JP2020115066A - Constant-temperature high-humidity storage and operating method for the same - Google Patents

Constant-temperature high-humidity storage and operating method for the same Download PDF

Info

Publication number
JP2020115066A
JP2020115066A JP2019006596A JP2019006596A JP2020115066A JP 2020115066 A JP2020115066 A JP 2020115066A JP 2019006596 A JP2019006596 A JP 2019006596A JP 2019006596 A JP2019006596 A JP 2019006596A JP 2020115066 A JP2020115066 A JP 2020115066A
Authority
JP
Japan
Prior art keywords
temperature
duct
value
compressor
duct temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019006596A
Other languages
Japanese (ja)
Other versions
JP7201450B2 (en
Inventor
敬助 福井
Keisuke Fukui
敬助 福井
石川 享
Susumu Ishikawa
享 石川
正行 西尾
Masayuki Nishio
正行 西尾
鈴木 義康
Yoshiyasu Suzuki
義康 鈴木
山崎 拓也
Takuya Yamazaki
拓也 山崎
祐基 中村
Sukeki Nakamura
祐基 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Corp
Original Assignee
Hoshizaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Corp filed Critical Hoshizaki Corp
Priority to JP2019006596A priority Critical patent/JP7201450B2/en
Publication of JP2020115066A publication Critical patent/JP2020115066A/en
Application granted granted Critical
Publication of JP7201450B2 publication Critical patent/JP7201450B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To suppress a temperature change in a storage chamber in a constant-temperature high-humidity storage.SOLUTION: A constant-temperature high-humidity storage 1 indirectly cools inside of a storage chamber 30S by supplying cold air from a cold air supply device 21 including a variable-rotational frequency type compressor 24 into a cooling duct 40D formed between a heat insulating box 10 and an interior box 30 defining the storage chamber 30S. The constant-temperature high-humidity storage includes: a duct temperature sensor 81D measuring a duct temperature TD at each sampling time t; a data storage section (storage means) 103 in which duct cooling performance PD serving as a target of the duct temperature TD for causing a storage inner temperature TS to reach a preset storage inner temperature set value TSs are stored; a calculation section (calculation means) 104 calculating target rotational frequency CRt of the compressor 24 for lowering the duct temperature TD in accordance with the duct cooling performance PD on the basis of a duct temperature measurement value TDm; and an inverter circuit (compressor drive means) 105 changing the rotational frequency CR of the compressor 24 to the target rotational frequency CRt.SELECTED DRAWING: Figure 4

Description

本明細書によって開示される技術は、恒温高湿庫及びその運転方法に関する。 The technique disclosed by the present specification relates to a constant temperature and high humidity chamber and a method of operating the same.

生鮮食品を乾燥させることなく長期に亘って保存できる貯蔵庫として、恒温高湿庫が知られている。例えば下記特許文献1に開示された恒温高湿度庫では、断熱壁を有する箱体と、食品等が貯蔵される貯蔵室との間に形成された空間部が、冷却ダクト(冷気ダクトと称されることもある)として利用される。この冷却ダクトに冷気供給装置から冷気が供給されて貯蔵室の壁面を冷却することで、貯蔵室内が間接的に冷却される(いわゆる間接冷却方式)。 A constant temperature and high humidity chamber is known as a storage that can store fresh food for a long time without drying. For example, in the constant temperature and high humidity chamber disclosed in Patent Document 1 below, a space portion formed between a box body having a heat insulating wall and a storage room in which food or the like is stored is referred to as a cooling duct (referred to as a cool air duct). Sometimes used as). Cold air is supplied from the cold air supply device to the cooling duct to cool the wall surface of the storage chamber, so that the storage chamber is indirectly cooled (so-called indirect cooling system).

恒温高湿庫に備えられる冷気供給装置には、圧縮機、凝縮器、冷却器等が冷媒を封入した冷媒管によって循環接続された、既知の構成のものを用いることができる。凝縮器には、冷媒の液化凝縮時に発生する凝縮熱によって温度上昇した凝縮器を空冷するための、凝縮器ファンが設けられる。また、冷却ダクト内には、冷却器を通過する循環空気流を生じさせるダクトファンが設けられる。圧縮機、凝縮器ファン及びダクトファンが駆動されると、冷却ダクト内の空気が吸引されて冷却器を通過する。冷却器を通過する間に熱交換によって生成された冷気が、冷却ダクトに向けて吐出されることで、既述したように貯蔵室内が間接的に冷却される仕組みである。 The cool air supply device provided in the constant temperature and high humidity chamber may have a known configuration in which a compressor, a condenser, a cooler and the like are circulated and connected by a refrigerant pipe containing a refrigerant. The condenser is provided with a condenser fan for air-cooling the condenser whose temperature has risen due to condensation heat generated during liquefaction condensation of the refrigerant. A duct fan is provided in the cooling duct to generate a circulating air flow passing through the cooler. When the compressor, the condenser fan, and the duct fan are driven, the air in the cooling duct is sucked and passes through the cooler. The cool air generated by heat exchange while passing through the cooler is discharged toward the cooling duct, so that the storage chamber is indirectly cooled as described above.

従来、圧縮機には一定速型の圧縮機が用いられており、この圧縮機を駆動/停止させることで、貯蔵室内の温度が略一定に冷却維持されていた。すなわち、庫内温度が庫内温度設定値よりも所定値以上高くなると圧縮機を起動し、所定値以上低くなると圧縮機を停止することにより、冷気供給装置の運転が制御されていた。 Conventionally, a constant speed compressor has been used as a compressor, and by driving/stopping this compressor, the temperature inside the storage chamber is maintained at a substantially constant cooling. That is, the operation of the cold air supply device is controlled by starting the compressor when the internal temperature becomes higher than the preset internal temperature value by a predetermined value or more, and stopping the compressor when the internal temperature becomes lower than the predetermined value by more than the predetermined value.

特開平05−264158号公報Japanese Patent Laid-Open No. 05-264158

例えば上記のように、一定速圧縮機の駆動/停止によって冷気供給装置を制御した場合、圧縮機の駆動の有無によって冷却能力が二値的に変化するため、冷却ダクト内のダクト温度が大きく変動し、これに伴って貯蔵室内の庫内温度の変動も大きくなってしまう。鮮度を保ちながら生鮮食品を保存するためには、庫内温度をできるだけ一定に維持し貯蔵室内における温度ムラを小さくすることが望ましいため、貯蔵室内の温度変動を抑制する技術が希求されていた。 For example, as described above, when the cool air supply device is controlled by driving/stopping the constant speed compressor, the cooling capacity changes binary depending on whether the compressor is driven or not, so the duct temperature in the cooling duct fluctuates greatly. However, along with this, the variation of the temperature inside the storage compartment also becomes large. In order to preserve fresh food while maintaining freshness, it is desirable to keep the temperature inside the refrigerator as constant as possible and reduce the temperature unevenness in the storage chamber. Therefore, a technique for suppressing temperature fluctuation in the storage chamber has been desired.

本明細書に開示する技術は、上記事情等を考慮して完成されたものであり、恒温高湿庫における貯蔵室内の温度(庫内温度)の変動を効果的に抑制することを目的とする。 The technique disclosed in the present specification has been completed in view of the above circumstances and the like, and an object thereof is to effectively suppress the fluctuation of the temperature (in-store temperature) in the storage chamber in the constant temperature and high humidity chamber. ..

(1)本明細書によって開示される恒温高湿庫は、断熱壁を有する断熱箱体と、前記断熱箱体との間に冷気の通路となる冷却ダクトを形成しつつ前記断熱箱体の内方に配されて内部が貯蔵室とされる内装箱と、凝縮器、冷却器、及び回転数可変型の圧縮機が冷媒を封入した冷媒管によって循環接続されて前記冷却ダクト内に冷気を供給することによって前記貯蔵室内を間接的に冷却する冷気供給装置と、前記圧縮機の駆動状態に関わらず所定のサンプリング時間ごとに前記冷却ダクト内のダクト温度を測定するダクト温度センサと、前記貯蔵室内の庫内温度を予め設定された庫内温度設定値とするための前記ダクト温度についての目標となるダクト温度目標値の経時的変化態様を示す冷却特性が記憶された記憶手段と、前記ダクト温度センサで測定されたダクト温度測定値に基づいて、前記ダクト温度を前記冷却特性に倣って降下させるための前記圧縮機の目標回転数を算出する演算手段と、前記圧縮機の回転数を目標回転数に合わせて変化させる圧縮機駆動手段と、を備える。 (1) In the constant temperature and high humidity chamber disclosed by the present specification, the inside of the heat insulating box while forming a cooling duct serving as a passage of cold air between the heat insulating box having a heat insulating wall and the heat insulating box. The internal box, which is located on the other side and whose inside is a storage chamber, and the condenser, the cooler, and the variable speed compressor are circulated and connected by a refrigerant pipe filled with a refrigerant to supply cool air into the cooling duct. A cool air supply device that indirectly cools the storage chamber, a duct temperature sensor that measures the duct temperature in the cooling duct at every predetermined sampling time regardless of the driving state of the compressor, and the storage chamber A storage means for storing cooling characteristics indicating a time-dependent change mode of the target duct temperature target value for the duct temperature for setting the internal chamber temperature of the chamber to a preset internal temperature set value; and the duct temperature. Based on the duct temperature measurement value measured by the sensor, the calculating means for calculating the target rotation speed of the compressor for lowering the duct temperature in accordance with the cooling characteristic, and the rotation speed of the compressor as the target rotation speed. Compressor driving means for changing the number according to the number.

上記構成によれば、間接冷却方式の恒温高湿庫に回転数可変型の圧縮機を適用してインバータ制御することで、一定速型の圧縮機を駆動/停止して温度を制御する恒温高湿庫と比較して、冷却能力を細かく調整できる。ここで、間接冷却方式の恒温高湿庫では、貯蔵室内に冷気供給装置からの冷気を直接供給するのではなく、冷却ダクト内の冷気で内装箱の壁面を冷却することにより、庫内温度を間接的に降下させている。すなわち、圧縮機の回転数を変化させたときに直接影響を受けて最初に変動するのは、庫内温度ではなくダクト温度である。よって、インバータ圧縮機を備えた従来の直接冷却方式の恒温庫のように庫内温度に基づいて圧縮機を制御するのではなく、上記構成のようにダクト温度に基づいて圧縮機の回転数を変化させれば、目標とする温度の変化態様への従属性をより高めることができる。また、圧縮機の停止中も含めて所定のサンプリング時間ごとにダクト温度を測定し続けることで、例えば圧縮機を再起動すべきタイミングを一早く検知して対応可能となる。この結果、恒温高湿庫における貯蔵室内の温度変動を、効果的に抑制することができる。 According to the above configuration, by applying a variable rotation speed type compressor to an indirect cooling type constant temperature and high humidity chamber and performing inverter control, a constant temperature and high temperature which controls the temperature by driving/stopping the constant speed type compressor. The cooling capacity can be finely adjusted as compared with a wet box. Here, in the indirect cooling type constant temperature and high humidity chamber, rather than directly supplying the cool air from the cool air supply device into the storage chamber, by cooling the wall surface of the inner box with the cool air in the cooling duct, It is descending indirectly. That is, when the number of revolutions of the compressor is changed, it is the duct temperature, not the inside temperature, which is directly influenced and first fluctuates. Therefore, instead of controlling the compressor based on the internal temperature as in the conventional direct cooling type constant temperature oven equipped with an inverter compressor, the rotation speed of the compressor is controlled based on the duct temperature as in the above configuration. By changing the temperature, it is possible to further increase the dependency on the target temperature change mode. In addition, by continuing to measure the duct temperature at every predetermined sampling time even when the compressor is stopped, it is possible to detect the timing at which the compressor should be restarted as soon as possible, and respond accordingly. As a result, it is possible to effectively suppress the temperature fluctuation in the storage chamber in the constant temperature and high humidity chamber.

(2)また、本明細書によって開示される恒温高湿庫は、上記(1)において、前記記憶手段には、前記庫内温度と前記ダクト温度との関係を表した温度連関データが記憶されており、前記演算手段は、前記温度連関データに基づいて、前記庫内温度設定値から前記ダクト温度目標値を算出するものであってもよい。
このような構成において、温度連関データは、関連する機器や部材のサイズ(容量)や配置、構造、性能等を考慮して、過去の実測値等から算出できる。上記構成によれば、このような温度連関データに基づいて、庫内温度設定値を実現するために必要なダクト温度目標値を決定することで、ダクト温度目標値を適切に決定することができる。
(2) Further, in the constant temperature and high humidity chamber disclosed by the present specification, in the above (1), the storage means stores temperature association data representing a relationship between the internal temperature and the duct temperature. However, the calculating means may calculate the duct temperature target value from the inside temperature setting value based on the temperature relational data.
In such a configuration, the temperature related data can be calculated from past measured values or the like in consideration of the size (capacity), arrangement, structure, performance, etc. of the related devices and members. According to the above configuration, the duct temperature target value can be appropriately determined by determining the duct temperature target value required to realize the internal cold storage temperature set value based on such temperature association data. ..

(3)また、本明細書によって開示される恒温高湿庫は、上記(1)又は(2)において、前記冷却特性は、前記ダクト温度に応じて規定された、ダクト温度降下率についての目標となるダクト温度降下率目標値を含み、前記演算手段は、前記ダクト温度測定値に基づいて、前記ダクト温度降下率目標値を達成するための前記目標回転数を算出するものであってもよい。
このような構成によれば、ダクト温度測定値に応じた圧縮機の目標回転数の算出を、より容易かつ迅速に行うことができる。
(3) Further, in the constant temperature and high humidity chamber disclosed by the present specification, in (1) or (2) above, the cooling characteristic is a target for a duct temperature drop rate defined according to the duct temperature. The target temperature may be calculated based on the duct temperature measurement value, and the target rotation speed for achieving the duct temperature drop rate target value may be calculated. ..
With such a configuration, the target rotation speed of the compressor can be calculated more easily and quickly according to the measured value of the duct temperature.

