を水素添加してなるブロック共重合体からなる群のうちの少なくとも一つのブロック共重合体からなり、特定の動的粘弾性特性を有するフィラメントが提案されている。 Therefore, various resin materials have been developed and proposed to meet this need. For example, Patent Document 1 describes a resin material having a specific filament shape of a flexible polypropylene resin containing a soft component such as olefin rubber, and Patent Document 2 discloses a resin material containing a polyamide polymer as a main component. Is proposed. Further, Patent Document 3 proposes a filament containing a polylactic acid-based resin and a core-shell type rubber composed of a thermoplastic elastomer, and Patent Document 4 discloses a biodegradable thermoplastic resin and an acrylic block polymer. A filament containing is proposed. Further, in Patent Document 5, a block copolymer containing a polymer block derived from a vinyl aromatic compound and at least one of a polymer block derived from a conjugated diene and isobutylene, and hydrogenated block copolymers thereof. Filaments made of at least one block copolymer from the group of block copolymers and having specific dynamic viscoelastic properties have been proposed.

他方、これまでFDM方式の3Dプリンタの造形物は一般的に不透明であり、造形物の内部構造を外側から確認することが困難であった。また、最近では意匠性の観点からも透明な造形物が求められることが多い。そのため、上述した柔軟な造形物を造形できる樹脂材料というニーズに加えて、さらに透明性をも有する造形物を造形できる樹脂材料というニーズが新たに生じている。この柔軟性と透明性とを兼ね備えた造形物を得るというニーズに対して、特許文献1〜5で開示されたフィラメント等の樹脂材料は、透明性に改善の余地があった。そこで、特許文献6では、スチレン系炭化水素ブロックと共役ジエン系炭化水素ブロックより構成されるスチレン系共重合体を含み、ISO178に準拠して測定した曲げ弾性率が1200〜1600MPaであり、ISO1133に準拠して230℃/1.2kgの条件で測定したMFR値が0.8〜2.4g/10分であり、ヘイズ値が15%以下であるフィラメントが提案されている。 On the other hand, a modeled object of an FDM type 3D printer has been generally opaque, and it has been difficult to confirm the internal structure of the modeled object from the outside. Further, recently, a transparent shaped article is often demanded from the viewpoint of designability. Therefore, in addition to the above-mentioned need for a resin material capable of forming a flexible shaped object, a new need arises for a resin material capable of forming a molded object having transparency. With respect to the need to obtain a shaped article having both flexibility and transparency, the resin materials such as filaments disclosed in Patent Documents 1 to 5 have room for improvement in transparency. Therefore, in Patent Document 6, a flexural elastic modulus measured according to ISO178 is 1200 to 1600 MPa, which includes a styrene-based copolymer composed of a styrene-based hydrocarbon block and a conjugated diene-based hydrocarbon block. A filament having an MFR value of 0.8 to 2.4 g/10 minutes and a haze value of 15% or less, which is measured according to the conditions of 230° C./1.2 kg, is proposed.

特開2018−035461号公報JP, 2008-035461, A 特開2018−043525号公報JP, 2018-043525, A 特開2016−169456号公報JP, 2016-169456, A 特開2017−160349号公報JP, 2017-160349, A 特開2016−203633号公報JP, 2016-203633, A 特開2016−141094号公報JP, 2016-141094, A

しかしながら、特許文献6に開示されたフィラメントを用いて造形された造形物は、透明性に優れるものの、柔軟性にはまだ改善の余地があり、さらに向上した柔軟性と透明性を両立する樹脂材料が望まれていた。 However, although the molded article formed by using the filament disclosed in Patent Document 6 has excellent transparency, there is still room for improvement in flexibility, and a resin material that achieves both improved flexibility and transparency. Was desired.

また、3Dプリンタで組立品の構成部品を各々造形し、得られた構成部品どうしを接着して組立品を製作することも行われており、造形物の接着性(剥離接着強さ)を兼ね備えることも望まれていた。 In addition, it is also performed to form each component of an assembly with a 3D printer and to bond the obtained components to each other to produce an assembly, which also has adhesiveness (peeling adhesion strength) of the molded article. It was also desired.

本発明は上述した点に鑑み案出されたもので、その目的は、柔軟性、透明性、接着性及び機械強度に優れた3次元造形物を造形することのできる熱溶解積層型3次元プリンタ用組成物及びそれを含むフィラメントまたはペレットを提供することにある。 The present invention has been devised in view of the above-mentioned points, and an object thereof is a heat-melting laminated type three-dimensional printer capable of forming a three-dimensional object excellent in flexibility, transparency, adhesiveness and mechanical strength. The present invention provides a composition for use and a filament or pellet containing the same.

上記課題を解決するため、本発明者らは精意研究を重ねた結果、透明な樹脂材料を用いた場合であっても溶融積層時の積層界面の状態によって透明性が低下するという経験的知見を踏まえ、透明性と柔軟性、接着性及び機械強度を備えた樹脂材料において、積層界面での層間融着性(「層間密着性」ともいう)を高めることが熱溶解積層型3次元プリンタで得られる造形物の透明性の向上に重要であることを見出した。本発明は、これらの知見に基づいて完成されたものである。 In order to solve the above problems, as a result of intensive research conducted by the present inventors, empirical findings that the transparency decreases due to the state of the lamination interface during melt lamination even when a transparent resin material is used. Based on the above, in a resin material having transparency, flexibility, adhesiveness, and mechanical strength, it is possible to improve the interlayer fusion property (also referred to as “interlayer adhesion property”) at the lamination interface with the heat-melting lamination type three-dimensional printer. It was found that it is important for improving the transparency of the obtained shaped product. The present invention has been completed based on these findings.

すなわち、本発明の熱溶解積層型3次元プリンタ用組成物は、スチレン系熱可塑性エラストマー(A)及び軟化剤(B)を含有する組成物であって、スチレン系熱可塑性エラストマー(A)が、少なくとも、スチレン−エチレン−ブチレン−スチレンブロック共重合体(a1)、アミン変性スチレン−エチレン−ブチレン−スチレンブロック共重合体(a2)及びスチレン−エチレン−エチレン−プロピレン−スチレンブロック共重合体(a3)を含有してなり、a1〜a3のブロック共重合体の重量平均分子量Mwは、それぞれ50000〜200000であり、スチレン−エチレン−ブチレン−スチレンブロック共重合体(a1)又はアミン変性スチレン−エチレン−ブチレン−スチレンブロック共重合体(a2)のスチレン含有量が、20〜55重量%であり、a1〜a3のブロック共重合体の配合割合が、重量比で、a2/(a1+a2+a3)=0.08〜0.8かつ、a3/a1=0.35〜3.5であり、スチレン系熱可塑性エラストマー(A)と軟化剤(B)の配合割合が、重量比で、B/(A+B)=0.5〜0.7である。 That is, the composition for hot melt laminated three-dimensional printer of the present invention is a composition containing a styrene-based thermoplastic elastomer (A) and a softening agent (B), wherein the styrene-based thermoplastic elastomer (A) is At least a styrene-ethylene-butylene-styrene block copolymer (a1), an amine-modified styrene-ethylene-butylene-styrene block copolymer (a2) and a styrene-ethylene-ethylene-propylene-styrene-block copolymer (a3). And a weight average molecular weight Mw of the block copolymers a1 to a3 is 50,000 to 200,000, respectively, and styrene-ethylene-butylene-styrene block copolymer (a1) or amine-modified styrene-ethylene-butylene. -The styrene content of the styrene block copolymer (a2) is 20 to 55% by weight, and the mixing ratio of the block copolymers of a1 to a3 is a2/(a1+a2+a3)=0.08 to 0.8 and a3/a1=0.35-3.5, and the mixing ratio of the styrene-based thermoplastic elastomer (A) and the softening agent (B) is B/(A+B)=0. It is 5 to 0.7.

スチレン系熱可塑性エラストマー(A)の各ブロック共重合体(a1〜a3)の重量平均分子量Mwを50000〜200000とすることにより、溶融積層時の吐出性と熱溶解積層時の層間融着性を向上させて、優れた透明性、柔軟性及び機械強度を備えた造形物を造形できる組成物が得られる。また、アミン変性スチレン−エチレン−ブチレン−スチレンブロック共重合体(a2)を含有することによって、造形物表面における他材との接着性が向上する。また、スチレン−エチレン−ブチレン−スチレンブロック共重合体(a1)又はアミン変性スチレン−エチレン−ブチレン−スチレンブロック共重合体(a2)のスチレン含有量が、20〜55重量%とすることにより、引裂強さ等の機械強度に優れ、外観の透明性にも優れた造形物を造形できる組成物が得られる。さらに、スチレン系熱可塑性エラストマー(A)の各ブロック共重合体(a1〜a3)の配合割合を重量比で、a2/(a1+a2+a3)=0.08〜0.8かつ、a3/a1=0.35〜3.5とすることにより優れた接着性と耐熱性と機械強度とを備えた造形物を造形できる組成物が得られる。そして、スチレン系熱可塑性エラストマー(A)と軟化剤(B)の配合割合をB/(A+B)=0.5〜0.7とすることにより、溶融積層時の吐出性と層間融着性とが向上するために、優れた柔軟性と透明性が得られると共に、接着性、機械強度、耐熱性も備えた造形物を造形できる組成物が得られる。なお、ここでいう造形物の機械強度とは、組成物の成形物(樹脂材料)自体の機械強度と熱溶解積層で造形された層間密着性による層間の剥離強度の総合的な強度をいう。 By setting the weight average molecular weight Mw of each block copolymer (a1 to a3) of the styrene-based thermoplastic elastomer (A) to be 50,000 to 200,000, the dischargeability at the time of melt lamination and the interlayer fusion property at the time of hot melt lamination can be achieved. A composition capable of being improved to form a shaped article having excellent transparency, flexibility and mechanical strength is obtained. Further, by including the amine-modified styrene-ethylene-butylene-styrene block copolymer (a2), the adhesiveness with other materials on the surface of the modeled product is improved. Further, when the styrene content of the styrene-ethylene-butylene-styrene block copolymer (a1) or the amine-modified styrene-ethylene-butylene-styrene block copolymer (a2) is 20 to 55% by weight, tearing occurs. It is possible to obtain a composition capable of forming a molded article which is excellent in mechanical strength such as strength and is excellent in transparency of appearance. Further, the mixing ratio of the block copolymers (a1 to a3) of the styrene-based thermoplastic elastomer (A) is a2/(a1+a2+a3)=0.08 to 0.8 and a3/a1=0. By setting it to 35 to 3.5, a composition capable of forming a shaped article having excellent adhesiveness, heat resistance and mechanical strength can be obtained. Then, by setting the blending ratio of the styrene-based thermoplastic elastomer (A) and the softening agent (B) to B/(A+B)=0.5 to 0.7, the ejection property and the interlaminar fusion property at the time of melt lamination are obtained. Therefore, it is possible to obtain a composition capable of producing a shaped article having excellent flexibility and transparency and also having adhesiveness, mechanical strength, and heat resistance. The mechanical strength of the molded article as used herein means the total strength of the mechanical strength of the molded article (resin material) of the composition itself and the peel strength between the layers due to the interlayer adhesion formed by hot melt lamination.

