JP2020108195A - Power supply device for vehicle - Google Patents

Power supply device for vehicle Download PDF

Info

Publication number
JP2020108195A
JP2020108195A JP2018242508A JP2018242508A JP2020108195A JP 2020108195 A JP2020108195 A JP 2020108195A JP 2018242508 A JP2018242508 A JP 2018242508A JP 2018242508 A JP2018242508 A JP 2018242508A JP 2020108195 A JP2020108195 A JP 2020108195A
Authority
JP
Japan
Prior art keywords
current
charging
battery
value
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018242508A
Other languages
Japanese (ja)
Other versions
JP7135843B2 (en
Inventor
敬之 押野
Takayuki Oshino
敬之 押野
和樹 久保
Kazuki Kubo
和樹 久保
田中 信行
Nobuyuki Tanaka
信行 田中
義宏 内田
Yoshihiro Uchida
義宏 内田
正規 内山
Masanori Uchiyama
正規 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018242508A priority Critical patent/JP7135843B2/en
Publication of JP2020108195A publication Critical patent/JP2020108195A/en
Application granted granted Critical
Publication of JP7135843B2 publication Critical patent/JP7135843B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

To correct a value based on an error of a charging current which is detected by a current sensor, into a more proper value.SOLUTION: On the basis of a temperature difference detected by a temperature sensor for detecting a temperature inside of a junction box in which a current sensor is accommodated, in start and end of charging of a battery, a heat generation amount inside of the junction box is calculated and an estimate current in a case where the battery is charged is calculated on the basis of the heat generation amount. On the basis of the estimate current and a charging current of the battery detected by the current sensor, any one of the charging current, an integration value of the charging current and a full charge capacitance estimate value calculated using the integration value of the charging current is corrected.SELECTED DRAWING: Figure 2

Description

本発明は、車両の電源装置に関する。 The present invention relates to a vehicle power supply device.

従来、この種の車両の電源装置としては、電池モジュールに流れる電流の積算量を、電池モジュールの蓄電割合SOCの変化量で除することにより、電池モジュールの満充電容量の推定値である推定容量値を求めるものが提案されている(例えば、特許文献1参照)。この装置では、SOCの変化量を用いて、推定容量値ごとに推定の信頼度を求め、複数の推定容量値に対応する複数の信頼度を用いて複数の推定容量値の加重平均をとることにより、満充電容量の検出値である出力容量値を得ている。 Conventionally, as a power supply device for a vehicle of this type, an estimated capacity that is an estimated value of a full charge capacity of a battery module is obtained by dividing an integrated amount of a current flowing through the battery module by a change amount of a storage ratio SOC of the battery module. A method for obtaining a value has been proposed (for example, see Patent Document 1). In this device, the reliability of estimation is obtained for each estimated capacity value using the amount of change in SOC, and the weighted average of the plurality of estimated capacity values is calculated using the plurality of reliability levels corresponding to the plurality of estimated capacity values. Thus, the output capacity value, which is the detection value of the full charge capacity, is obtained.

特開2013−250071号公報JP, 2013-250071, A

しかしながら、上述の電源装置では、電流センサにより検出される充電電流には誤差が生じる場合があり、この場合、満充電容量の推定の精度が低下してしまう。満充電容量は、車両の走行可能距離を計算して表示する際に用いられるから、満充電容量の推定精度が低くなると、適正な走行可能距離を表示することが困難になる。 However, in the above-described power supply device, an error may occur in the charging current detected by the current sensor, and in this case, the accuracy of estimating the full charge capacity decreases. Since the full charge capacity is used when calculating and displaying the travelable distance of the vehicle, it becomes difficult to display the appropriate travelable distance when the estimation accuracy of the full charge capacity becomes low.

本発明の車両の電源装置は、電流センサにより検出される充電電流の誤差に基づく値を補正してより適正な値とすることを主目的とする。 The vehicle power supply device of the present invention mainly aims to correct a value based on an error of the charging current detected by the current sensor to a more appropriate value.

本発明の車両の電源装置は、上述の主目的を達成するために以下の手段を採った。 The vehicle power supply device of the present invention employs the following means in order to achieve the above-mentioned main object.

本発明の車両の電源装置は、
バッテリと、バッテリの充電電流を検出する電流センサと、を備える車両の電源装置であって、
前記電流センサを収納するジャンクションボックス内の温度を検出する温度センサを備え、
前記バッテリの充電の開始時および終了時に前記温度センサにより検出される温度差に基づいて前記ジャンクションボックス内の発熱量を計算すると共に該発熱量に基づいて前記バッテリを充電した際の推定電流を計算し、前記推定電流と前記充電電流とに基づいて前記充電電流、前記充電電流の積算値、前記充電電流の積算値を用いて計算される満充電容量推定値のいずれかを補正する、
ことを特徴とする。
The power supply device for a vehicle of the present invention is
A power supply device for a vehicle, comprising: a battery; and a current sensor for detecting a charging current of the battery,
A temperature sensor for detecting the temperature in the junction box accommodating the current sensor is provided,
The amount of heat generated in the junction box is calculated based on the temperature difference detected by the temperature sensor at the start and end of charging the battery, and the estimated current when the battery is charged is calculated based on the amount of heat generated. Then, based on the estimated current and the charging current, the charging current, the integrated value of the charging current, or one of the full charge capacity estimated value calculated using the integrated value of the charging current is corrected,
It is characterized by

