JP2020110028A - Power control device - Google Patents

Power control device Download PDF

Info

Publication number
JP2020110028A
JP2020110028A JP2019000729A JP2019000729A JP2020110028A JP 2020110028 A JP2020110028 A JP 2020110028A JP 2019000729 A JP2019000729 A JP 2019000729A JP 2019000729 A JP2019000729 A JP 2019000729A JP 2020110028 A JP2020110028 A JP 2020110028A
Authority
JP
Japan
Prior art keywords
voltage battery
power
fuel cell
amount
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019000729A
Other languages
Japanese (ja)
Inventor
圭介 野村
Keisuke Nomura
圭介 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019000729A priority Critical patent/JP2020110028A/en
Publication of JP2020110028A publication Critical patent/JP2020110028A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

To provide a power control device that includes a fuel cell system and is able to avoid starting power generation for charging a low voltage battery during parking, without influence on emission control.SOLUTION: A power control device, which is mounted in a vehicle, comprises: a high voltage battery capable of charging a low voltage battery via a voltage conversion unit during stop and having a higher rating voltage than the low voltage battery; a fuel cell system capable of charging the high voltage battery; and a control unit that controls charging of the high voltage battery by the fuel cell system. If the amount of power that can be discharged to the low voltage battery from the high voltage battery is smaller than the amount of power required to charge the low voltage battery to a predetermined amount of stored power when ignition is turned off during power generation of the fuel cell system, the control unit continues the power generation of the fuel cell system until the amount of power that can be discharged becomes equal to or larger than a required amount of power.SELECTED DRAWING: Figure 1

Description

本発明は、車両に搭載される燃料電池システムを備えた電力制御装置に関する。 The present invention relates to a power control device including a fuel cell system mounted on a vehicle.

車両が長期間走行しない場合、補機バッテリ(低電圧バッテリ)が放電によりバッテリ上がりに至る虞がある。そのため、例えば特許文献1の方法のように、駐車中に主バッテリ(高電圧バッテリ)によって補機バッテリを充電することで補機バッテリがバッテリ上がりになるのを防ぐことが知られている。ところが、特許文献1に記載の方法では、主バッテリの蓄電量は駐車前の走行状態に依存するため、走行状態によっては駐車後の主バッテリの蓄電量を充分確保できず、補機バッテリを充電できない可能性があった。 When the vehicle does not travel for a long time, the auxiliary battery (low voltage battery) may be discharged and the battery may run out. Therefore, it is known that the auxiliary battery is prevented from running out of battery by charging the auxiliary battery with the main battery (high voltage battery) during parking, as in the method of Patent Document 1, for example. However, in the method described in Patent Document 1, since the amount of electricity stored in the main battery depends on the traveling state before parking, it is not possible to sufficiently secure the amount of electricity stored in the main battery after parking depending on the traveling state, and the auxiliary battery is charged. There was a possibility that I could not.

そこで、特許文献2には、駐車中の補機バッテリの充電において、高電圧バッテリの蓄電量が充分確保されている場合は高電圧バッテリによって補機バッテリを充電し、高電圧バッテリの蓄電量が低下している場合はエンジンを始動させることで発電機によって補機バッテリを充電する技術が開示されている。 Therefore, in Patent Document 2, when charging the auxiliary battery during parking, if the amount of electricity stored in the high-voltage battery is sufficiently secured, the auxiliary battery is charged by the high-voltage battery, and the amount of electricity stored in the high-voltage battery is There is disclosed a technique of charging an auxiliary battery by a generator by starting the engine when the temperature is low.

