JP2020111520A - Production method of cyclobutane - Google Patents

Production method of cyclobutane Download PDF

Info

Publication number
JP2020111520A
JP2020111520A JP2019001661A JP2019001661A JP2020111520A JP 2020111520 A JP2020111520 A JP 2020111520A JP 2019001661 A JP2019001661 A JP 2019001661A JP 2019001661 A JP2019001661 A JP 2019001661A JP 2020111520 A JP2020111520 A JP 2020111520A
Authority
JP
Japan
Prior art keywords
mol
catalyst
general formula
represented
hydrogen fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019001661A
Other languages
Japanese (ja)
Other versions
JP6874778B2 (en
Inventor
友亮 江藤
Yusuke Eto
友亮 江藤
中村 新吾
Shingo Nakamura
新吾 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2019001661A priority Critical patent/JP6874778B2/en
Priority to KR1020217024996A priority patent/KR102578063B1/en
Priority to CN201980088269.0A priority patent/CN113272268B/en
Priority to SG11202107214UA priority patent/SG11202107214UA/en
Priority to PCT/JP2019/050022 priority patent/WO2020145088A1/en
Priority to TW109100254A priority patent/TWI798518B/en
Publication of JP2020111520A publication Critical patent/JP2020111520A/en
Application granted granted Critical
Publication of JP6874778B2 publication Critical patent/JP6874778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/07Preparation of halogenated hydrocarbons by addition of hydrogen halides
    • C07C17/087Preparation of halogenated hydrocarbons by addition of hydrogen halides to unsaturated halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C23/00Compounds containing at least one halogen atom bound to a ring other than a six-membered aromatic ring
    • C07C23/02Monocyclic halogenated hydrocarbons
    • C07C23/06Monocyclic halogenated hydrocarbons with a four-membered ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

To provide a production method of a cyclobutane containing a fluorine atom with high selectivity.SOLUTION: In a production method of a cyclobutane represented by general formula (1) (in formula, X1-X6 are the same or different and respectively represent a hydrogen atom, a halogen atom, or a perfluoroalkyl group), a cyclobutene represented by general formula (2) (in formula, symbols are identical to those mentioned before) and hydrogen fluoride are made to react with each other in the presence of a catalyst in the gas phase.SELECTED DRAWING: None

Description

本開示は、シクロブタンの製造方法に関する。 The present disclosure relates to a method of making cyclobutane.

ハロゲン原子を含むシクロブタンは、半導体用ドライエッチングガスの他、各種冷媒、発泡剤、熱移動媒体等として有用な化合物である。 Cyclobutane containing a halogen atom is a compound useful as a dry etching gas for semiconductors, various refrigerants, a foaming agent, a heat transfer medium, and the like.

非特許文献1では、3,3,4,4,-テトラフルオロシクロブテンから、CoF3、MnF3、AgF2、CeF4又はKCoF4等のフッ素剤を用いて、フッ素化反応により、1H-ヘプタフルオロシクロブタンを製造する方法を開示している。 In Non-Patent Document 1, from 3,3,4,4,-tetrafluorocyclobutene, CoF 3 , MnF 3 , AgF 2 , CeF 4 or KCoF 4 using a fluorinating agent, by fluorination reaction, 1H- A method of making heptafluorocyclobutane is disclosed.

非特許文献2では、ヘキサフルオロシクロブテン(cC4F6)から、臭化水素(HBr)を用いて、付加反応により、1Br,2H-ヘキサフルオロシクロブタン(cC4F6BrH)を製造する方法を開示している。 The method in Non-Patent Document 2, a hexafluoro cyclobutene (cC 4 F 6), using a hydrogen bromide (HBr), by an addition reaction, to produce 1 Br, 2H-hexafluoro-cyclobutane and (cC 4 F 6 BrH) Is disclosed.

Journal of Fluorine Chemistry, 2006, Vol.127, 79-84, “Fluorination of fluoro-cyclobutene with high-valency metal fluoride”Journal of Fluorine Chemistry, 2006, Vol.127, 79-84, “Fluorination of fluoro-cyclobutene with high-valency metal fluoride” Journal of American Chemistry, 1949, Vol.71, 2339-2340, “The Addition of Hydrogen Bromide to Fluorinated Olefins”Journal of American Chemistry, 1949, Vol.71, 2339-2340, “The Addition of Hydrogen Bromide to Fluorinated Olefins”

本開示は、ハロゲン原子を含むシクロブタンを高い選択率で製造することを目的とする。 The present disclosure aims to produce cyclobutane containing a halogen atom with high selectivity.

本開示は、以下の構成を包含する。 The present disclosure includes the following configurations.

項1.
一般式(1):
Item 1.
General formula (1):

Figure 2020111520
Figure 2020111520

(式中、X1、X2、X3、X4、X5及びX6は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。)
で表されるシクロブタンの製造方法であって、
一般式(2):
(In the formula, X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are the same or different and represent a hydrogen atom, a halogen atom or a perfluoroalkyl group.)
A method for producing cyclobutane represented by
General formula (2):

Figure 2020111520
Figure 2020111520

(式中、X1、X2、X3、X4、X5及びX6は、前記に同じである。)
で表されるシクロブテンとフッ化水素とを、触媒の存在下、気相で反応させる工程を含む、製造方法。
(In the formula, X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are the same as above.)
A method for producing, comprising a step of reacting cyclobutene represented by and hydrogen fluoride in a gas phase in the presence of a catalyst.

項2.
前記一般式(2)で表されるシクロブテン1モルに対して、0.1モル〜100モルのフッ化水素を供給して反応させる、前記項1に記載の製造方法。
Item 2.
Item 2. The production method according to Item 1, wherein 0.1 mol to 100 mol of hydrogen fluoride is supplied and reacted with respect to 1 mol of cyclobutene represented by the general formula (2).

項3.
前記触媒は、活性炭、及びクロム化合物からなる群から選ばれる少なくとも1種の触媒である、前記項1又は2に記載の製造方法。
Item 3.
3. The production method according to Item 1 or 2, wherein the catalyst is at least one catalyst selected from the group consisting of activated carbon and a chromium compound.

項4.
一般式(1):
Item 4.
General formula (1):

Figure 2020111520
Figure 2020111520

(式中、X1、X2、X3、X4、X5及びX6は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。)
で表されるシクロブタンを含有する組成物であって、
組成物全量を100mol%として、前記一般式(1)で表されるシクロブタンの含有量が99mol%以上である、組成物。
(In the formula, X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are the same or different and represent a hydrogen atom, a halogen atom or a perfluoroalkyl group.)
A composition containing cyclobutane represented by:
The composition, wherein the total amount of the composition is 100 mol %, the content of cyclobutane represented by the general formula (1) is 99 mol% or more.

項5.
クリーニングガス、エッチングガス、デポジットガス又は有機合成用ビルディングブロックとして用いられる、前記項4に記載の組成物。
Item 5.
Item 5. The composition according to Item 4, which is used as a cleaning gas, an etching gas, a deposit gas, or a building block for organic synthesis.

本開示によれば、ハロゲン原子を含むシクロブタンを高い選択率で製造することができる。 According to the present disclosure, cyclobutane containing a halogen atom can be produced with high selectivity.

本発明者らは、鋭意研究を行った結果、原料化合物に対して、フッ化水素による付加反応する工程を、触媒の存在下、気相で反応させることによって、上記一般式(1)で表されるフッ素原子を含むシクロブタンを高い選択率で製造できることを見出した。 As a result of earnest studies, the inventors of the present invention have shown that, in the presence of a catalyst, a step of adding a reaction with hydrogen fluoride to a raw material compound is carried out in the gas phase to give the compound represented by the general formula (1). It was found that cyclobutane containing a fluorine atom can be produced with high selectivity.

本開示は、かかる知見に基づき、更に研究を重ねた結果完成されたものである。 The present disclosure has been completed as a result of further research based on such findings.

本開示は、以下の実施形態を含む。 The present disclosure includes the following embodiments.