また、本発明の熱溶解積層型3次元プリンタ用組成物は、軟化剤(B)は、分子量が400〜1200のパラフィン系オイルであることも好ましい。これにより、柔軟性と透明性に加えて、機械強度、造形物表面における接着性(剥離接着強さ)、溶融積層時の吐出性及び層間融着性を向上させることのできる好適な構成成分が選択される。 Further, in the composition for a heat-melting laminated type three-dimensional printer of the present invention, it is also preferable that the softening agent (B) is a paraffinic oil having a molecular weight of 400 to 1200. As a result, in addition to flexibility and transparency, suitable structural components capable of improving mechanical strength, adhesiveness on the surface of the molded article (peeling adhesive strength), dischargeability at the time of melt lamination and interlayer fusion property are provided. Selected.

また、本発明の熱溶解積層型3次元プリンタ用組成物は、温度150〜200℃、荷重2.16kgの範囲で測定したメルトマスフローレート(JIS K7210−1B法準拠)が15〜3000g/10minであることも好ましい。これによって、安定した吐出性と溶融積層した際の積層界面の融着性が確保される。それゆえ、形状精度に優れた造形が可能となり、積層界面での光散乱が低減されて造形物の透明性が維持されるとともに、積層界面の密着性が高くなるため、組成物の成形物(樹脂材料)自体の機械強度と相まって、柔軟性を有しながらも全体的な機械強度に優れた造形物を造形できる組成物が得られる。 Further, the composition for hot melt laminated three-dimensional printer of the present invention has a melt mass flow rate (according to JIS K7210-1B method) measured at a temperature of 150 to 200° C. and a load of 2.16 kg of 15 to 3000 g/10 min. It is also preferable to have. As a result, stable ejection properties and fusion properties at the laminated interface when melt-laminated are ensured. Therefore, modeling with excellent shape accuracy is possible, light scattering at the lamination interface is reduced, the transparency of the molded article is maintained, and the adhesion at the lamination interface is increased, so that the molded article of the composition ( In combination with the mechanical strength of the resin material itself, it is possible to obtain a composition capable of forming a molded article having flexibility and excellent overall mechanical strength.

また、本発明の熱溶解積層型3次元プリンタ用樹脂材料は、上述した熱溶解積層型3次元プリンタ用組成物を主成分としたものであり、ヘイズ値(JIS K7136:2000準拠)が15%以下であり、硬度がアスカーC50以下(SRIS 0101規格)であることも好ましい。これによって、柔軟性と透明性により優れた造形物を造形できる樹脂材料が得られる。なお、本明細書における熱溶解積層型3次元プリンタ用樹脂材料とは、上述した組成物から形成され、熱溶解積層型3次元プリンタでの造形物の製造のために使用される樹脂材料を広く指すものとする。 Further, the resin material for a heat-melting laminated type three-dimensional printer of the present invention contains the above-mentioned composition for a heat-melting laminated type three-dimensional printer as a main component, and has a haze value (JIS K7136:2000 compliant) of 15%. It is below, and it is also preferable that the hardness is Asker C50 or less (SRIS 0101 standard). This makes it possible to obtain a resin material capable of forming a molded article having excellent flexibility and transparency. In addition, the resin material for a heat-melting laminated type three-dimensional printer in the present specification refers to a wide range of resin materials formed from the above-mentioned composition and used for manufacturing a modeled object in the heat-melting laminated type three-dimensional printer. Shall be pointed out.

また、本発明の熱溶解積層型3次元プリンタ用フィラメント又は熱溶解積層型3次元プリンタ用ペレットは、上述した熱溶解積層型3次元プリンタ用組成物を主成分としたものである。上述した熱溶解積層型3次元プリンタ用組成物を主成分としたフィラメント又はペレットを熱溶解積層型3次元プリンタに供給して造形することで、透明性と柔軟性に優れ、機械強度及び他部材との接着性に優れる造形物を得ることができる。 Further, the filament for a heat-melting laminated type three-dimensional printer or the pellet for a heat-melting laminated type three-dimensional printer of the present invention contains the above-mentioned composition for a heat-melting laminated type three-dimensional printer as a main component. By supplying the filaments or pellets containing the above composition for a heat-melting laminated type three-dimensional printer as a main component to a heat-melting laminated type three-dimensional printer for molding, excellent transparency, flexibility, mechanical strength and other members are obtained. It is possible to obtain a shaped article having excellent adhesiveness with.

本発明の熱溶解積層型3次元プリンタ用組成物は、熱溶解積層型3次元プリンタに供給して造形する際に、熱溶解積層時の吐出性と層間密着性に優れており、透明な意匠性、柔軟な触感や緩衝性を備えると共に、機械強度や接着性、耐熱性にも優れた3次元造形物を造形することができる。 INDUSTRIAL APPLICABILITY The composition for a heat-melting laminated type three-dimensional printer of the present invention is excellent in ejection property and interlayer adhesion at the time of heat-melting laminated layer when it is supplied to a heat-melting laminated type three-dimensional printer for molding, and has a transparent design. It is possible to form a three-dimensional modeled article having excellent mechanical strength, adhesiveness, and heat resistance as well as excellent properties, soft touch and cushioning properties.

実施例及び比較例における熱溶解積層型3次元プリンタ用組成物からなる成形物及び熱溶解積層型3次元プリンタで造形された造形物の剥離接着強さ試験のために作製した試験片の構成を概略的に示す(A)平面図及び(B)正面図である。The constitution of the test piece prepared for the peeling adhesion strength test of the molded product made of the composition for the heat-melting laminated type three-dimensional printer and the modeled by the heat-melting laminated type three-dimensional printer in the examples and the comparative examples is shown. It is the schematic (A) top view and (B) front view. 図2の試験片を用いて行った剥離接着強さ試験の方法を説明する図である。It is a figure explaining the method of the peeling adhesive strength test performed using the test piece of FIG. 実施例及び比較例における熱溶解積層型3次元プリンタ用組成物からなる成形物の耐熱性試験の方法を説明する図である。It is a figure explaining the method of the heat resistance test of the molded object which consists of a composition for hot melt lamination type three-dimensional printers in an Example and a comparative example.

本発明の熱溶解積層型3次元プリンタ用組成物を構成するスチレン系熱可塑性エラストマー(A)についてまず説明する。スチレン系熱可塑性エラストマー(A)は、スチレン−エチレン−ブチレン−スチレンブロック共重合体(a1)、アミン変性スチレン−エチレン−ブチレン−スチレンブロック共重合体(a2)及びスチレン−エチレン−エチレン−プロピレン−スチレンブロック共重合体(a3)の3種のブロック共重合体を含有している。このうち、スチレン−エチレン−ブチレン−スチレンブロック共重合体(a1)、すなわちSEBSには、スチレン−ブタジエン−スチレンブロック共重合体に水素添加して得られる水添ブロック共重合体も含まれる。また、アミン変性スチレン−エチレン−ブチレン−スチレンブロック共重合体(a2)、すなわち、アミン変性SEBSには、アミン変性スチレン−ブタジエン−スチレンブロック共重合体の水素添加物も含まれる。また、スチレン−エチレン−エチレン−プロピレン−スチレンブロック共重合体(a3)、すなわち、SEEPSには、スチレン−エチレン−イソプレン−スチレンブロック共重合体の水素添加物も含まれる。これらa1〜a3のブロック共重合体の重量平均分子量Mwはそれぞれ、機械強度の観点から50000以上であることが好ましく、接着性、吐出時の流動性及び熱溶解積層時の層間密着性の観点から200000未満であることが好ましく、すなわち、50000〜200000が好ましい。a1〜a3のブロック共重合体の重量平均分子量Mwをこの範囲とすることにより、溶融積層時の吐出性と層間融着性に優れるとともに、透明性、柔軟性、機械強度も備えた造形物が得られる。なお、本発明における分子量とは、重量平均分子量Mwであり、ゲル浸透クロマトグラフィー(GPC)法により測定された値をいう。また、組成物及び得られる造形物の透明性の観点から、成分a1〜a3のブロック共重合体の各屈折率のばらつき範囲(最大値と最小値の差)が0.1以内であることが好ましい。 First, the styrene-based thermoplastic elastomer (A) that constitutes the composition for a hot-melt laminated type three-dimensional printer of the present invention will be described. The styrene-based thermoplastic elastomer (A) includes styrene-ethylene-butylene-styrene block copolymer (a1), amine-modified styrene-ethylene-butylene-styrene block copolymer (a2) and styrene-ethylene-ethylene-propylene-. It contains three types of block copolymers of styrene block copolymer (a3). Among these, the styrene-ethylene-butylene-styrene block copolymer (a1), that is, SEBS, also includes a hydrogenated block copolymer obtained by hydrogenating a styrene-butadiene-styrene block copolymer. The amine-modified styrene-ethylene-butylene-styrene block copolymer (a2), that is, the amine-modified SEBS also includes a hydrogenated product of the amine-modified styrene-butadiene-styrene block copolymer. The styrene-ethylene-ethylene-propylene-styrene block copolymer (a3), that is, SEEPS, also includes a hydrogenated product of a styrene-ethylene-isoprene-styrene block copolymer. The weight average molecular weight Mw of each of the block copolymers a1 to a3 is preferably 50,000 or more from the viewpoint of mechanical strength, and from the viewpoint of adhesiveness, fluidity during discharge and interlayer adhesion during hot melt lamination. It is preferably less than 200,000, that is, 50,000 to 200,000. By setting the weight average molecular weight Mw of the block copolymers of a1 to a3 to be within this range, a molded article having excellent dischargeability during melt lamination and interlayer fusion property, and also having transparency, flexibility, and mechanical strength can be obtained. can get. In addition, the molecular weight in this invention is a weight average molecular weight Mw and means the value measured by the gel permeation chromatography (GPC) method. Further, from the viewpoint of transparency of the composition and the obtained molded article, the dispersion range (difference between the maximum value and the minimum value) of each refractive index of the block copolymers of the components a1 to a3 is within 0.1. preferable.