この本発明の車両の電源装置では、バッテリの充電の開始時および終了時に前記温度センサにより検出される温度差に基づいてジャンクションボックス内の発熱量を計算し、この発熱量に基づいてバッテリを充電した際の推定電流を計算する。そして、推定電流と電流センサにより検出された充電電流とに基づいて充電電流、充電電流の積算値、充電電流の積算値を用いて計算される満充電容量推定値のいずれかを補正する。これにより、より適正な充電電流や充電電流の積算値、満充電容量推定値を得ることができる。即ち、電流センサにより検出される充電電流の誤差に基づく値(充電電流、充電電流の積算値、満充電容量推定値)を補正してより適正な値とすることができる。 In this vehicle power supply device of the present invention, the heat generation amount in the junction box is calculated based on the temperature difference detected by the temperature sensor at the start and end of battery charging, and the battery is charged based on this heat generation amount. Calculate the estimated current when doing. Then, based on the estimated current and the charging current detected by the current sensor, any one of the charging current, the integrated value of the charging current, and the estimated full charge capacity value calculated using the integrated value of the charging current is corrected. This makes it possible to obtain more appropriate charging current, integrated value of charging current, and estimated value of full charge capacity. That is, the value based on the error of the charging current detected by the current sensor (charging current, integrated value of charging current, estimated full charge capacity) can be corrected to a more appropriate value.

本発明の一実施例としての電源装置を搭載する電気自動車20の構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the electric vehicle 20 carrying the power supply device as one Example of this invention. 電子制御ユニット70により実行される満充電容量推定処理の一例を示すフローチャートである。7 is a flowchart showing an example of full charge capacity estimation processing executed by an electronic control unit 70. 補正値設定用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the map for correction value setting. 変形例の満充電容量推定処理の一例を示すフローチャートである。It is a flowchart which shows an example of the full charge capacity estimation process of a modification. 変形例の補正値設定用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the correction value setting map of a modification. 変形例の満充電容量推定処理の一例を示すフローチャートである。It is a flowchart which shows an example of the full charge capacity estimation process of a modification. 反映率設定用マップの一例を示す説明図である。It is an explanatory view showing an example of a reflection rate setting map.

次に、本発明を実施するための形態を実施例を用いて説明する。 Next, modes for carrying out the present invention will be described using examples.

図1は、本発明の一実施例としての満充電容量推定装置を搭載する電気自動車20の構成の概略を示す構成図である。実施例の電気自動車20は、図示するように、モータ32と、インバータ34と、直流電源としてのバッテリ36と、電子制御ユニット70と、を備える。 FIG. 1 is a configuration diagram showing an outline of a configuration of an electric vehicle 20 equipped with a full charge capacity estimation device as one embodiment of the present invention. As illustrated, the electric vehicle 20 of the embodiment includes a motor 32, an inverter 34, a battery 36 as a DC power source, and an electronic control unit 70.

モータ32は、例えば同期発電電動機として構成されており、回転子が駆動輪22a,22bにデファレンシャルギヤ24を介して連結された駆動軸26に接続されている。インバータ34は、モータ32の駆動に用いられると共に電力ライン38とシステムメインリレー35とを介してバッテリ36に接続されている。モータ32は、電子制御ユニット70によってインバータ34の図示しない複数のスイッチング素子がスイッチング制御されることにより、回転駆動される。 The motor 32 is configured as, for example, a synchronous generator motor, and has a rotor connected to a drive shaft 26 that is connected to the drive wheels 22a and 22b via a differential gear 24. The inverter 34 is used to drive the motor 32 and is connected to the battery 36 via the power line 38 and the system main relay 35. The motor 32 is rotationally driven by the electronic control unit 70 controlling switching of a plurality of switching elements (not shown) of the inverter 34.

バッテリ36は、例えばリチウムイオン二次電池やニッケル水素二次電池として構成されており、システムメインリレー35およびインバータ34を介してモータ32と電力のやりとりを行なう。即ち、モータ32を力行制御することによりバッテリ36からの電力を用いてモータ32から駆動用の動力を出力し、モータ32を回生制御することによりモータ32からの回生電力によってバッテリ36を充電する。 The battery 36 is configured as, for example, a lithium ion secondary battery or a nickel hydrogen secondary battery, and exchanges electric power with the motor 32 via the system main relay 35 and the inverter 34. That is, the power running control of the motor 32 is used to output the driving power from the motor 32 using the electric power from the battery 36, and the regenerative control of the motor 32 charges the battery 36 with the regenerative power from the motor 32.

バッテリ36には、その端子間の電圧を検出する電圧センサ36aが取り付けられていると共にバッテリ36に流れる充放電電流いbを検出する電流センサ36bが取り付けられている。この電圧センサ36aと電流センサ36bは、システムメインリレー35と共にジャンクションボックス40に収納されている。 The battery 36 is provided with a voltage sensor 36a for detecting a voltage between its terminals and a current sensor 36b for detecting a charging/discharging current b flowing in the battery 36. The voltage sensor 36a and the current sensor 36b are housed in the junction box 40 together with the system main relay 35.

充電用リレー50は、車外の充電スタンド90のスタンド側コネクタ91に接続される車両側コネクタ51と電力ライン38とを接続する電力ライン52に設けられている。充電用リレー50は、図示しないが、正極リレーと負極リレーを備えている。 The charging relay 50 is provided in the power line 52 that connects the vehicle-side connector 51 connected to the stand-side connector 91 of the charging stand 90 outside the vehicle and the power line 38. Although not shown, the charging relay 50 includes a positive electrode relay and a negative electrode relay.