本開示の一般式(1): General formula (1) of the present disclosure:

Figure 2020111520
Figure 2020111520

(式中、X1、X2、X3、X4、X5及びX6は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。)
で表されるシクロブタンの製造方法は、
一般式(2):
(In the formula, X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are the same or different and represent a hydrogen atom, a halogen atom or a perfluoroalkyl group.)
The method for producing cyclobutane represented by
General formula (2):

Figure 2020111520
Figure 2020111520

(式中、X1、X2、X3、X4、X5及びX6は、前記に同じである。)
で表されるシクロブテンとフッ化水素とを反応させる工程を含む。
(In the formula, X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are the same as above.)
The step of reacting cyclobutene represented by and hydrogen fluoride is included.

本開示では、前記反応は、フッ化水素による付加反応であり、前記工程を、触媒の存在下、気相で反応させる。 In the present disclosure, the reaction is an addition reaction with hydrogen fluoride, and the step is performed in the gas phase in the presence of a catalyst.

本開示においては、上記要件を満たすことにより、フッ素原子を含むシクロブタンを高い選択率で製造することができる。 In the present disclosure, by satisfying the above requirements, cyclobutane containing a fluorine atom can be produced with high selectivity.

本開示において、「選択率」とは、反応器出口からの流出ガスにおける原料化合物以外の化合物(フッ素原子を含むシクロブタン等)の合計モル量に対する、当該流出ガスに含まれる目的化合物(フッ素原子を含むシクロブタン)の合計モル量の割合(mol%)を意味する。 In the present disclosure, the “selectivity” refers to the target compound (fluorine atom is included in the effluent gas with respect to the total molar amount of compounds other than the raw material compounds (cyclobutane containing a fluorine atom) in the effluent gas from the reactor outlet. It means the ratio (mol%) of the total molar amount of (including cyclobutane).

本開示において、「転化率」とは、反応器に供給される原料化合物(シクロブテン)のモル量に対する、反応器出口からの流出ガスに含まれる原料化合物以外の化合物(フッ素原子を含むシクロブタン等)の合計モル量の割合(mol%)を意味する。 In the present disclosure, the "conversion rate" refers to a compound other than the raw material compound (such as cyclobutane containing a fluorine atom) contained in the outflow gas from the reactor outlet with respect to the molar amount of the raw material compound (cyclobutene) supplied to the reactor. Means the ratio (mol%) of the total molar amount of.

本開示のシクロブタンの製造方法は、工業的レベルでの生産に好適である。本開示のシクロブタンの製造方法は、原料としてシクロブテン及びフッ化水素を用いており、これら原料は工業的レベルで入手可能である。本開示のシクロブタンの製造方法は、1H-ヘプタフルオロシクロブタンを目的化合物とした場合に、高い選択率が達成できる。 The method for producing cyclobutane according to the present disclosure is suitable for production on an industrial level. The method for producing cyclobutane according to the present disclosure uses cyclobutene and hydrogen fluoride as raw materials, and these raw materials are available on an industrial level. The method for producing cyclobutane according to the present disclosure can achieve high selectivity when 1H-heptafluorocyclobutane is the target compound.

(1)原料化合物
一般式(2)で表されるシクロブテン
本開示において、原料化合物は、一般式(2):
(1) Raw material compound
Cyclobutene represented by the general formula (2) In the present disclosure, the starting compound is the general formula (2):

Figure 2020111520
Figure 2020111520

(式中、X1、X2、X3、X4、X5及びX6は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。)
で表されるシクロブテン、及びフッ化水素である。
(In the formula, X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are the same or different and represent a hydrogen atom, a halogen atom or a perfluoroalkyl group.)
Are cyclobutene and hydrogen fluoride.

X1、X2、X3、X4、X5及びX6は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。 X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are the same or different and each represents a hydrogen atom, a halogen atom or a perfluoroalkyl group.

X1、X2、X3、X4、X5及びX6のハロゲン原子は、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。 Examples of the halogen atom of X 1 , X 2 , X 3 , X 4 , X 5 and X 6 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.

X1、X2、X3、X4、X5及びX6のパーフルオロアルキル基は、全ての水素原子がフッ素原子で置換されたアルキル基である。パーフルオロアルキル基は、例えば、炭素数1〜20、好ましくは炭素数1〜12、より好ましくは炭素数1〜6、更に好ましくは炭素数1〜4、特に好ましくは炭素数1〜3のパーフルオロアルキル基であることが好ましい。パーフルオロアルキル基は、直鎖状、又は分枝鎖状のパーフルオロアルキル基であることが好ましい。前記パーフルオロアルキル基として、トリフルオロメチル基(CF3-)、及びペンタフルオロエチル基(C2F5-)であることが好ましい。 The perfluoroalkyl group of X 1 , X 2 , X 3 , X 4 , X 5 and X 6 is an alkyl group in which all hydrogen atoms are replaced by fluorine atoms. The perfluoroalkyl group has, for example, 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 4 carbon atoms, and particularly preferably 1 to 3 carbon atoms. It is preferably a fluoroalkyl group. The perfluoroalkyl group is preferably a linear or branched perfluoroalkyl group. The perfluoroalkyl group is preferably a trifluoromethyl group (CF 3 -) and a pentafluoroethyl group (C 2 F 5 -).

原料化合物である一般式(2)で表されるシクロブテンとしては、フッ素原子を含むシクロブタンを高い選択率で製造することができる点で、X1、X2、X3、X4、X5及びX6は、同一又は異なって、フッ素原子、又はパーフルオロアルキル基であることがより好ましい。 As the cyclobutene represented by the general formula (2), which is a raw material compound, X 1 , X 2 , X 3 , X 4 , X 5 and cyclobutane containing a fluorine atom can be produced with high selectivity. More preferably, X 6 are the same or different and each is a fluorine atom or a perfluoroalkyl group.

原料化合物である一般式(2)で表されるシクロブテンとしては、例えば、次の、 Examples of the cyclobutene represented by the general formula (2), which is a raw material compound, include the following:

Figure 2020111520
Figure 2020111520

等の化合物が挙げられる。 And the like.

これらの一般式(2)で表されるシクロブテンは、単独で用いることもでき、2種以上を組合せて用いることもできる。このようなシクロブテンは、公知又は市販品を採用することができる。 These cyclobutenes represented by the general formula (2) can be used alone or in combination of two or more kinds. As such cyclobutene, a known or commercially available product can be adopted.

一般式(2)で表されるシクロブテンでは、フッ素原子を含むシクロブタンを高い選択率を高い選択率で製造することができる点で、X1、X2、X3、X4、X5及びX6は、フッ素原子であることがより好ましい。 In the cyclobutene represented by the general formula (2), cyclobutane containing a fluorine atom can be produced with high selectivity and high selectivity, and thus X 1 , X 2 , X 3 , X 4 , X 5 and X More preferably, 6 is a fluorine atom.

シクロブテンとフッ化水素とのモル比
フッ化水素(HF)は、通常、一般式(2)で表されるシクロブテン(原料化合物)と共に、気相状態で反応器に供給することが好ましい。フッ化水素の供給量は、上記一般式(2)で表されるシクロブテン(原料化合物)1モルに対して、0.1モル〜100モル程度で、反応させることが好ましい。フッ化水素の供給量は、上記一般式(2)で表されるシクロブテン(原料化合物)1モルに対して、0.5モル〜50モル程度がより好ましく、1モル〜30モル程度が更に好ましく、1モル〜20モル程度が特に好ましい。フッ化水素の供給量を前記範囲とすることで、フッ化水素による付加反応を良好に進行させ、不純物の生成を低減することができ、生成物のフッ素原子を含むシクロブタンの選択率が高く、高収率で回収することができる。
The molar ratio of cyclobutene to hydrogen fluoride (HF) is usually preferably supplied to the reactor in a gas phase together with cyclobutene (raw material compound) represented by the general formula (2). It is preferable to supply hydrogen fluoride in an amount of about 0.1 mol to 100 mol per 1 mol of cyclobutene (raw material compound) represented by the general formula (2). The amount of hydrogen fluoride supplied is more preferably about 0.5 mol to 50 mol, still more preferably about 1 mol to 30 mol, relative to 1 mol of cyclobutene (raw material compound) represented by the general formula (2). About 20 to 20 mol is particularly preferable. By setting the supply amount of hydrogen fluoride in the above range, it is possible to favorably proceed the addition reaction with hydrogen fluoride and reduce the production of impurities, and the selectivity of cyclobutane containing a fluorine atom in the product is high, It can be recovered in high yield.