(4)また、本明細書によって開示される恒温高湿庫は、上記(3)において、前記演算手段は、前記庫内温度を予め設定された庫内温度設定値とするための前記ダクト温度についての指標となるダクト温度指標値を算出し、前記圧縮機駆動手段は、前記ダクト温度測定値が、前記ダクト温度指標値よりも所定値だけ高いダクト温度上限値よりも高くなると前記圧縮機を起動し、前記ダクト温度測定値が、前記ダクト温度指標値よりも所定値だけ低いダクト温度下限値よりも低くなると前記圧縮機を停止し、前記ダクト温度降下率目標値は、前記ダクト温度指標値よりも低く前記ダクト温度下限値よりも高いダクト温度中間値以上でかつ前記ダクト温度上限値以下の第1制御温度領域では正の値とされ、前記ダクト温度中間値未満で前記ダクト温度下限値以上の第2制御温度領域では負の値とされるものであってもよい。
このような構成によれば、ダクト温度測定値がダクト温度中間値に至るまで降下すると、圧縮機回転数制御手段によって積極的に圧縮機の回転数が小さくなるように修正されて、冷却能力が低下する。これにより、ダクト温度測定値が下限値まで降下することが少なくなり、圧縮機は、より長期間に亘って連続運転される。この結果、圧縮機の停止による庫内温度の上昇が低減され、貯蔵室内の温度変動が抑制される。
(4) Further, in the constant temperature and high humidity chamber disclosed by the present specification, in the above (3), the calculation means is the duct temperature for setting the internal temperature to a preset internal temperature set value. For calculating the duct temperature index value as an index, the compressor driving means, when the duct temperature measurement value is higher than the duct temperature upper limit value higher by a predetermined value than the duct temperature index value, the compressor When started, the duct temperature measurement value is lower than the duct temperature lower limit value lower by a predetermined value than the duct temperature index value, the compressor is stopped, and the duct temperature drop rate target value is the duct temperature index value. Is lower than the duct temperature lower limit value and higher than the duct temperature middle value and is a positive value in the first control temperature range of the duct temperature upper limit value or lower, and is lower than the duct temperature lower limit value and higher than the duct temperature lower limit value. It may be a negative value in the second control temperature region of.
According to such a configuration, when the duct temperature measurement value drops to the duct temperature intermediate value, the compressor rotation speed control unit positively corrects the rotation speed of the compressor to reduce the cooling capacity. descend. As a result, the measured value of the duct temperature is less likely to drop to the lower limit value, and the compressor is continuously operated for a longer period. As a result, the rise in the internal temperature due to the stop of the compressor is reduced, and the temperature fluctuation in the storage chamber is suppressed.

(5)また、本明細書によって開示される恒温高湿庫は、上記(1)から(4)の何れかにおいて、前記貯蔵室内に設けられ、前記庫内温度を測定する庫内温度センサと、前記断熱箱体の外側に設けられ、周囲温度を測定する周囲温度センサと、をさらに備え、前記記憶手段には、前記ダクト温度測定値、前記庫内温度センサで測定された庫内温度測定値、及び前記周囲温度センサで測定された周囲温度測定値から、前記貯蔵室の中央部における庫内中央温度を推察するための中央温度推察用データがさらに記憶されており、前記演算手段は、前記ダクト温度測定値、前記庫内温度測定値、及び前記周囲温度測定値から、前記中央温度推察用データに基づいて前記庫内中央温度を推察するとともに、前記庫内中央温度を予め設定された庫内温度設定値とするための前記ダクト温度についての目標となるダクト温度指標値を算出するものであってもよい。
このような構成によれば、特定箇所に設置された庫内温度センサによる庫内温度測定値から、貯蔵室中央部における庫内中央温度が推察され、この庫内中央温度が庫内温度設定値となるように制御される。よって、貯蔵室内における温度(庫内温度)のばらつきを考慮した上で、貯蔵室の全体を、庫内温度設定値付近に維持することが可能となる。
(5) Further, the constant temperature and high humidity chamber disclosed in the present specification is, in any of the above (1) to (4), provided in the storage chamber, and an internal temperature sensor for measuring the internal temperature. And an ambient temperature sensor that is provided outside the heat-insulating box and measures an ambient temperature, and the storage unit stores the duct temperature measurement value and the internal temperature measurement measured by the internal temperature sensor. From the ambient temperature measurement value and the ambient temperature measurement value measured by the ambient temperature sensor, the central temperature inferring data for inferring the central temperature in the refrigerator in the central portion of the storage chamber is further stored, and the calculating means is From the duct temperature measured value, the inside temperature measured value, and the ambient temperature measured value, while inferring the inside central temperature based on the central temperature estimation data, the inside central temperature was preset. It is also possible to calculate a target duct temperature index value for the duct temperature to be the inside temperature setting value.
According to such a configuration, from the measured value of the internal temperature by the internal temperature sensor installed in a specific location, the central temperature of the internal storage in the central part of the storage chamber is estimated, and this internal central temperature is the internal temperature set value. Is controlled so that Therefore, it becomes possible to maintain the entire storage chamber at a temperature close to the set temperature in the storage chamber in consideration of variations in the temperature in the storage chamber (internal temperature).

(6)また、本明細書によって開示される恒温高湿庫は、上記(5)において、状態に応じて前記庫内温度に影響を与えうる付帯装備をさらに備え、前記記憶手段には、前記付帯装備の状態が前記庫内中央温度に与える影響についての付帯データがさらに記憶され、前記演算手段は、前記ダクト温度測定値、前記庫内温度測定値、及び前記周囲温度測定値、並びに、前記付帯装備の状態についての情報から、前記中央温度推察用データ及び前記付帯データに基づいて、前記庫内中央温度を推察するものであってもよい。
このような構成によれば、例えば断熱扉や断熱箱体に結露防止ヒータが付設され、これらの通電状態によって庫内温度が変動するような恒温高湿庫について、より高い精度で、貯蔵室の全体を庫内温度設定値付近に維持することが可能となる。
(6) Further, the constant temperature and high humidity chamber disclosed in the present specification further includes an accessory device that can affect the temperature inside the chamber according to the state in (5) above, and the storage means includes Additional data about the influence of the state of the auxiliary equipment on the central temperature in the refrigerator is further stored, the calculation means, the duct temperature measurement value, the internal temperature measurement value, and the ambient temperature measurement value, and the The central temperature in the refrigerator may be inferred based on the central temperature estimation data and the auxiliary data from the information on the state of the auxiliary equipment.
With such a configuration, for example, a dew condensation prevention heater is attached to a heat insulating door or a heat insulating box, and a constant temperature and high humidity chamber in which the temperature inside the chamber fluctuates depending on the energized state of the storage chamber with higher accuracy. It is possible to keep the whole inside the refrigerator temperature set value.

(7)また、本明細書によって開示される恒温高湿庫の運転方法は、断熱壁を有する断熱箱体と、前記断熱箱体との間に冷気の通路となる冷却ダクトを形成しつつ前記断熱箱体の内方に配されて内部が貯蔵室とされる内装箱と、凝縮器、冷却器、及び回転数可変型の圧縮機が冷媒を封入した冷媒管によって循環接続されて前記冷却ダクト内に冷気を供給することによって前記貯蔵室内を間接的に冷却する冷気供給装置と、前記貯蔵室内の庫内温度を予め設定された庫内温度設定値とするための前記冷却ダクト内のダクト温度についての目標となるダクト温度目標値の経時的変化態様を示す冷却特性が記憶された記憶手段と、を備える恒温高湿庫の運転方法であって、前記圧縮機の駆動状態に関わらず所定のサンプリング時間ごとに前記冷却ダクト内のダクト温度を測定し、ダクト温度測定値に基づいて前記ダクト温度を前記冷却特性に倣って降下させるための前記圧縮機の目標回転数を算出し、前記圧縮機の回転数を前記目標回転数に合わせて変化させる、恒温高湿庫の運転方法である。
このような構成によれば、恒温高湿庫を、貯蔵室内の温度変動を効果的に抑制しながら運転することができる。
(7) Further, in the method for operating a constant temperature and high humidity chamber disclosed in the present specification, the heat insulation box having a heat insulation wall and a cooling duct serving as a passage for cold air are formed between the heat insulation box and the heat insulation box. The inner duct, which is arranged inside the heat-insulating box and whose inside is a storage chamber, and the condenser, the cooler, and the variable speed compressor are circulatively connected by a refrigerant pipe in which a refrigerant is sealed, and the cooling duct is provided. A cool air supply device that indirectly cools the storage chamber by supplying cool air into the storage chamber, and a duct temperature in the cooling duct for setting the storage chamber temperature in the storage chamber to a preset storage chamber temperature set value. A storage method in which a cooling characteristic indicating a mode of time-dependent change of the target duct temperature target value is stored, and a method for operating a constant temperature and high humidity chamber, which is irrespective of a driving state of the compressor. The duct temperature in the cooling duct is measured for each sampling time, and the target rotation speed of the compressor for lowering the duct temperature according to the cooling characteristic is calculated based on the measured duct temperature value. Is a method of operating a constant temperature and high humidity chamber in which the number of revolutions is changed according to the target number of revolutions.
With such a configuration, the constant temperature and high humidity can be operated while effectively suppressing the temperature fluctuation in the storage chamber.

本明細書によって開示される技術によれば、恒温高湿庫における貯蔵室内の温度変化を抑制することができる。 According to the technique disclosed in the present specification, it is possible to suppress the temperature change in the storage chamber in the constant temperature and high humidity chamber.

一実施形態に係る恒温高湿庫の一部分解斜視図1 is an exploded perspective view of a constant temperature and high humidity chamber according to an embodiment. 恒温高湿庫の縦断面図Longitudinal section of constant temperature and high humidity 冷気供給装置近傍における図2の部分拡大図2 is a partially enlarged view of the vicinity of the cool air supply device. 恒温高湿庫の運転制御に係る機構を表すブロック図Block diagram showing a mechanism related to operation control of a constant temperature and high humidity chamber 恒温高湿庫の運転動作の一例を示すフローチャートFlowchart showing an example of the operation of the constant temperature and high humidity chamber 恒温高湿庫の温度制御動作の一例を示すフローチャートFlowchart showing an example of temperature control operation of constant temperature and high humidity 恒温高湿庫の温度制御の一例を示すタイミングチャートTiming chart showing an example of temperature control of constant temperature and high humidity

<実施形態>
以下、一実施形態に係る恒温高湿庫について、図面を参照しつつ説明する。
以下の説明では、図1における紙面手前左側を前側もしくは正面側(紙面奥右側を後側もしくは背面側)、紙面手前右側を右側(紙面奥左側を左側)、上側を上側(下側を下側)とする。なお、複数の同一部材については、一の部材に符号を付し、他の部材については符号を省略することがある。また、後述する各温度等のパラメータについて、設定値もしくは指標値にs、目標値にt、測定値にm、の添え字を付して表すことがある。
<Embodiment>
Hereinafter, a constant temperature and high humidity chamber according to an embodiment will be described with reference to the drawings.
In the following description, the front left side of the paper in FIG. 1 is the front side or the front side (the back right side of the paper is the rear side or the back side), the front right side of the paper is the right side (the back left side of the paper is the left side), and the upper side is the upper side (the lower side is the lower side). ). In addition, about a some same member, the code|symbol may be attached|subjected to one member and a code|symbol may be abbreviate|omitted about another member. In addition, for parameters such as each temperature to be described later, a set value or an index value may be represented by subscripts of s, a target value of t, and a measured value of m.

[恒温高湿庫の概略構成]
図1から図3に示すように、本実施形態では、4ドア式の業務用恒温高湿庫1を例示する。図1等に表されているように、恒温高湿庫1は、断熱壁を有する断熱箱(断熱箱体)10と、断熱箱10の上方に配された機械室20と、断熱箱10の内方に収容され、内部が貯蔵室30Sとされる内装箱30と、を備える。図2等に表されているように、断熱箱10は前方に開口された箱状をなす。断熱箱10の前側の開口には、十字形に組まれた断熱性の仕切枠19が取り付けられ、計4つの開口領域が形成されている。図1等に表されているように、これらの開口領域に、裏面にパッキンが装着された断熱扉18が、上下2段に分かれた観音開き式の開閉可能に装着される。これにより、貯蔵室30Sは断熱扉18によって開閉可能な構成となっている。なお、貯蔵室30Sの内部には、複数段にわたって貯蔵物(食品等)を配置するための棚網31が配されている。
[Outline of constant temperature and high humidity chamber]
As shown in FIGS. 1 to 3, in the present embodiment, a four-door type constant temperature and high humidity chamber for business 1 is illustrated. As shown in FIG. 1 and the like, the constant temperature and high humidity chamber 1 includes a heat insulating box (heat insulating box) 10 having a heat insulating wall, a machine room 20 arranged above the heat insulating box 10, and a heat insulating box 10. An interior box 30 that is housed inside and has a storage chamber 30S inside. As shown in FIG. 2 and the like, the heat insulating box 10 has a box shape that is opened forward. A cross-shaped heat insulating partition frame 19 is attached to the front opening of the heat insulating box 10 to form a total of four open areas. As shown in FIG. 1 and the like, a heat insulating door 18 having a packing attached to the back surface thereof is attached to these opening regions so as to be opened and closed in a double-sided double door structure. As a result, the storage chamber 30S can be opened and closed by the heat insulating door 18. In addition, inside the storage room 30S, a shelf network 31 for arranging stored items (foods, etc.) over a plurality of stages is arranged.