本発明の熱溶解積層型3次元プリンタ用組成物を構成するスチレン系熱可塑性エラストマー(A)の配合割合は、接着性、耐熱性及び機械強度の観点から、各ブロック共重合体(a1〜a3)の配合割合を重量比で、a2/(a1+a2+a3)=0.08〜0.8かつ、a3/a1=0.35〜3.5とすることが好ましく、a2/(a1+a2+a3)=0.1〜0.7かつ、a3/a1=0.45〜2.5とすることがより好ましい。配合割合a2/(a1+a2+a3)は、スチレン系熱可塑性エラストマー(A)のうちのアミン変性SEBS(a2)の配合割合であるが、0.08未満であると接着性に劣り、0.8を超えると機械強度及び接着性が低下し、耐熱性も低下する傾向にある。また、配合割合a3/a1は、SEBS(a1)に対するSEEPS(a3)の配合割合であるが、0.35未満であると接着性に劣り、耐熱性も低下する傾向にあり、3.5を超えると機械強度及び接着性が低下するなど物性が不安定となる。よって、各ブロック共重合体の配合割合を上記の範囲とすることにより、接着性、機械強度及び耐熱性に優れた造形物を造形できる組成物が得られる。 The blending ratio of the styrene-based thermoplastic elastomer (A) that constitutes the composition for a heat-melting laminated type three-dimensional printer of the present invention is such that the block copolymers (a1 to a3) are included in terms of adhesiveness, heat resistance and mechanical strength. In terms of weight ratio, it is preferable that a2/(a1+a2+a3)=0.08 to 0.8 and a3/a1=0.35 to 3.5, and a2/(a1+a2+a3)=0.1. ˜0.7 and a3/a1=0.45 to 2.5 are more preferable. The compounding ratio a2/(a1+a2+a3) is the compounding ratio of the amine-modified SEBS(a2) in the styrene-based thermoplastic elastomer (A), but if it is less than 0.08, the adhesiveness is poor and exceeds 0.8. The mechanical strength and adhesiveness tend to decrease, and the heat resistance tends to decrease. Further, the blending ratio a3/a1 is the blending ratio of SEEPS(a3) to SEBS(a1), but if it is less than 0.35, the adhesiveness tends to be poor and the heat resistance tends to be low. If it exceeds the limit, the physical properties become unstable, such as deterioration in mechanical strength and adhesiveness. Therefore, by setting the blending ratio of each block copolymer within the above range, it is possible to obtain a composition capable of forming a shaped article having excellent adhesiveness, mechanical strength and heat resistance.

また、a1〜a3のブロック共重合体のスチレン含有量は、透明性及び機械強度を向上させる観点から、SEBS系ブロック共重合体である、a1のSEBS又はa2のアミン変性SEBSのスチレン含有量が20〜55重量%であることが好ましく、25〜45重量%であることがより好ましい。スチレン含有量が20重量%未満では、機械強度が不十分であり、55重量%を超えると外観の透明性が低下する。それゆえ、スチレン含有量をこの範囲とすることにより、機械強度に優れ、外観の透明性にも優れた組成物が得られる。なお、a3のSEEPSのスチレン含有量については、特に限定されないが、一例として、25〜35重量%が好ましい。 Further, the styrene content of the block copolymers a1 to a3 is the SEBS block copolymer having a styrene content of SEBS of a1 or amine-modified SEBS of a2, which is a SEBS block copolymer, from the viewpoint of improving transparency and mechanical strength. It is preferably from 20 to 55% by weight, more preferably from 25 to 45% by weight. When the styrene content is less than 20% by weight, the mechanical strength is insufficient, and when it exceeds 55% by weight, the transparency of the appearance is deteriorated. Therefore, by setting the styrene content within this range, a composition having excellent mechanical strength and excellent appearance transparency can be obtained. The styrene content of SEEPS of a3 is not particularly limited, but as an example, 25 to 35 wt% is preferable.

次に、本発明の熱溶解積層型3次元プリンタ用組成物を構成する軟化剤(B)について説明する。軟化剤は、おもに組成物に柔軟性を付与するとともに、溶融積層時の層間融着性を向上させる目的で添加される。軟化剤(B)の配合割合については、スチレン系熱可塑性エラストマー(A)と軟化剤(B)の和に対する軟化剤(B)の配合割合が、重量比で、0.5〜0.7であることが好ましく、0.55〜0.65であることがより好ましい。B/(A+B)の値が0.5未満であると十分な柔軟性が得られず、0.7を超えると耐熱性及び機械強度が低下すると共に軟化剤の滲み出し(ブリード)による接着性の低下が生じる。よって、軟化剤の配合割合を上述の範囲とすることにより、他の物性を低下させずに、柔軟性を調整することができる。 Next, the softening agent (B) that constitutes the composition for a heat-melting laminated type three-dimensional printer of the present invention will be described. The softening agent is added mainly for the purpose of imparting flexibility to the composition and improving interlayer fusion during melt lamination. Regarding the blending ratio of the softening agent (B), the blending ratio of the softening agent (B) to the sum of the styrene-based thermoplastic elastomer (A) and the softening agent (B) is 0.5 to 0.7 by weight ratio. It is preferably, and more preferably 0.55 to 0.65. When the value of B/(A+B) is less than 0.5, sufficient flexibility cannot be obtained, and when it exceeds 0.7, heat resistance and mechanical strength are deteriorated and adhesiveness due to bleeding of softening agent (bleeding). Occurs. Therefore, by setting the blending ratio of the softening agent within the above range, the flexibility can be adjusted without deteriorating other physical properties.

本実施形態においては、軟化剤としては、例えば、パラフィン系オイル、ナフテン系オイル又は芳香族系オイル等のプロセスオイル、液状ポリブテン又は低分子量ポリブタジエン等の合成樹脂系軟化剤、ロジン等が用いられ、スチレン系熱可塑性エラストマー(A)よりも比熱が大きいものが熱溶解積層時の層間融着性の観点から好ましい。このうち、外観の透明性の観点からプロセスオイルの中でもパラフィン系オイルが好適に用いられ、重量平均分子量が400〜1200のパラフィン系オイルが特に好適に用いられる。剥離接着強さ及び機械強度の観点から重量平均分子量が400以上であることが好ましく、成形時の流動性の観点から重量平均分子量が1200以下であることが好ましい。よって、重量平均分子量が400〜1200のパラフィン系オイルを用いることにより、熱溶解積層時の吐出性(流動性)と層間融着性に優れるとともに、透明性を維持しつつ柔軟性、接着性(剥離接着強さ)及び機械強度がより良好な造形物を造形できる組成物を得ることができる。 In the present embodiment, as the softener, for example, paraffin oil, process oil such as naphthenic oil or aromatic oil, synthetic resin softener such as liquid polybutene or low molecular weight polybutadiene, rosin, etc. are used, Those having a specific heat larger than that of the styrene-based thermoplastic elastomer (A) are preferable from the viewpoint of the interlayer fusion property during hot melt lamination. Of these, paraffinic oils are preferably used among process oils from the viewpoint of transparency of appearance, and paraffinic oils having a weight average molecular weight of 400 to 1200 are particularly preferably used. From the viewpoint of peel adhesion strength and mechanical strength, the weight average molecular weight is preferably 400 or more, and from the viewpoint of fluidity during molding, the weight average molecular weight is preferably 1200 or less. Therefore, by using a paraffinic oil having a weight average molecular weight of 400 to 1200, excellent dischargeability (fluidity) and interlayer fusion during hot melt lamination, and flexibility and adhesiveness (while maintaining transparency) are obtained. It is possible to obtain a composition capable of forming a molded article having better peel adhesion strength and mechanical strength.

本発明の熱溶解積層型3次元プリンタ用組成物の溶融粘度は、JIS K7210−1B法に準拠のメルトマスフローレート(MFR)として、温度150〜200℃、荷重2.16kgの範囲において15〜3000g/10minであることが好ましく、15〜2000g/10minであることがより好ましく、15〜1000g/10minであることがさらに好ましく、15〜300g/10minであることが特に好ましい。MFRが15g/10min未満である場合には、先に造形された層に積層した際に吐出物が拡がりにくく層間密着面積が小さくなるために、層間の密着性の低下や層間での光散乱が大きくなって造形物の透明性や機械強度が低下する場合がある。また、MFRが3000g/10minを超える場合には、吐出物を積層した際に形状保持が困難になる場合があるため、MFRを上記範囲とすることによって、形状精度や機械強度、透明性に優れた造形を安定して行うことができる。 The melt viscosity of the composition for a heat-melting laminated type three-dimensional printer of the present invention has a melt mass flow rate (MFR) according to JIS K7210-1B method of 15 to 3000 g at a temperature of 150 to 200° C. and a load of 2.16 kg. /10 min is preferable, 15 to 2000 g/10 min is more preferable, 15 to 1000 g/10 min is further preferable, and 15 to 300 g/10 min is particularly preferable. If the MFR is less than 15 g/10 min, the ejected material is less likely to spread when it is laminated on the previously formed layer, and the interlayer adhesion area is reduced, resulting in a decrease in adhesion between layers and light scattering between layers. It may become large and the transparency and mechanical strength of the molded article may decrease. Further, when the MFR exceeds 3000 g/10 min, it may be difficult to maintain the shape when ejected materials are stacked. Therefore, by setting the MFR to the above range, excellent shape accuracy, mechanical strength and transparency are obtained. Stable modeling can be performed.

さらに、本発明の熱溶解積層型3次元プリンタ用組成物からなる樹脂材料のヘイズ値(JIS K7136:2000準拠)は15%以下であり、硬度はアスカーC(SRIS 0101規格)50以下の物性を示すことが好ましい。それゆえ、本発明の樹脂材料組成物は、熱溶解積層型3次元プリンタでの造形において、外観の透明性が高く、柔軟性を備えた造形物を造形する樹脂材料に有用である。さらに、熱溶解積層時の層間融着性に優れるため、組成物の成形物(樹脂材料)自体の機械強度と相まって、機械強度に優れる造形物を得ることができる。 Further, the haze value (according to JIS K7136:2000) of the resin material comprising the composition for a hot melt laminated three-dimensional printer of the present invention is 15% or less, and the hardness is 50 or less asker C (SRIS 0101 standard). It is preferable to show. Therefore, the resin material composition of the present invention is useful as a resin material for molding a molded article having a high appearance transparency and flexibility in modeling with a hot melt laminated three-dimensional printer. Further, since the interlayer fusion property at the time of hot melt lamination is excellent, it is possible to obtain a molded article having excellent mechanical strength in combination with the mechanical strength of the molded article (resin material) of the composition itself.

さらに、本発明の熱溶解積層型3次元プリンタ用組成物には、本発明の効果を損なわない範囲において、他の添加剤を含有させることも可能である。添加剤としては、顔料や着色剤、滑剤、離型剤、酸化防止剤、抗菌剤、紫外線吸収剤、光安定剤又は耐熱剤等が挙げられる。これらは単独でも複数を組み合わせて使用することもできる。 Further, the composition for a heat-melting laminated type three-dimensional printer of the present invention may contain other additives as long as the effects of the present invention are not impaired. Examples of the additive include a pigment, a colorant, a lubricant, a release agent, an antioxidant, an antibacterial agent, an ultraviolet absorber, a light stabilizer or a heat-resistant agent. These may be used alone or in combination of two or more.