(2)付加反応
本開示におけるシクロブテンとフッ化水素とを反応させる工程は、フッ化水素による付加反応であり、触媒の存在下、気相で行う。本開示におけるシクロブテンとフッ化水素とを反応させる工程(付加反応)では、気相で行い、特に固定床反応器を用いた気相連続流通式で行うことが好ましい。気相連続流通式で行う場合は、装置、操作等を簡略化できるとともに、経済的に有利である。
(2) Addition reaction The step of reacting cyclobutene and hydrogen fluoride in the present disclosure is an addition reaction with hydrogen fluoride, and is performed in the gas phase in the presence of a catalyst. The step (addition reaction) of reacting cyclobutene and hydrogen fluoride in the present disclosure is preferably carried out in a gas phase, particularly preferably in a gas phase continuous flow system using a fixed bed reactor. When the gas phase continuous flow system is used, the apparatus, operation and the like can be simplified, and it is economically advantageous.

本開示におけるシクロブテンとフッ化水素とを反応させる工程では、例えば、原料化合物として、一般式(2)で表されるシクロブテンでは、X1、X2、X3、X4及びX6は、フッ素原子であることがより好ましい。 In the step of reacting cyclobutene and hydrogen fluoride in the present disclosure, for example, as a raw material compound, in the cyclobutene represented by the general formula (2), X 1 , X 2 , X 3 , X 4 and X 6 are fluorine. More preferably, it is an atom.

以下の反応式に従い、フッ化水素による付加反応であることが好ましい。 According to the following reaction formula, the addition reaction with hydrogen fluoride is preferable.

Figure 2020111520
Figure 2020111520

触媒
本開示におけるシクロブテンとフッ化水素とを反応させる工程は、フッ化水素による付加反応において、触媒の存在下、気相で行う。
Catalyst The step of reacting cyclobutene and hydrogen fluoride in the present disclosure is carried out in the gas phase in the presence of a catalyst in the addition reaction with hydrogen fluoride.

本工程で用いられる触媒は、活性炭であることが好ましい。 The catalyst used in this step is preferably activated carbon.

本工程で用いられる触媒は、金属触媒であることが好ましい。金属触媒として、酸化クロム、フッ化酸化クロム、フッ化クロム等のクロム触媒、酸化アルミニウム、フッ化酸化アルミニウム、フッ化アルミニウム等のアルミニウム触媒、酸化鉄、フッ化酸化鉄、フッ化鉄等の鉄触媒、酸化ニッケル、フッ化酸化ニッケル、フッ化ニッケル等のニッケル触媒、酸化マグネシウム、フッ化酸化マグネシウム、フッ化マグネシウム等のマグネシウム触媒等の金属触媒であることが好ましい。触媒は、前記金属触媒からなる群より選択される少なくとも1種であることが好ましい。 The catalyst used in this step is preferably a metal catalyst. As metal catalysts, chromium catalysts such as chromium oxide, chromium fluoride oxide, and chromium fluoride; aluminum catalysts such as aluminum oxide, aluminum fluoride oxide and aluminum fluoride; iron oxides, iron fluoride oxides, iron fluorides, etc. It is preferable to use a metal catalyst such as a catalyst, a nickel catalyst such as nickel oxide, nickel fluoride oxide or nickel fluoride, or a magnesium catalyst such as magnesium oxide, magnesium fluoride oxide or magnesium fluoride. The catalyst is preferably at least one selected from the group consisting of the above metal catalysts.

本工程で用いられる触媒は、活性炭及び前記金属触媒からなる群より選択される少なくとも1種であることが好ましい。これら触媒のうち、目的化合物をより高い選択率で得ることができる点から、活性炭、酸化クロム、フッ化酸化クロム、フッ化クロム等のクロム触媒がより好ましい。また、原料化合物の転化率をより向上させることも可能である。 The catalyst used in this step is preferably at least one selected from the group consisting of activated carbon and the above metal catalyst. Among these catalysts, chromium catalysts such as activated carbon, chromium oxide, chromium fluoride oxide, and chromium fluoride are more preferable because the target compound can be obtained with higher selectivity. It is also possible to further improve the conversion rate of the raw material compound.

本工程において、気相で、原料化合物と触媒とを接触させるに当たっては、触媒を固体の状態(固相)で原料化合物と接触させることが好ましい。 In this step, in contacting the raw material compound with the catalyst in the gas phase, it is preferable to contact the catalyst with the raw material compound in a solid state (solid phase).

本工程において、触媒は、粉末状でもよいが、ペレット状の方が気相連続流通式の反応に好ましい。 In this step, the catalyst may be in a powder form, but a pellet form is preferable for a gas phase continuous flow reaction.

前記触媒のBET法により測定した比表面積(以下、BET比表面積とも称する。)は、通常10〜3,000m2/gであり、好ましくは10〜2,500m2/gであり、より好ましくは20〜2,000m2/gであり、更に好ましくは30〜1,500m2/gである。触媒のBET比表面積がこのような範囲にある場合、触媒の粒子の密度が小さ過ぎることがない為、高い選択率で目的化合物を得ることができる。また、原料化合物の転化率を向上させることも可能である。例えば、触媒として、BET比表面積は800m2/g〜2,000m2/gである活性炭を用いることが好ましい。 The specific surface area of the catalyst measured by the BET method (hereinafter, also referred to as BET specific surface area) is usually 10 to 3,000 m 2 /g, preferably 10 to 2,500 m 2 /g, more preferably 20 to 2,000m was 2 / g, more preferably a 30~1,500m 2 / g. When the BET specific surface area of the catalyst is in such a range, the density of the catalyst particles is not too small, and thus the target compound can be obtained with high selectivity. It is also possible to improve the conversion rate of the raw material compound. For example, as a catalyst, BET specific surface area is preferably used activated carbon a 800m 2 / g~2,000m 2 / g.

触媒として活性炭を用いる場合、破砕炭、成形炭、顆粒炭、球状炭等の粉末活性炭を用いる事が好ましい。粉末活性炭は、JIS試験で、4メッシュ(4.76mm)〜100メッシュ(0.149mm)の粒度を示す粉末活性炭を用いることが好ましい。触媒として活性炭を用いる場合、使用前に、例えば300〜500℃の温度条件で一定時間窒素を流して処理したもの(熱処理した活性炭)を用いることができる。 When activated carbon is used as the catalyst, it is preferable to use powdered activated carbon such as crushed carbon, shaped carbon, granular carbon, spherical carbon and the like. As the powdered activated carbon, it is preferable to use powdered activated carbon having a particle size of 4 mesh (4.76 mm) to 100 mesh (0.149 mm) in the JIS test. When activated carbon is used as the catalyst, it is possible to use activated carbon that has been treated by flowing nitrogen for a certain period of time at a temperature of 300 to 500° C. before use (heat-treated activated carbon).

触媒として金属触媒を用いる場合、担体に担持されていることが好ましい。担体としては、例えば、炭素、アルミナ(Al2O3)、ジルコニア(ZrO2)、シリカ(SiO2)、チタニア(TiO2)等が挙げられる。炭素としては、活性炭、不定形炭素、グラファイト、ダイヤモンド等を用いることができる。 When a metal catalyst is used as the catalyst, it is preferably supported on a carrier. Examples of the carrier include carbon, alumina (Al 2 O 3 ), zirconia (ZrO 2 ), silica (SiO 2 ), titania (TiO 2 ), and the like. As carbon, activated carbon, amorphous carbon, graphite, diamond or the like can be used.

本開示における触媒の一例として、酸化クロム及びフッ素化された酸化クロムについて、説明する。酸化クロムは、例えば、酸化クロムをCr2O3・nH2Oで表した場合に、nの値が3以下であることが好ましく、1〜1.5であることがより好ましい。また、前記酸化クロムは、組成式:CrOmにおいて、mが通常1.5<m<3の範囲にあるものが好ましい。触媒として、フッ素化された酸化クロムは、酸化クロムをフッ素化することにより調製することができる。フッ素化としては、フッ化水素(HF)によるフッ素化、フルオロカーボン等によるフッ素化を挙げることができる。 As an example of the catalyst in the present disclosure, chromium oxide and fluorinated chromium oxide will be described. For chromium oxide, for example, when chromium oxide is represented by Cr 2 O 3 .nH 2 O, the value of n is preferably 3 or less, and more preferably 1 to 1.5. In the composition formula: CrO m , the chromium oxide is preferably one in which m is usually in the range of 1.5<m<3. As a catalyst, fluorinated chromium oxide can be prepared by fluorinating chromium oxide. Examples of the fluorination include fluorination with hydrogen fluoride (HF) and fluorination with fluorocarbon and the like.