断熱箱10は、具体的には、金属板からなる外箱11と、外箱11の内部に間隔を空けて収容され金属板からなる内箱12と、外箱11と内箱12との間に充填された断熱材13と、を備える。貯蔵室30Sを画成する内装箱30は、ステンレス鋼板等の熱良導性の金属板を複数枚組み合わせることで構成され、前方に開口された箱状をなしている。内装箱30は、断熱箱10の内箱12よりも一回り小さいものとされ、内箱12との間に一定の空間を形成した状態で断熱箱10の内部に収容される。この、内装箱30と内箱12との間に形成された空間が、冷却ダクト40Dとされる。内装箱30は、貯蔵室30Sの底面を構成する底壁部30Aと、奥面を構成する30Bと、天井を構成する天井壁部30Cと、左右一対の側壁部と、を備える。既述した冷却ダクト40Dは、内装箱30の各壁部30A,30B,30C等の外側に、貯蔵室30Sの上方、左右側方、下方、及び後方を取り巻くように形成される。 Specifically, the heat insulating box 10 includes an outer box 11 made of a metal plate, an inner box 12 made of a metal plate and housed inside the outer box 11 with a space between the outer box 11 and the inner box 12. And a heat insulating material 13 filled therein. The inner box 30 that defines the storage chamber 30S is configured by combining a plurality of heat-conductive metal plates such as stainless steel plates, and has a box shape that is open to the front. The inner box 30 is one size smaller than the inner box 12 of the heat insulating box 10, and is housed inside the heat insulating box 10 with a certain space formed between the inner box 30 and the inner box 12. The space formed between the inner box 30 and the inner box 12 is a cooling duct 40D. The inner box 30 includes a bottom wall portion 30A that forms the bottom surface of the storage chamber 30S, a back surface portion 30B, a ceiling wall portion 30C that forms the ceiling, and a pair of left and right side wall portions. The cooling duct 40D described above is formed outside the walls 30A, 30B, 30C and the like of the inner box 30 so as to surround the upper, left and right sides, the lower side, and the rear of the storage chamber 30S.

冷却ダクト40Dは、詳しくは、第1通路41Dと、第2通路42Dと、第3通路43Dと、一対の第4通路と、を備える。図2に表されているように、第1通路41Dは、断熱箱10(内箱12)の内面のうち上方を向く下面12Aと底壁部30Aの外面との間に形成され、貯蔵室30Sの下方に配された空間である。第2通路42Dは、断熱箱10の内面のうち前方を向く後面12Bと後壁部30Bの外面との間に形成され、貯蔵室30Sの後方に配された空間である。また、第3通路43Dは、断熱箱10の内面のうち下方を向く上面12Cと天井壁部30Cの外面との間に形成され、貯蔵室30Sの上方に配された空間である。そして、図には表されていないが、第4通路は、断熱箱10の内面のうち側方を向く側面と内装箱30の左右一対の側壁部との間に形成され、貯蔵室30Sの左右側方に配された空間である。なお、上記した断熱箱10の内面(下面12A、後面12B、上面12C、及び側面)は、内箱12を構成する各パネル部材によって構成されている。 Specifically, the cooling duct 40D includes a first passage 41D, a second passage 42D, a third passage 43D, and a pair of fourth passages. As shown in FIG. 2, the first passage 41D is formed between the lower surface 12A of the inner surface of the heat insulation box 10 (inner box 12) facing upward and the outer surface of the bottom wall portion 30A, and the storage chamber 30S. It is a space arranged below. The second passage 42D is a space that is formed between the rear surface 12B facing the front of the inner surface of the heat insulating box 10 and the outer surface of the rear wall portion 30B, and is arranged behind the storage chamber 30S. Further, the third passage 43D is a space formed between the upper surface 12C of the inner surface of the heat insulating box 10 facing downward and the outer surface of the ceiling wall portion 30C, and arranged above the storage chamber 30S. Although not shown in the drawing, the fourth passage is formed between the side surface of the inner surface of the heat insulating box 10 that faces the side and the pair of left and right side wall portions of the inner box 30, and the left and right of the storage chamber 30S. It is a space arranged laterally. The inner surface (the lower surface 12A, the rear surface 12B, the upper surface 12C, and the side surface) of the heat insulating box 10 described above is formed by each panel member that forms the inner box 12.

機械室20には、冷気供給装置21が設けられている。冷気供給装置21は、凝縮器22と、凝縮器22に付設された凝縮器ファン23と、圧縮機24と、を備える。圧縮機24は、回転数CRを複数段階に制御可能な回転数可変型のインバータ圧縮機である。図3の拡大図に表されているように、凝縮器22、凝縮器ファン23、圧縮機24は、断熱性の基台26上に設置され、基台26の下面には、冷却器27が取り付けられる。図1に表されているように、基台26上には、冷気供給装置21の制御を行う制御部100等を格納した電装箱(コントロールボックス)25も設置されている。また、機械室20前側には、オペレーションボックス90が設置されている。オペレーションボックス90は、目標温度設定部91及び庫内温度表示部92を有しており、恒温高湿庫1の前面において、庫内温度設定値TSsを入力設定するとともに、庫内温度TSを確認できるようになっている。 A cold air supply device 21 is provided in the machine room 20. The cold air supply device 21 includes a condenser 22, a condenser fan 23 attached to the condenser 22, and a compressor 24. The compressor 24 is a variable rotation speed inverter compressor capable of controlling the rotation speed CR in a plurality of stages. As shown in the enlarged view of FIG. 3, the condenser 22, the condenser fan 23, and the compressor 24 are installed on a heat insulating base 26, and a cooler 27 is provided on the lower surface of the base 26. It is attached. As shown in FIG. 1, on the base 26, an electrical equipment box (control box) 25 storing a control unit 100 for controlling the cool air supply device 21 and the like is also installed. An operation box 90 is installed on the front side of the machine room 20. The operation box 90 has a target temperature setting unit 91 and an in-compartment temperature display unit 92. On the front surface of the constant temperature and high humidity room 1, the in-compartment temperature set value TSs is input and set, and the in-compartment temperature TS is confirmed. You can do it.

基台26は、断熱箱10の天井壁部16に形成された窓孔16Aを上方から塞ぐようにして、断熱箱10に取り付けられている。断熱箱10の天井壁部16には、ドレンパンを兼ねたエアダクト50が設けられ、冷却ダクト40Dのうちエアダクト50の上方には、冷却器室45Dが形成される。冷却器27は基台26から下方に突出するように取り付けられ、冷却器室45D内に収容されている。冷却器27は、冷媒が封入された冷媒管によって冷気供給装置21と循環接続されて、周知の冷却サイクルを構成している。 The base 26 is attached to the heat insulating box 10 so as to close the window hole 16A formed in the ceiling wall portion 16 of the heat insulating box 10 from above. An air duct 50 also serving as a drain pan is provided in the ceiling wall portion 16 of the heat insulating box 10, and a cooler chamber 45D is formed above the air duct 50 in the cooling duct 40D. The cooler 27 is attached so as to project downward from the base 26 and is housed in the cooler chamber 45D. The cooler 27 is circulated and connected to the cool air supply device 21 by a refrigerant pipe in which a refrigerant is sealed, and constitutes a known cooling cycle.

エアダクト50における前側の部分には吸込口50Aが形成され、後側の部分には吹出口50Bが形成されている。吸込口50Aには、ダクトファン(冷却ファン)29が取り付けられている。冷却器27及びダクトファン29は、内装箱30の外側、より詳しくは内装箱30(天井壁部30C)の上方に、配されている。ダクトファン29は、第3通路43D内の空気を冷却器室45Dに吸引するとともに、冷却器27により冷やされた空気を第2通路42Dに供給する。 A suction port 50A is formed in the front portion of the air duct 50, and an air outlet 50B is formed in the rear portion thereof. A duct fan (cooling fan) 29 is attached to the suction port 50A. The cooler 27 and the duct fan 29 are arranged outside the interior box 30, more specifically, above the interior box 30 (ceiling wall portion 30C). The duct fan 29 sucks the air in the third passage 43D into the cooler chamber 45D and supplies the air cooled by the cooler 27 to the second passage 42D.

上記のように構成された冷気供給装置21の圧縮機24や凝縮器ファン23を運転しつつダクトファン29を駆動すると、冷却ダクト40Dの第3通路43Dの空気がダクトファン29によって吸込口50Aから冷却器室45D内に吸引され、その空気が冷却器27を通過する際に熱交換によって冷やされる。冷却器27によって冷却された空気(冷気)は吹出口50Bから貯蔵室30S後方の第2通路42Dに吹き出された後、貯蔵室30S下方の第1通路41Dに向かう。そして、第1通路41Dから、貯蔵室30S左右側方の第4通路に向かった後、第4通路から第3通路43Dに回り込む。このようにして冷却ダクト40D内に、冷気が循環供給される。この冷気によって、内装箱30を構成する各壁部(底壁部30A、側壁部、後壁部30B、天井壁部30C)が冷却されることで、貯蔵室30Sの内部が間接的に冷却される。そのため貯蔵室30S内は、高湿度を保ったままで所定の温度に冷却されるようになっている。 When the duct fan 29 is driven while operating the compressor 24 and the condenser fan 23 of the cold air supply device 21 configured as described above, the air in the third passage 43D of the cooling duct 40D is caused by the duct fan 29 from the suction port 50A. When the air is sucked into the cooler chamber 45D and passes through the cooler 27, it is cooled by heat exchange. The air (cool air) cooled by the cooler 27 is blown from the outlet 50B to the second passage 42D at the rear of the storage chamber 30S, and then goes to the first passage 41D below the storage chamber 30S. Then, after heading from the first passage 41D to the fourth passage on the left and right sides of the storage chamber 30S, it goes around from the fourth passage to the third passage 43D. In this way, cool air is circulated and supplied into the cooling duct 40D. By this cold air, the respective wall portions (bottom wall portion 30A, side wall portion, rear wall portion 30B, ceiling wall portion 30C) that form the interior box 30 are cooled, so that the inside of the storage chamber 30S is indirectly cooled. It Therefore, the inside of the storage chamber 30S is cooled to a predetermined temperature while maintaining high humidity.

図1及び図3等に表されているように、本実施形態に係る恒温高湿庫1では、断熱箱10前側の開口近傍において発生する結露を抑制するための付帯装備として、結露防止ヒータ70が設けられている。結露防止ヒータ70は、断熱箱10前側の開口に沿って設けられた本体側結露防止ヒータ70Aと、断熱扉18内に設けられた扉側結露防止ヒータ70Bと、を含む。図3に表されているように、これらの結露防止ヒータ70は、例えば、断熱箱10や断熱扉18の内部に充填される断熱材の中にコードヒータを埋め込んでなるものとすることができる。本体側結露防止ヒータ70A及び扉側結露防止ヒータ70Bの配設態様は、何れも特に限定されない。例えば本実施形態では、図1に示すように、本体側結露防止ヒータ70Aを、断熱箱10前側の開口に沿った1個の大きな矩形枠状に設けたものについて例示するが、例えばコードヒータを仕切枠19内にも埋め込んで、各開口領域を個別に取り囲む4個の矩形枠状に設けてもよい。これらの結露防止ヒータ70に通電すると、これらから発せられる熱により、貯蔵室30S内の庫内温度TSは影響を受ける。 As shown in FIG. 1 and FIG. 3 and the like, in the constant temperature and high humidity chamber 1 according to the present embodiment, a dew condensation prevention heater 70 is provided as an incidental device for suppressing dew condensation that occurs near the opening on the front side of the heat insulation box 10. Is provided. The dew condensation preventing heater 70 includes a main body side dew condensation preventing heater 70A provided along the opening on the front side of the heat insulating box 10 and a door side dew condensation preventing heater 70B provided in the heat insulating door 18. As shown in FIG. 3, these dew condensation preventing heaters 70 may be ones in which a cord heater is embedded in a heat insulating material filled in the heat insulating box 10 or the heat insulating door 18, for example. .. The arrangement of the main body side dew condensation prevention heater 70A and the door side dew condensation prevention heater 70B is not particularly limited. For example, in the present embodiment, as shown in FIG. 1, the main body side dew condensation prevention heater 70A is provided as one large rectangular frame along the opening on the front side of the heat insulating box 10. It may be embedded in the partition frame 19 and provided in the shape of four rectangular frames that individually surround each opening region. When these dew condensation preventing heaters 70 are energized, the heat generated from them affects the inside temperature TS in the storage chamber 30S.