電子制御ユニット70は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUに加えて、処理プログラムを記憶するROMや、データを一時的に記憶するRAM、フラッシュメモリ、入出力ポート、通信ポートなどを備える。 Although not shown, the electronic control unit 70 is configured as a microprocessor centered on a CPU, and in addition to the CPU, a ROM for storing a processing program, a RAM for temporarily storing data, a flash memory, an input/output. It is equipped with ports, communication ports, etc.

電子制御ユニット70には、各種センサからの信号が入力ポートを介して入力される。電子制御ユニット70に入力される信号としては、例えば、モータ32の回転子の回転位置を検出する図示しない回転位置センサからのモータ32の回転子の回転位置θmや、モータ32の各相の相電流を検出する図示しない電流センサからのモータ32の各相の相電流Iu,Iv,Iwを挙げることができる。また、バッテリ36の端子間に取り付けられた電圧センサ36aからのバッテリ36の電圧Vbや、バッテリ36の出力端子に取り付けられた電流センサ36bからのバッテリ36の充放電電流Ib、バッテリ36に取り付けられた温度センサ36cからのバッテリ36の温度Tb、ジャンクションボックス40に取り付けられた温度センサ42からのジャンクションボックス40内の温度Tjbも挙げることができる。車両側コネクタ51がスタンド側コネクタ91に接続されているか否かを検出する接続検出センサ53からの接続検出信号や車両側コネクタ51と充電用リレー50との間の電力ライン52に取り付けられた電圧センサ52aからの充電電圧Vchgも挙げることができる。図示しないが、さらに、イグニッションスイッチからのイグニッション信号や、シフトレバーの操作位置を検出するシフトポジションセンサからのシフトポジションSP、アクセルペダルの踏み込み量を検出するアクセルペダルポジションセンサからのアクセル開度Acc、ブレーキペダルの踏み込み量を検出するブレーキペダルポジションセンサからのブレーキペダルポジションBP、車速センサからの車速Vなども挙げることができる。 Signals from various sensors are input to the electronic control unit 70 via input ports. The signals input to the electronic control unit 70 include, for example, the rotational position θm of the rotor of the motor 32 from a rotational position sensor (not shown) that detects the rotational position of the rotor of the motor 32, and the phase of each phase of the motor 32. The phase currents Iu, Iv, Iw of each phase of the motor 32 from a current sensor (not shown) that detects a current can be mentioned. Further, the voltage Vb of the battery 36 from the voltage sensor 36 a attached between the terminals of the battery 36, the charge/discharge current Ib of the battery 36 from the current sensor 36 b attached to the output terminal of the battery 36, the battery 36 attached to the battery 36. The temperature Tb of the battery 36 from the temperature sensor 36c and the temperature Tjb in the junction box 40 from the temperature sensor 42 attached to the junction box 40 can also be mentioned. A connection detection signal from a connection detection sensor 53 that detects whether the vehicle-side connector 51 is connected to the stand-side connector 91 or a voltage attached to the power line 52 between the vehicle-side connector 51 and the charging relay 50. The charging voltage Vchg from the sensor 52a can also be mentioned. Although not shown, an ignition signal from an ignition switch, a shift position SP from a shift position sensor that detects an operation position of a shift lever, an accelerator opening Acc from an accelerator pedal position sensor that detects a depression amount of an accelerator pedal, The brake pedal position BP from the brake pedal position sensor that detects the depression amount of the brake pedal, the vehicle speed V from the vehicle speed sensor, and the like can also be mentioned.

電子制御ユニット70からは、各種制御信号が出力ポートを介して出力される。電子制御ユニット70から出力される信号としては、例えば、インバータ34への制御信号やシステムメインリレー35への制御信号,充電用リレー50への制御信号を挙げることができる。また、車両側コネクタ51がスタンド側コネクタ91に接続されているときに車両側コネクタ51およびスタンド側コネクタ91の通信ラインを介して充電スタンド90に充電に必要な情報も挙げることができる。電子制御ユニット70は、電流センサ36bからのバッテリ36の入出力電流Ibの積算値に基づいてバッテリ36の蓄電量Sbや蓄電割合SOCを演算している。ここで、蓄電量Cbは、バッテリ36から放電可能な電力量であり、蓄電割合SOCは、バッテリ36の全容量Capに対する蓄電量Cbの割合である。 Various control signals are output from the electronic control unit 70 via the output port. Examples of the signal output from the electronic control unit 70 include a control signal to the inverter 34, a control signal to the system main relay 35, and a control signal to the charging relay 50. Further, information necessary for charging the charging stand 90 through the communication line of the vehicle side connector 51 and the stand side connector 91 when the vehicle side connector 51 is connected to the stand side connector 91 can also be mentioned. The electronic control unit 70 calculates the storage amount Sb and the storage ratio SOC of the battery 36 based on the integrated value of the input/output current Ib of the battery 36 from the current sensor 36b. Here, the charged amount Cb is the amount of electric power that can be discharged from the battery 36, and the charged ratio SOC is the ratio of the charged amount Cb to the total capacity Cap of the battery 36.

ここで、実施例の電気自動車20では、バッテリ36と電圧センサ36aと電流センサ36bと温度センサ36cとシステムメインリレー35とジャンクションボックス40と温度センサ42と電子制御ユニット70とが電源装置に相当する。 Here, in the electric vehicle 20 of the embodiment, the battery 36, the voltage sensor 36a, the current sensor 36b, the temperature sensor 36c, the system main relay 35, the junction box 40, the temperature sensor 42, and the electronic control unit 70 correspond to a power supply device. ..