触媒としてのフッ素化された酸化クロムは、例えば、日本特許第3412165号に記載されている方法に従って得ることができる。酸化クロムをフッ化水素によりフッ素化(HF処理)することによってフッ素化された酸化クロムを得ることができる。フッ素化の温度は、例えば、100〜460℃が好ましい。フッ素化の圧力は、触媒反応に供される時の圧力が好ましい。本開示において、フッ素含有量の多い高フッ素化−酸化クロム触媒を用いることが特に好ましい。高フッ素化−酸化クロム触媒は、酸化クロムを通常より高温で、長時間フッ素化することにより得ることができる。 The fluorinated chromium oxide as a catalyst can be obtained, for example, according to the method described in Japanese Patent No. 3412165. By fluorinating chromium oxide with hydrogen fluoride (HF treatment), fluorinated chromium oxide can be obtained. The fluorination temperature is preferably 100 to 460°C, for example. The pressure for fluorination is preferably the pressure at which it is subjected to a catalytic reaction. In the present disclosure, it is particularly preferable to use a highly fluorinated chromium oxide catalyst having a high fluorine content. The highly fluorinated-chromium oxide catalyst can be obtained by fluorinating chromium oxide at a higher temperature than usual for a long time.

高フッ素化−酸化クロム触媒は、フッ素含有量が30質量%以上であることが好ましく、30〜45質量%であることがより好ましい。フッ素含有量は、触媒の質量変化、又は一般的なクロム酸化物の定量分析法によって測定することができる。 The highly fluorinated-chromium oxide catalyst preferably has a fluorine content of 30% by mass or more, more preferably 30 to 45% by mass. The fluorine content can be measured by a mass change of the catalyst or a general quantitative analysis method of chromium oxide.

気相反応温度
本開示におけるシクロブテンとフッ化水素とを反応させる工程では、反応温度の下限値は、より効率的にフッ化水素による付加反応を進行させ、目的化合物をより高い選択率で得ることができる観点、転化率の低下を抑制する観点から、通常50℃であり、好ましくは200℃であり、より好ましくは250℃であり、更に好ましくは300℃である。
Gas phase reaction temperature In the step of reacting cyclobutene and hydrogen fluoride in the present disclosure, the lower limit of the reaction temperature is to allow the addition reaction with hydrogen fluoride to proceed more efficiently and obtain the target compound with higher selectivity. From the viewpoint of being able to do so and suppressing the decrease in conversion, it is usually 50° C., preferably 200° C., more preferably 250° C., and further preferably 300° C.

触媒として活性炭を用いる場合、反応温度は50℃〜400℃が好ましく、100℃〜350℃がより好ましく、150℃〜300℃が更に好ましい。 When activated carbon is used as the catalyst, the reaction temperature is preferably 50°C to 400°C, more preferably 100°C to 350°C, still more preferably 150°C to 300°C.

触媒としてクロム触媒を用いる場合、反応温度は50℃以上が好ましく、250℃以上がより好ましく、300℃以上が更に好ましい。 When a chromium catalyst is used as the catalyst, the reaction temperature is preferably 50° C. or higher, more preferably 250° C. or higher, even more preferably 300° C. or higher.

シクロブテンとフッ化水素とを反応させる反応温度の上限値は、より効率的にフッ化水素による付加反応を進行させ、目的化合物をより高い選択率で得ることができる観点、且つ反応生成物が分解又は重合することによる選択率の低下を抑制する観点から、通常500℃であり、好ましくは450℃であり、より好ましくは400℃である。 The upper limit of the reaction temperature for reacting cyclobutene with hydrogen fluoride is such that the addition reaction with hydrogen fluoride can proceed more efficiently and the target compound can be obtained with a higher selectivity, and the reaction product decomposes. Or, from the viewpoint of suppressing a decrease in selectivity due to polymerization, it is usually 500°C, preferably 450°C, and more preferably 400°C.

気相反応時間
シクロブテンとフッ化水素とを反応させる反応時間は、原料化合物の触媒に対する接触時間(W/F0)[W:金属触媒の重量(g)、F0:原料化合物の流量(cc/sec)]を長くすれば原料化合物の転化率を上げることができるが、触媒の量が多くなって設備が大きくなり、非効率である。
Gas phase reaction time The reaction time for reacting cyclobutene with hydrogen fluoride is the contact time of the starting compound with the catalyst (W/F 0 )[W: weight of metal catalyst (g), F 0 : flow rate of starting compound (cc /Sec)], the conversion rate of the raw material compounds can be increased, but the amount of catalyst increases and the equipment becomes large, which is inefficient.

その為、シクロブテンとフッ化水素とを反応させる反応時間は、原料化合物の転化率を向上させる点、及び設備コストを抑制する点から、原料化合物の触媒に対する接触時間(W/F0)が、1g・sec/cc〜30g・sec/ccであることが好ましく、1.5g・sec/cc〜10g・sec/ccであることがより好ましく、2.0g・sec/cc〜5.0g・sec/ccであることが更に好ましい。 Therefore, the reaction time for reacting cyclobutene and hydrogen fluoride is the contact time (W/F 0 ) of the raw material compound to the catalyst from the viewpoint of improving the conversion rate of the raw material compound and suppressing the equipment cost. It is preferably 1 g·sec/cc to 30 g·sec/cc, more preferably 1.5 g·sec/cc to 10 g·sec/cc, and 2.0 g·sec/cc to 5.0 g·sec/cc. More preferably,

上記原料化合物の触媒に対する接触時間とは、原料化合物及び触媒が接触する時間を意味する。 The contact time of the raw material compound with the catalyst means the time of contact between the raw material compound and the catalyst.

シクロブテンとフッ化水素とのモル比
フッ化水素の供給量は、触媒として活性炭、及びクロム触媒を用いる場合、反応コスト及び生産性の観点から、上記一般式(2)で表されるシクロブテン(原料化合物)1モルに対して、0.1モル〜100モル程度で反応させることが好ましく、0.5モル〜75モル程度がより好ましく、1モル〜50モル程度が更に好ましい。
The molar ratio of cyclobutene and hydrogen fluoride The supply amount of hydrogen fluoride, when using activated carbon as a catalyst, and a chromium catalyst, from the viewpoint of reaction cost and productivity, cyclobutene represented by the general formula (2) (raw material The compound is preferably reacted in an amount of about 0.1 mol to 100 mol, more preferably about 0.5 mol to 75 mol, still more preferably about 1 mol to 50 mol, per 1 mol of the compound).

気相反応圧力
シクロブテンとフッ化水素とを反応させる反応圧力は、より効率的にフッ化水素による付加反応を進行させる点から、-0.05MPa〜2MPaであることが好ましく、-0.01MPa〜1MPaであることがより好ましく、常圧〜0.5MPaであることが更に好ましい。なお、本開示において、圧力については表記が無い場合はゲージ圧とする。
Gas phase reaction pressure The reaction pressure for reacting cyclobutene and hydrogen fluoride is preferably −0.05 MPa to 2 MPa, from the viewpoint of advancing the addition reaction with hydrogen fluoride more efficiently, and −0.01 MPa to 1 MPa. It is more preferable that the pressure is from normal pressure to 0.5 MPa. In the present disclosure, the pressure is a gauge pressure unless otherwise noted.

シクロブテンとフッ化水素との反応において、原料化合物と触媒(活性炭、クロム触媒等)とを接触させて反応させる反応器としては、上記温度及び圧力に耐えうるものであれば、形状及び構造は特に限定されない。反応器としては、例えば、縦型反応器、横型反応器、多管型反応器等が挙げられる。反応器の材質としては、例えば、ガラス、ステンレス、鉄、ニッケル、鉄ニッケル合金等が挙げられる。 In the reaction of cyclobutene and hydrogen fluoride, as a reactor for reacting a raw material compound and a catalyst (activated carbon, chromium catalyst, etc.) by contacting, if the temperature and pressure can withstand the above, the shape and structure are particularly Not limited. Examples of the reactor include a vertical reactor, a horizontal reactor, a multitubular reactor, and the like. Examples of the material of the reactor include glass, stainless steel, iron, nickel, iron-nickel alloy and the like.