[恒温高湿庫の温度制御に係る構成]
貯蔵室30S内の庫内温度TSの変動を抑制し、略一定に維持するための構成について、説明する。
図3に表されているように、貯蔵室30Sを形成する内装箱30の天井壁部30Cの下面、すなわち貯蔵室30S内における天井付近には、庫内温度TSを測定するための庫内温度センサ81Sが設けられる。また、冷却ダクト40Dの冷却器室45Dにおける冷却器27の風上側には、ダクト温度TDを測定するためのダクト温度センサ81Dが設けられる。さらに、図3等には表されていないが、オペレーションボックス90の内部に配された基板上に、断熱箱10外側の周囲温度TAを測定するための周囲温度センサ81A(図4参照)が設けられている。また、図3には表されていないが、結露防止ヒータ通電検出センサ(付帯装備状態検出センサの一例)71(図4参照)が設けられ、既述した本体側結露防止ヒータ70A及び扉側結露防止ヒータ70Bの通電状態が検出されるようになっている。また、既述したようにオペレーションボックス90に設けられた目標温度設定部91(図1及び図4参照)から、ユーザーが庫内温度設定値TSsを入力するようになっている。
[Configuration related to temperature control of constant temperature and high humidity chamber]
A configuration for suppressing the fluctuation of the internal temperature TS in the storage chamber 30S and maintaining the internal temperature TS substantially constant will be described.
As shown in FIG. 3, on the lower surface of the ceiling wall portion 30C of the interior box 30 forming the storage chamber 30S, that is, near the ceiling in the storage chamber 30S, the inside temperature for measuring the inside temperature TS A sensor 81S is provided. A duct temperature sensor 81D for measuring the duct temperature TD is provided on the windward side of the cooler 27 in the cooler chamber 45D of the cooling duct 40D. Further, although not shown in FIG. 3 and the like, an ambient temperature sensor 81A (see FIG. 4) for measuring the ambient temperature TA outside the heat insulating box 10 is provided on the substrate arranged inside the operation box 90. Has been. Although not shown in FIG. 3, a dew condensation prevention heater energization detection sensor (an example of an accessory equipment state detection sensor) 71 (see FIG. 4) is provided, and the main body side dew condensation prevention heater 70A and the door side dew condensation described above are provided. The energization state of the prevention heater 70B is detected. Further, as described above, the user inputs the inside temperature setting value TSs from the target temperature setting unit 91 (see FIGS. 1 and 4) provided in the operation box 90.

図4から図6に示すように、本実施形態に係る恒温高湿庫1は、マイクロコンピュータ等を備え所定のプログラムを実行する制御部100によって、温度制御される。なお、制御部100の主要部となるマイクロコンピュータ等は、既述したように機械室20の電装箱25内に格納されている。 As shown in FIGS. 4 to 6, the temperature of the constant temperature and high humidity chamber 1 according to the present embodiment is controlled by a control unit 100 that includes a microcomputer and executes a predetermined program. The microcomputer, which is the main part of the control unit 100, is stored in the electrical equipment box 25 of the machine room 20 as described above.

図4のブロック図に示すように、制御部100の入力側には、上記の各温度センサ81D,81S,81A、及び結露防止ヒータ通電検出センサ(付帯装備状態検出センサの一例)71が接続されている。なお、結露防止ヒータ70の通電状態についての情報は、本実施形態のように結露防止ヒータ通電検出センサ71等で検出して得るほか、結露防止ヒータ70の通電状態を制御する結露防止ヒータ制御部等から、直接得るようにしてもよい。さらに、目標温度設定部91からは、庫内温度設定値TSsの値が制御部100に伝えられるようになっている。 As shown in the block diagram of FIG. 4, the temperature sensors 81D, 81S, 81A and the dew condensation prevention heater energization detection sensor (an example of an accessory equipment state detection sensor) 71 are connected to the input side of the control unit 100. ing. The information about the energization state of the dew condensation prevention heater 70 can be obtained by detecting with the dew condensation prevention heater energization detection sensor 71 or the like as in the present embodiment, and the dew condensation prevention heater controller that controls the energization state of the dew condensation prevention heater 70. It may be directly obtained from the above. Further, the target temperature setting unit 91 is configured to transmit the value of the internal temperature setting value TSs to the control unit 100.

図4に表されているように、制御部100には、クロック信号を発する計時部102が設けられており、入力側に接続された庫内温度センサ81S、ダクト温度センサ81D、周囲温度センサ81Aで測定された各温度の測定値、並びに、結露防止ヒータ通電検出センサ71で検出された本体側結露防止ヒータ70A及び扉側結露防止ヒータ70Bの通電状態が、一定のサンプリング時間ごとに制御部100に入力されるようになっている。各値は、圧縮機24の駆動状態に関わらず、すなわち恒温高湿庫1の運転中は圧縮機24が停止されている間も、一定のサンプリング時間tごとに入力される。サンプリング時間tは、過去の類似の恒温高湿庫の運転実績から算出される平均的な圧縮機の発停サイクル時間から、監視に最適と推察される時間幅とすることが好ましい。 As shown in FIG. 4, the control unit 100 is provided with a clock unit 102 that emits a clock signal, and the inside temperature sensor 81S, the duct temperature sensor 81D, and the ambient temperature sensor 81A connected to the input side. The measured values of the respective temperatures measured in step S1 and the energization states of the main body-side dew condensation prevention heater 70A and the door-side dew condensation prevention heater 70B detected by the dew condensation prevention heater energization detection sensor 71 are determined by the control unit 100 at constant sampling times. It is designed to be input to. Each value is input at constant sampling time t regardless of the driving state of the compressor 24, that is, while the compressor 24 is stopped during the operation of the constant temperature and high humidity chamber 1. The sampling time t is preferably a time width that is estimated to be optimal for monitoring from the average compressor start/stop cycle time calculated from the past operation results of similar constant temperature and high humidity chambers.

制御部100にはまた、データ格納部(記憶手段)103が設けられている。データ格納部103には、ダクト温度TDについての目標となるダクト温度目標値TDtの経時的変化態様を示すダクト冷却特性(冷却特性)PDが記憶される。ダクト冷却特性PDは、各機器のサイズ(容量)や性能を考慮して、過去の実測データに基づいて作成された参照テーブルや、過去の実測データに基づいて算出された演算式等として、記憶させることができる。本実施形態では、冷却特性として、ダクト温度TDに応じてダクト温度降下率目標値RDtを規定した参照テーブルを記憶させた場合について、例示する。なお、ダクト温度降下率RDは、ダクト温度TDの単位時間当たりの降下量ΔTD/Δtとして規定される。 The control unit 100 is also provided with a data storage unit (storage means) 103. The data storage unit 103 stores a duct cooling characteristic (cooling characteristic) PD indicating a temporal change mode of a target duct temperature target value TDt for the duct temperature TD. The duct cooling characteristic PD is stored as a reference table created based on past measured data in consideration of the size (capacity) and performance of each device, an arithmetic expression calculated based on past measured data, and the like. Can be made. The present embodiment exemplifies a case where a reference table that defines the duct temperature drop rate target value RDt according to the duct temperature TD is stored as the cooling characteristic. The duct temperature drop rate RD is defined as the drop amount ΔTD/Δt of the duct temperature TD per unit time.

本実施形態では、制御部100に設けられたデータ格納部103に、さらに、温度連関データX、中央温度推察用データY、付帯データZが記憶されている。温度連関データXは、庫内温度TSとダクト温度TDとの関係性を示すデータである。また、中央温度推察用データYは、ダクト温度TD、庫内温度TS及び周囲温度TAと、貯蔵室30Sの中央部における温度である庫内中央温度TScとの関係性を示すデータである。付帯データZは、結露防止ヒータ70の通電状態が庫内中央温度TScに与える影響を示すデータである。これらのデータX,Y,Zは、例えば、関連する各機器のサイズ(容量)や性能を考慮して過去の実測データに基づいて算出された、各パラメータが庫内中央温度TScに与える影響度を表す係数等として記憶させることができる。これらのデータX,Y,Zに基づいて、サンプリング時間ごとに制御部100に入力されるダクト温度測定値TDm、庫内温度測定値TSm、周囲温度測定値TAm、及び結露防止ヒータ70の通電状態から、庫内中央温度TScを推察することができる。なお、貯蔵室30S内は強制的な換気や送風等がされていないため、内装箱30を構成する各壁部の直近位置(例えば壁面から1.0cm〜1.5cm以内)を除き、貯蔵室30S内の上方ほど庫内温度TSは高くなる。本実施形態の庫内温度センサ81Sは、検温部が天井壁部30Cから2cm以上下方に位置するように設置されているため、ダクト温度測定値TDm<庫内中央温度TSc<庫内温度測定値TSm<周囲温度測定値TAmとなる。 In the present embodiment, the data storage unit 103 provided in the control unit 100 further stores temperature related data X, central temperature estimation data Y, and incidental data Z. The temperature relational data X is data indicating the relationship between the inside temperature TS and the duct temperature TD. Further, the central temperature estimation data Y is data indicating the relationship between the duct temperature TD, the internal temperature TS and the ambient temperature TA and the internal central temperature TSc which is the temperature in the central portion of the storage chamber 30S. The incidental data Z is data indicating the influence of the energization state of the dew condensation prevention heater 70 on the inside temperature TSc of the refrigerator. These data X, Y, Z are, for example, the degree of influence of each parameter on the in-compartment central temperature TSc, which is calculated based on past measurement data in consideration of the size (capacity) and performance of each related device. Can be stored as a coefficient or the like. Based on these data X, Y, Z, the duct temperature measurement value TDm, the inside temperature measurement value TSm, the ambient temperature measurement value TAm, and the energization state of the dew condensation prevention heater 70, which are input to the control unit 100 at each sampling time. From this, it is possible to infer the central temperature TSc in the refrigerator. In addition, since the storage room 30S is not forcedly ventilated or blown, the storage room except for the positions closest to the respective wall parts forming the inner box 30 (for example, within 1.0 cm to 1.5 cm from the wall surface) The higher the inside of 30S, the higher the inside temperature TS. Since the inside temperature sensor 81S of the present embodiment is installed such that the temperature detecting portion is located below the ceiling wall portion 30C by 2 cm or more, the duct temperature measured value TDm<the inside central temperature TSc<the inside temperature measured value. TSm<ambient temperature measurement value TAm.

制御部100にはまた、マイクロコンピュータ等によって演算を行う演算部(演算手段)104が設けられている。演算部104は、目標温度設定部91から入力される庫内温度設定値TSsに基づいて、各データX,Y,Zを参照しつつダクト温度指標値TDs等を算出する。また、各温度センサ81D,81S,81Aから入力される各温度の測定値TDm,TSm,TAm、及び結露防止ヒータ70の通電状態に基づいて、ダクト冷却特性PD、並びに、各データX,Y,Zを参照しつつ、圧縮機24の目標回転数CRt等を算出する。 The control unit 100 is also provided with a calculation unit (calculation unit) 104 that performs calculation by a microcomputer or the like. The calculation unit 104 calculates the duct temperature index value TDs and the like based on the inside temperature setting value TSs input from the target temperature setting unit 91 while referring to each data X, Y, and Z. Further, based on the measured values TDm, TSm, TAm of the respective temperatures input from the respective temperature sensors 81D, 81S, 81A and the energization state of the dew condensation prevention heater 70, the duct cooling characteristic PD and the respective data X, Y, The target rotation speed CRt of the compressor 24 and the like are calculated while referring to Z.

図4に表されているように、制御部100の出力側には、インバータ回路(圧縮機駆動手段)105を介して圧縮機24が接続され、回転数CRを適宜に多段階(例えば6段階)に変更可能とされている。 As shown in FIG. 4, a compressor 24 is connected to the output side of the control unit 100 via an inverter circuit (compressor driving means) 105, and the rotation speed CR is appropriately set in multiple stages (for example, 6 stages). ) Can be changed to.

[恒温高湿庫の温度制御の一例]
図5及び図6のフローチャートを参照しつつ、制御の一例について説明する。
図5に示すように、恒温高湿庫1の電源がONされてスタートし、目標温度設定部91から庫内温度設定値TSsが入力される(S1)と、演算部104において、庫内中央温度TScを庫内温度設定値TSsとするためにダクト温度TDについての指標となるダクト温度指標値TDsが算出される(S2)。ダクト温度指標値TDsの算出は、データ格納部103に格納されたデータX,Y,Zを参照しつつ行われる。そして、ダクト温度指標値TDsよりも所定値だけ高いダクト温度上限値TDh、所定値だけ低いダクト温度下限値TDl、さらにはダクト温度指標値TDsよりも低くダクト温度下限値TDlよりも高いダクト温度中間値TDcが決定される(S3)。なお、後述する図7に表されているように、ダクト温度上限値TDhとダクト温度下限値TDlとの間の温度領域が、ダクト温度TDの制御温度領域となる。これらの値は、例えばダクト温度指標値TDsから自動的に決定できる。具体的には、ダクト温度上限値TDhは、ダクト温度指標値TDsよりも1.0K高く(TDh=TDs+1.0K)、ダクト温度下限値TDlは、ダクト温度指標値TDsよりも1.0K低く(TDl=TDs−1.0K)、ダクト温度中間値TDcは、ダクト温度指標値TDsよりも0.5K低く(TDc=TDs−0.5K)することができる。続いて、これらの値をもとに、ダクト温度TDをダクト温度指標値TDsとするための目標となるダクト温度目標値TDtの経時的変化態様(ダクト冷却特性PD)に従って、温度制御が実行される(S10)。S10の温度制御は、恒温高湿庫1の電源がOFFされて運転が完了される(エンド)まで繰り返される。
[An example of temperature control of constant temperature and high humidity]
An example of control will be described with reference to the flowcharts of FIGS. 5 and 6.
As shown in FIG. 5, when the power of the constant temperature and high humidity chamber 1 is turned on and started, and the internal temperature set value TSs is input from the target temperature setting unit 91 (S1), the arithmetic unit 104 causes the internal center of the internal chamber to be set. A duct temperature index value TDs serving as an index for the duct temperature TD is calculated in order to set the temperature TSc to the inside temperature setting value TSs (S2). The duct temperature index value TDs is calculated with reference to the data X, Y, Z stored in the data storage unit 103. Then, a duct temperature upper limit value TDh higher than the duct temperature index value TDs by a predetermined value, a duct temperature lower limit value TDl lower than the duct temperature index value TDs, and a duct temperature intermediate lower than the duct temperature index value TDs and higher than the duct temperature lower limit value TDl. The value TDc is determined (S3). As shown in FIG. 7, which will be described later, the temperature range between the duct temperature upper limit value TDh and the duct temperature lower limit value TDl is the control temperature region of the duct temperature TD. These values can be automatically determined from the duct temperature index value TDs, for example. Specifically, the duct temperature upper limit value TDh is 1.0K higher than the duct temperature index value TDs (TDh=TDs+1.0K), and the duct temperature lower limit value TDl is 1.0K lower than the duct temperature index value TDs ( TDl=TDs-1.0K), and the duct temperature intermediate value TDc can be 0.5K lower than the duct temperature index value TDs (TDc=TDs-0.5K). Subsequently, based on these values, the temperature control is executed according to the time-dependent change mode (duct cooling characteristic PD) of the target duct temperature TDt for making the duct temperature TD the duct temperature index value TDs. (S10). The temperature control of S10 is repeated until the power of the constant temperature and high humidity chamber 1 is turned off and the operation is completed (end).