次に、実施利恵の電気自動車20によりバッテリ36の満充電容量推定値Mestを推定する際の動作について説明する。図2は、電子制御ユニット70により実行される満充電容量推定処理の一例を示すフローチャートである。この処理は、充電スタンド90からの電力によるバッテリ36の充電時において満充電容量推定値Mestを学習する際に実行される。 Next, the operation of estimating the full charge capacity estimated value Mest of the battery 36 by the electric vehicle 20 of the implementation benefit will be described. FIG. 2 is a flowchart showing an example of full charge capacity estimation processing executed by the electronic control unit 70. This process is executed when learning the full charge capacity estimated value Mest when the battery 36 is charged by the electric power from the charging stand 90.

満充電容量推定処理が実行されると、電子制御ユニット70は、まず、バッテリ36の充電前後におけるジャンクボックス40内の温度差ΔTを計算する(ステップS100)。温度差ΔTは、バッテリ36の充電開始時に温度センサ42により検出された温度Tjb(1)とバッテリ36の充電終了時に温度センサ42により検出された温度Tjb(2)との差(Tjb(2)−Tjb(1))として計算することができる。 When the full charge capacity estimation process is executed, the electronic control unit 70 first calculates the temperature difference ΔT in the junk box 40 before and after the battery 36 is charged (step S100). The temperature difference ΔT is the difference (Tjb(2)) between the temperature Tjb(1) detected by the temperature sensor 42 at the start of charging the battery 36 and the temperature Tjb(2) detected by the temperature sensor 42 at the end of charging the battery 36. It can be calculated as −Tjb(1)).

続いて、バッテリ36の充電前後におけるジャンクボックス40内の温度差ΔTに基づいてバッテリ36の充電中におけるジャンクボックス40内の発熱量ΔQを計算すると共に(ステップS110)、この発熱量ΔQに基づいてバッテリ36を充電したときの推定電流Iestを計算する(ステップS120)。ジャンクボックス40内の発熱量ΔQは、ジャンクボックス内の熱容量Cjbを予め求めておき、熱容量Cjbに温度差ΔTを乗じることにより計算することができる。推定電流Iestは、バッテリ36を充電する際のジャンクボックス内の抵抗Rjbを予め求めておき、ΔQ=Iest・Rの関係から計算することができる。 Subsequently, the heat generation amount ΔQ in the junk box 40 during the charging of the battery 36 is calculated based on the temperature difference ΔT in the junk box 40 before and after the battery 36 is charged (step S110), and based on the heat generation amount ΔQ. The estimated current Iest when the battery 36 is charged is calculated (step S120). The heat generation amount ΔQ in the junk box 40 can be calculated by previously obtaining the heat capacity Cjb in the junk box and multiplying the heat capacity Cjb by the temperature difference ΔT. The estimated current Iest can be calculated from the relationship ΔQ=Iest 2 ·R by previously obtaining the resistance Rjb in the junk box when charging the battery 36.

次に、計算した推定電流Iestからバッテリ36を充電しているときに電流センサ36bにより検出される電流Ibを減じて電流差分ΔI(ΔI=Iest−Ib)を計算し(ステップS130)、電流差分ΔIに基づいて補正値kiを設定する(ステップS140)。補正値kiは、実施例では電流差分ΔIと補正値kiとの関係を予め定めて補正値設定用マップとして記憶しておき、電流差分ΔIが与えられるとマップから対応する補正値kiを導出することにより設定されるものとした。図3に補正値設定用マップの一例を示す。実施例では、図3の補正値設定用マップに示すように、電流差分ΔIが大きいほど補正値kiが大きくなる傾向に、電流差分ΔIが大きいほど補正値kiの変化率が大きくなる傾向に設定するものとした。 Next, the current difference ΔI (ΔI=Iest−Ib) is calculated by subtracting the current Ib detected by the current sensor 36b when the battery 36 is being charged from the calculated estimated current Iest (step S130). The correction value ki is set based on ΔI (step S140). As for the correction value ki, in the embodiment, the relationship between the current difference ΔI and the correction value ki is predetermined and stored as a correction value setting map, and when the current difference ΔI is given, the corresponding correction value ki is derived from the map. It is supposed to be set by this. FIG. 3 shows an example of the correction value setting map. In the embodiment, as shown in the correction value setting map of FIG. 3, the larger the current difference ΔI, the larger the correction value ki, and the larger the current difference ΔI, the larger the rate of change of the correction value ki. I decided to do it.

そして、電流センサ36bにより検出される電流Ibに補正値kiを加算して補正後充電電流Ib*を計算し(ステップS150)、この補正後充電電流Ib*を用いて満充電容量推定値Mestを計算し(ステップS160)、満充電容量推定処理を終了する。満充電容量推定値Mestは、補正後充電電流Ib*を用いてバッテリ36の充電中における電流積算値ΣIb*を計算し、バッテリ36の充電の前後の蓄電割合SOCの差分(充電開始時の蓄電割合SOC−充電終了時の蓄電割合SOC)を電流積算値ΣIb*で除することにより計算することができる。 Then, the correction value ki is added to the current Ib detected by the current sensor 36b to calculate the corrected charging current Ib* (step S150), and the corrected charging current Ib* is used to calculate the full charge capacity estimated value Mest. The calculation is performed (step S160), and the full charge capacity estimation process ends. The full charge capacity estimated value Mest is calculated by using the corrected charging current Ib* to calculate the current integrated value ΣIb* during charging of the battery 36, and calculating the difference between the SOC of the battery 36 before and after charging (charging at the start of charging). It can be calculated by dividing the ratio SOC−the storage ratio SOC at the end of charging by the integrated current value ΣIb*.