気相反応の例示
シクロブテンとフッ化水素との反応(フッ化水素による付加反応)は、反応器に原料化合物を連続的に仕込み、当該反応器から目的化合物を連続的に抜き出す流通式及びバッチ式のいずれの方式によっても実施することができる。目的化合物が反応器に留まると、更に脱離反応が進行し得ることから、流通式で実施することが好ましい。本開示におけるシクロブテンとフッ化水素とを反応させる工程では、気相で行い、特に固定床反応器を用いた気相連続流通式で行うことが好ましい。気相連続流通式で行う場合は、装置、操作等を簡略化できるとともに、経済的に有利である。
Exemplification of gas phase reaction The reaction between cyclobutene and hydrogen fluoride (addition reaction with hydrogen fluoride) is a flow system or batch system in which the starting compound is continuously charged into the reactor and the target compound is continuously withdrawn from the reactor. It can be implemented by either method. If the target compound stays in the reactor, the elimination reaction can proceed further, so that it is preferable to carry out the process in a flow system. The step of reacting cyclobutene and hydrogen fluoride in the present disclosure is preferably performed in a gas phase, and particularly preferably performed in a gas phase continuous flow system using a fixed bed reactor. When the gas phase continuous flow system is used, the apparatus, operation and the like can be simplified, and it is economically advantageous.

シクロブテンとフッ化水素との反応を行う際の雰囲気については、触媒(活性炭、クロム触媒等)の劣化を抑制する点から、不活性ガス存在下及び/又はフッ化水素存在下であることが好ましい。当該不活性ガスは、窒素、ヘリウム、アルゴン及び二酸化炭素からなる群より選択される少なくとも1種であることが好ましい。これらの不活性ガスの中でも、コストを抑える点から、窒素がより好ましい。当該不活性ガスの濃度は、反応器に導入される気体成分の0〜50mol%とすることが好ましい。 The atmosphere for the reaction between cyclobutene and hydrogen fluoride is preferably in the presence of an inert gas and/or in the presence of hydrogen fluoride from the viewpoint of suppressing the deterioration of the catalyst (activated carbon, chromium catalyst, etc.). .. The inert gas is preferably at least one selected from the group consisting of nitrogen, helium, argon and carbon dioxide. Among these inert gases, nitrogen is more preferable from the viewpoint of cost reduction. The concentration of the inert gas is preferably 0 to 50 mol% of the gas component introduced into the reactor.

シクロブテンとフッ化水素との反応(フッ化水素による付加反応)終了後は、必要に応じ、常法にしたがって精製処理を行い、一般式(1)で表されるフッ素原子を含むシクロブタンを得ることができる。 After completion of the reaction between cyclobutene and hydrogen fluoride (addition reaction with hydrogen fluoride), if necessary, perform purification treatment according to a conventional method to obtain cyclobutane containing a fluorine atom represented by the general formula (1). You can

(3)目的化合物
本開示における目的化合物は、一般式(1):
(3) Target Compound The target compound in the present disclosure has the general formula (1):

Figure 2020111520
Figure 2020111520

(式中、X1、X2、X3、X4、X5及びX6は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。)
で表されるフッ素原子を含むシクロブタンである。
(In the formula, X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are the same or different and represent a hydrogen atom, a halogen atom or a perfluoroalkyl group.)
Is cyclobutane containing a fluorine atom.

製造しようとする一般式(1)で表されるフッ素原子を含むシクロブタンは、例えば、次の、 Cyclobutane containing a fluorine atom represented by the general formula (1) to be produced is, for example,

Figure 2020111520
Figure 2020111520

等の化合物が挙げられる。 And the like.

一般式(1)で表されるフッ素原子を含むシクロブタンでは、X1、X2、X3、X4、X5及びX6は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。 In the cyclobutane containing a fluorine atom represented by the general formula (1), X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are the same or different and are a hydrogen atom, a halogen atom or a perfluoroalkyl. Indicates a group.

本開示におけるシクロブタンの製造方法では、原料化合物は、一般式(2)で表されるシクロブテンとフッ化水素とを反応させる工程において、フッ化水素による付加反応を行い、例えば、原料化合物として、一般式(2)で表されるシクロブテンでは、X1、X2、X3、X4及びX6は、フッ素原子であることがより好ましい。 In the method for producing cyclobutane according to the present disclosure, the raw material compound is subjected to an addition reaction with hydrogen fluoride in the step of reacting the cyclobutene represented by the general formula (2) with hydrogen fluoride. In the cyclobutene represented by the formula (2), X 1 , X 2 , X 3 , X 4 and X 6 are more preferably fluorine atoms.

以下の反応式に従い、フッ化水素による付加反応であることが好ましい。 According to the following reaction formula, the addition reaction with hydrogen fluoride is preferable.

Figure 2020111520
Figure 2020111520

目的化合物は、一般式(1)で表されるフッ素原子を含むシクロブタンとして、X1、X2、X3、X4、X5及びX6は、フッ素原子であることがより好ましい。 As the target compound, as the cyclobutane containing a fluorine atom represented by the general formula (1), it is more preferable that X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are fluorine atoms.

本開示の製造方法によれば、一般式(1)で表されるフッ素原子を含むシクロブタンを目的化合物として、工業的レベルで、高い選択率で良好に製造することができる。 According to the production method of the present disclosure, cyclobutane containing a fluorine atom represented by the general formula (1) can be favorably produced at an industrial level with high selectivity.

(4)フッ素原子を含むシクロブタンを含む組成物
以上のようにして、一般式(1)で表されるフッ素原子を含むシクロブタンを得ることができるが、上記のように、一般式(1)で表されるフッ素原子を含むシクロブタンと、一般式(2)で表されるシクロブテンとを含有する組成物の形で得られることもある。
(4) A composition containing a cyclobutane containing a fluorine atom As described above, a cyclobutane containing a fluorine atom represented by the general formula (1) can be obtained. It may be obtained in the form of a composition containing the cyclobutane containing a fluorine atom represented by the formula and the cyclobutene represented by the general formula (2).

組成物に含まれる一般式(1)で表されるフッ素原子を含むシクロブタンとして、X1、X2、X3、X4、X5及びX6は、フッ素原子であることが好ましい。 As the cyclobutane containing a fluorine atom represented by the general formula (1) contained in the composition, X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are preferably fluorine atoms.

本開示の一般式(1)で表されるフッ素原子を含むシクロブタンを含む組成物において、前記組成物の総量を100mol%として、一般式(1)で表されるフッ素原子を含むシクロブタンの含有量は99mol%以上であることが好ましい。 In the composition containing the cyclobutane containing a fluorine atom represented by the general formula (1) of the present disclosure, the content of the cyclobutane containing a fluorine atom represented by the general formula (1), with the total amount of the composition being 100 mol %. Is preferably 99 mol% or more.

本開示の一般式(1)で表されるフッ素原子を含むシクロブタンを含む組成物において、前記組成物の総量を100mol%として、一般式(1)で表されるフッ素原子を含むシクロブタンの含有量は1mol%〜99.9mol%が好ましく、5mol%〜99.9mol%がより好ましく、10mol%〜99.9mol%が更に好ましい。 In the composition containing the cyclobutane containing a fluorine atom represented by the general formula (1) of the present disclosure, the content of the cyclobutane containing a fluorine atom represented by the general formula (1), with the total amount of the composition being 100 mol %. Is preferably 1 mol% to 99.9 mol%, more preferably 5 mol% to 99.9 mol%, still more preferably 10 mol% to 99.9 mol%.