特開2006−174619号公報JP, 2006-174619, A 特開2013−224070号公報JP, 2013-224070, A

しかしながら、特許文献2に記載の方法では、駐車中のユーザや第三者が意図しないタイミングでエンジンが始動し、発電が開始されてしまうため、車両周辺のユーザや第三者に違和感を与えてしまう可能性がある。また、駐車中にエンジンを始動させるため冷間始動となってしまい、走行中よりも多くの窒素酸化物(NOx)を排出し、排ガス規制を満たせなくなる可能性がある。 However, in the method described in Patent Document 2, the engine is started at a timing unintended by the parked user or a third party, and power generation is started, which gives a feeling of strangeness to users and third parties around the vehicle. There is a possibility that it will end up. Further, since the engine is started during parking, the engine is cold started, and more nitrogen oxides (NOx) are emitted than during traveling, and the exhaust gas regulation may not be satisfied.

ところで、昨今は窒素酸化物を排出しないことから燃料電池自動車が注目されている。この特許文献2の技術を燃料電池自動車に適用した場合、駐車中の発電は、エンジンではなく燃料電池システムにより行われるため、窒素酸化物が排出されず排ガス規制に影響することはない。しかし、依然として駐車中に突然発電が開始されるため、車両周辺のユーザや第三者への違和感は解消できない。 By the way, recently, a fuel cell vehicle is drawing attention because it does not emit nitrogen oxides. When the technology of Patent Document 2 is applied to a fuel cell vehicle, power generation during parking is performed not by the engine but by the fuel cell system, so that nitrogen oxides are not discharged and exhaust gas regulations are not affected. However, since the power generation is suddenly started while the vehicle is still parked, it is impossible to eliminate the discomfort felt by the users and third parties around the vehicle.

本発明は、上記課題を鑑みてなされたものであり、燃料電池システムを備え、排ガス規制に影響することなく、駐車中に低電圧バッテリを充電するために発電が開始されることを回避できる電力制御装置を提供することを目的とする。 The present invention has been made in view of the above problems, and includes a fuel cell system, and electric power that can avoid starting power generation for charging a low-voltage battery during parking without affecting exhaust gas regulations. An object is to provide a control device.

上記課題を解決するために、本発明の一局面は、車両に搭載される電力制御装置であって、停車中に電圧変換部を介して低電圧バッテリを充電可能であり、低電圧バッテリよりも定格電圧が高い高電圧バッテリと、高電圧バッテリを充電可能な燃料電池システムと、燃料電池システムによる高電圧バッテリの充電を制御する制御部とを備え、制御部は、燃料電池システムの発電中にイグニッションオフされた場合、高電圧バッテリから低電圧バッテリに放電可能な電力量が、低電圧バッテリを所定の蓄電量まで充電するために必要な電力量未満であれば、放電可能な電力量が必要な電力量以上になるまで、燃料電池システムの発電を継続する。 In order to solve the above-mentioned problem, one aspect of the present invention is a power control device mounted on a vehicle, which can charge a low-voltage battery via a voltage conversion unit while the vehicle is stopped, and is lower than a low-voltage battery. A high-voltage battery having a high rated voltage, a fuel cell system capable of charging the high-voltage battery, and a control unit that controls charging of the high-voltage battery by the fuel cell system are provided. If the amount of electric power that can be discharged from the high-voltage battery to the low-voltage battery when the ignition is turned off is less than the amount of electric power required to charge the low-voltage battery to a predetermined storage amount, the amount of electric power that can be discharged is required. Continue to generate power from the fuel cell system until the amount of electric power exceeds a certain level.

本発明によれば、燃料電池システムを備え、排ガス規制に影響することなく、駐車中に低電圧バッテリを充電するために発電が開始されることを回避できる電力制御装置を提供できる。 According to the present invention, it is possible to provide a power control device that includes a fuel cell system and that can avoid starting power generation for charging a low-voltage battery during parking without affecting exhaust gas regulations.

本発明の一実施形態に係る電力制御装置を含んだシステムの図1 is a diagram of a system including a power control device according to an embodiment of the present invention. 係る本発明の一実施形態に係る電力制御装置が実行する処理手順を説明するフローチャートThe flowchart explaining the processing procedure which the electric power control apparatus which concerns on one Embodiment of this invention performs.