本発明の熱溶解積層型3次元プリンタ用組成物は、公知の樹脂組成物の製造方法により製造される。具体的には、一例として、単軸押出機、二軸押出機、ニーダー、バンバリーミキサー又は加熱ロール等の溶融混練機を用いて、A成分及びB成分等の配合成分を所定の割合で添加し、配合成分を加熱し溶融状態にて各成分を均一に混練することにより得られる。具体的な製造工程としては、特に限定されないが、各構成成分を所定の配合割合に秤量する秤量工程と、スチレン系熱可塑性エラストマー(A)を構成する成分の少なくとも一部に軟化剤(B)を吸収させる予備分散工程と、軟化剤(B)が吸収されたスチレン系熱可塑性エラストマー(A)を構成する成分を混合し、加熱混練する混練工程を有することが好ましい。これにより混練時に各構成成分がより均一に分散された組成物が得られる。また、この予備分散工程において、スチレン系熱可塑性エラストマー(A)を構成するブロック共重合体であるa1成分、a2成分、a3成分の各成分に対し、同一温度における溶融粘度が高い順に、単位重量当たりの軟化剤(B)の分配割合を大きくすることが好ましい。これにより、軟化剤(B)を吸収したa1〜a3成分の溶融粘度が近接し、混練時に各構成成分がより均一に分散された組成物が得られる。さらに、上述した予備分散工程において、スチレン系熱可塑性エラストマー(A)を構成するブロック共重合体であるa1成分、a2成分、a3成分の各成分に対する軟化剤(B)の分散は、軟化剤(B)を吸収した状態における各成分のメルトマスフローレート(MFR:JIS K7210−1B法 190℃)について、MFRが最も高い成分とMFRが最も低い成分のMFRの値の差が108(g/10min)以下となるように軟化剤(B)の分配量が調整されることが特に好ましい。これにより、混練工程における各成分の均一分散性が一段と向上し、透明性、機械強度、硬度といった特性に優れ、またこれらの特性のばらつきも低減され、さらには熱溶解積層時の吐出性や層間融着性も向上する。 The composition for hot melt laminated three-dimensional printer of the present invention is manufactured by a known method for manufacturing a resin composition. Specifically, as an example, using a melt kneader such as a single-screw extruder, a twin-screw extruder, a kneader, a Banbury mixer or a heating roll, the blending components such as the component A and the component B are added at a predetermined ratio. It is obtained by heating the blended components and uniformly kneading the components in a molten state. The specific manufacturing process is not particularly limited, but a weighing process of weighing each constituent component to a predetermined mixing ratio and a softening agent (B) for at least a part of the components constituting the styrene-based thermoplastic elastomer (A) It is preferable to have a pre-dispersion step of absorbing the above and a kneading step of mixing the components constituting the styrene-based thermoplastic elastomer (A) in which the softening agent (B) has been absorbed and kneading with heating. As a result, a composition in which the constituent components are more uniformly dispersed during kneading can be obtained. Further, in this preliminary dispersion step, the unit weight of each of the block copolymer constituting the styrene-based thermoplastic elastomer (A), that is, the a1 component, the a2 component, and the a3 component, in the order of higher melt viscosity at the same temperature, It is preferable to increase the distribution ratio of the softening agent (B) per hit. As a result, the melt viscosities of the components a1 to a3 that have absorbed the softening agent (B) are close to each other, and a composition in which the constituent components are more uniformly dispersed during kneading can be obtained. Furthermore, in the above-mentioned preliminary dispersion step, the softening agent (B) is dispersed in each of the block copolymer constituting the styrene-based thermoplastic elastomer (A), that is, the a1 component, the a2 component, and the a3 component. Regarding the melt mass flow rate (MFR: JIS K7210-1B method 190° C.) of each component in the state of absorbing B), the difference in MFR value between the component having the highest MFR and the component having the lowest MFR is 108 (g/10 min). It is particularly preferable that the distribution amount of the softening agent (B) is adjusted so as to be as follows. As a result, the uniform dispersibility of each component in the kneading process is further improved, the characteristics such as transparency, mechanical strength, and hardness are excellent, and the variations in these characteristics are reduced. The fusion property is also improved.

本発明の熱溶解積層型3次元プリンタ用組成物は、押出成形等の公知の方法により、熱溶解積層型3次元プリンタ用樹脂材料を得ることができる。具体的には、フィラメント状に加工することによって熱溶解積層型3次元プリンタ用フィラメントを、ペレット状に加工することによって熱溶解積層型3次元プリンタ用ペレットを得ることができる。熱溶解積層型3次元プリンタ用フィラメントの径方向の断面形状は、熱溶解積層方式の設計仕様や造形に使用するシステム構造や能力などにも依るが、通常は円形が好ましく、その直径は1.0〜4.0mmの範囲が好ましい。また、ペレット状とする場合には、熱溶解積層型3次元プリンタに供給できる形状と大きさであればよく、特に限定されない。 The resin composition for a heat-melting laminated type three-dimensional printer can be obtained from the composition for a heat-melting laminated type three-dimensional printer of the present invention by a known method such as extrusion molding. Specifically, a filament for a heat-melting laminated type three-dimensional printer can be processed into a filament shape, and a pellet for a heat-melting laminated type three-dimensional printer can be obtained by processing it into a pellet shape. The cross-sectional shape in the radial direction of the filament for a heat-melting laminated type three-dimensional printer depends on the design specifications of the heat-melting laminating method and the system structure and ability to be used for molding, etc., but normally a circular shape is preferable, and its diameter is 1. The range of 0 to 4.0 mm is preferable. Further, the pellet form is not particularly limited as long as it has a shape and a size that can be supplied to the hot melt stacking type three-dimensional printer.

以下、実施例を用いて、本発明を詳細に説明する。以下の実施例及び比較例における熱溶解積層型3次元プリンタ用組成物及びそれからなる樹脂材料(成形物)の評価方法は下記の通りである。 Hereinafter, the present invention will be described in detail with reference to examples. The evaluation methods of the composition for a heat-melting laminated type three-dimensional printer and the resin material (molded product) comprising the same in the following Examples and Comparative Examples are as follows.

(1)ヘイズ値(透明性)
JIS K7136:2000に準拠して、ヘーズメーター(スガ試験機株式会社製ヘーズメーター、HZ−1)を用いて各試験片のヘイズ測定を行った。試験片としては、実施例及び比較例における各熱溶解積層型3次元プリンタ用組成物を縦50mm×横50mm×厚み3mmにそれぞれ成形したものを用いた。ヘイズ値が15%以下の場合を優良(○)、15%を超える場合を不可(×)とした。
(1) Haze value (transparency)
Based on JIS K7136:2000, haze measurement of each test piece was performed using the haze meter (Haze meter by Suga Test Instruments Co., Ltd., HZ-1). As the test piece, the one prepared by molding each of the compositions for hot melt laminated type three-dimensional printer in Examples and Comparative Examples into a length of 50 mm×width of 50 mm×thickness of 3 mm was used. When the haze value was 15% or less, it was judged as excellent (◯), and when it exceeded 15%, it was judged as unacceptable (x).

(2)硬度
JIS K6253に準拠するアスカー Cデュロメータ(SRIS 0101規格)を用いて、各試験片の硬度測定を行った。試験片としては、実施例及び比較例における各熱溶解積層型3次元プリンタ用組成物を縦60mm×横60mm×厚み12mmにそれぞれ成形したものを用いた。アスカーC50以下を良好「○」、50を超えた場合を不適「×」と判定した。
(2) Hardness The hardness of each test piece was measured using an Asker C durometer (SRIS 0101 standard) according to JIS K6253. As the test piece, the one prepared by molding each of the compositions for heat-melting laminated type three-dimensional printer in Examples and Comparative Examples into a length of 60 mm×a width of 60 mm×a thickness of 12 mm was used. Asker C of 50 or less was judged to be good “◯”, and when it exceeded 50, it was judged to be unsuitable “x”.

(3)引裂強さ(強度)
JIS K6252−1 B法に準拠し、実施例及び比較例における各熱溶解積層型3次元プリンタ用組成物を切り込み無しアングル形状(ダンベルB型)に形成した試験片5枚について、引っ張り試験機(株式会社島津製作所製オートグラフ(登録商標)、AT−100N)で引っ張り速度500mm/minにて破断に至る最大荷重値F[N]を測定し、試験片の厚さt[m]で除して引裂強さを算出した。試験片5枚の引裂強さの中央値を挟む2つの値の平均値を引裂強さ(kN/m)とした。引裂強さの値が6kN/m以上の場合を優良「○」、6kN/m未満の場合を不可「×」と判定した。
(3) Tear strength (strength)
In accordance with JIS K6252-1 B method, the tensile tester (for 5 test pieces in which the composition for each of the heat-melting laminate type three-dimensional printers in Examples and Comparative Examples was formed into a non-cut angle shape (dumbbell B type) Shimadzu Corporation Autograph (registered trademark), AT-100N) was used to measure the maximum load value F[N] until breakage at a pulling speed of 500 mm/min and divided by the thickness t[m] of the test piece. And the tear strength was calculated. The tear strength (kN/m) was defined as the average value of the two values sandwiching the median tear strength of the five test pieces. A tear strength value of 6 kN/m or more was judged as excellent “◯”, and a tear strength value of less than 6 kN/m was judged as unacceptable “x”.