本開示の製造方法によれば、一般式(1)で表されるフッ素原子を含むシクロブタンを含む組成物として得られた場合であっても、一般式(1)で表されるフッ素原子を含むシクロブタンを特に高い選択率で得ることができ、その結果、前記組成物中の一般式(1)で表されるフッ素原子を含むシクロブタン以外の成分を少なくすることが可能である。本開示の製造方法によれば、一般式(1)で表されるフッ素原子を含むシクロブタンを得る為の精製の労力を削減することができる。 According to the production method of the present disclosure, even when obtained as a composition containing cyclobutane containing a fluorine atom represented by the general formula (1), the fluorine atom represented by the general formula (1) is contained. Cyclobutane can be obtained with a particularly high selectivity, and as a result, it is possible to reduce the components other than cyclobutane containing a fluorine atom represented by the general formula (1) in the composition. According to the production method of the present disclosure, the labor of purification for obtaining a cyclobutane containing a fluorine atom represented by the general formula (1) can be reduced.

本開示の一般式(1)で表されるフッ素原子を含むシクロブタンを含む組成物は、一般式(1)で表されるフッ素原子を含むシクロブタン単独の場合と同様に、半導体、液晶等の最先端の微細構造を形成するためのエッチングガスの他、デポジットガス、有機合成用ビルディングブロック、クリーニングガス等の各種用途に有効利用できる。 The composition containing the cyclobutane containing a fluorine atom represented by the general formula (1) of the present disclosure is the same as the case of cyclobutane containing a fluorine atom represented by the general formula (1) alone. In addition to the etching gas for forming the fine structure at the tip, it can be effectively used for various purposes such as a deposit gas, a building block for organic synthesis, and a cleaning gas.

前記デポジットガスとは、エッチング耐性ポリマー層を堆積させるガスである。 The deposit gas is a gas that deposits an etch resistant polymer layer.

前記有機合成用ビルディングブロックとは、反応性が高い骨格を有する化合物の前駆体となり得る物質を意味する。例えば、本開示の一般式(1)で表されるフッ素原子を含むシクロブタン、及びこれを含む組成物とCF3Si(CH3)3等の含フッ素有機ケイ素化合物とを反応させると、CF3基等のフルオロアルキル基を導入して洗浄剤や含フッ素医薬中間体となり得る物質に変換することが可能である。 The building block for organic synthesis means a substance that can be a precursor of a compound having a highly reactive skeleton. For example, when cyclobutane containing a fluorine atom represented by the general formula (1) of the present disclosure and a composition containing the same are reacted with a fluorine-containing organosilicon compound such as CF 3 Si(CH 3 ) 3 , CF 3 It is possible to introduce a fluoroalkyl group such as a group into a substance that can be a detergent or a fluorine-containing pharmaceutical intermediate.

以上、本開示の実施形態を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能である。 Although the embodiments of the present disclosure have been described above, various modifications of the forms and details can be made without departing from the spirit and scope of the claims.

以下に実施例を挙げ、本開示を具体的に説明するが、本開示は、これら実施例によって何ら限定されるものではない。 Hereinafter, the present disclosure will be specifically described with reference to examples, but the present disclosure is not limited to these examples.

実施例
実施例のフッ素原子を含むシクロブタンの製造方法では、原料化合物は、一般式(2)で表されるシクロブテンにおいて、X1、X2、X3及びX4は、フッ素原子とした。
Examples In the method for producing a cyclobutane containing a fluorine atom of Examples, the starting compound was a cyclobutene represented by the general formula (2), wherein X 1 , X 2 , X 3 and X 4 were fluorine atoms.

以下の反応式に従って、シクロブテンに対してフッ化水素による付加反応を行った。 According to the following reaction formula, an addition reaction of cyclobutene with hydrogen fluoride was performed.

Figure 2020111520
Figure 2020111520

目的化合物は、一般式(1)で表されるフッ素原子を含むシクロブタンとして、X1、X2、X3、X4、X5及びX6は、フッ素原子とした。 The target compound was a cyclobutane containing a fluorine atom represented by the general formula (1), and X 1 , X 2 , X 3 , X 4 , X 5 and X 6 were fluorine atoms.

実施例1(1-1〜1-5)、触媒:活性炭
反応管としてSUS配管(外径:1/2インチ)を用い、触媒として活性炭10gを充填した。前記触媒をフッ化水素による付加反応に用いた。活性炭のBET比表面積は850m2/gであった。反応器であるSUS配管(外径:1/2インチ)に、触媒として活性炭を10g加えた。
Example 1 (1-1 to 1-5), catalyst: A SUS pipe (outer diameter: 1/2 inch) was used as an activated carbon reaction tube, and 10 g of activated carbon was charged as a catalyst. The catalyst was used for the addition reaction with hydrogen fluoride. The BET specific surface area of the activated carbon was 850 m 2 /g. 10 g of activated carbon as a catalyst was added to a SUS pipe (outer diameter: 1/2 inch) which is a reactor.

窒素雰囲気下、200℃で2時間乾燥した後、圧力を常圧、シクロブテンcC4F6(原料化合物)と活性炭(触媒)との接触時間(W/F0)が2.0g・sec/ccとなるように、反応器に原料化合物(cC4F6)を流通させた。 After drying for 2 hours at 200°C in a nitrogen atmosphere, the pressure was normal pressure and the contact time (W/F 0 ) between cyclobutene cC 4 F 6 (raw material compound) and activated carbon (catalyst) was 2.0 gsec/cc. The raw material compound (cC 4 F 6 ) was passed through the reactor so that

フッ化水素の供給量は、シクロブテンcC4F6(原料化合物)1モルに対して、1モル又は15モルとした。 The supply amount of hydrogen fluoride was 1 mol or 15 mol with respect to 1 mol of cyclobutene cC 4 F 6 (raw material compound).

気相連続流通式で反応を進行させた。 The reaction proceeded in a gas phase continuous flow system.

反応器を150℃、200℃、250℃又は300℃で加熱してフッ化水素による付加反応を開始した。フッ化水素による付加反応を開始してから1時間後に、除害塔を通った留出分を集めた。 The reactor was heated at 150°C, 200°C, 250°C or 300°C to start the addition reaction with hydrogen fluoride. One hour after starting the addition reaction with hydrogen fluoride, the distillate that passed through the detoxification tower was collected.

その後、ガスクロマトグラフィー(島津製作所社製、商品名「GC-2014」)を用いてガスクロマトグラフィー/質量分析法(GC/MS)により質量分析を行い、NMR(JEOL社製、商品名「400YH」)を用いてNMRスペクトルによる構造解析を行った。 After that, mass spectrometry is performed by gas chromatography/mass spectrometry (GC/MS) using gas chromatography (manufactured by Shimadzu Corporation, trade name “GC-2014”), and NMR (manufactured by JEOL, trade name “400YH”). ]) was used for structural analysis by NMR spectrum.

質量分析及び構造解析の結果から、目的化合物としてcC4F7Hが生成したことが確認された。実施例1-1では、cC4F6(原料化合物)からの転化率は0.364mol%であり、cC4F7H(目的化合物)の選択率(収率)は18.6mol%であった。 From the results of mass spectrometry and structural analysis, it was confirmed that cC 4 F 7 H was produced as the target compound. In Example 1-1, the conversion rate from cC 4 F 6 (raw material compound) was 0.364 mol%, and the selectivity (yield) for cC 4 F 7 H (target compound) was 18.6 mol%.

実施例1-2では、転化率:11.6mol%、選択率:96.2mol%であった。 In Example 1-2, the conversion was 11.6 mol% and the selectivity was 96.2 mol%.

実施例1-3では、転化率:4.57mol%、選択率:84.9mol%であった。 In Example 1-3, the conversion was 4.57 mol% and the selectivity was 84.9 mol%.

実施例1-4では、転化率:2.30mol%、選択率:38.8mol%であった。 In Examples 1-4, the conversion was 2.30 mol% and the selectivity was 38.8 mol%.

実施例1-5では、転化率:0.6mol%、選択率:94.2mol%であった。 In Example 1-5, the conversion rate was 0.6 mol% and the selectivity was 94.2 mol%.