本発明に係る電力制御装置は、イグニッションオフとなった時に燃料電池システムが発電中であって、かつ、高電圧バッテリから低電圧バッテリに放電可能な電力量が、低電圧バッテリを充分に充電するために必要な電力量未満であれば、燃料電池システムの発電を継続する。これにより、イグニッションオフ後に高電圧バッテリは低電圧バッテリを充分に充電できるだけの蓄電量を燃料電池から確保することができる。そのため、高電圧バッテリや低電圧バッテリの充電を行うために、駐車中にエンジンの始動や発電システムを起動させる必要がなく、発電のための作動音等で車両の周囲の人に違和感を与えることがない。また、発電に燃料電池システムを用いるため、窒素酸化物が排出されず排ガス規制に影響することはない。 In the power control device according to the present invention, the fuel cell system is generating power when the ignition is turned off, and the amount of power that can be discharged from the high-voltage battery to the low-voltage battery sufficiently charges the low-voltage battery. If it is less than the amount of electric power necessary for this, the power generation of the fuel cell system is continued. As a result, after the ignition is turned off, the high-voltage battery can secure a sufficient amount of electricity stored in the fuel cell to charge the low-voltage battery sufficiently. Therefore, in order to charge the high-voltage battery or the low-voltage battery, it is not necessary to start the engine or to start the power generation system during parking, and the operation noise for power generation gives a sense of discomfort to the people around the vehicle. There is no. In addition, since the fuel cell system is used for power generation, nitrogen oxides are not emitted and the exhaust gas regulations are not affected.

(実施形態)
以下、本発明の一実施形態について、図面を参照しながら詳細に説明する。
(Embodiment)
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

<構成>
図1を参照して、実施形態に係る電力制御装置の構成を説明する。図1は、本発明の一実施形態に係る電力制御装置を含んだシステムの図である。電力制御装置1は、燃料電池を電源としてモータで走行する燃料電池自動車(FCV)に搭載され、高電圧バッテリ10、燃料電池システム40、制御部50を備える。高電圧バッテリ10は、DC/DCコンバータ30を介して低電圧バッテリ20と接続される。制御部50は、DC/DCコンバータ30、燃料電池システム40、および、バッテリセンサ60を介して高電圧バッテリ10および低電圧バッテリ20と接続される。図1では、電力が流れる配線を実線で、信号が流れる配線を点線で示している。なお、本実施形態においては、バッテリセンサ60は車両に予め設けられているセンサを想定して電力制御装置1の構成にバッテリセンサ60が含まれていない例を挙げたが、電力制御装置1はバッテリセンサ60を含む構成であってもよい。
<Structure>
The configuration of the power control device according to the embodiment will be described with reference to FIG. 1. FIG. 1 is a diagram of a system including a power control device according to an embodiment of the present invention. The power control device 1 is mounted on a fuel cell vehicle (FCV) that runs on a motor using a fuel cell as a power source, and includes a high voltage battery 10, a fuel cell system 40, and a control unit 50. The high voltage battery 10 is connected to the low voltage battery 20 via the DC/DC converter 30. The control unit 50 is connected to the high-voltage battery 10 and the low-voltage battery 20 via the DC/DC converter 30, the fuel cell system 40, and the battery sensor 60. In FIG. 1, wirings through which power flows are indicated by solid lines, and wirings through which signals flow are indicated by dotted lines. It should be noted that in the present embodiment, the battery sensor 60 is assumed to be a sensor provided in advance in the vehicle, and the example in which the battery sensor 60 is not included in the configuration of the power control device 1 has been described. A configuration including the battery sensor 60 may be used.