S10の温度制御は、具体的には、例えば以下のように実行される。
図6に示すように、恒温高湿庫1の電源がONとなっている間は、圧縮機24の駆動状態に関わらず所定のサンプリング時間tごとにダクト温度測定値TDmが制御部100に入力される(S11)。ダクト温度測定値TDmは、S3で決定したダクト温度上限値TDhと比較され(S12)、これよりも大きい場合(TDm>TDh)には、圧縮機24が起動される(S13)。圧縮機24が駆動されている状態で、ダクト温度測定値TDmが入力される(S14)と、ダクト温度測定値TDmは、S3で決定したダクト温度下限値TDlと比較され(S15)、これよりも小さい場合(TDm<TDl)には、圧縮機24が停止される(S16)。一方、ダクト温度測定値TDmがダクト温度下限値TDl以上であった場合(TDm≧TDl)、演算部104において、ダクト温度測定値降下率RDmが算出される(S17)。算出されたダクト温度測定値降下率RDmは、ダクト冷却特性PDのダクト温度降下率目標値RDtと比較される(S18)。この比較結果に基づいてインバータ圧縮機24の回転数CRが増減制御されることで、冷却能力が調整され、ダクト温度TDがダクト温度指標値TDsに近付けられ、庫内中央温度TScがほぼ庫内温度設定値TSsに維持される。具体的には、ダクト温度測定値降下率RDmがダクト温度降下率目標値RDtに達していない場合(RDm<RDt)、圧縮機24の回転数CRは増大するように制御される(S19)。ダクト温度測定値降下率RDmがダクト温度降下率目標値RDtと等しい場合(RDm=RDt)、圧縮機24の回転数CRはそのまま維持される(S20)。ダクト温度測定値降下率RDmがダクト温度降下率目標値RDtよりも大きい場合(RDm>RDt)、圧縮機24の回転数CRは低下するように制御される(S21)。恒温高湿庫1の運転を停止する指令を確認する(S22)までは、上記のようなステップが繰り返され、ダクト温度TDがダクト冷却特性PDに追従するように制御される。
Specifically, the temperature control of S10 is executed as follows, for example.
As shown in FIG. 6, while the power of the constant temperature and high humidity chamber 1 is ON, the duct temperature measurement value TDm is input to the control unit 100 at every predetermined sampling time t regardless of the driving state of the compressor 24. (S11). The duct temperature measurement value TDm is compared with the duct temperature upper limit value TDh determined in S3 (S12), and when it is larger than this (TDm>TDh), the compressor 24 is started (S13). When the duct temperature measurement value TDm is input while the compressor 24 is being driven (S14), the duct temperature measurement value TDm is compared with the duct temperature lower limit value TDl determined in S3 (S15). If it is smaller (TDm<TDl), the compressor 24 is stopped (S16). On the other hand, when the duct temperature measurement value TDm is equal to or higher than the duct temperature lower limit value TDl (TDm≧TDl), the calculation unit 104 calculates the duct temperature measurement value decrease rate RDm (S17). The calculated duct temperature drop rate RDm of the measured duct temperature is compared with the duct temperature drop target value RDt of the duct cooling characteristic PD (S18). By controlling the rotation speed CR of the inverter compressor 24 to increase or decrease based on the result of this comparison, the cooling capacity is adjusted, the duct temperature TD is brought close to the duct temperature index value TDs, and the inside temperature TSc of the inside of the refrigerator is almost the same. The temperature set value TSs is maintained. Specifically, when the measured duct temperature decrease rate RDm does not reach the duct temperature decrease rate target value RDt (RDm<RDt), the rotation speed CR of the compressor 24 is controlled to increase (S19). If the measured duct temperature decrease rate RDm is equal to the duct temperature decrease rate target value RDt (RDm=RDt), the rotation speed CR of the compressor 24 is maintained as it is (S20). When the measured duct temperature drop rate RDm is larger than the duct temperature drop rate target value RDt (RDm>RDt), the rotation speed CR of the compressor 24 is controlled to be lowered (S21). The above steps are repeated until the instruction to stop the operation of the constant temperature and high humidity chamber 1 is confirmed (S22), and the duct temperature TD is controlled so as to follow the duct cooling characteristic PD.

なお、上記のS19及びS21において、ダクト温度降下率RDをダクト冷却特性PDに沿って推移させるための圧縮機24の目標回転数CRtは、演算部104において算出される。本実施形態では、目標回転数CRtは、ダクト冷却特性PDとして参照テーブルに規定されたダクト温度降下率目標値RDtを実現するために適当な回転数とされる。算出された目標回転数CRtは、制御部100からインバータ回路105を介して制御信号として圧縮機24に伝えられ、回転数CRが適宜変更される。 In S19 and S21 described above, the target rotation speed CRt of the compressor 24 for causing the duct temperature decrease rate RD to change along the duct cooling characteristic PD is calculated by the calculation unit 104. In the present embodiment, the target rotation speed CRt is set to an appropriate rotation speed in order to realize the duct temperature drop rate target value RDt defined in the reference table as the duct cooling characteristic PD. The calculated target rotation speed CRt is transmitted from the control unit 100 to the compressor 24 as a control signal via the inverter circuit 105, and the rotation speed CR is appropriately changed.

ダクト冷却特性PDは、一例として、図7に示すものとすることができる。
図7に示す温度制御例では、ダクト冷却特性PDを一次関数の組合せとしている。なお、ダクト温度目標値TDtの経時的変化態様(ダクト冷却特性PD)として一次関数の直線が記憶され選択されている場合、ダクト温度TDについての目標となるダクト温度降下率目標値RDtは、その温度領域内においてダクト温度測定値TDmによらず一定値となる。
The duct cooling characteristic PD may be as shown in FIG. 7 as an example.
In the temperature control example shown in FIG. 7, the duct cooling characteristic PD is a combination of linear functions. When a straight line of a linear function is stored and selected as the time-dependent change mode (duct cooling characteristic PD) of the duct temperature target value TDt, the target duct temperature drop rate target value RDt for the duct temperature TD is Within the temperature range, it becomes a constant value regardless of the duct temperature measurement value TDm.

ダクト温度測定値TDmが、ダクト温度上限値TDhよりも高い領域(プルダウン領域)内にある場合(TDm>TDh)、ダクト温度降下率目標値RDtは、圧縮機24を最大回転数CRmaxで駆動した際に達成可能なダクト温度降下率RDmax(一定値)とする。また、ダクト温度測定値TDmがダクト温度下限値TDlよりも低い領域(過冷却領域)内にある場合(TDm<TDl)、ダクト温度降下率目標値RDtは、圧縮機24を停止した際のダクト温度降下率RD(一定値)とする。なお、本実施形態に係る恒温高湿庫1では、ダクト温度降下率RDは、負の値となる(圧縮機24を停止するとダクト温度TDが上昇する)ものとする。 When the duct temperature measurement value TDm is in a region (TDm>TDh) higher than the duct temperature upper limit value TDh (TDm>TDh), the duct temperature drop rate target value RDt drives the compressor 24 at the maximum rotation speed CR max . The duct temperature drop rate RD max (constant value) that can be achieved at this time is set. Further, when the duct temperature measurement value TDm is within the region (supercooling region) lower than the duct temperature lower limit value TDl (TDm<TDl), the duct temperature drop rate target value RDt is the duct when the compressor 24 is stopped. The temperature drop rate RD 0 (constant value). In the constant temperature and high humidity chamber 1 according to the present embodiment, the duct temperature decrease rate RD 0 has a negative value (the duct temperature TD rises when the compressor 24 is stopped).

ダクト温度測定値TDmがダクト温度上限値TDh以下でダクト温度下限値TDl以上の領域(制御温度領域)内にある場合(TDh≧TDm≧TDl)、ダクト温度降下率目標値RDtは、二段階に変化するものとする。すなわち、制御温度領域のうち、ダクト温度上限値TDh以下でダクト温度中間値TDc以上(TDh≧TDm≧TDc)の第1制御温度領域では、ダクト温度降下率目標値RDtを、上記プルダウン領域における値以下の正の一定値とする。また、ダクト温度中間値TDcより低くダクト温度下限値TDl以上(TDc>TDm≧TDl)の第2制御温度領域では、ダクト温度降下率目標値RDtを、上記過冷却温度領域における値以上の負の一定値とする。このようにすれば、ダクト温度測定値TDmがダクト温度中間値TDcよりも低い状態において、積極的に圧縮機24の回転数CRを低下させることとなり、圧縮機24の連続運転時間を長くすることができる。図7では、圧縮機24の回転数CRを、プルダウン領域では最大回転数CRmaxとし、第1制御温度領域に到達して以降は段階的に低下させることで、ダクト温度測定値降下率RDmを、この温度領域におけるダクト温度降下率目標値RDtに追従させている。さらに温度が低下して第2制御温度領域に到達すると、圧縮機の回転数CRを最小回転数CRminまで低下させ、ダクト温度測定値降下率RDmが、この温度領域におけるダクト温度降下率目標値RDtに追従して負の値となるように、すなわちダクト温度測定値TDmがごく僅かずつ上昇するように制御される。その後、ダクト温度測定値TDmが上昇してダクト温度中間値TDc以上の第1制御温度領域に到達すると、ダクト温度降下率目標値RDtが正の値となるため、再度、圧縮機24の回転数CRを増加させ、ダクト温度測定値TDmが下降するように制御される。 When the duct temperature measured value TDm is within the duct temperature upper limit value TDh or less and the duct temperature lower limit value TDl or more (control temperature region) (TDh≧TDm≧TD1), the duct temperature drop rate target value RDt is in two stages. It shall change. That is, in the first control temperature region of the duct temperature upper limit value TDh or less and the duct temperature intermediate value TDc or more (TDh≧TDm≧TDc) in the control temperature region, the duct temperature drop rate target value RDt is set to the value in the pull-down region. The following positive constant values are used. Further, in the second control temperature region which is lower than the duct temperature intermediate value TDc and is equal to or higher than the duct temperature lower limit value TDl (TDc>TDm≧TDl), the duct temperature drop rate target value RDt is set to a negative value equal to or higher than the value in the supercooling temperature region. It is a constant value. In this way, the rotational speed CR of the compressor 24 is positively reduced when the duct temperature measurement value TDm is lower than the duct temperature intermediate value TDc, and the continuous operation time of the compressor 24 is lengthened. You can In FIG. 7, the rotational speed CR of the compressor 24 is set to the maximum rotational speed CRmax in the pull-down region, and the duct temperature measurement value decrease rate RDm is reduced by gradually decreasing after reaching the first control temperature region. The duct temperature drop rate target value RDt in this temperature range is made to follow. When the temperature further decreases and reaches the second control temperature range, the rotation speed CR of the compressor is decreased to the minimum rotation speed CR min, and the measured duct temperature decrease rate RDm is the duct temperature decrease rate target value in this temperature range. It is controlled so as to follow the RDt and become a negative value, that is, the duct temperature measurement value TDm increases slightly. After that, when the duct temperature measurement value TDm rises and reaches the first control temperature region of the duct temperature intermediate value TDc or more, the duct temperature drop rate target value RDt becomes a positive value, and therefore, the rotation speed of the compressor 24 again. The CR is increased and the duct temperature measurement value TDm is controlled to decrease.

さらに、本実施形態では、圧縮機24の駆動状態に関わらず恒温高湿庫1の運転中は、庫内温度センサ81Sでも庫内温度TSを測定し、温度制御が適切に行われているか監視する。監視は、一定時間あたりの平均の庫内温度測定値TSmに基づいて行うことが好ましい。このようにすれば、一時的な庫内温度TSの変化に惑わされることなく、温度制御の適不適を見極めることができる。この際、例えばダクト温度目標値TDtについての経時的変化態様(ダクト冷却特性PD)から、データX,Y,Zに基づいて、庫内温度目標値TStについての経時的変化態様(庫内冷却特性PS)を作成し、この庫内冷却特性PSと、実際に測定された庫内温度測定値TSmとを比較することで、監視を行ってもよい。或いは逆に、データ格納部103に記憶させた庫内冷却特性PSから、ダクト冷却特性PDを作成して記憶させ、ダクト冷却特性PDに基づいて圧縮機24の回転数CRを行いつつ、庫内冷却特性PSに基づいて庫内温度TSの推移を監視してもよい。温度制御が適切に行われていると判断される場合には、そのまま制御を継続し、適切でないと判断される場合には、ダクト冷却特性PDを随時補正して制御を行う(なお、このような庫内温度TSの監視による制御の補正については、図には表されていない)。 Further, in the present embodiment, during the operation of the constant temperature and high humidity chamber 1 regardless of the driving state of the compressor 24, the inside temperature sensor 81S also measures the inside temperature TS to monitor whether the temperature control is appropriately performed. To do. It is preferable that the monitoring is performed based on the average temperature measurement value TSm of the inside of the storage for a certain period of time. In this way, it is possible to determine whether temperature control is appropriate or not without being confused by the temporary change in the internal temperature TS. At this time, for example, from the temporal change mode (duct cooling characteristic PD) of the duct temperature target value TDt, the temporal change mode of the internal chamber temperature target value TSt (internal chamber cooling characteristic based on the data X, Y, Z). PS) may be created, and the internal cooling characteristic PS may be compared with the actually measured internal temperature measurement value TSm to perform monitoring. Alternatively, conversely, the duct cooling characteristic PD is created and stored from the internal cooling characteristic PS stored in the data storage unit 103, and the rotation speed CR of the compressor 24 is performed based on the duct cooling characteristic PD, while the internal storage is performed. You may monitor the transition of the internal temperature TS based on the cooling characteristic PS. When it is determined that the temperature control is appropriately performed, the control is continued as it is, and when it is determined that the temperature control is not appropriate, the duct cooling characteristic PD is corrected at any time to perform the control. The correction of the control by monitoring the internal cold storage temperature TS is not shown in the figure).