実施例2(2-1〜2-8)、触媒:クロム触媒
反応管としてSUS配管(外径:1/2インチ)を用い、触媒としてCr2O3を主成分とする酸化クロム10gを充填した。前記触媒を脱離反応(脱フッ化水素反応)に使用する前処理として、反応器に無水フッ化水素を流通させ、反応器の温度を200℃から300℃としてフッ素化処理を行った。フッ素化された酸化クロムを取り出し、脱フッ化水素反応に用いた。フッ素化された酸化クロムのBET比表面積は75m2/gであった。反応器であるSUS配管(外径:1/2インチ)に、触媒としてフッ素化した酸化クロム(フッ化酸化クロム)を10g加えた。
Example 2 (2-1 to 2-8), catalyst: SUS piping (outer diameter: 1/2 inch) was used as a chromium catalyst reaction tube, and 10 g of chromium oxide containing Cr 2 O 3 as a main component was filled as a catalyst. did. As a pretreatment for using the catalyst in the desorption reaction (dehydrofluorination reaction), anhydrous hydrogen fluoride was passed through the reactor, and the fluorination treatment was performed at a reactor temperature of 200°C to 300°C. The fluorinated chromium oxide was taken out and used for the dehydrofluorination reaction. The BET specific surface area of the fluorinated chromium oxide was 75 m 2 /g. 10 g of fluorinated chromium oxide (chromium fluoride oxide) was added as a catalyst to a SUS pipe (outer diameter: 1/2 inch) which is a reactor.

窒素雰囲気下、200℃で2時間乾燥した後、圧力を常圧、シクロブテンcC4F6(原料化合物)とフッ素化した酸化クロム(触媒)との接触時間(W/F0)が3.0g・sec/cc、4.0g・sec/cc又は5.0g・sec/ccとなるように、反応器に原料化合物(cC4F6H2)を流通させた。 After drying at 200°C for 2 hours in a nitrogen atmosphere, the pressure is normal pressure and the contact time (W/F 0 ) between cyclobutene cC 4 F 6 (raw material compound) and fluorinated chromium oxide (catalyst) is 3.0 g. The raw material compound (cC 4 F 6 H 2 ) was passed through the reactor so as to be sec/cc, 4.0 g·sec/cc or 5.0 g·sec/cc.

フッ化水素の供給量は、シクロブテンcC4F6(原料化合物)1モルに対して、1モル、5モル又は20モルとした。 The amount of hydrogen fluoride supplied was 1 mol, 5 mol, or 20 mol with respect to 1 mol of cyclobutene cC 4 F 6 (raw material compound).

気相連続流通式で反応を進行させた。 The reaction proceeded in a gas phase continuous flow system.

反応器を50℃、200℃、250℃、300℃又は350℃で加熱してフッ化水素による付加反応を開始した。フッ化水素による付加反応を開始してから1時間後に、除害塔を通った留出分を集めた。 The reactor was heated at 50°C, 200°C, 250°C, 300°C or 350°C to start the addition reaction with hydrogen fluoride. One hour after starting the addition reaction with hydrogen fluoride, the distillate that passed through the detoxification tower was collected.

その後、ガスクロマトグラフィー(島津製作所社製、商品名「GC-2014」)を用いてガスクロマトグラフィー/質量分析法(GC/MS)により質量分析を行い、NMR(JEOL社製、商品名「400YH」)を用いてNMRスペクトルによる構造解析を行った。 After that, mass spectrometry is performed by gas chromatography/mass spectrometry (GC/MS) using gas chromatography (manufactured by Shimadzu Corporation, trade name “GC-2014”), and NMR (manufactured by JEOL, trade name “400YH”). ]) was used for structural analysis by NMR spectrum.

質量分析及び構造解析の結果から、目的化合物としてcC4F7Hが生成したことが確認された。実施例2-1では、cC4F6(原料化合物)からの転化率は0.942mol%であり、cC4F7H(目的化合物)の選択率(収率)は0.7mol%であった。 From the results of mass spectrometry and structural analysis, it was confirmed that cC 4 F 7 H was produced as the target compound. In Example 2-1, the conversion rate from cC 4 F 6 (raw material compound) was 0.942 mol %, and the selectivity (yield) for cC 4 F 7 H (target compound) was 0.7 mol %.

実施例2-2では、転化率:0.183mol%、選択率:1.6mol%であった。 In Example 2-2, the conversion rate was 0.183 mol% and the selectivity rate was 1.6 mol%.

実施例2-3では、転化率:0.506mol%、選択率:2.4mol%であった。 In Example 2-3, the conversion was 0.506 mol% and the selectivity was 2.4 mol%.

実施例2-4では、転化率:0.396mol%、選択率:0.7mol%であった。 In Example 2-4, the conversion rate was 0.396 mol% and the selectivity was 0.7 mol%.

実施例2-5では、転化率:0.924mol%、選択率:4.2mol%であった。 In Example 2-5, the conversion rate was 0.924 mol% and the selectivity was 4.2 mol%.

実施例2-6では、転化率:1.37mol%、選択率:3.0mol%であった。 In Example 2-6, the conversion rate was 1.37 mol% and the selectivity was 3.0 mol%.

実施例2-7では、転化率:1.62mol%、選択率:2.0mol%であった。 In Example 2-7, the conversion rate was 1.62 mol% and the selectivity was 2.0 mol%.

実施例2-8では、転化率:2.87mol%、選択率:0.2mol%であった。 In Example 2-8, the conversion rate was 2.87 mol% and the selectivity was 0.2 mol%.

比較例1及び2
前記実施例の実験方法に倣い、触媒を用いずに、シクロブテンcC4F6(原料化合物)に対して、フッ化水素を供給し、反応を行った。
Comparative Examples 1 and 2
According to the experimental method of the above-mentioned example, hydrogen fluoride was supplied to cyclobutene cC 4 F 6 (raw material compound) and a reaction was performed without using a catalyst.

フッ化水素の供給量は、シクロブテンcC4F6(原料化合物)1モルに対して、20モルとした。 The supply amount of hydrogen fluoride was 20 mol per 1 mol of cyclobutene cC 4 F 6 (raw material compound).

気相連続流通式で反応を進行させた。 The reaction proceeded in a gas phase continuous flow system.

反応器を200℃又は350℃で加熱してフッ化水素による付加反応を開始した。フッ化水素による付加反応を開始してから1時間後に、除害塔を通った留出分を集めた。 The reactor was heated at 200°C or 350°C to start the addition reaction with hydrogen fluoride. One hour after starting the addition reaction with hydrogen fluoride, the distillate that passed through the detoxification tower was collected.

その後、ガスクロマトグラフィー(島津製作所社製、商品名「GC-2014」)を用いてガスクロマトグラフィー/質量分析法(GC/MS)により質量分析を行い、NMR(JEOL社製、商品名「400YH」)を用いてNMRスペクトルによる構造解析を行った。 Then, mass spectrometry is performed by gas chromatography/mass spectrometry (GC/MS) using gas chromatography (manufactured by Shimadzu Corporation, trade name “GC-2014”), and NMR (manufactured by JEOL, trade name “400YH”). ]) was used for structural analysis by NMR spectrum.

質量分析及び構造解析の結果から、cC4F6(原料化合物)からの転化率は0.801mol%(比較例1)又は0.695mol%(比較例2)であったが、cC4F7H(目的化合物)の生成は確認されなかった。 From the results of mass spectrometry and structural analysis, the conversion from cC 4 F 6 (raw material compound) was 0.801 mol% (Comparative Example 1) or 0.695 mol% (Comparative Example 2), but cC 4 F 7 H ( The formation of the target compound) was not confirmed.

各実施例の結果を以下の表1に示す。表1において、接触時間(W/F0)とは、流通する原料ガスを流す速度を示しており、即ち、触媒及び原料ガスが接触する時間を意味する。モル比HF/cC4F6とは、cC4F6 1モルに対するHFの使用量(モル)である。 The results of each example are shown in Table 1 below. In Table 1, the contact time (W/F 0 ) indicates the flow rate of the flowing raw material gas, that is, the time for which the catalyst and the raw material gas are in contact with each other. The molar ratio HF / cC 4 F 6, an amount of HF to cC 4 F 6 1 mole (mol).