燃料電池システム40(FCシステム)は、燃料電池41(FCスタック)、水素タンク42、エアコンプレッサ43を備える。燃料電池41は、水素と酸素との化学反応を利用することで電力を発生させる発電装置である。本実施形態では、水素タンク42から水素を、エアコンプレッサ43から酸素をそれぞれ燃料電池41に供給することによって燃料電池41で発電が行われる。燃料電池41で発電された電力は高電圧バッテリ10に蓄えられる。 The fuel cell system 40 (FC system) includes a fuel cell 41 (FC stack), a hydrogen tank 42, and an air compressor 43. The fuel cell 41 is a power generation device that generates electric power by utilizing a chemical reaction between hydrogen and oxygen. In this embodiment, hydrogen is supplied from the hydrogen tank 42 and oxygen is supplied from the air compressor 43 to the fuel cell 41, so that the fuel cell 41 generates electric power. The electric power generated by the fuel cell 41 is stored in the high voltage battery 10.

高電圧バッテリ10は、充放電可能な二次電池で構成される、走行モータなどを駆動することができる高電圧のバッテリである。高電圧バッテリ10は、燃料電池41で発電された電力によって充電可能に、インバータ(図示せず)を介して燃料電池41と接続されている。高電圧バッテリ10に蓄えられた電力は、DC/DCコンバータ30を介して低電圧バッテリ20に供給可能である。 The high-voltage battery 10 is a high-voltage battery composed of a rechargeable secondary battery that can drive a traveling motor and the like. The high-voltage battery 10 is connected to the fuel cell 41 via an inverter (not shown) so that it can be charged by the electric power generated by the fuel cell 41. The electric power stored in the high voltage battery 10 can be supplied to the low voltage battery 20 via the DC/DC converter 30.

低電圧バッテリ20は、充放電可能な二次電池で構成される、ラジオやカーナビ、電子制御ユニット(ECU)などの補機を動作させることができる12V程度の低電圧のバッテリである。低電圧バッテリ20は、高電圧バッテリ10に蓄えられた電力によって充電可能に、DC/DCコンバータ30を介して高電圧バッテリ10と接続されている。 The low-voltage battery 20 is a low-voltage battery of about 12 V that can operate auxiliary equipment such as a radio, a car navigation system, and an electronic control unit (ECU), which is composed of a secondary battery that can be charged and discharged. The low-voltage battery 20 is connected to the high-voltage battery 10 via the DC/DC converter 30 so that the low-voltage battery 20 can be charged by the electric power stored in the high-voltage battery 10.

DC/DCコンバータ30は、制御部50の制御に基づいて、高電圧バッテリ10の出力電力を降圧して、低電圧バッテリ20に供給する電圧変換部である。 The DC/DC converter 30 is a voltage conversion unit that steps down the output power of the high-voltage battery 10 and supplies it to the low-voltage battery 20 under the control of the control unit 50.

バッテリセンサ60は、高電圧バッテリ10および低電圧バッテリ20の情報を取得するための構成であり、例えば、電圧センサ、電流センサ、温度センサを含む。取得した高電圧バッテリ10および低電圧バッテリ20の情報は、制御部50に送出される。 The battery sensor 60 has a configuration for acquiring information on the high-voltage battery 10 and the low-voltage battery 20, and includes, for example, a voltage sensor, a current sensor, and a temperature sensor. The acquired information on the high voltage battery 10 and the low voltage battery 20 is sent to the control unit 50.

制御部50は、バッテリセンサ60から取得した高電圧バッテリ10および低電圧バッテリ20の情報に基づいて、高電圧バッテリ10および低電圧バッテリ20の蓄電状態を算出し、算出したバッテリの蓄電状態に基づいて高電圧バッテリの放電可能電力量が低電圧バッテリの必要充電電力量未満であるか否かを判定する。放電可能電力量と必要充電電力量については後述する。さらに、制御部50はタイマ機能を有しており、低電圧バッテリ20の充電を実行する時間を管理する。制御部50は、当該タイマのカウントおよび算出した蓄電状態、放電可能電力量と必要充電電力量の大小関係に適宜基づいて、燃料電池システム40による燃料電池41の発電の制御や、DC/DCコンバータ30を制御して高電圧バッテリ10による低電圧バッテリ20の充電を制御する。 The control unit 50 calculates the charge states of the high-voltage battery 10 and the low-voltage battery 20 based on the information of the high-voltage battery 10 and the low-voltage battery 20 acquired from the battery sensor 60, and based on the calculated charge states of the batteries. Then, it is determined whether or not the dischargeable electric energy of the high voltage battery is less than the required charging electric energy of the low voltage battery. The dischargeable power amount and the required charging power amount will be described later. Further, the control unit 50 has a timer function and manages the time for executing the charging of the low voltage battery 20. The control unit 50 controls the power generation of the fuel cell 41 by the fuel cell system 40 and the DC/DC converter based on the count of the timer, the calculated power storage state, and the magnitude relationship between the dischargeable power amount and the required charging power amount as appropriate. 30 to control charging of the low voltage battery 20 by the high voltage battery 10.