[本実施形態における効果]
以上のように、本実施形態に係る恒温高湿庫1は、下記(1)の構成を有する。
(1)断熱壁を有する断熱箱(断熱箱体)10と、断熱箱10との間に冷気の通路となる冷却ダクト40Dを形成しつつ断熱箱10の内方に配されて内部が貯蔵室30Sとされる内装箱30と、凝縮器22、冷却器27、及び回転数可変型の圧縮機24が、冷媒を封入した冷媒管によって循環接続されて冷却ダクト40D内に冷気を供給することによって貯蔵室30S内を間接的に冷却する冷気供給装置21と、圧縮機24の駆動状態に関わらず所定のサンプリング時間tごとに冷却ダクト40D内のダクト温度TDを測定するダクト温度センサ81Dと、貯蔵室30S内の庫内温度TSを予め設定された庫内温度設定値TSsとするためのダクト温度TDについての目標となるダクト温度目標値TDtの経時的変化態様を示すダクト冷却特性(冷却特性)PDが記憶されたデータ格納部(記憶手段)103と、ダクト温度センサ81Dで測定されたダクト温度測定値TDmに基づいて、ダクト温度TDをダクト冷却特性PDに倣って降下させるための圧縮機24の目標回転数CRtを算出する演算部(演算手段)104と、圧縮機24の回転数CRを目標回転数CRtに合わせて変化させるインバータ回路(圧縮機駆動手段)105と、を備える。
[Effects of this embodiment]
As described above, the constant temperature and high humidity chamber 1 according to this embodiment has the following configuration (1).
(1) A heat-insulating box (heat-insulating box body) 10 having a heat-insulating wall and a cooling duct 40D serving as a passage for cold air are formed between the heat-insulating box 10 and the inside of the heat-insulating box 10 and the inside is a storage chamber. The interior box 30 of 30S, the condenser 22, the cooler 27, and the variable rotation speed compressor 24 are circulated and connected by the refrigerant pipe in which the refrigerant is sealed, and the cool air is supplied into the cooling duct 40D. A cool air supply device 21 that indirectly cools the inside of the storage chamber 30S, a duct temperature sensor 81D that measures the duct temperature TD in the cooling duct 40D at every predetermined sampling time t regardless of the driving state of the compressor 24, and a storage Duct cooling characteristics (cooling characteristics) showing a time-dependent change mode of the target duct temperature TDt for the duct temperature TD for setting the inside temperature TS in the chamber 30S to the preset inside temperature set value TSs. A compressor 24 for lowering the duct temperature TD in accordance with the duct cooling characteristic PD based on the data storage unit (storage means) 103 in which the PD is stored and the duct temperature measurement value TDm measured by the duct temperature sensor 81D. The calculation unit (calculation unit) 104 for calculating the target rotation speed CRt and the inverter circuit (compressor driving unit) 105 for changing the rotation speed CR of the compressor 24 according to the target rotation speed CRt.

上記(1)の本実施形態の構成によれば、間接冷却方式の恒温高湿庫1に回転数可変型の圧縮機24を適用してインバータ制御することで、一定速型の圧縮機をON/OFF制御して温度を制御する恒温高湿庫と比較して、冷却能力を細かく調整できる。ここで、間接冷却方式の恒温高湿庫1では、貯蔵室30S内に冷気供給装置21からの冷気を直接供給するのではなく、冷却ダクト40D内の冷気で内装箱30の壁面を冷却することにより、庫内温度TSを間接的に降下させている。すなわち、圧縮機24の回転数CRを変化させたときに直接影響を受けて最初に変動するのは、庫内温度TSではなくダクト温度TDである。よって、インバータ圧縮機を備えた従来の直接冷却方式の恒温庫のように庫内温度に基づいて圧縮機を制御するのではなく、上記(1)の構成によりダクト温度TDに基づいて圧縮機24の回転数CRを変化させれば、ダクト温度TDを高い精度でコントロールして、ダクト冷却特性PDに追従させながら目標とする庫内温度TSを発現させ、その温度変化を抑制できる。また、ダクト温度センサ81Dにおいて圧縮機24の停止中も含めて所定のサンプリング時間tごとにダクト温度TDを測定し、これに基づいて制御を続けることで、例えばダクト温度TDが十分に降下して圧縮機24を一旦停止した後に再起動すべきタイミングを、一早く検知して対応可能となる。この結果、恒温高湿庫1における貯蔵室30S内の温度変動を、効果的に抑制することができる。 According to the configuration of this embodiment of (1) above, the constant speed type compressor is turned on by applying the variable rotation speed type compressor 24 to the indirect cooling type constant temperature and high humidity chamber 1 and performing inverter control. The cooling capacity can be finely adjusted as compared with a constant temperature/high humidity chamber in which the temperature is controlled by controlling ON/OFF. Here, in the constant temperature and high humidity chamber 1 of the indirect cooling system, the wall surface of the inner box 30 is cooled by the cool air in the cooling duct 40D, instead of directly supplying the cool air from the cool air supply device 21 into the storage chamber 30S. This indirectly lowers the internal temperature TS. That is, when the rotational speed CR of the compressor 24 is changed, it is the duct temperature TD that is directly influenced and first fluctuates, not the inside temperature TS. Therefore, the compressor 24 is controlled based on the duct temperature TD by the configuration of (1) above, rather than controlling the compressor based on the internal temperature unlike the conventional direct cooling type constant temperature oven equipped with the inverter compressor. If the rotational speed CR of is changed, the duct temperature TD can be controlled with high accuracy, the target internal temperature TS can be expressed while following the duct cooling characteristic PD, and the temperature change can be suppressed. Further, the duct temperature TD 81D measures the duct temperature TD at every predetermined sampling time t even when the compressor 24 is stopped, and by continuing the control based on this, the duct temperature TD is sufficiently lowered, for example. The timing at which the compressor 24 should be stopped and then restarted can be detected and dealt with as soon as possible. As a result, temperature fluctuations in the storage chamber 30S in the constant temperature and high humidity chamber 1 can be effectively suppressed.

また、本実施形態に係る恒温高湿庫1は、下記(2)の構成を有する。
(2)上記(1)において、データ格納部103には、庫内温度TSとダクト温度TDとの関係を表した温度連関データXが記憶されており、演算部104は、温度連関データXに基づいて、庫内温度設定値TSsからダクト温度指標値TDsを算出する。
Further, the constant temperature and high humidity chamber 1 according to the present embodiment has the following configuration (2).
(2) In the above (1), the data storage unit 103 stores the temperature association data X representing the relationship between the inside temperature TS and the duct temperature TD, and the calculation unit 104 stores the temperature association data X in the data association unit X. Based on this, the duct temperature index value TDs is calculated from the inside temperature setting value TSs.

上記(2)において、温度連関データXは、関連する機器のサイズ(容量)や配置、構造、性能等を考慮して、過去の実測値等から算出できる。このような温度連関データXに基づいて、庫内温度設定値TSsを実現するために必要なダクト温度指標値TDsを算出し、さらにダクト温度指標値TDs及びダクト温度測定値TDmからダクト温度目標値TDtを決定すれば、庫内温度設定値TSsを実現するためのダクト温度目標値TDtを適切に決定することができる。 In (2) above, the temperature-related data X can be calculated from past measured values or the like in consideration of the size (capacity), arrangement, structure, performance, etc. of the related devices. The duct temperature index value TDs required to realize the internal temperature set value TSs is calculated based on the temperature related data X, and the duct temperature target value TDs and the duct temperature target value TDm are used to calculate the duct temperature target value. If TDt is determined, the duct temperature target value TDt for realizing the inside temperature set value TSs can be appropriately determined.

また、本実施形態に係る恒温高湿庫1は、下記(3)の構成を有する。
(3)上記(1)又は(2)において、ダクト冷却特性PDは、ダクト温度降下率RDについての目標となるダクト温度降下率目標値RDtがダクト温度TDに応じて規定された参照テーブルとして記憶されており、演算部104は、ダクト温度測定値TDmに基づいて、ダクト温度降下率目標値RDtを達成するための目標回転数CRを算出する。
Moreover, the constant temperature and high humidity chamber 1 according to the present embodiment has the following configuration (3).
(3) In (1) or (2) above, the duct cooling characteristic PD is stored as a reference table in which a target duct temperature drop rate RDt, which is a target for the duct temperature drop rate RD, is defined according to the duct temperature TD. The calculation unit 104 calculates the target rotation speed CR for achieving the duct temperature drop rate target value RDt based on the duct temperature measurement value TDm.

上記(3)の構成によれば、ダクト冷却特性PDを予め規定された参照テーブルとして記憶しておくことで、ダクト温度測定値TDmに応じた圧縮機24の目標回転数CRtの算出を、より容易かつ迅速に行うことができる。 According to the above configuration (3), the target cooling speed CRt of the compressor 24 according to the duct temperature measurement value TDm is calculated more by storing the duct cooling characteristic PD as a predetermined reference table. It can be done easily and quickly.

また、本実施形態に係る恒温高湿庫1は、下記(4)の構成を有する。
(4)上記(3)において、演算部104は、庫内温度TSを予め設定された庫内温度設定値TSsとするためのダクト温度TDについての指標となるダクト温度指標値TDsを算出し、インバータ回路105は、ダクト温度測定値TDmが、ダクト温度指標値TDsよりも所定値だけ高い(例えば+1.0K)ダクト温度上限値TDhよりも高くなると圧縮機24を起動し、ダクト温度測定値TDmが、ダクト温度指標値TDsよりも所定値だけ低い(例えば−1.0K)ダクト温度下限値TDlよりも低くなると圧縮機24を停止する。また、ダクト温度降下率目標値RDtは、ダクト温度指標値TDsよりも低く(例えば−0.5K)ダクト温度下限値TDlよりも高いダクト温度中間値TDc以上でかつダクト温度上限値TDh以下の第1制御温度領域では正の値とされ、ダクト温度中間値TDc未満でダクト温度下限値TDl以上の第2制御温度領域では負の値とされる。
Further, the constant temperature and high humidity chamber 1 according to the present embodiment has the following configuration (4).
(4) In the above (3), the calculation unit 104 calculates the duct temperature index value TDs that is an index for the duct temperature TD for making the internal temperature TS the preset internal temperature set value TSs, The inverter circuit 105 activates the compressor 24 when the duct temperature measurement value TDm becomes higher than the duct temperature upper limit value TDh which is higher than the duct temperature index value TDs by a predetermined value (for example, +1.0K), and the duct temperature measurement value TDm. However, when it becomes lower than the duct temperature lower limit value TDl which is lower than the duct temperature index value TDs by a predetermined value (for example, -1.0K), the compressor 24 is stopped. The duct temperature drop rate target value RDt is lower than the duct temperature index value TDs (for example, -0.5K) and higher than the duct temperature lower limit value TDl. The duct temperature intermediate value TDc or more and the duct temperature upper limit value TDh or less. The first control temperature region has a positive value, and the second control temperature region having a duct temperature intermediate value TDc and a duct temperature lower limit value TDl or more has a negative value.

上記(4)の構成によれば、ダクト温度測定値TDmが制御温度領域まで降下して第2制御温度領域に至ると、インバータ回路105によって積極的に圧縮機24の回転数CRが小さくなるように修正され、冷却能力が低下する。これにより、ダクト温度測定値TDmがダクト温度下限値TDlまで降下することが少なくなり、圧縮機24は、より長期間に亘って連続運転される。この結果、圧縮機24の停止による庫内温度TSの上昇が低減され、貯蔵室30S内の温度変動が抑制される。 According to the configuration of (4), when the duct temperature measurement value TDm falls to the control temperature region and reaches the second control temperature region, the inverter circuit 105 positively reduces the rotation speed CR of the compressor 24. The cooling capacity is reduced. As a result, the duct temperature measurement value TDm is less likely to drop to the duct temperature lower limit value TDl, and the compressor 24 is continuously operated for a longer period. As a result, the rise in the internal temperature TS due to the stop of the compressor 24 is reduced, and the temperature fluctuation in the storage chamber 30S is suppressed.