Figure 2020111520
Figure 2020111520

Claims (5)

一般式(1):
Figure 2020111520
(式中、X1、X2、X3、X4、X5及びX6は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。)
で表されるシクロブタンの製造方法であって、
一般式(2):
Figure 2020111520
(式中、X1、X2、X3、X4、X5及びX6は、前記に同じである。)
で表されるシクロブテンとフッ化水素とを、触媒の存在下、気相で反応させる工程を含む、製造方法。
General formula (1):
Figure 2020111520
(In the formula, X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are the same or different and represent a hydrogen atom, a halogen atom or a perfluoroalkyl group.)
A method for producing cyclobutane represented by
General formula (2):
Figure 2020111520
(In the formula, X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are the same as above.)
A method for producing, comprising a step of reacting cyclobutene represented by and hydrogen fluoride in a gas phase in the presence of a catalyst.
前記一般式(2)で表されるシクロブテン1モルに対して、0.1モル〜100モルのフッ化水素を供給して反応させる、請求項1に記載の製造方法。 2. The production method according to claim 1, wherein 0.1 mol to 100 mol of hydrogen fluoride is supplied and reacted with respect to 1 mol of cyclobutene represented by the general formula (2). 前記触媒は、活性炭、及びクロム化合物からなる群から選ばれる少なくとも1種の触媒である、請求項1又は2に記載の製造方法。 3. The production method according to claim 1 or 2, wherein the catalyst is at least one catalyst selected from the group consisting of activated carbon and a chromium compound. 一般式(1):
Figure 2020111520
(式中、X1、X2、X3、X4、X5及びX6は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。)
で表されるシクロブタンを含有する組成物であって、
組成物全量を100mol%として、前記一般式(1)で表されるシクロブタンの含有量が99mol%以上である、組成物。
General formula (1):
Figure 2020111520
(In the formula, X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are the same or different and represent a hydrogen atom, a halogen atom or a perfluoroalkyl group.)
A composition containing cyclobutane represented by:
The composition, wherein the total amount of the composition is 100 mol %, the content of cyclobutane represented by the general formula (1) is 99 mol% or more.
クリーニングガス、エッチングガス、デポジットガス又は有機合成用ビルディングブロックとして用いられる、請求項4に記載の組成物。 The composition according to claim 4, which is used as a cleaning gas, an etching gas, a deposit gas or a building block for organic synthesis.
JP2019001661A 2019-01-09 2019-01-09 Cyclobutane manufacturing method Active JP6874778B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019001661A JP6874778B2 (en) 2019-01-09 2019-01-09 Cyclobutane manufacturing method
KR1020217024996A KR102578063B1 (en) 2019-01-09 2019-12-20 Method for producing cyclobutane
CN201980088269.0A CN113272268B (en) 2019-01-09 2019-12-20 Method for producing cyclobutane
SG11202107214UA SG11202107214UA (en) 2019-01-09 2019-12-20 Method for producing cyclobutane
PCT/JP2019/050022 WO2020145088A1 (en) 2019-01-09 2019-12-20 Method for producing cyclobutane
TW109100254A TWI798518B (en) 2019-01-09 2020-01-06 The production method of cyclobutane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019001661A JP6874778B2 (en) 2019-01-09 2019-01-09 Cyclobutane manufacturing method

Publications (2)

Publication Number Publication Date
JP2020111520A true JP2020111520A (en) 2020-07-27
JP6874778B2 JP6874778B2 (en) 2021-05-19

Family

ID=71521517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019001661A Active JP6874778B2 (en) 2019-01-09 2019-01-09 Cyclobutane manufacturing method

Country Status (5)

Country Link
JP (1) JP6874778B2 (en)
KR (1) KR102578063B1 (en)
SG (1) SG11202107214UA (en)
TW (1) TWI798518B (en)
WO (1) WO2020145088A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023049515A1 (en) * 2021-09-27 2023-03-30 Honeywell International Inc. Fluorine substituted cyclobutene compounds, and compositions, methods and uses including same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2992279A (en) * 1955-09-14 1961-07-11 Haszeldine Robert Neville 1-iodo, 2-trifluoromethyl perfluorocycloalkanes
GB1342429A (en) * 1970-05-10 1974-01-03 Grace W R & Co Anaesthetic cyclobutane compounds
JP2008239552A (en) * 2007-03-28 2008-10-09 National Institute Of Advanced Industrial & Technology Fluorine-containing cyclic compound and method for producing the same
JP2012188359A (en) * 2011-03-09 2012-10-04 Nippon Zeon Co Ltd Processes for producing halogenofluorinated cycloalkane and hydrofluorinated cycloalkane
JP2015533029A (en) * 2012-10-30 2015-11-16 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Fluorocarbon molecules for high aspect ratio oxide etching
JP2017518645A (en) * 2014-06-18 2017-07-06 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Chemicals for TSV / MEMS / Power Device Etching
CN107721810A (en) * 2017-11-07 2018-02-23 中国民航大学 A kind of method for synthesizing extinguishing chemical octafluorocyclobutane
JP2018533607A (en) * 2015-11-12 2018-11-15 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Process for producing 2,3,3,3-tetrafluoropropene and / or vinylidene fluoride

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101050919B1 (en) * 2006-04-28 2011-07-20 쇼와 덴코 가부시키가이샤 Method for preparing 1,2,3,4-tetrachlorohexafluorobutane
CN102026946B (en) * 2008-07-18 2014-03-12 日本瑞翁株式会社 Method for producing hydrogen-containing fluoroolefin compound
JP5056963B2 (en) * 2010-03-31 2012-10-24 ダイキン工業株式会社 Method for producing fluorine-containing alkane

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2992279A (en) * 1955-09-14 1961-07-11 Haszeldine Robert Neville 1-iodo, 2-trifluoromethyl perfluorocycloalkanes
GB1342429A (en) * 1970-05-10 1974-01-03 Grace W R & Co Anaesthetic cyclobutane compounds
JP2008239552A (en) * 2007-03-28 2008-10-09 National Institute Of Advanced Industrial & Technology Fluorine-containing cyclic compound and method for producing the same
JP2012188359A (en) * 2011-03-09 2012-10-04 Nippon Zeon Co Ltd Processes for producing halogenofluorinated cycloalkane and hydrofluorinated cycloalkane
JP2015533029A (en) * 2012-10-30 2015-11-16 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Fluorocarbon molecules for high aspect ratio oxide etching
JP2017518645A (en) * 2014-06-18 2017-07-06 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Chemicals for TSV / MEMS / Power Device Etching
JP2018533607A (en) * 2015-11-12 2018-11-15 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Process for producing 2,3,3,3-tetrafluoropropene and / or vinylidene fluoride
CN107721810A (en) * 2017-11-07 2018-02-23 中国民航大学 A kind of method for synthesizing extinguishing chemical octafluorocyclobutane

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
REGISTRY[ONLINE], JPN6020031426, 8 June 2008 (2008-06-08), ISSN: 0004416044 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023049515A1 (en) * 2021-09-27 2023-03-30 Honeywell International Inc. Fluorine substituted cyclobutene compounds, and compositions, methods and uses including same

Also Published As

Publication number Publication date
TW202035347A (en) 2020-10-01
WO2020145088A1 (en) 2020-07-16
CN113272268A (en) 2021-08-17
SG11202107214UA (en) 2021-07-29
JP6874778B2 (en) 2021-05-19
KR102578063B1 (en) 2023-09-14
KR20210113300A (en) 2021-09-15
TWI798518B (en) 2023-04-11

Similar Documents

Publication Publication Date Title
JP6673413B2 (en) Method for producing fluoroolefin
JP2019214596A (en) METHOD FOR PRODUCTION OF HFOtrans-1234ze FROM HFC-245fa
JP5348240B2 (en) Method for producing 2,3,3,3-tetrafluoropropene
JP6827246B2 (en) Method for producing halogenated butene compound
WO2014094587A1 (en) 1, 3, 3, 3-tetrafluoropropene preparation process
JP2021138705A (en) Halogenated alkene compound and method for manufacturing fluorinated alkyne compound
KR102566765B1 (en) Method for producing cyclobutene
JP2023174809A (en) Method for producing fluoroolefin compound
JP6874778B2 (en) Cyclobutane manufacturing method
CN113272268B (en) Method for producing cyclobutane
JP2021014410A (en) Production method of vinyl compound
WO2020075729A1 (en) Method for producing perfluorocycloalkene compound
RU2807184C2 (en) Method for obtaining cyclobutene
RU2807184C9 (en) Method for obtaining cyclobutane
JP7341953B2 (en) Alkane production method
JP2021011474A (en) Manufacturing method of fluorinated vinyl compound
CN117597322A (en) Process for producing olefin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210405

R151 Written notification of patent or utility model registration

Ref document number: 6874778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151