<制御処理>
図2をさらに参照して、実施形態に係る電力制御装置1が実施する充電制御を説明する。図2は、本発明の一実施形態に係る電力制御装置が実行する処理手順を説明するフローチャートである。本フローは、車両のイグニッションがオフされたときに、燃料電池41が発電中であったことを条件に開始される。
<Control processing>
With further reference to FIG. 2, the charging control performed by the power control device 1 according to the embodiment will be described. FIG. 2 is a flowchart illustrating a processing procedure executed by the power control device according to the embodiment of the present invention. This flow is started on condition that the fuel cell 41 was generating power when the vehicle ignition was turned off.

ステップS101:制御部50は、高電圧バッテリ10の放電可能電力量が低電圧バッテリ20の必要充電電力量未満であるか否かを判定する。当該判定は、制御部50がバッテリセンサ60から取得した高電圧バッテリ10および低電圧バッテリ20の情報に基づいて算出した、高電圧バッテリ10および低電圧バッテリ20の蓄電状態に基づいて行われる。放電可能電力量とは、イグニッションオフ直後の高電圧バッテリ10の蓄電量(SOC)から、予め定められた高電圧バッテリ10の所定の下限蓄電量(下限SOC)を差し引いた電力量である。この下限SOCは、放電可能な電力を高電圧バッテリ10が蓄えているか否かを判断するための基準SOCであって、例えば、高電圧バッテリ10が過放電とならない蓄電量とすることができる。必要充電電力量とは、所定日数分の駐車時消費電力量を蓄電量に換算し、これに始動限界蓄電量(始動限界SOC)を加えたものから、イグニッションオフ直後の補機バッテリ20の蓄電量を差し引いた電力量である。この始動限界SOCは、例えば、低電圧バッテリ20においてイグニッションオン時に補機を駆動させることができる程度の低い蓄電量とすることができる。所定日数は、例えば、低電圧バッテリ20を上限SOCまで充電した状態で駐車開始したと仮定したときに、低電圧バッテリ20が駐車時の電力消費により始動限界SOCまで蓄電量が低下するまでに掛かる日数以下の範囲で設定することができ、一例として30日とすることができる。放電可能電力量が必要充電電力量以上のとき(S101でYES)、処理はS103に進み、それ以外の場合(S101でNO)、処理はステップS102に進む。 Step S101: The control unit 50 determines whether or not the dischargeable power amount of the high voltage battery 10 is less than the required charging power amount of the low voltage battery 20. The determination is performed based on the power storage states of the high voltage battery 10 and the low voltage battery 20, which are calculated by the control unit 50 based on the information of the high voltage battery 10 and the low voltage battery 20 acquired from the battery sensor 60. The dischargeable power amount is a power amount obtained by subtracting a predetermined lower limit charge amount (lower limit SOC) of the high voltage battery 10 from a predetermined charge amount (SOC) immediately after the ignition is turned off. This lower limit SOC is a reference SOC for determining whether or not the high-voltage battery 10 stores the electric power that can be discharged, and can be, for example, a storage amount that does not cause the high-voltage battery 10 to be over-discharged. The required charging power amount is calculated by converting the power consumption amount during parking for a predetermined number of days into a power storage amount and adding the start limit power storage amount (starting limit SOC) to the power storage amount of the auxiliary battery 20 immediately after the ignition is turned off. It is the amount of power less the amount. This starting limit SOC can be set to, for example, a low storage amount that allows the auxiliary device to be driven when the ignition is turned on in the low-voltage battery 20. The predetermined number of days is, for example, when it is assumed that the low-voltage battery 20 is charged to the upper limit SOC and parking is started, the low-voltage battery 20 consumes electric power at the time of parking until the storage amount is reduced to the start limit SOC. It can be set within the range of no more than the number of days, and can be set to 30 days as an example. When the dischargeable power amount is equal to or greater than the required charging power amount (YES in S101), the process proceeds to S103, and otherwise (NO in S101), the process proceeds to step S102.