また、本実施形態に係る恒温高湿庫1は、下記(5)の構成を有する。
(5)上記(1)から(4)の何れかにおいて、貯蔵室30S内に設けられて庫内温度TSを測定する庫内温度センサ81Sと、断熱箱10の外側に設けられて周囲温度TAを測定する周囲温度センサ81Aと、をさらに備え、データ格納部103には、ダクト温度測定値TDm、庫内温度センサ81Sで測定された庫内温度測定値TSm、及び周囲温度センサ81Aで測定された周囲温度測定値TAmから、貯蔵室30Sの中央部における庫内中央温度TScを推察するための中央温度推察用データYがさらに記憶されており、演算部104は、ダクト温度測定値TDm、庫内温度測定値TSm、及び周囲温度測定値TAmから、中央温度推察用データYに基づいて庫内中央温度TScを推察するとともに、庫内中央温度TScを予め設定された庫内温度設定値TSsとするためのダクト温度TDについての目標となるダクト温度指標値TDsを算出する。
Further, the constant temperature and high humidity chamber 1 according to the present embodiment has the following configuration (5).
(5) In any one of the above (1) to (4), the inside temperature sensor 81S provided inside the storage chamber 30S to measure the inside temperature TS, and the ambient temperature TA provided outside the heat insulation box 10. Further, an ambient temperature sensor 81A for measuring the temperature is measured, and the data storage unit 103 measures the duct temperature measurement value TDm, the internal temperature measurement value TSm measured by the internal temperature sensor 81S, and the ambient temperature sensor 81A. Further, central temperature estimation data Y for estimating the central temperature TSc in the storage in the central portion of the storage room 30S is further stored from the measured ambient temperature TAm, and the calculation unit 104 calculates the duct temperature measurement value TDm and the storage temperature. From the measured internal temperature value TSm and the measured ambient temperature value TAm, the in-compartment central temperature TSc is estimated based on the central temperature estimation data Y, and the in-compartment central temperature TSc is set to the preset in-compartment temperature set value TSs. The target duct temperature index value TDs for the duct temperature TD for the calculation is calculated.

上記(5)の構成によれば、特定箇所(本実施形態では貯蔵室30Sの上部)に設置された庫内温度センサ81Sによる庫内温度測定値TSmから、貯蔵室30S中央部における庫内中央温度TScが推察され、この庫内中央温度TScが庫内温度設定値TSsとなるように制御される。よって、貯蔵室30S内における温度(庫内温度TS)のばらつきを考慮した上で、貯蔵室30Sの全体を、庫内温度設定値TSs付近に維持することが可能となる。 According to the configuration of the above (5), from the inside temperature measurement value TSm by the inside temperature sensor 81S installed at a specific location (the upper part of the storage room 30S in the present embodiment), the inside center of the storage room 30S at the inside center. The temperature TSc is inferred, and the inside temperature of the inside TSc is controlled to be the inside temperature set value TSs. Therefore, it is possible to keep the entire storage chamber 30S near the storage temperature set value TSs in consideration of the variation in the temperature in the storage chamber 30S (storage temperature TS).

また、本実施形態に係る恒温高湿庫1は、下記(6)の構成を有する。
(6)上記(5)において、通電状態に応じて庫内温度TSに影響を与える結露防止ヒータ(付帯装備の一例)70をさらに備え、データ格納部103には、結露防止ヒータ70の通電状態が庫内中央温度TScに与える影響についての付帯データZがさらに記憶され、演算部104は、ダクト温度測定値TDm、庫内温度測定値TSm、及び周囲温度測定値TAm、並びに、結露防止ヒータ70の通電状態についての情報から、中央温度推察用データY及び付帯データZに基づいて、庫内中央温度TScを推察する。
Moreover, the constant temperature and high humidity chamber 1 according to the present embodiment has the following configuration (6).
(6) In the above (5), a dew condensation prevention heater (an example of an accessory) 70 that affects the inside temperature TS in accordance with the energization state is further provided, and the data storage unit 103 has an energization state of the dew condensation prevention heater 70. The auxiliary data Z regarding the influence of the temperature on the inside temperature TSc of the refrigerator is further stored, and the calculation unit 104 causes the duct temperature measurement value TDm, the inside temperature measurement value TSm, the ambient temperature measurement value TAm, and the condensation prevention heater 70. From the information about the energized state of No. 2, the central temperature TSc in the refrigerator is estimated based on the central temperature estimation data Y and the auxiliary data Z.

上記(6)の構成によれば、断熱扉18や断熱箱10の開口付近に結露防止ヒータ70が付設され、これらの通電状態によって庫内温度TSが変動する恒温高湿庫1について、より高い精度で、貯蔵室30Sの全体を庫内温度設定値TSs付近に維持することが可能となる。 According to the above configuration (6), the dew condensation preventing heater 70 is attached near the opening of the heat insulating door 18 and the heat insulating box 10, and the constant temperature and high humidity chamber 1 in which the inside temperature TS changes depending on the energized state is higher. It is possible to maintain the entire storage room 30S close to the inside temperature set value TSs with accuracy.

また、本実施形態に係る恒温高湿庫1の運転方法は、下記(7)の構成を有する。
(7)断熱壁を有する断熱箱10と、断熱箱10との間に冷気の通路となる冷却ダクト40Dを形成しつつ断熱箱10の内方に配されて内部が貯蔵室30Sとされる内装箱30と、凝縮器22、冷却器27、及び回転数可変型の圧縮機24が冷媒を封入した冷媒管によって循環接続されて冷却ダクト40D内に冷気を供給することによって貯蔵室30S内を間接的に冷却する冷気供給装置21と、貯蔵室30S内の庫内温度TSを予め設定された庫内温度設定値TSsとするための冷却ダクト40D内のダクト温度TDについての目標となるダクト温度目標値TDtの経時的変化態様を示すダクト冷却特性PDが記憶されたデータ格納部103と、を備える恒温高湿庫1の運転方法であって、圧縮機24の駆動状態に関わらず所定のサンプリング時間tごとに冷却ダクト40D内のダクト温度TDを測定し、ダクト温度測定値TDmに基づいてダクト温度TDをダクト冷却特性PDに倣って降下させるための圧縮機24の目標回転数CRtを算出し、圧縮機24の回転数CRを目標回転数CRtに合わせて変化させる。
Moreover, the operating method of the constant temperature and high humidity chamber 1 according to the present embodiment has the configuration of (7) below.
(7) Interior with a heat insulating box 10 having a heat insulating wall and a cooling duct 40D serving as a passage for cold air formed between the heat insulating box 10 and the inside of the heat insulating box 10 to form a storage chamber 30S The box 30, the condenser 22, the cooler 27, and the variable rotation speed compressor 24 are circulatively connected by a refrigerant tube in which a refrigerant is sealed, and cool air is supplied into the cooling duct 40D to indirectly connect the inside of the storage chamber 30S. And a duct temperature target that is a target for the duct temperature TD in the cooling duct 40D for making the inside temperature TS in the storage chamber 30S to be a preset inside temperature set value TSs. A method for operating a constant temperature and high humidity chamber 1 comprising: a data storage unit 103 in which a duct cooling characteristic PD indicating a time-dependent change mode of a value TDt is stored; and a predetermined sampling time regardless of a driving state of a compressor 24. The duct temperature TD in the cooling duct 40D is measured every t, and the target rotational speed CRt of the compressor 24 for lowering the duct temperature TD in accordance with the duct cooling characteristic PD is calculated based on the duct temperature measurement value TDm, The rotation speed CR of the compressor 24 is changed according to the target rotation speed CRt.

上記(7)の構成によれば、恒温高湿庫1を、貯蔵室30S内における庫内温度TSの変動を効果的に抑制しながら、運転することができる。 According to the above configuration (7), the constant temperature and high humidity chamber 1 can be operated while effectively suppressing the fluctuation of the internal temperature TS in the storage chamber 30S.

<その他の実施形態>
本明細書によって開示される技術は、上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も技術的範囲に含まれる。
<Other embodiments>
The technology disclosed in this specification is not limited to the embodiments described by the above description and the drawings, and the following embodiments are also included in the technical scope, for example.

(1)上記実施形態では、ダクト冷却特性PDが一次関数の組合せで表される例について示したが、これに限定されない。ダクト冷却特性PDは、二次以上の関数として表されるものであっても構わない。 (1) In the above embodiment, an example in which the duct cooling characteristic PD is represented by a combination of linear functions is shown, but the present invention is not limited to this. The duct cooling characteristic PD may be expressed as a quadratic or higher function.

(2)上記実施形態では、ユーザーが庫内温度設定値TSsのみを目標温度設定部91に設定入力し、庫内温度設定値TSsから算出されたダクト温度指標値TDsに基づいて、ダクト温度上限値TDh、ダクト温度下限値TDl、ダクト温度中間値TDcが決定される場合について記載したが、これに限定されない。例えば、使用目的(貯蔵する食品等)や恒温高湿庫1の設置環境に合わせて、ユーザーが庫内温度上限値、庫内温度下限値、庫内温度中間値等も設定入力できるよう構成してもよい。これらの入力値から、データX,Y,Z等を参照しつつ、ダクト温度上限値TDh、ダクト温度下限値TDl、ダクト温度中間値TDcを算出できる。 (2) In the above embodiment, the user sets and inputs only the inside temperature setting value TSs to the target temperature setting unit 91, and based on the duct temperature index value TDs calculated from the inside temperature setting value TSs, the duct temperature upper limit is set. The case where the value TDh, the duct temperature lower limit value TDl, and the duct temperature intermediate value TDc are determined has been described, but the present invention is not limited to this. For example, the user can set and input the upper temperature limit value, the lower temperature limit value, the intermediate temperature value, etc. according to the purpose of use (food to be stored, etc.) and the installation environment of the constant temperature and high humidity chamber 1. May be. From these input values, the duct temperature upper limit value TDh, the duct temperature lower limit value TDl, and the duct temperature intermediate value TDc can be calculated with reference to the data X, Y, Z and the like.

(3)上記実施形態では、凝縮器ファン23やダクトファン29の制御については特に言及しなかったが、これらの回転数を、圧縮機24の回転数CRと連動させて制御してもよい。例えば、凝縮器ファン23は、凝縮器22が高温にならないよう、冷気供給装置21の冷媒供給量が多くなるほど回転数を増加させることが好ましい。よって、凝縮器ファン23の回転数は、例えば圧縮機24の回転数CRと同様に増減させるとよい。また、ダクトファン29の回転数を変えることで、冷気の循環量を変えて冷却能力を調整できる。よって、ダクトファン29の回転数を、圧縮機24の回転数CRとは別の態様で推移するものとし、これらを組み合わせて制御を行うように構成してもよい。 (3) In the above embodiment, the control of the condenser fan 23 and the duct fan 29 was not particularly mentioned, but the rotational speeds of these may be controlled in conjunction with the rotational speed CR of the compressor 24. For example, it is preferable that the condenser fan 23 increase the rotational speed as the refrigerant supply amount of the cool air supply device 21 increases so that the temperature of the condenser 22 does not rise. Therefore, the rotation speed of the condenser fan 23 may be increased or decreased in the same manner as the rotation speed CR of the compressor 24, for example. Further, by changing the rotation speed of the duct fan 29, it is possible to adjust the cooling capacity by changing the circulation amount of the cool air. Therefore, the rotation speed of the duct fan 29 may be changed in a manner different from the rotation speed CR of the compressor 24, and these may be combined to perform control.

(4)恒温高湿庫は、上記実施形態に記載したものに限定されず、例えば複数の独立した貯蔵室を冷却するように構成されたものや、複数の圧縮機を備えるものであってもよい。貯蔵室の庫内温度TSの具体的な温度範囲は特に限定されるものではなく、冷蔵、冷凍の何れの用途で使用される貯蔵室を備えた恒温高湿庫にも、本技術は適用可能である。 (4) The constant temperature and high humidity chamber is not limited to the one described in the above embodiment, and may be one configured to cool a plurality of independent storage chambers or one including a plurality of compressors, for example. Good. The specific temperature range of the inside temperature TS of the storage room is not particularly limited, and the present technology can be applied to a constant temperature and high humidity room having a storage room used for both refrigeration and freezing. Is.