(4)剥離接着強さ(表2〜6においては、「接着強さ」と記載)
JIS K6854−3に準拠して、各試験片の剥離接着強さの測定を行った。図1及び図2を用いて剥離接着強さの試験方法について具体的に説明する。図2は試料片50の構成を概略的に示しており、図2は試料片の剥離接着強さ試験方法を図示している。図2に示す試料片50は次のようにして作製した。実施例及び比較例における各熱溶解積層型3次元プリンタ用組成物をストリップ状(幅20mm×長さ60mm×厚さ3mm)にそれぞれ成形し、ストリップ表面をウレタン系コート剤で処理して試験片51とした。この試験片51を同じくストリップ状に作製したウレタン片52(株式会社クラレ製 クラミロンU2195、幅20mm×長さ60mm×厚さ3mm)と接着剤53によって接着し、試料片50を得た。より詳しくは、試験片51及びウレタン片52の表面をメチルエチルケトン(MEK)に浸したキムワイプ(登録商標)で拭いた後、60℃で3分間乾燥させた。試験片51のウレタン系コート剤で処理された面及びウレタン片52の片面にプライマー(ノーテープ工業株式会社製、G−6626)を塗布し、60℃で5分間乾燥させた。その上に接着剤(ノーテープ工業株式会社製、No.4950)を塗布し、60℃で5分間乾燥した後、速やかに試験片51及びウレタン片52を貼り合わせた。試験片51側を上にした状態で載置し、ハンドローラにて2〜3kgf/cmの力を加えて圧着させることによって、試料片50を得た。この試料片50を12時間養生した後、図2(A)及び(B)に示すように、引っ張り試験機(株式会社島津製作所製オートグラフ(登録商標)、AT−100N)により、試料片50の試験片51とウレタン片52とを剥離させ、剥離接着強さを測定した。なお、図3において、54は固定側引張り治具、55は可動側引張り治具である。ロードセルは1kN(100kgf)であり、試験スピードは50mm/分、固定側引張り治具54及び可動側引張り治具55間の初期間隙は20mmであった。
(4) Peel adhesion strength (in Tables 2 to 6, described as "bond strength")
The peel adhesion strength of each test piece was measured according to JIS K6854-3. A method for testing the peel adhesion strength will be specifically described with reference to FIGS. 1 and 2. FIG. 2 schematically shows the structure of the sample piece 50, and FIG. 2 illustrates a peeling adhesive strength test method for the sample piece. The sample piece 50 shown in FIG. 2 was manufactured as follows. Each of the heat-meltable laminated type three-dimensional printer compositions in Examples and Comparative Examples was molded into a strip shape (width 20 mm x length 60 mm x thickness 3 mm), and the strip surface was treated with a urethane coating agent to give a test piece. It was set to 51. The test piece 51 was bonded to a urethane piece 52 (Kuraray Co., Ltd., Kuramil U2195, width 20 mm×length 60 mm×thickness 3 mm), which was also produced in a strip shape, with an adhesive 53 to obtain a sample piece 50. More specifically, the surfaces of the test piece 51 and the urethane piece 52 were wiped with Kimwipe (registered trademark) dipped in methyl ethyl ketone (MEK), and then dried at 60° C. for 3 minutes. A primer (G-6626 manufactured by No-Tape Industrial Co., Ltd.) was applied to the surface of the test piece 51 treated with the urethane coating agent and one surface of the urethane piece 52, and dried at 60° C. for 5 minutes. An adhesive (No. 4950, manufactured by No-Tape Kogyo Co., Ltd.) was applied thereon, and after drying at 60° C. for 5 minutes, the test piece 51 and the urethane piece 52 were quickly attached. The sample piece 50 was obtained by placing the test piece 51 side up and pressing it with a hand roller to apply a force of 2 to 3 kgf/cm 2 . After curing the sample piece 50 for 12 hours, as shown in FIGS. 2(A) and 2(B), the sample piece 50 was subjected to a tensile tester (Autograph (registered trademark) AT-100N manufactured by Shimadzu Corporation). The test piece 51 and the urethane piece 52 were peeled off and the peeling adhesive strength was measured. In FIG. 3, 54 is a fixed-side pulling jig, and 55 is a movable-side pulling jig. The load cell was 1 kN (100 kgf), the test speed was 50 mm/min, and the initial gap between the fixed side pulling jig 54 and the movable side pulling jig 55 was 20 mm.

(5)接着状態
剥離接着強さ試験を行った後の各試料片の剥離状態について、目視または顕微鏡観察により、各試験片の接着状態を評価した。材料破壊(被着体破壊)が生じていた場合を「AF」とし、溶解積層型3次元プリンタ用組成物の成形体とウレタン系コート剤による保護層との界面で界面剥離が生じた場合を「IP1」とし、ウレタン系コート剤による保護層とウレタン片52(被着材)との界面で界面剥離が生じた場合を「IP2」とした。
(5) Adhesion state Regarding the peeling state of each sample piece after the peeling adhesive strength test, the adhesion state of each test piece was evaluated by visual observation or microscope observation. The case where material destruction (destruction of adherend) has occurred is designated as “AF”, and the case where interfacial peeling occurs at the interface between the molded body of the composition for melt-laminating three-dimensional printer and the protective layer formed by the urethane coating agent. "IP1" was set, and "IP2" was set when interfacial peeling occurred at the interface between the urethane coating 52 and the urethane piece 52 (adhesion material).

接着性の評価としては、剥離接着強さが4kgf/20mm以上かつ材料破壊した試験片は接着性が優良「○」と評価し、剥離接着強さが4kgf/20mm未満または界面剥離した試験片は、接着性が不良「×」と評価した。 As the evaluation of the adhesiveness, the peeling adhesive strength of 4 kgf/20 mm or more and the material fractured test piece is evaluated as excellent adhesiveness "○", and the peeling adhesive strength of less than 4 kgf/20 mm or the interface peeled test piece The adhesiveness was evaluated as "poor".

(6)耐熱性
図3を用いて耐熱性の試験方法について説明する。実施例及び比較例における各熱溶解積層型3次元プリンタ用組成物を35mm×10mm×厚さ3mmの短冊状に成形し、耐熱性試験用の試験片を得た。図3(A)に示すように、試験片60を鉛直方向から30°傾斜させて、試験片60の片端30mm部分を露出させた状態で片梁状に試験片把持具61に取り付けた。この状態で試験片を治具と共にオーブン(ヤマト科学製 DKN602)内に入れ、温度85℃で10分間加熱した。加熱後、オーブンから治具ごと試験片60を取り出して室温まで冷却した。冷却後、図3(B)に示すように、側面視における試験片60の表面側の稜線について、試験片把持具61に固定されていた部分Pの直線状の稜線を延長した線と、試験片60が熱変形して湾曲した外側の自由端Qの接線との交差角度θtを測定顕微鏡(ニコン社製MM−800/LFA)を用いて測定した。同様に、側面視における試験片60のもう一方の面(裏面)側の稜線について、試験片把持具61に固定されていた部分Pの直線状の稜線を延長した線と、試験片60が熱変形して湾曲した内側の自由端Qの接線との交差角度θtを測定した。測定された交差角度θtのうち、測定値が大きい方を熱変形角度θtとした。熱変形角度θtが90°以下の場合を優良「○」、90°超〜125°の場合を良「△」、125°を超えた場合を不適「×」と判定した。
(6) Heat resistance A heat resistance test method will be described with reference to FIG. The composition for each of the heat-melting laminated type three-dimensional printers in Examples and Comparative Examples was molded into a strip of 35 mm×10 mm×thickness of 3 mm to obtain a test piece for a heat resistance test. As shown in FIG. 3(A), the test piece 60 was tilted at 30° from the vertical direction, and was attached to the test piece gripper 61 in the shape of a single beam with the one end 30 mm portion of the test piece 60 exposed. In this state, the test piece was placed in an oven (DKN602 manufactured by Yamato Scientific Co., Ltd.) together with a jig and heated at a temperature of 85° C. for 10 minutes. After heating, the test piece 60 together with the jig was taken out of the oven and cooled to room temperature. After cooling, as shown in FIG. 3(B), with respect to the ridge line on the front surface side of the test piece 60 in a side view, a line obtained by extending the linear ridge line of the portion P fixed to the test piece gripper 61, and the test The crossing angle θt 1 with the tangent line of the outer free end Q, which was obtained by thermal deformation of the piece 60 and was curved, was measured using a measuring microscope (MM-800/LFA manufactured by Nikon Corporation). Similarly, regarding the ridge line on the other surface (back surface) side of the test piece 60 in side view, the line extending from the linear ridge line of the portion P fixed to the test piece gripper 61 and the test piece 60 are heated. The intersection angle θt 2 with the tangent line of the deformed and curved inner free end Q was measured. Of the measured crossing angles θt, the one with the larger measured value was defined as the thermal deformation angle θt. When the thermal deformation angle θt was 90° or less, it was judged as excellent “◯”, when it was over 90° to 125°, it was judged as good “Δ”, and when it exceeded 125°, it was judged as unsuitable “x”.

(7)メルトマスフローレート(MFR)
JIS K7210−1B法に準拠して、2.16kgの荷重で温度150℃、170℃及び190℃におけるメルトマスフローレートをそれぞれ測定した。測定装置は、Tinius Olsen社製メルトインデクサーMP600を用いた。
(7) Melt mass flow rate (MFR)
According to JIS K7210-1B method, the melt mass flow rate at a temperature of 150° C., 170° C. and 190° C. was measured with a load of 2.16 kg. As the measuring device, a melt indexer MP600 manufactured by Tinius Olsen was used.

また、以下の実施例及び比較例における、熱溶解積層型3次元プリンタ用組成物を熱溶解積層型3次元プリンタで造形して得た造形物の評価方法は、下記の通りである。 Further, in the following Examples and Comparative Examples, the evaluation methods of the molded products obtained by molding the composition for a heat-melting laminated type three-dimensional printer with a heat-melting laminated type three-dimensional printer are as follows.

(1)ヘイズ値(透明性)
JIS K7136:2000に準拠して、ヘーズメーター(スガ試験機株式会社製ヘーズメーター、HZ−1)を用いて各試験片のヘイズ測定を行った。試験片としては、実施例及び比較例における各熱溶解積層型3次元プリンタ用組成物を縦50mm×横50mm×厚み3mmとなるように熱溶解積層型3次元プリンタ(自社試作装置、ノズル径0.8m)を用いて、それぞれ造形したものを用いた。具体的には、プリンタノズルの吐出温度190℃、描画速度(ヘッド移動速度)10mm/秒、吐出速度5mg/秒、描画幅(隣接するライン描画に移行する時にヘッドがシフトするピッチ)1.2mm及びノズルと被描画面との隙間(積層ピッチ)0.5mmの条件で、一方向に直線折返しを繰り返して縦50mm×横50mmの正方形を塗りつぶすように描画層を形成した。この後、同条件でヘッドを積層ピッチ分上昇させ、方向を90度変えて、先の描画層の描画方向と直交する方向に直線折返しを繰り返し、縦50mm×横50mmの正方形を塗りつぶすように新たな描画層を形成して積層させる工程を繰り返した。このように、隣接する層どうしの描画方向が直交方向になるように描画層を積層させて厚みが3mmになるまで造形し、試験片を得た。試験片のヘイズ値が60%以下の場合を優良(○)、60%を超える場合を不可(×)とした。
(1) Haze value (transparency)
Based on JIS K7136:2000, haze measurement of each test piece was performed using the haze meter (Haze meter by Suga Test Instruments Co., Ltd., HZ-1). As the test piece, the composition for each of the heat-melting laminated type three-dimensional printers in Examples and Comparative Examples was prepared by using the heat-melting laminated type three-dimensional printer (in-house prototype device, nozzle diameter 0). .8 m), each of which was shaped. Specifically, the discharge temperature of the printer nozzle is 190° C., the drawing speed (head moving speed) is 10 mm/sec, the discharge speed is 5 mg/sec, the drawing width (the pitch at which the head shifts when moving to adjacent line drawing) is 1.2 mm. Further, a drawing layer was formed so that a square of 50 mm in length×50 mm in width was filled by repeating straight line folding in one direction under the condition of a gap (stacking pitch) of 0.5 mm between the nozzle and the surface to be drawn. After that, the head is raised by the stacking pitch under the same conditions, the direction is changed by 90 degrees, and linear folding back is repeated in the direction orthogonal to the drawing direction of the previous drawing layer, so that a square with a length of 50 mm and a width of 50 mm is filled. The process of forming and stacking different drawing layers was repeated. In this way, the drawing layers were laminated so that the drawing directions of the adjacent layers were orthogonal to each other, and modeling was performed until the thickness became 3 mm to obtain a test piece. The case where the haze value of the test piece was 60% or less was judged as excellent (◯), and the case where it exceeded 60% was judged as unacceptable (x).