ステップS102:制御部50は燃料電池システム40を停止させることなく燃料電池41の発電を継続させる。このとき、燃料電池41が発電した電力は高電圧バッテリ10に充電される。その後、処理はステップS101に進む。 Step S102: The control unit 50 continues the power generation of the fuel cell 41 without stopping the fuel cell system 40. At this time, the high voltage battery 10 is charged with the electric power generated by the fuel cell 41. After that, the process proceeds to step S101.

ステップS103:制御部50は燃料電池システム40を停止させ、燃料電池41の発電を停止させる。上限SOCは例えば高電圧バッテリ10が過充電とならない上限の蓄電量である。その後、処理はステップS104に進む。 Step S103: The control unit 50 stops the fuel cell system 40 and stops the power generation of the fuel cell 41. The upper limit SOC is, for example, an upper limit amount of stored electricity that does not cause the high-voltage battery 10 to be overcharged. Then, a process progresses to step S104.

ステップS104:制御部50は、DC/DCコンバータ30を起動させる起動時間を設定する。起動時間は、例えば制御部50内にカウントアップタイマ機能を設けることで設定可能であり、例えば、イグニッションオフ時点における低電圧バッテリ20の蓄電量が始動限界SOCまで低下するまでの時間とすることができる。この場合、起動時間は、イグニッションオフ時点における低電圧バッテリ20の単位時間当たりの消費電力と蓄電量に基づいて算出する。その後、処理はステップS105に進む。 Step S104: The control unit 50 sets a starting time for starting the DC/DC converter 30. The start-up time can be set, for example, by providing a count-up timer function in the control unit 50, and can be set to, for example, the time until the stored amount of the low-voltage battery 20 at the ignition-off time falls to the start-up limit SOC. it can. In this case, the start-up time is calculated based on the power consumption and the amount of electricity stored in the low-voltage battery 20 per unit time when the ignition is turned off. Then, a process progresses to step S105.

ステップS105:制御部50は、ステップS104で設定した起動時間が経過したか否かを判定する。起動時間が経過した場合(S105でYES)、処理はステップS106に進み、それ以外の場合(S105でNO)、処理はS105に進む。 Step S105: The control unit 50 determines whether or not the activation time set in step S104 has elapsed. If the startup time has elapsed (YES in S105), the process proceeds to step S106, and otherwise (NO in S105), the process proceeds to S105.

ステップS106:制御部50は、DC/DCコンバータを起動させ、高電圧バッテリ10の電力を用いた低電圧バッテリ20の充電を開始する。その後、処理はステップS107に進む。 Step S106: The control unit 50 activates the DC/DC converter and starts charging the low-voltage battery 20 using the electric power of the high-voltage battery 10. After that, the process proceeds to step S107.