1…恒温高湿庫、10…断熱箱(断熱箱体)、21…冷気供給装置、22…凝縮器、23…凝縮器ファン、24…圧縮機、25…電装箱(コントロールボックス)、27…冷却器、29…ダクトファン(冷却ファン)、30…内装箱、30S…貯蔵室、40D…冷却ダクト、70…結露防止ヒータ(付帯装備の一例)、71…結露防止ヒータ通電検出センサ(付帯装備状態検出センサの一例)、81A…周囲温度センサ、81D…ダクト温度センサ、81S…庫内温度センサ、91…目標温度設定部、100…制御部、102…計時部、103…データ格納部(記憶手段)、104…演算部(演算手段)、105…インバータ回路(圧縮機駆動手段)、TD…ダクト温度、TDc…ダクト温度中間値、TDh…ダクト温度上限値、TDl…ダクト温度下限値、TDm…ダクト温度測定値、TDs…ダクト温度指標値、TDt…ダクト温度目標値、TS…庫内温度、TSc…庫内中央温度、TSm…庫内温度測定値、TSs…庫内温度設定値、TSt…庫内温度目標値、TA…周囲温度、TAm…周囲温度測定値、PD…ダクト冷却特性(冷却特性)、RD…ダクト温度降下率、RDm…ダクト温度測定値降下率、RDt…ダクト温度降下率目標値、X…温度連関データ、Y…中央温度推察用データ、Z…付帯データ DESCRIPTION OF SYMBOLS 1... Constant temperature and high humidity chamber, 10... Insulation box (insulation box), 21... Cold air supply device, 22... Condenser, 23... Condenser fan, 24... Compressor, 25... Electrical equipment box (control box), 27... Cooler, 29... Duct fan (cooling fan), 30... Interior box, 30S... Storage room, 40D... Cooling duct, 70... Dew condensation prevention heater (an example of auxiliary equipment), 71... Dew condensation prevention heater energization detection sensor (auxiliary equipment) 81A... Ambient temperature sensor, 81D... Duct temperature sensor, 81S... In-compartment temperature sensor, 91... Target temperature setting unit, 100... Control unit, 102... Timekeeping unit, 103... Data storage unit (memory) Means), 104... Calculation unit (calculation means), 105... Inverter circuit (compressor driving means), TD... Duct temperature, TDc... Duct temperature intermediate value, TDh... Duct temperature upper limit value, TD1... Duct temperature lower limit value, TDm ...Duct temperature measured value, TDs...duct temperature index value, TDt...duct temperature target value, TS...indoor temperature, TSc...indoor central temperature, TSm...indoor temperature measured value, TSs...indoor temperature set value, TSt ...Internal temperature target value, TA... Ambient temperature, TAm... Ambient temperature measured value, PD... Duct cooling characteristic (cooling characteristic), RD... Duct temperature drop rate, RDm... Duct temperature measured value drop rate, RDt... Duct temperature drop Rate target value, X... temperature related data, Y... central temperature estimation data, Z... auxiliary data

Claims (7)

断熱壁を有する断熱箱体と、
前記断熱箱体との間に冷気の通路となる冷却ダクトを形成しつつ前記断熱箱体の内方に配され、内部が貯蔵室とされる内装箱と、
凝縮器、冷却器、及び回転数可変型の圧縮機が、冷媒を封入した冷媒管によって循環接続され、前記冷却ダクト内に冷気を供給することによって前記貯蔵室内を間接的に冷却する冷気供給装置と、
前記圧縮機の駆動状態に関わらず、所定のサンプリング時間ごとに前記冷却ダクト内のダクト温度を測定するダクト温度センサと、
前記貯蔵室内の庫内温度を予め設定された庫内温度設定値とするための前記ダクト温度についての目標となるダクト温度目標値の経時的変化態様を示す冷却特性が記憶された記憶手段と、
前記ダクト温度センサで測定されたダクト温度測定値に基づいて、前記ダクト温度を前記冷却特性に倣って降下させるための前記圧縮機の目標回転数を算出する演算手段と、
前記圧縮機の回転数を目標回転数に合わせて変化させる圧縮機駆動手段と、を備える恒温高湿庫。
An insulating box body having an insulating wall;
An inner box that is arranged inside the heat insulating box while forming a cooling duct to be a passage of cold air between the heat insulating box and the inside of which is a storage chamber,
A cool air supply device in which a condenser, a cooler, and a variable-speed compressor are circulatively connected by a refrigerant tube in which a refrigerant is sealed, and indirectly cools the storage chamber by supplying cool air into the cooling duct. When,
Regardless of the driving state of the compressor, a duct temperature sensor that measures the duct temperature in the cooling duct at every predetermined sampling time,
A storage unit that stores a cooling characteristic indicating a time-dependent change mode of a target duct temperature target value for the duct temperature for setting the internal temperature of the storage chamber to a preset internal temperature setting value,
Based on the duct temperature measurement value measured by the duct temperature sensor, a calculating means for calculating a target rotation speed of the compressor for lowering the duct temperature in accordance with the cooling characteristic,
A constant temperature and high humidity chamber, comprising: a compressor driving unit that changes the rotation speed of the compressor according to a target rotation speed.
前記記憶手段には、前記庫内温度と前記ダクト温度との関係を表した温度連関データが記憶されており、
前記演算手段は、前記温度連関データに基づいて、前記庫内温度設定値から前記ダクト温度目標値を算出する、請求項1に記載の恒温高湿庫。
The storage means stores temperature relational data representing a relationship between the inside temperature and the duct temperature,
The constant temperature and high humidity chamber according to claim 1, wherein the calculation unit calculates the duct temperature target value from the internal temperature setting value based on the temperature relational data.
前記冷却特性は、前記ダクト温度に応じて規定された、ダクト温度降下率についての目標となるダクト温度降下率目標値を含み、
前記演算手段は、前記ダクト温度測定値に基づいて、前記ダクト温度降下率目標値を達成するための前記目標回転数を算出する請求項1又は請求項2に記載の恒温高湿庫。
The cooling characteristics include a target duct temperature drop rate target value for the duct temperature drop rate, which is defined according to the duct temperature.
The constant temperature and high humidity chamber according to claim 1 or 2, wherein the calculation means calculates the target rotation speed for achieving the duct temperature drop rate target value based on the duct temperature measurement value.
前記演算手段は、
前記庫内温度を予め設定された庫内温度設定値とするための前記ダクト温度についての指標となるダクト温度指標値を算出し、
前記圧縮機駆動手段は、
前記ダクト温度測定値が、前記ダクト温度指標値よりも所定値だけ高いダクト温度上限値よりも高くなると前記圧縮機を起動し、
前記ダクト温度測定値が、前記ダクト温度指標値よりも所定値だけ低いダクト温度下限値よりも低くなると前記圧縮機を停止し、
前記ダクト温度降下率目標値は、
前記ダクト温度指標値よりも低く前記ダクト温度下限値よりも高いダクト温度中間値以上でかつ前記ダクト温度上限値以下の第1制御温度領域では正の値とされ、
前記ダクト温度中間値未満で前記ダクト温度下限値以上の第2制御温度領域では負の値とされる請求項3に記載の恒温高湿庫。
The calculation means is
Calculating a duct temperature index value that is an index for the duct temperature to set the internal temperature to a preset internal temperature setting value,
The compressor driving means,
When the duct temperature measurement value becomes higher than the duct temperature upper limit value higher by a predetermined value than the duct temperature index value, the compressor is started,
When the duct temperature measurement value is lower than a duct temperature lower limit value lower by a predetermined value than the duct temperature index value, the compressor is stopped,
The duct temperature drop rate target value is
It is a positive value in the first control temperature range that is lower than the duct temperature index value and higher than the duct temperature lower limit value and is equal to or higher than the duct temperature intermediate value and is equal to or lower than the duct temperature upper limit value,
The constant temperature and high humidity chamber according to claim 3, wherein a negative value is set in a second control temperature range that is lower than the duct temperature intermediate value and is equal to or higher than the duct temperature lower limit value.
前記貯蔵室内に設けられ、前記庫内温度を測定する庫内温度センサと、
前記断熱箱体の外側に設けられ、周囲温度を測定する周囲温度センサと、をさらに備え、
前記記憶手段には、前記ダクト温度測定値、前記庫内温度センサで測定された庫内温度測定値、及び前記周囲温度センサで測定された周囲温度測定値から、前記貯蔵室の中央部における庫内中央温度を推察するための中央温度推察用データがさらに記憶されており、
前記演算手段は、
前記ダクト温度測定値、前記庫内温度測定値、及び前記周囲温度測定値から、前記中央温度推察用データに基づいて前記庫内中央温度を推察するとともに、
前記庫内中央温度を予め設定された庫内温度設定値とするための前記ダクト温度についての目標となるダクト温度指標値を算出する、請求項1から請求項4の何れか一項に記載の恒温高湿庫。
An internal temperature sensor provided in the storage chamber for measuring the internal temperature,
An ambient temperature sensor, which is provided outside the heat insulating box and measures an ambient temperature, further comprises:
The storage means stores the duct temperature measured value, the internal temperature measured value measured by the internal temperature sensor, and the ambient temperature measured value measured by the ambient temperature sensor from the measured temperature in the central part of the storage chamber. Central temperature estimation data for estimating the inner central temperature is further stored,
The calculation means is
From the duct temperature measurement value, the internal temperature measurement value, and the ambient temperature measurement value, while inferring the internal chamber central temperature based on the central temperature estimation data,
The duct temperature index value as a target for the duct temperature for setting the inside temperature of the inside of the compartment to a preset inside temperature set value is calculated. Constant temperature and high humidity.
状態に応じて前記庫内温度に影響を与えうる付帯装備をさらに備え、
前記記憶手段には、前記付帯装備の状態が前記庫内中央温度に与える影響についての付帯データがさらに記憶され、
前記演算手段は、前記ダクト温度測定値、前記庫内温度測定値、及び前記周囲温度測定値、並びに、前記付帯装備の状態についての情報から、前記中央温度推察用データ及び前記付帯データに基づいて、前記庫内中央温度を推察する、請求項5に記載の恒温高湿庫。
According to the state, further equipped with incidental equipment that can affect the temperature in the refrigerator,
The storage means further stores incidental data on the influence of the state of the incidental equipment on the central temperature in the refrigerator,
From the information about the duct temperature measurement value, the inside temperature measurement value, the ambient temperature measurement value, and the state of the auxiliary equipment, the calculating means is based on the central temperature estimation data and the auxiliary data. The constant temperature and high humidity chamber according to claim 5, wherein the central temperature in the chamber is estimated.
断熱壁を有する断熱箱体と、
前記断熱箱体との間に冷気の通路となる冷却ダクトを形成しつつ前記断熱箱体の内方に配され、内部が貯蔵室とされる内装箱と、
凝縮器、冷却器、及び回転数可変型の圧縮機が、冷媒を封入した冷媒管によって循環接続され、前記冷却ダクト内に冷気を供給することによって前記貯蔵室内を間接的に冷却する冷気供給装置と、
前記貯蔵室内の庫内温度を予め設定された庫内温度設定値とするための前記冷却ダクト内のダクト温度についての目標となるダクト温度目標値の経時的変化態様を示す冷却特性が記憶された記憶手段と、を備える恒温高湿庫の運転方法であって、
前記圧縮機の駆動状態に関わらず、所定のサンプリング時間ごとに前記冷却ダクト内のダクト温度を測定し、
ダクト温度測定値に基づいて、前記ダクト温度を前記冷却特性に倣って降下させるための前記圧縮機の目標回転数を算出し、
前記圧縮機の回転数を前記目標回転数に合わせて変化させる、恒温高湿庫の運転方法。
An insulating box body having an insulating wall;
An inner box that is arranged inside the heat insulating box while forming a cooling duct to be a passage of cold air between the heat insulating box and the inside of which is a storage chamber,
A cool air supply device in which a condenser, a cooler, and a variable-speed compressor are circulatively connected by a refrigerant tube in which a refrigerant is sealed, and indirectly cools the storage chamber by supplying cool air into the cooling duct. When,
A cooling characteristic indicating a time-dependent change mode of a target duct temperature target value for the duct temperature in the cooling duct for setting the internal cold storage temperature in the storage chamber to a preset internal cold storage temperature set value is stored. A method of operating a constant temperature and high humidity chamber, comprising:
Regardless of the driving state of the compressor, the duct temperature in the cooling duct is measured every predetermined sampling time,
Based on the duct temperature measurement value, calculate the target rotational speed of the compressor for lowering the duct temperature in accordance with the cooling characteristic,
A method of operating a constant temperature and high humidity chamber, wherein the rotation speed of the compressor is changed according to the target rotation speed.
JP2019006596A 2019-01-18 2019-01-18 Constant temperature and high humidity storage Active JP7201450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019006596A JP7201450B2 (en) 2019-01-18 2019-01-18 Constant temperature and high humidity storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019006596A JP7201450B2 (en) 2019-01-18 2019-01-18 Constant temperature and high humidity storage

Publications (2)

Publication Number Publication Date
JP2020115066A true JP2020115066A (en) 2020-07-30
JP7201450B2 JP7201450B2 (en) 2023-01-10

Family

ID=71778493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019006596A Active JP7201450B2 (en) 2019-01-18 2019-01-18 Constant temperature and high humidity storage

Country Status (1)

Country Link
JP (1) JP7201450B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121341A (en) * 2003-10-20 2005-05-12 Hoshizaki Electric Co Ltd Cooling storage
JP2008057925A (en) * 2006-09-01 2008-03-13 Hoshizaki Electric Co Ltd Indirect cooling type storage box

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121341A (en) * 2003-10-20 2005-05-12 Hoshizaki Electric Co Ltd Cooling storage
JP2008057925A (en) * 2006-09-01 2008-03-13 Hoshizaki Electric Co Ltd Indirect cooling type storage box

Also Published As

Publication number Publication date
JP7201450B2 (en) 2023-01-10

Similar Documents

Publication Publication Date Title
EP0803689B1 (en) Temperature control of an appliance using ambient air temperature determination
KR20100004965A (en) Refrigerating storage cabinet and control method for compressor thereof
US20220260300A1 (en) Temperature control of refrigeration cavities with a variable speed compressor and a variable speed evaporator fan
JP2007071520A (en) Cooling storage box, and control method for its compressor
JP2014134348A (en) Refrigerator
WO2018038023A1 (en) Control device, program, method for controlling refrigerator, and refrigerator
JP4502584B2 (en) Control device for cooling system
JP4809944B2 (en) Indirect cooling storage
JP3454522B2 (en) Refrigerator quick cooling control device
JP7201450B2 (en) Constant temperature and high humidity storage
JP2007139270A (en) Refrigerator and cooking system
CN111238135A (en) Control method and device for preventing condensation of refrigeration equipment, refrigeration equipment and medium
JP4183451B2 (en) Control device for cooling system
JP6383454B2 (en) refrigerator
KR20090119083A (en) Control device and method for defrosting of refrigerator
JPH06294568A (en) Controller for freezer/refrigerator
EP4160122A1 (en) Method of controlling condensation on a refrigerator appliance and refrigerator thereof
JP3071096B2 (en) Open refrigerated / refrigerated showcase
JP2020085407A (en) Cooling storage house
KR100597304B1 (en) Defroast operating method for refrigerator
JP5927428B2 (en) refrigerator
KR20190097619A (en) Refrigerator
US11959696B2 (en) Vacuum insulated appliance with pressure monitoring
JP6780050B2 (en) How to operate a refrigerated showcase and a refrigerated showcase
JP5927426B2 (en) refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221222

R150 Certificate of patent or registration of utility model

Ref document number: 7201450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150