(2)硬度
JIS K6253に準拠するアスカー Cデュロメータ(SRIS 0101規格)を用いて、各試験片の硬度測定を行った。試験片としては、実施例及び比較例における各熱溶解積層型3次元プリンタ用組成物を縦60mm×横60mm×厚み12mmとなるように、熱溶解積層型3次元プリンタ(自社試作装置、ノズル径0.8mm)を用いて、それぞれ造形したものを用いた。具体的には、プリンタノズルの吐出温度190℃、描画速度(ヘッド移動速度)10mm/秒、吐出速度5mg/秒、描画幅(隣接するライン描画に移行する時にヘッドがシフトするピッチ)1.2mm及びノズルと被描画面との隙間(積層ピッチ)0.5mmの条件で、一方向に直線折返しを繰り返して縦60mm×横60mmの正方形を塗りつぶすように描画層を形成した。この後、同条件でヘッドを積層ピッチ分上昇させ、方向を90度変えて、先の描画層の描画方向と直交する方向に直線折返しを繰り返し、縦60mm×横60mmの正方形を塗りつぶすように新たな描画層を形成して積層させる工程を繰り返した。このように、隣接する層どうしの描画方向が直交方向になるように描画層を積層させて厚みが12mmになるまで造形し、試験片を得た。試験片の試験片の硬度がアスカーC50以下を良好「○」、50を超えた場合を不適「×」と判定した。
(2) Hardness The hardness of each test piece was measured using an Asker C durometer (SRIS 0101 standard) according to JIS K6253. As a test piece, the composition for each of the heat-melting laminated type three-dimensional printers in Examples and Comparative Examples had a length of 60 mm×width of 60 mm×thickness of 12 mm. 0.8 mm) was used, and each modeled was used. Specifically, the discharge temperature of the printer nozzle is 190° C., the drawing speed (head moving speed) is 10 mm/sec, the discharge speed is 5 mg/sec, the drawing width (the pitch at which the head shifts when moving to adjacent line drawing) is 1.2 mm. Further, a drawing layer was formed so as to fill a square of 60 mm in length×60 mm in width by repeating straight line folding in one direction under the condition of a gap (stacking pitch) of 0.5 mm between the nozzle and the surface to be drawn. After that, the head is raised by the stacking pitch under the same conditions, the direction is changed by 90 degrees, and linear folding back is repeated in a direction orthogonal to the drawing direction of the previous drawing layer, so that a square of 60 mm in length × 60 mm in width is newly filled. The process of forming and stacking different drawing layers was repeated. In this way, the drawing layers were laminated so that the drawing directions of the adjacent layers were orthogonal to each other, and modeling was performed until the thickness became 12 mm, and a test piece was obtained. When the hardness of the test piece of the test piece was Asker C50 or less, it was judged as “good”, and when it exceeded 50, it was judged as unsuitable as “x”.

(3)層間密着性
上記(2)硬度の試験に用いた試験片について、縦または横方向の両端を引張試験用治具でクランプし、引張速度500mm/minで元寸法に対して150%になるまで引張変形させたときの層間の状態を目視または顕微鏡で確認し、層間での剥離無し又は層間が材料破壊している場合を良「○」、層間での剥離が生じていた場合を不可「×」と判断した。
(3) Adhesion between layers The test piece used in the hardness test (2) above was clamped at both ends in the longitudinal or transverse directions with a tensile test jig, and the tensile speed was reduced to 150% of the original dimension at 500 mm/min. Check the condition of the layers when they are tensile deformed until it is visible or under a microscope.No peeling between the layers or a material breakdown between the layers is good.○, no peeling between the layers is possible. It was judged as "x".

また、以下の実施例及び比較例で使用した各構成成分の仕様を表1に示す。ここで、表1中の分子量Mwは、ゲル浸透クロマトグラフィー(GPC)法により測定された重量平均分子量である。具体的には、分子量Mwは、測定装置としてSHODEX(登録商標)GPC−104(昭和電工株式会社製品)[分離カラムLF−404(3本連結)、ガードカラムLF−G、RI検出器RI−74S(いずれも昭和電工株式会社製品)]を用いて、溶離液をテトラヒドロフランとして、サンプル濃度10mg/4ml、溶離液流量0.3ml/min及びカラム温度40℃の条件で測定した。 Table 1 shows the specifications of the respective constituents used in the following Examples and Comparative Examples. Here, the molecular weight Mw in Table 1 is a weight average molecular weight measured by a gel permeation chromatography (GPC) method. Specifically, the molecular weight Mw is measured by SHODEX (registered trademark) GPC-104 (a product of Showa Denko KK) [separation column LF-404 (three connected), guard column LF-G, RI detector RI-. 74S (both manufactured by Showa Denko KK)] was used as the eluent, and the measurement was performed under the conditions of a sample concentration of 10 mg/4 ml, an eluent flow rate of 0.3 ml/min, and a column temperature of 40°C.

Figure 2020116788
Figure 2020116788

[実施例1]
以下の手順で本実施例の熱溶解積層型3次元プリンタ用組成物を製造し、その効果の評価を行った。表1に示すスチレン系熱可塑性エラストマー(A成分)のうち、SEBS(a1)として、スチレン含有量42%、重量平均分子量150000のSEBS(A104)を615g(20.5重量%)、アミン変性SEBS(a2)として、スチレン含有量30%、重量平均分子量67000のアミン変性SEBS(A201)を210g(7重量%)、SEEPS(a3)として、スチレン含有量30%、重量平均分子量85000のSEEPS(A301)を330g(11重量%)それぞれ個別に秤量した。次に、表1に示す軟化剤(B成分)のうち、重量平均分子量1200のパラフィンオイル(B103)を1845g(61.5重量%)秤量した。このパラフィンオイルのうち、1020g(34重量%)をa1成分に、210g(7重量%)をa2成分に、615g(20.5重量%)をa3成分に、それぞれ添加した。各ブロック共重合体とパラフィンオイルとを室温でそれぞれ混合した後、100℃で12時間加熱し、a1〜a3の各成分にパラフィンオイルをそれぞれ分散させた(予備分散工程)。パラフィンオイルを吸収させたa1〜a3のブロック共重合体を手攪拌でドライブレンドした後、バッチ式の二軸混練機(株式会社トーシン製 TD3‐10MDX型)で160〜180℃、回転数40rpmで15分間混練し(混練工程)、3kgの熱溶解積層型3次元プリンタ用組成物を得た。この組成物を上述した熱溶解積層型3次元プリンタ用組成物の各評価方法で用いる所定の試験片形状に150〜170℃の条件下で射出成形し、得られた試験片を用いて物性等の評価を行った。
[Example 1]
The composition for a hot melt laminated three-dimensional printer of this example was manufactured by the following procedure, and its effect was evaluated. Among the styrene-based thermoplastic elastomers (component A) shown in Table 1, as SEBS (a1), 615 g (20.5% by weight) of SEBS (A104) having a styrene content of 42% and a weight average molecular weight of 150,000, amine-modified SEBS 210 g (7% by weight) of amine-modified SEBS (A201) having a styrene content of 30% and a weight average molecular weight of 67,000 is used as (a2), and SEEPS (A301) having a styrene content of 30% and a weight average molecular weight of 85,000 is used as SEEPS (a3). 330 g (11% by weight) was weighed individually. Next, of the softening agent (B component) shown in Table 1, 1845 g (61.5% by weight) of paraffin oil (B103) having a weight average molecular weight of 1200 was weighed. Of this paraffin oil, 1020 g (34% by weight) was added to the a1 component, 210 g (7% by weight) to the a2 component, and 615 g (20.5% by weight) to the a3 component. After each block copolymer and paraffin oil were mixed at room temperature, the mixture was heated at 100° C. for 12 hours to disperse the paraffin oil in each of the components a1 to a3 (preliminary dispersion step). After dry blending the block copolymers of a1 to a3 in which paraffin oil has been absorbed by hand stirring, a batch type twin-screw kneader (TD3-10MDX type manufactured by Toshin Co., Ltd.) at 160 to 180° C. and a rotation speed of 40 rpm are used. The mixture was kneaded for 15 minutes (kneading step) to obtain 3 kg of a composition for a hot melt laminated three-dimensional printer. This composition was injection-molded under the condition of 150 to 170° C. into a predetermined test piece shape used in each evaluation method of the composition for a heat-melting laminated type three-dimensional printer described above, and the obtained test piece was used for physical properties and the like. Was evaluated.

他方、この実施例1で得られた熱溶解積層型3次元プリンタ用組成物から粒状のペレットを3次元プリンタ用樹脂材料として作成した。このペレットを用いて、熱溶解積層式3次元プリンタ(自社試作装置、ノズル径0.8m)にて、吐出温度190℃、描画速度(ヘッド移動速度)10mm/秒、吐出速度5mg/秒、描画幅(隣接するライン描写に移行する時にヘッドがシフトするピッチ)1.2mm及びノズルと被描画面との隙間(積層ピッチ)0.5mmの条件により、上述した熱溶解積層型3次元プリンタによる造形物の各評価方法で用いる所定の試験片を3次元プリンタ造形物として得た。この試験片を用いて物性等の評価を行った。 On the other hand, granular pellets were prepared as a resin material for a three-dimensional printer from the composition for a heat-melting laminated type three-dimensional printer obtained in Example 1. Using these pellets, a thermal melting laminated type three-dimensional printer (in-house prototype device, nozzle diameter 0.8 m), discharge temperature 190° C., drawing speed (head moving speed) 10 mm/sec, discharge speed 5 mg/sec, drawing Modeling by the above-mentioned heat-melting stacking type three-dimensional printer under the conditions of width (pitch at which the head shifts when moving to adjacent line drawing) 1.2 mm and gap between nozzle and drawing surface (stacking pitch) 0.5 mm. Predetermined test pieces used in each evaluation method of the product were obtained as a three-dimensional printer molded product. The test pieces were used to evaluate physical properties and the like.

[実施例2〜8]
熱溶解積層型3次元プリンタ用組成物の構成成分である、スチレン系熱可塑性エラストマー(A成分)と軟化剤(B成分)及びその配合比を以下表2に示すように夫々変更した以外は、実施例1と同様にして、各実施例の熱溶解積層型3次元プリンタ用組成物を得た。実施例1と同様に、得られた熱溶解積層型3次元プリンタ用組成物を用いて物性評価用の試験片を成形し、物性等の評価を行った。さらに、実施例1と同様にして、各実施例の熱溶解積層型3次元プリンタ用組成物でペレットを作成し、このペレットを用いて熱溶解積層式3次元プリンタで所定の試験片を3次元プリンタ造形物として作製し、物性等の評価を行った。
[Examples 2 to 8]
Except that the styrene-based thermoplastic elastomer (component A), the softening agent (component B), and the compounding ratios thereof, which are the constituent components of the composition for a heat-melting laminated type three-dimensional printer, are changed as shown in Table 2 below. In the same manner as in Example 1, the hot-melt laminated type three-dimensional printer composition of each Example was obtained. In the same manner as in Example 1, a test piece for physical property evaluation was molded using the obtained composition for hot melt laminated three-dimensional printer, and physical properties and the like were evaluated. Further, in the same manner as in Example 1, pellets were prepared using the composition for a heat-melting laminated type three-dimensional printer of each Example, and a predetermined test piece was three-dimensionally formed by using the pellets in a heat-melting laminated type three-dimensional printer. It was manufactured as a printer model and evaluated for physical properties and the like.