以上説明した実施例の電気自動車20では、バッテリ36の充電電流Ibを検出する電流センサ36bを収納するジャンクションボックス40内の充電前後の温度差ΔTに基づいてジャンクボックス40内の発熱量ΔQを計算すると共に発熱量ΔTに基づいてバッテリ36を充電したときの推定電流Iestを計算する。次に、この推定電流Iestと電流センサ36bにより検出された充電電流Ibとの電流差分ΔIに基づいて補正値kiを設定し、充電電流Ibに補正値kiを加えた補正後充電電流Ib*を求める。そして、この補正後充電電流Ib*を用いて満充電容量推定値Mestを計算する。ジャンクションボックス40内の充電前後の温度差ΔTに基づく補正値kiにより充電電流Ibを補正するから、より適正な補正後充放電電流Ib*とすることができる。また、このより適正な補正後充電電流Ib*を用いて満充電容量推定値Mestを計算するから、満充電容量推定値Mestをより適正なものとすることができる。 In the electric vehicle 20 of the embodiment described above, the heat generation amount ΔQ in the junk box 40 is calculated based on the temperature difference ΔT before and after charging in the junction box 40 that houses the current sensor 36b that detects the charging current Ib of the battery 36. At the same time, the estimated current Iest when the battery 36 is charged is calculated based on the heat generation amount ΔT. Next, the correction value ki is set based on the current difference ΔI between the estimated current Iest and the charging current Ib detected by the current sensor 36b, and the corrected charging current Ib* obtained by adding the correction value ki to the charging current Ib is set. Ask. Then, the full charge capacity estimated value Mest is calculated using the corrected charge current Ib*. Since the charging current Ib is corrected by the correction value ki based on the temperature difference ΔT before and after charging in the junction box 40, a more appropriate corrected charging/discharging current Ib* can be obtained. Further, since the full charge capacity estimated value Mest is calculated using this more appropriate corrected charge current Ib*, the full charge capacity estimated value Mest can be made more appropriate.

実施例の電気自動車20では、推定電流Iestと電流センサ36bにより検出された充電電流Ibとの電流差分ΔIに基づいて補正値kiを設定し、充電電流Ibに補正値kiを加えた補正後充電電流Ib*を用いて満充電容量推定値Mestを計算するものとした。しかし、推定電流Iestの積算値と電流センサ36bにより検出された充電電流Ibの積算値との差分としての電流積算値差分ΔΣIに基づいて補正値ksiを設定し、充電電流Ibの積算値ΣIbに補正値ksiを加えた補正後充電電流積算値ΣIb*を用いて満充電容量推定値Mestを計算するものとしてもよい。この場合、図4に示す変形例の満充電容量推定処理を実行すればよい。 In the electric vehicle 20 of the embodiment, the correction value ki is set on the basis of the current difference ΔI between the estimated current Iest and the charging current Ib detected by the current sensor 36b, and the corrected charging is performed by adding the correction value ki to the charging current Ib. The full charge capacity estimated value Mest is calculated using the current Ib*. However, the correction value ksi is set based on the current integrated value difference ΔΣI as the difference between the integrated value of the estimated current Iest and the integrated value of the charging current Ib detected by the current sensor 36b, and the integrated value ΣIb of the charging current Ib is set. The full charge capacity estimated value Mest may be calculated using the corrected charging current integrated value ΣIb* to which the correction value ksi has been added. In this case, the full charge capacity estimation process of the modification shown in FIG. 4 may be executed.

図4の変形例の満充電容量推定処理では、バッテリ36の充電前後におけるジャンクボックス40内の温度差ΔTを計算し(ステップS100)、バッテリ36の充電前後におけるジャンクボックス40内の温度差ΔTに基づいてバッテリ36の充電中におけるジャンクボックス40内の発熱量ΔQを計算すると共に(ステップS110)、この発熱量ΔQに基づいてバッテリ36を充電したときの推定電流Iestを計算する(ステップS120)。ここまでは、図2の満充電容量推定処理と同一である。 In the full charge capacity estimation process of the modified example of FIG. 4, the temperature difference ΔT in the junk box 40 before and after the battery 36 is charged is calculated (step S100), and is calculated as the temperature difference ΔT in the junk box 40 before and after the battery 36 is charged. Based on this, the heat generation amount ΔQ in the junk box 40 during the charging of the battery 36 is calculated (step S110), and the estimated current Iest when the battery 36 is charged is calculated based on this heat generation amount ΔQ (step S120). The process up to this point is the same as the full charge capacity estimation process of FIG.