ステップS107:制御部50は、低電圧バッテリ20の蓄電量が所定値以上となったか否かを判定する。このときの所定値は、ステップS101で用いた必要充電電力量を低電圧バッテリ20が確保できたと判断できる値として都度設定される。ただし、ステップS103時点(燃料電池41の発電停止時点)から高圧バッテリ10の蓄電量が想定よりも低下していた場合においては、高電圧バッテリ10が始動限界SOCとなる前に低電圧バッテリ20への放電を停止するようにしてもよい。その後、フローは終了する。 Step S107: The control unit 50 determines whether or not the amount of electricity stored in the low-voltage battery 20 has exceeded a predetermined value. The predetermined value at this time is set each time as a value at which it can be determined that the low-voltage battery 20 can secure the required charging power amount used in step S101. However, when the amount of electricity stored in the high-voltage battery 10 is lower than expected from the time point of step S103 (time point of power generation of the fuel cell 41), the high-voltage battery 10 is transferred to the low-voltage battery 20 before the SOC reaches the starting limit SOC. The discharge may be stopped. After that, the flow ends.

なお、上記ステップS101及びS103の制御では、放電可能電力量が必要充電電力量以上になってから燃料電池システム40を停止させる場合を説明した。しかし、何らかの事情により、高電圧バッテリ10の蓄電量が所定の上限SOC(過充電SOCなど)に達した場合には、高電圧バッテリ10保護の観点から、放電可能電力量が必要充電電力量に達していなくても燃料電池システム40を停止するようにしてもよい。 In the control of steps S101 and S103, the case where the fuel cell system 40 is stopped after the dischargeable power amount becomes equal to or more than the required charging power amount has been described. However, if the charged amount of the high voltage battery 10 reaches a predetermined upper limit SOC (overcharge SOC or the like) for some reason, the dischargeable power amount becomes the required charged power amount from the viewpoint of protection of the high voltage battery 10. The fuel cell system 40 may be stopped even if it has not reached the limit.

<作用・効果等>
以上のように、本発明の一実施形態に係る電力制御装置1によれば、イグニッションオフ時に燃料電池41が発電中であって、かつ、高電圧バッテリ10から低電圧バッテリ20に放電可能な電力量が、低電圧バッテリ20を充分に充電するために必要な電力量未満であれば、燃料電池41の発電を継続させ、高電圧バッテリ10の蓄電量を充分確保する。
<Actions, effects, etc.>
As described above, according to the power control device 1 according to the embodiment of the present invention, the fuel cell 41 is generating power when the ignition is off, and the power that can be discharged from the high-voltage battery 10 to the low-voltage battery 20. If the amount is less than the amount of electric power required to sufficiently charge the low-voltage battery 20, the fuel cell 41 continues to generate power and the high-voltage battery 10 is sufficiently charged.

これにより、駐車中に発電が開始されることがなく、また、排ガス規制に影響することなく低電圧バッテリの充電をすることができる。 As a result, it is possible to charge the low-voltage battery without starting power generation during parking and without affecting exhaust gas regulations.

本発明は、電力制御装置だけではなく、電力制御機能を備えるコンピュータおよびプログラム、あるいは車両として捉えることができる。 The present invention can be understood not only as a power control device but also as a computer and a program having a power control function, or as a vehicle.

本発明の電力制御装置は、例えば燃料電池システムを備えた車両に利用可能である有用である。 INDUSTRIAL APPLICABILITY The power control device of the present invention is useful, for example, it can be applied to a vehicle equipped with a fuel cell system.

1 電力制御装置
10 高電圧バッテリ
20 低電圧バッテリ
30 DC/DCコンバータ
40 燃料電池システム
41 燃料電池
50 制御部
1 Power Control Device 10 High Voltage Battery 20 Low Voltage Battery 30 DC/DC Converter 40 Fuel Cell System 41 Fuel Cell 50 Control Unit

Claims (1)