実施例1〜8の結果を表2に示す。ここで、表3における「予備分散後のMFR差」とは、軟化剤(B)が分散された状態における成分a1〜a3の溶融粘度(MFR:メルトマスフローレート)について、溶融粘度が最も高い成分と最も低い成分の溶融粘度の値の差のことである。具体的には、予備分散処理後のa1〜a3成分について、JIS K7210−1B法に準拠して190℃におけるメルトマスフローレートを測定し、溶融粘度が最も高い値の成分と最も低い値の成分の溶融粘度の差を算出した値である(以降の表3〜6も同じ)。 The results of Examples 1 to 8 are shown in Table 2. Here, the “MFR difference after pre-dispersion” in Table 3 means the component having the highest melt viscosity with respect to the melt viscosity (MFR: melt mass flow rate) of the components a1 to a3 in the state in which the softening agent (B) is dispersed. And the difference in melt viscosity of the lowest component. Specifically, for the a1 to a3 components after the preliminary dispersion treatment, the melt mass flow rate at 190° C. was measured in accordance with JIS K7210-1B method, and the melt viscosity of the component having the highest value and the component having the lowest value were measured. It is a value obtained by calculating the difference in melt viscosity (the same applies to Tables 3 to 6 below).

Figure 2020116788
Figure 2020116788

[実施例9〜16]
熱溶解積層型3次元プリンタ用組成物の構成成分である、スチレン系熱可塑性エラストマー(A成分)と軟化剤(B成分)及びその配合比を以下表3に示すように夫々変更した以外は、実施例1と同様にして、各実施例の熱溶解積層型3次元プリンタ用組成物を得た。実施例1と同様に、得られた熱溶解積層型3次元プリンタ用組成物を用いて物性評価用の試験片を成形し、物性等の評価を行った。さらに、実施例1と同様にして、各実施例の熱溶解積層型3次元プリンタ用組成物でペレットを作成し、このペレットを用いて熱溶解積層式3次元プリンタで所定の試験片を3次元プリンタ造形物として作製し、物性等の評価を行った。実施例9〜16の結果を表3に示す。
[Examples 9 to 16]
Except that the styrene-based thermoplastic elastomer (component A), the softening agent (component B), and the compounding ratios thereof, which are the constituent components of the composition for a heat-melting laminated type three-dimensional printer, are changed as shown in Table 3 below. In the same manner as in Example 1, the hot-melt laminated type three-dimensional printer composition of each Example was obtained. In the same manner as in Example 1, a test piece for physical property evaluation was molded using the obtained composition for hot melt laminated three-dimensional printer, and physical properties and the like were evaluated. Further, in the same manner as in Example 1, pellets were prepared using the composition for a heat-melting laminated type three-dimensional printer of each Example, and a predetermined test piece was three-dimensionally formed by using the pellets in a heat-melting laminated type three-dimensional printer. It was manufactured as a printer model and evaluated for physical properties and the like. The results of Examples 9 to 16 are shown in Table 3.

Figure 2020116788
Figure 2020116788

[実施例17〜24]
熱溶解積層型3次元プリンタ用組成物の構成成分である、スチレン系熱可塑性エラストマー(A成分)と軟化剤(B成分)及びその配合比を以下表4に示すように夫々変更した以外は、実施例1と同様にして、各実施例の熱溶解積層型3次元プリンタ用組成物を得た。実施例1と同様に、得られた熱溶解積層型3次元プリンタ用組成物を用いて物性評価用の試験片を成形し、物性等の評価を行った。さらに、実施例1と同様にして、各実施例の熱溶解積層型3次元プリンタ用組成物でペレットを作成し、このペレットを用いて熱溶解積層式3次元プリンタで所定の試験片を3次元プリンタ造形物として作製し、物性等の評価を行った。実施例17〜24の結果を表4に示す。
[Examples 17 to 24]
Except that the styrene-based thermoplastic elastomer (component A) and the softening agent (component B), which are the constituent components of the composition for a heat-melting laminated type three-dimensional printer, and their compounding ratios were changed as shown in Table 4 below. In the same manner as in Example 1, the hot-melt laminated type three-dimensional printer composition of each Example was obtained. In the same manner as in Example 1, a test piece for physical property evaluation was molded using the obtained composition for hot melt laminated three-dimensional printer, and physical properties and the like were evaluated. Further, in the same manner as in Example 1, pellets were prepared using the composition for a heat-melting laminated type three-dimensional printer of each Example, and a predetermined test piece was three-dimensionally formed by using the pellets in a heat-melting laminated type three-dimensional printer. It was manufactured as a printer model and evaluated for physical properties and the like. The results of Examples 17 to 24 are shown in Table 4.

Figure 2020116788
Figure 2020116788

[比較例1〜4]
スチレン系熱可塑性エラストマー(A成分)と軟化剤(B成分)及びその配合比を以下表5に示すように夫々変更した以外は、実施例1と同様にして、各比較例の組成物を得た。実施例1と同様に、得られた組成物を用いて物性評価用の試験片を成形し、物性等の評価を行った。さらに、実施例1と同様にして、各比較例で得た組成物でペレットを作成し、このペレットを用いて熱溶解積層式3次元プリンタで所定の試験片を3次元プリンタ造形物として作製し、物性等の評価を行った。比較例1〜4の結果を表5に示す。
[Comparative Examples 1 to 4]
A composition of each comparative example was obtained in the same manner as in Example 1 except that the styrene-based thermoplastic elastomer (component A), the softening agent (component B), and their compounding ratios were changed as shown in Table 5 below. It was In the same manner as in Example 1, a test piece for physical property evaluation was molded using the obtained composition and physical properties and the like were evaluated. Further, in the same manner as in Example 1, pellets were prepared from the composition obtained in each comparative example, and a predetermined test piece was prepared as a three-dimensional printer molded article by a hot-melt layered three-dimensional printer using the pellets. The physical properties were evaluated. The results of Comparative Examples 1 to 4 are shown in Table 5.

Figure 2020116788
Figure 2020116788

[比較例5〜10]
スチレン系熱可塑性エラストマー(A成分)と軟化剤(B成分)及びその配合比を以下表6に示すように夫々変更した以外は、実施例1と同様にして、各比較例の組成物を得た。実施例1と同様に、各比較例で得た組成物でペレットを作成し、このペレットを用いて熱溶解積層式3次元プリンタで所定の試験片を3次元プリンタ造形物として作製し、物性等の評価を行った。比較例5〜10の結果を表6に示す。
[Comparative Examples 5 to 10]
A composition of each comparative example was obtained in the same manner as in Example 1 except that the styrene-based thermoplastic elastomer (component A), the softening agent (component B) and their compounding ratios were changed as shown in Table 6 below. It was In the same manner as in Example 1, pellets were prepared from the composition obtained in each comparative example, and a predetermined test piece was prepared as a three-dimensional printer model by a hot-melt laminating three-dimensional printer using the pellets, and physical properties and the like were obtained. Was evaluated. The results of Comparative Examples 5-10 are shown in Table 6.

Figure 2020116788
Figure 2020116788

表2〜表4に示した実施例1〜24の結果から、本発明の組成物の構成とすることによって、透明性、柔軟性、機械的強度及び耐熱性に優れた成形体(樹脂材料)を形成する熱溶解積層型3次元プリンタ用組成物が得られることがわかった。さらに、これらの熱溶解積層型3次元プリンタ用組成物を用いて形成された3次元プリンタ造形物は他部材との接着性に優れていることがわかった。 From the results of Examples 1 to 24 shown in Tables 2 to 4, a molded article (resin material) excellent in transparency, flexibility, mechanical strength and heat resistance was obtained by using the composition of the present invention. It was found that a hot melt laminated type three-dimensional printer composition which forms Further, it was found that the three-dimensional printer model formed by using the composition for hot melt laminated three-dimensional printer has excellent adhesiveness to other members.

実施例4〜5と比較例1〜2との結果を比較すると、スチレン系熱可塑性エラストマー(A)を構成する成分a1〜a3の分子量の範囲が50000〜200000の範囲を外れると、他部材との接着性が低下するとともに、熱溶解積層時の融着性が低下するため、造形物の透明性(ヘーズ特性)と層間密着性が劣ることがわかった。また、実施例7〜8と比較例3〜4との結果を比較すると、a1とa2のブロック共重合体のスチレン含有量が20〜55%の範囲を外れて低くなると引裂強さが低下し、スチレン含有量が20〜55%の範囲を外れて高くなると透明性が低下することがわかった。また、表4に示す実施例9〜16と表7に示す比較例5〜8との比較から、a1〜a3のブロック共重合体の配合割合が重量比で、a2/(a1+a2+a3)=0.08〜0.8またはa3/a1=0.35〜3.5のいずれかの範囲外となると熱溶解積層型3次元プリンタ用組成物の成形物の他部材との接着性が低下すること、a2/(a1+a2+a3)の値が0.8を超える場合(比較例6)やa3/a1の値が3.5を超える場合(比較例8)には引裂強さも低下すること、a2/(a1+a2+a3)の値が0.8を超える場合(比較例6)やa3/a1の値が0.35未満の場合(比較例7)には、成分a3の配合量が少なくなるため、熱溶解積層型3次元プリンタ用組成物の成形体の耐熱性が劣ることがわかった。さらに、表4の実施例17〜22と表6の比較例9〜10との比較から、スチレン系熱可塑性エラストマー(A)と軟化剤(B)の配合割合について、重量比でB/(A+B)の値が0.5未満では硬度が高くなり柔軟性に乏しく、0.7を超えると軟化剤(B)が過剰添加のため、熱溶解積層型3次元プリンタ用組成物の成形物の接着性が低下すると共に耐熱性も低下することから、B/(A+B)=0.5〜0.7の範囲が有効であることがわかった。なお、表1の実施例1と表5の実施例23及び24の結果から、軟化剤(B)としてパラフィンオイルを適用した場合には、パラフィンオイルの分子量が少なくとも400〜1200の範囲において本発明の効果を有することが確認された。 Comparing the results of Examples 4 to 5 and Comparative Examples 1 to 2, if the molecular weight range of the components a1 to a3 constituting the styrene-based thermoplastic elastomer (A) deviates from the range of 50,000 to 200,000, it is compared with other members. It was found that the transparency (haze property) and the interlayer adhesion of the shaped article were poor because the adhesiveness of No. 1 decreased and the fusion adhesion at the time of hot melt lamination decreased. Further, when the results of Examples 7 to 8 and Comparative Examples 3 to 4 are compared, when the styrene content of the block copolymers a1 and a2 falls outside the range of 20 to 55%, the tear strength decreases. It was found that when the styrene content is out of the range of 20 to 55% and becomes high, the transparency decreases. Further, from the comparison between Examples 9 to 16 shown in Table 4 and Comparative Examples 5 to 8 shown in Table 7, the mixing ratio of the block copolymers a1 to a3 is a weight ratio, a2/(a1+a2+a3)=0. If it is out of the range of 08 to 0.8 or a3/a1=0.35 to 3.5, the adhesiveness of the composition for the heat-melting laminated type three-dimensional printer to other members of the molded article is deteriorated. If the value of a2/(a1+a2+a3) exceeds 0.8 (Comparative Example 6) or the value of a3/a1 exceeds 3.5 (Comparative Example 8), the tear strength also decreases, and a2/(a1+a2+a3) When the value of) is more than 0.8 (Comparative Example 6) or when the value of a3/a1 is less than 0.35 (Comparative Example 7), the blending amount of the component a3 is small, so that the heat-melting laminated type is used. It was found that the heat resistance of the molded body of the composition for three-dimensional printer was inferior. Further, from the comparison between Examples 17 to 22 in Table 4 and Comparative Examples 9 to 10 in Table 6, the mixing ratio of the styrene-based thermoplastic elastomer (A) and the softening agent (B) was B/(A+B). If the value of) is less than 0.5, the hardness becomes high and the flexibility is poor, and if it exceeds 0.7, the softening agent (B) is excessively added, and therefore, the adhesion of the molded product of the composition for a heat-melting laminated type three-dimensional printer. It was found that the range of B/(A+B)=0.5 to 0.7 is effective because the heat resistance and the heat resistance also decrease. From the results of Example 1 in Table 1 and Examples 23 and 24 in Table 5, when paraffin oil was applied as the softening agent (B), the present invention was used when the molecular weight of paraffin oil was at least 400 to 1200. It was confirmed to have the effect of.