次に、計算した推定電流Iestから電流センサ36bにより検出される充電電流Ibを減じて得られる電流差分(Iest−Ib)の充電時間における積算値(電流積算値差分)ΔΣIを計算する(ステップS230)。電流差分(Iest−Ib)の充電時間における積算値は、推定電流Iestの充電時間における積算値と充電電流Ibの充電時間における積算値との差分と同意である。続いて、計算した電流積算値差分ΔΣIに基づいて補正値ksiを設定する(ステップS240)。補正値kiは、電流積算値差分ΔΣIと補正値ksiとの関係を予め定めて補正値設定用マップとして記憶しておき、電流積算値差分ΔΣIが与えられるとマップから対応する補正値ksiを導出することにより設定されるものとした。図5に補正値設定用マップの一例を示す。この変形例では、図5の補正値設定用マップに示すように、電流積算値差分ΔΣIが大きいほど補正値ksiが大きくなる傾向に、電流積算値差分ΔΣIが大きいほど補正値ksiの変化率が大きくなる傾向に設定するものとした。そして、電流センサ36bにより検出される充電電流Ibの積算値ΣIbに補正値ksiを加算して補正後充電電流積算値ΣIb*を計算し(ステップS250)、この補正後充電電流積算値ΣIb*を用いて満充電容量推定値Mestを計算し(ステップS260)、満充電容量推定処理を終了する。満充電容量推定値Mestは、バッテリ36の充電の前後の蓄電割合SOCの差分(充電開始時の蓄電割合SOC−充電終了時の蓄電割合SOC)を補正後充電電流積算値ΣIb*で除することにより計算することができる。 Next, the integrated value (current integrated value difference) ΔΣI in the charging time of the current difference (Iest−Ib) obtained by subtracting the charging current Ib detected by the current sensor 36b from the calculated estimated current Iest is calculated (step S230). ). The integrated value of the current difference (Iest-Ib) in the charging time is synonymous with the difference between the integrated value of the estimated current Iest in the charging time and the integrated value of the charging current Ib in the charging time. Then, the correction value ksi is set based on the calculated current integrated value difference ΔΣI (step S240). As the correction value ki, the relationship between the current integrated value difference ΔΣI and the correction value ksi is predetermined and stored as a correction value setting map, and when the current integrated value difference ΔΣI is given, the corresponding correction value ksi is derived from the map. It was set by doing. FIG. 5 shows an example of the correction value setting map. In this modification, as shown in the correction value setting map of FIG. 5, the correction value ksi tends to increase as the current integrated value difference ΔΣI increases, and the change rate of the correction value ksi increases as the current integrated value difference ΔΣI increases. It was set to increase. Then, the correction value ksi is added to the integrated value ΣIb of the charging current Ib detected by the current sensor 36b to calculate the corrected charging current integrated value ΣIb* (step S250), and the corrected charging current integrated value ΣIb* is calculated. The full charge capacity estimated value Mest is calculated by using (step S260), and the full charge capacity estimation process is ended. The full-charge capacity estimated value Mest is obtained by dividing the difference between the storage ratios SOC before and after the battery 36 is charged (the storage ratio SOC at the start of charging-the storage ratio SOC at the end of charging) by the corrected charging current integrated value ΣIb*. Can be calculated by

この変形例では、バッテリ36を充電したときの推定電流Iestの積算値と電流センサ36bにより検出された充電電流Ibの積算値との差分(電流積算値差分)ΔΣIに基づいて補正値ksiを設定し、充電電流積算値ΣIbに補正値ksiを加えた補正後充電電流積算値ΣIb*を求める。そして、この補正後充電電流積算値ΣIb*を用いて満充電容量推定値Mestを計算する。変形例でも、実施例と同様に、ジャンクションボックス40内の充電前後の温度差ΔTに基づく補正値ksiにより充電電流積算値ΣIbを補正するから、より適正な補正後充放電電流積算値ΣIb*とすることができる。また、このより適正な補正後充電電流積算値ΣIb*を用いて満充電容量推定値Mestを計算するから、満充電容量推定値Mestをより適正なものとすることができる。 In this modification, the correction value ksi is set based on the difference (current integrated value difference) ΔΣI between the integrated value of the estimated current Iest when the battery 36 is charged and the integrated value of the charging current Ib detected by the current sensor 36b. Then, the corrected charging current integrated value ΣIb* is obtained by adding the correction value ksi to the charging current integrated value ΣIb. Then, the full charge capacity estimated value Mest is calculated using the corrected charge current integrated value ΣIb*. In the modified example, as in the embodiment, the charging current integrated value ΣIb is corrected by the correction value ksi based on the temperature difference ΔT before and after charging in the junction box 40, so that a more appropriate corrected charge/discharge current integrated value ΣIb* is obtained. can do. Further, since the full-charge-capacity estimated value Mest is calculated using this more appropriate corrected charge current integrated value ΣIb*, the full-charge capacity estimated value Mest can be made more appropriate.

また、別の変形例として図6に例示する満充電容量推定処理を実行するものとしてもよい。図6の満充電容量推定処理では、図2および図4の満充電容量推定処理と同様にバッテリ36を充電したときの推定電流Iestを計算する(ステップS100〜S120)。次に、図4の満充電容量推定処理と同様に電流積算値差分ΔΣIを計算する(ステップS230)。 As another modification, the full charge capacity estimation process illustrated in FIG. 6 may be executed. In the full charge capacity estimation process of FIG. 6, the estimated current Iest when the battery 36 is charged is calculated similarly to the full charge capacity estimation process of FIGS. 2 and 4 (steps S100 to S120). Next, the current integrated value difference ΔΣI is calculated as in the full charge capacity estimation process of FIG. 4 (step S230).