車両に搭載される電力制御装置であって、
停車中に電圧変換部を介して低電圧バッテリを充電可能であり、前記低電圧バッテリよりも定格電圧が高い高電圧バッテリと、
前記高電圧バッテリを充電可能な燃料電池システムと、
前記燃料電池システムによる前記高電圧バッテリの充電を制御する制御部とを備え、
前記制御部は、
前記燃料電池システムの発電中にイグニッションオフされた場合、
前記高電圧バッテリから前記低電圧バッテリに放電可能な電力量が、前記低電圧バッテリを所定の蓄電量まで充電するために必要な電力量未満であれば、
前記放電可能な電力量が前記必要な電力量以上になるまで、前記燃料電池システムの発電を継続する、電力制御装置。
A power control device mounted on a vehicle,
A low-voltage battery can be charged through the voltage conversion unit while the vehicle is stopped, and a high-voltage battery having a higher rated voltage than the low-voltage battery,
A fuel cell system capable of charging the high-voltage battery,
A control unit that controls charging of the high-voltage battery by the fuel cell system,
The control unit is
When the ignition is turned off during power generation of the fuel cell system,
If the amount of electric power that can be discharged from the high-voltage battery to the low-voltage battery is less than the amount of electric power required to charge the low-voltage battery to a predetermined storage amount,
A power control device for continuing the power generation of the fuel cell system until the amount of power that can be discharged becomes equal to or greater than the required amount of power.
JP2019000729A 2019-01-07 2019-01-07 Power control device Pending JP2020110028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019000729A JP2020110028A (en) 2019-01-07 2019-01-07 Power control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019000729A JP2020110028A (en) 2019-01-07 2019-01-07 Power control device

Publications (1)

Publication Number Publication Date
JP2020110028A true JP2020110028A (en) 2020-07-16

Family

ID=71570217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019000729A Pending JP2020110028A (en) 2019-01-07 2019-01-07 Power control device

Country Status (1)

Country Link
JP (1) JP2020110028A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112776674A (en) * 2020-12-30 2021-05-11 武汉格罗夫氢能汽车有限公司 Intelligent electricity supplementing system and method for hydrogen energy automobile
CN114464832A (en) * 2021-10-08 2022-05-10 东风汽车集团股份有限公司 Fuel cell system
JP7487152B2 (en) 2021-07-05 2024-05-20 株式会社豊田自動織機 Fuel Cell Unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112776674A (en) * 2020-12-30 2021-05-11 武汉格罗夫氢能汽车有限公司 Intelligent electricity supplementing system and method for hydrogen energy automobile
JP7487152B2 (en) 2021-07-05 2024-05-20 株式会社豊田自動織機 Fuel Cell Unit
CN114464832A (en) * 2021-10-08 2022-05-10 东风汽车集团股份有限公司 Fuel cell system
CN114464832B (en) * 2021-10-08 2024-04-09 东风汽车集团股份有限公司 Fuel cell system

Similar Documents

Publication Publication Date Title
US9018894B2 (en) Vehicular power supply system
KR101230900B1 (en) Control method of fuel cell hybrid system
KR100837939B1 (en) Power system of hybrid fuel cell bus and control method thereof
US9007001B2 (en) Power supply system and vehicle equipped with power supply system
JP4774430B2 (en) Electric vehicle and power storage device control method
US20190229382A1 (en) Secondary battery system, vehicle including the same, and method for controlling battery
US20150343909A1 (en) Charge/discharge system
JP6982787B2 (en) Fuel cell control device and its control method, fuel cell vehicle
US9834100B2 (en) Charge/discharge system
JP2020110028A (en) Power control device
KR20080086941A (en) Emergency start-up control method for fuel cell hybrid electric vehicle
JP2008004482A (en) Fuel cell system
JP2017204407A (en) Fuel cell system and control method thereof
JP4240234B1 (en) Fuel cell system
US10770761B2 (en) Fuel cell control device, control method thereof, and fuel cell vehicle
JP5081068B2 (en) Fuel cell system
JP2005251579A (en) Fuel cell system
JP2010174775A (en) Vehicle control device
JP4064398B2 (en) Charge / discharge control device for motor battery
JP2017099234A (en) Vehicle power supply device
JP2004253189A (en) Power supply device
JP2018073722A (en) Fuel cell system
JP6104637B2 (en) Dual power load drive system and fuel cell vehicle
JP2007073325A (en) Fuel cell system and method of controlling discharge power therein
JP2018156791A (en) Operation control method and operation control system for fuel cell vehicle