本発明は、上記の実施形態又は実施例に限定されるものでなく、特許請求の範囲に記載された発明の要旨を逸脱しない範囲内での種々、設計変更した形態も技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiments or examples, and various modifications of the design are also included in the technical scope within the scope not departing from the gist of the invention described in the claims. It is a thing.

50 試料片
51 試験片(実施例又は比較例の組成物による成形物)
52 ウレタン片
53 接着剤
54 固定側引張り治具
55 可動側引張り治具
60 試験片(耐熱性試験用)
61 試験片把持具
62 治具(支持アーム)
θt 交差角度(熱変形角度)
P 試験片60の試験片把持具61に固定されている部分
Q 熱変形した試験片60の自由端部分
50 sample pieces 51 test pieces (molded articles of the compositions of Examples or Comparative Examples)
52 Urethane piece 53 Adhesive 54 Fixed-side tension jig 55 Movable-side tension jig 60 Test piece (for heat resistance test)
61 Test piece gripping tool 62 Jig (support arm)
θt Crossing angle (thermal deformation angle)
P Part of the test piece 60 fixed to the test piece gripper 61 Q Free end part of the heat deformed test piece 60

Claims (6)

スチレン系熱可塑性エラストマー(A)及び軟化剤(B)を含有する組成物であって、
前記スチレン系熱可塑性エラストマー(A)が、少なくとも、スチレン−エチレン−ブチレン−スチレンブロック共重合体(a1)、アミン変性スチレン−エチレン−ブチレン−スチレンブロック共重合体(a2)及びスチレン−エチレン−エチレン−プロピレン−スチレンブロック共重合体(a3)を含有してなり、
前記a1〜a3のブロック共重合体の重量平均分子量Mwは、それぞれ50000〜200000であり、
前記スチレン−エチレン−ブチレン−スチレンブロック共重合体(a1)又は前記アミン変性スチレン−エチレン−ブチレン−スチレンブロック共重合体(a2)のスチレン含有量が、20〜55重量%であり、
前記a1〜a3のブロック共重合体の配合割合が、重量比で、a2/(a1+a2+a3)=0.08〜0.8かつ、a3/a1=0.35〜3.5であり、
前記スチレン系熱可塑性エラストマー(A)と軟化剤(B)の配合割合が、重量比で、B/(A+B)=0.5〜0.7であることを特徴とする熱溶解積層型3次元プリンタ用組成物。
A composition containing a styrene thermoplastic elastomer (A) and a softening agent (B), comprising:
The styrene-based thermoplastic elastomer (A) is at least styrene-ethylene-butylene-styrene block copolymer (a1), amine-modified styrene-ethylene-butylene-styrene block copolymer (a2) and styrene-ethylene-ethylene. -Propylene-styrene block copolymer (a3) is contained,
The weight average molecular weights Mw of the block copolymers a1 to a3 are respectively 50,000 to 200,000,
The styrene-ethylene-butylene-styrene block copolymer (a1) or the amine-modified styrene-ethylene-butylene-styrene block copolymer (a2) has a styrene content of 20 to 55% by weight,
The blending ratio of the block copolymers of a1 to a3 is a2/(a1+a2+a3)=0.08 to 0.8 and a3/a1=0.35 to 3.5 by weight.
The blending ratio of the styrene-based thermoplastic elastomer (A) and the softening agent (B) is B/(A+B)=0.5 to 0.7 in weight ratio. Composition for printer.
前記軟化剤(B)は、分子量が400〜1200のパラフィン系オイルであることを特徴とする請求項1に記載の熱溶解積層型3次元プリンタ用組成物。 The composition for a hot melt laminated three-dimensional printer according to claim 1, wherein the softening agent (B) is a paraffinic oil having a molecular weight of 400 to 1200. 温度150〜200℃、荷重2.16kgの範囲で測定したメルトマスフローレート(JIS K7210−1B法準拠)が15〜3000g/10minであることを特徴とする請求項1又は2に記載の熱溶解積層型3次元プリンタ用組成物。 The melt mass flow rate (according to JIS K7210-1B method) measured in a temperature range of 150 to 200° C. and a load of 2.16 kg is 15 to 3000 g/10 min, and the hot melt laminating method according to claim 1 or 2. Composition for mold three-dimensional printer. 請求項1〜3のいずれか1項に記載の熱溶解積層型3次元プリンタ用組成物を主成分とし、ヘイズ値(JIS K7136:2000準拠)が15%以下であり、硬度がアスカーC50以下(SRIS 0101規格)であることを特徴とする熱溶解積層型3次元プリンタ用樹脂材料。 The composition for hot-melt laminated type three-dimensional printer according to any one of claims 1 to 3 is a main component, haze value (JIS K7136:2000 compliant) is 15% or less, and hardness is Asker C50 or less ( SRIS 0101 standard), which is a resin material for a heat-melting laminated type three-dimensional printer. 請求項1〜3のいずれか1項に記載の熱溶解積層型3次元プリンタ用組成物を主成分とする熱溶解積層型3次元プリンタ用フィラメント。 A filament for a heat-melting laminated type three-dimensional printer, which comprises the composition for a heat-melting laminated type three-dimensional printer according to any one of claims 1 to 3 as a main component. 請求項1〜3のいずれか1項に記載の熱溶解積層型3次元プリンタ用組成物を主成分とする熱溶解積層型3次元プリンタ用ペレット。 A pellet for a heat-melting laminated type three-dimensional printer, which comprises the composition for a heat-melting laminated type three-dimensional printer according to any one of claims 1 to 3 as a main component.
JP2019008378A 2019-01-22 2019-01-22 Fused Deposition Modeling 3D Printer Composition Active JP7012368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019008378A JP7012368B2 (en) 2019-01-22 2019-01-22 Fused Deposition Modeling 3D Printer Composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019008378A JP7012368B2 (en) 2019-01-22 2019-01-22 Fused Deposition Modeling 3D Printer Composition

Publications (2)

Publication Number Publication Date
JP2020116788A true JP2020116788A (en) 2020-08-06
JP7012368B2 JP7012368B2 (en) 2022-01-28

Family

ID=71889666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019008378A Active JP7012368B2 (en) 2019-01-22 2019-01-22 Fused Deposition Modeling 3D Printer Composition

Country Status (1)

Country Link
JP (1) JP7012368B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017136739A (en) * 2016-02-03 2017-08-10 ホッティーポリマー株式会社 Filament and method for producing filament
JP2019031654A (en) * 2017-07-05 2019-02-28 奇美實業股▲分▼有限公司 Resin composition and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017136739A (en) * 2016-02-03 2017-08-10 ホッティーポリマー株式会社 Filament and method for producing filament
JP2019031654A (en) * 2017-07-05 2019-02-28 奇美實業股▲分▼有限公司 Resin composition and use thereof

Also Published As

Publication number Publication date
JP7012368B2 (en) 2022-01-28

Similar Documents

Publication Publication Date Title
US11268214B2 (en) Filament for material extrusion 3D printer molding and production method of molded body
JP5270802B2 (en) Hot melt composition for slush molding
JP5966110B1 (en) Footwear cushioning composition and footwear cushioning member
GB2344785A (en) Conductive laminated sheet
KR102414801B1 (en) Thermoplastic elastomer composition and manufacturing method of dual extrusion molding article using the same
JP7012368B2 (en) Fused Deposition Modeling 3D Printer Composition
JP6629170B2 (en) Thermoplastic elastomer composition
CN108070152A (en) Polyolefine resin composition, polyolefin masterbatches, the method for preparing polyolefin masterbatches and the product formed by polyolefin masterbatches
JP5204742B2 (en) Film comprising elastomer composition for production of melt spread containing controlled distribution block polymer, method for producing the same, and composite molded article
JP5575219B2 (en) Elastomer composition for extrusion molding and film
JP6474535B2 (en) Footwear cushioning composition and footwear cushioning member
JP3865412B2 (en) Composite molding resin composition
JP6591921B2 (en) Thermoplastic elastomer composition
JP7336312B2 (en) THERMOPLASTIC RESIN COMPOSITION, MATERIAL EXTRUSION-TYPE 3D PRINTER-MOLDING FILAMENT, AND METHOD FOR MANUFACTURING MOLDED BODY
EP3812129A1 (en) 3d-printed materials with improved mechanical properties
JP2011148872A (en) Elastomer composition comprising acid-modified polymer for manufacturing melt-spread item, and film
JP4192007B2 (en) Thermoplastic elastomer composition having a high coefficient of friction and anti-slip member comprising the same
JPH10130452A (en) Thermoplastic elastomer composition
JP2019112535A (en) Thermoplastic elastomer composition
Mandal et al. Studies on the engineering properties of LCP‐Vectra B 950/PP blends with the variations of EAA content
JP6485063B2 (en) Laminated body, molded body and daily necessities
TWI715559B (en) Molded body, laminated body, tool grip material and daily tools
WO2021091907A1 (en) Composition for additive manufacturing
TW200632026A (en) Thermoplastic polymer composition, moldings made of thermoplastic polymer composition, and composite moldings made of thermoplastic polymer composition and other materials
Mandal et al. Effect of the Compatibilizer, EAA on the Engineering Properties of PP/Vectra A 950 Blends

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220111

R150 Certificate of patent or registration of utility model

Ref document number: 7012368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150