続いて、計算した電流積算値差分ΔΣIに基づいて反映率σを設定する(ステップS340)。反映率σは、今回計算する満充電容量推定値Mestにおいて充電電流Ibを用いて計算した満充電容量の前回計算した満充電推定値Mestへの反映の程度を示すものであり、この変形例では、電流積算値差分ΔΣIと反映率σとの関係を予め定めて反映率設定用マップとして記憶しておき、電流積算値差分ΔΣIが与えられるとマップから対応する反映率σを導出することにより設定するものとした。図7に反映率設定用マップの一例を示す。この図7の反映率設定用マップでは、電流積算値差分ΔΣIの絶対値が大きいほど小さくなる傾向に、電流積算値差分ΔΣIの絶対値が大きいほど変化率の絶対値が大きくなるように反映率σを設定するものとした。 Then, the reflection rate σ is set based on the calculated current integrated value difference ΔΣI (step S340). The reflection rate σ indicates the degree of reflection of the full charge capacity calculated using the charging current Ib in the currently calculated full charge capacity estimated value Mest to the previously calculated full charge estimated value Mest, and in this modified example. , The relationship between the integrated current value difference ΔΣI and the reflection rate σ is predetermined and stored as a reflection rate setting map, and when the integrated current value difference ΔΣI is given, the corresponding reflection rate σ is derived from the map to set. I decided to do it. FIG. 7 shows an example of the reflection rate setting map. In the reflection rate setting map of FIG. 7, the larger the absolute value of the current integrated value difference ΔΣI is, the smaller the tendency is, and the larger the absolute value of the current integrated value difference ΔΣI is, the larger the absolute value of the change rate is. σ is set.

そして、充電電流Ibに基づいて満充電容量推定値M(Ib)を計算し(ステップS350)、次式(1)に示すように、計算した満充電容量推定値M(Ib)に反映率σを乗じて得られる値と前回この処理により計算された満充電容量推定値Mestに値1から反映率σを減じたものを乗じて得られる値との和として満充電容量推定値Mestを計算する(ステップS360)。満充電容量推定値M(Ib)は、バッテリ36の充電の前後の蓄電割合SOCの差分(充電開始時の蓄電割合SOC−充電終了時の蓄電割合SOC)を充電電流Ibの積算値ΣIbで除することにより計算することができる。 Then, the full charge capacity estimation value M(Ib) is calculated based on the charging current Ib (step S350), and the reflection rate σ is added to the calculated full charge capacity estimation value M(Ib) as shown in the following equation (1). The full charge capacity estimated value Mest is calculated as the sum of the value obtained by multiplying by and the value obtained by multiplying the full charge capacity estimated value Mest previously calculated by this processing by the value 1 minus the reflection rate σ. (Step S360). The full-charge capacity estimated value M(Ib) is obtained by dividing the difference between the storage ratios SOC before and after the battery 36 is charged (storage ratio SOC at the start of charging-storage ratio SOC at the end of charging) by the integrated value ΣIb of the charging current Ib. It can be calculated by

Mest=M(Ib)・σ+前回Mest・(1−σ) (1) Mest=M(Ib)·σ+previous Mest·(1-σ) (1)

この変形例では、電流積算値差分ΔΣIに基づいて反映率σを設定し、充電電流Ibに基づいて計算される満充電容量推定値M(Ib)に反映率σを乗じて得られる値と前回満充電容量推定値Mestに値1から反映率σを減じたものを乗じて得られる値との和として満充電容量推定値Mestを計算する。このように、ジャンクションボックス40内の充電前後の温度差ΔTに基づく反映率σを用いて満充電容量推定値Mestを計算するから、満充電容量推定値Mestをより適正なものとすることができる。 In this modified example, the reflection rate σ is set based on the current integrated value difference ΔΣI, and the value obtained by multiplying the full charge capacity estimated value M(Ib) calculated based on the charging current Ib by the reflection rate σ and the previous value. The full charge capacity estimated value Mest is calculated as the sum of the value obtained by multiplying the full charge capacity estimated value Mest by the value 1 minus the reflection rate σ. As described above, the full charge capacity estimated value Mest is calculated using the reflection rate σ based on the temperature difference ΔT before and after charging in the junction box 40, so that the full charge capacity estimated value Mest can be made more appropriate. ..

実施例や変形例では、電源装置は電気自動車20に搭載されるものとしたが、ハイブリッド自動車に搭載されているものや、燃料電池車に搭載されるものとしてもよい。 Although the power supply device is mounted on the electric vehicle 20 in the embodiments and the modifications, the power supply device may be mounted on a hybrid vehicle or a fuel cell vehicle.

以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。 The embodiments for carrying out the present invention have been described above with reference to the embodiments. However, the present invention is not limited to these embodiments, and various embodiments are possible within the scope not departing from the gist of the present invention. Of course, it can be implemented.

本発明は、車両の電源装置の製造産業などに利用可能である。 INDUSTRIAL APPLICABILITY The present invention is applicable to the manufacturing industry of vehicle power supply devices and the like.

20 電気自動車、22a,22b 駆動輪、24 デファレンシャルギヤ、26 駆動軸、32 モータ、34 インバータ、35 システムメインリレー、36 バッテリ、36a 電圧センサ、36b 電流センサ、36c 温度センサ、38 電力ライン、50 充電用リレー、51 車両側コネクタ、52 電力ライン、52a 電圧センサ、53 接続検出センサ、70 電子制御ユニット、90 充電スタンド、91 スタンド側コネクタ。 20 electric vehicle, 22a, 22b drive wheel, 24 differential gear, 26 drive shaft, 32 motor, 34 inverter, 35 system main relay, 36 battery, 36a voltage sensor, 36b current sensor, 36c temperature sensor, 38 power line, 50 charging Relay, 51 vehicle side connector, 52 electric power line, 52a voltage sensor, 53 connection detection sensor, 70 electronic control unit, 90 charging stand, 91 stand side connector.

Claims (1)

バッテリと、バッテリの充電電流を検出する電流センサと、を備える車両の電源装置であって、
前記電流センサを収納するジャンクションボックス内の温度を検出する温度センサを備え、
前記バッテリの充電の開始時および終了時に前記温度センサにより検出される温度差に基づいて前記ジャンクションボックス内の発熱量を計算すると共に該発熱量に基づいて前記バッテリを充電した際の推定電流を計算し、前記推定電流と前記充電電流とに基づいて前記充電電流、前記充電電流の積算値、前記充電電流の積算値を用いて計算される満充電容量推定値のいずれかを補正する、
ことを特徴とする車両の電源装置。
A power supply device for a vehicle, comprising: a battery; and a current sensor for detecting a charging current of the battery,
A temperature sensor for detecting the temperature in the junction box accommodating the current sensor is provided,
The amount of heat generated in the junction box is calculated based on the temperature difference detected by the temperature sensor at the start and end of charging the battery, and the estimated current when the battery is charged is calculated based on the amount of heat generated. Then, based on the estimated current and the charging current, the charging current, the integrated value of the charging current, or one of the full charge capacity estimated value calculated using the integrated value of the charging current is corrected,
A power supply device for a vehicle characterized by the above.
JP2018242508A 2018-12-26 2018-12-26 vehicle power supply Active JP7135843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018242508A JP7135843B2 (en) 2018-12-26 2018-12-26 vehicle power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018242508A JP7135843B2 (en) 2018-12-26 2018-12-26 vehicle power supply

Publications (2)

Publication Number Publication Date
JP2020108195A true JP2020108195A (en) 2020-07-09
JP7135843B2 JP7135843B2 (en) 2022-09-13

Family

ID=71449623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018242508A Active JP7135843B2 (en) 2018-12-26 2018-12-26 vehicle power supply

Country Status (1)

Country Link
JP (1) JP7135843B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156939A (en) * 1998-11-17 2000-06-06 Casio Comput Co Ltd Charge controller
WO2007122787A1 (en) * 2006-03-24 2007-11-01 Nec Corporation Charging system, charging control program, and portable terminal
JP2010060384A (en) * 2008-09-02 2010-03-18 Toyota Central R&D Labs Inc Apparatus for estimating state of secondary battery
JP2012063246A (en) * 2010-09-16 2012-03-29 Calsonic Kansei Corp Calibration apparatus for current sensor
WO2013111178A1 (en) * 2012-01-24 2013-08-01 トヨタ自動車株式会社 Vehicle control device, vehicle, and vehicle control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156939A (en) * 1998-11-17 2000-06-06 Casio Comput Co Ltd Charge controller
WO2007122787A1 (en) * 2006-03-24 2007-11-01 Nec Corporation Charging system, charging control program, and portable terminal
JP2010060384A (en) * 2008-09-02 2010-03-18 Toyota Central R&D Labs Inc Apparatus for estimating state of secondary battery
JP2012063246A (en) * 2010-09-16 2012-03-29 Calsonic Kansei Corp Calibration apparatus for current sensor
WO2013111178A1 (en) * 2012-01-24 2013-08-01 トヨタ自動車株式会社 Vehicle control device, vehicle, and vehicle control method

Also Published As

Publication number Publication date
JP7135843B2 (en) 2022-09-13

Similar Documents

Publication Publication Date Title
JP6136950B2 (en) Driving distance calculation system
US9013138B2 (en) Charging apparatus for electric storage device, vehicle equipped with the charging apparatus, and method of controlling the charging apparatus
US11196103B2 (en) Secondary battery system and method for controlling secondary battery
US10809305B2 (en) System and method for detecting and responding to a battery over-discharge condition within a vehicle
JP6969396B2 (en) Electric vehicle
JP5126150B2 (en) Storage capacity estimation device and storage capacity estimation method
KR102415192B1 (en) Estimation system and estimation method
JP2020065424A (en) Display device and vehicle comprising the same
JP5794205B2 (en) Power storage system and disconnection determination method
US11180051B2 (en) Display apparatus and vehicle including the same
JP3750412B2 (en) In-vehicle battery control system
JP2008276972A (en) Control device of lithium secondary battery, motor driving device, control method of lithium secondary battery, and computer readable recording medium having recorded program to make computer perform control method of lithium secondary battery
CN111098721B (en) Electric vehicle
JP7135843B2 (en) vehicle power supply
JP5975925B2 (en) Battery control device, power storage device
JP5781896B2 (en) Vehicular charging line communication apparatus, vehicular charging control apparatus, charging control method, charging control program
JP2020125914A (en) Full charge capacity estimation device
JP6747333B2 (en) Secondary battery system
JP7087936B2 (en) Full charge capacity estimation device
JP2015052461A (en) Power storage system and charging rate estimation method
JP6627669B2 (en) Battery system
JP2020094871A (en) Full charge capacity estimating device
JP2021068637A (en) Charge control device
JP2022141013A (en) Cell system and battery voltage estimation method
JP2021093258A (en) Calculation method for damage amount of secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220815

R151 Written notification of patent or utility model registration

Ref document number: 7135843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151