JP5126150B2 - Storage capacity estimation device and storage capacity estimation method - Google Patents

Storage capacity estimation device and storage capacity estimation method Download PDF

Info

Publication number
JP5126150B2
JP5126150B2 JP2009095159A JP2009095159A JP5126150B2 JP 5126150 B2 JP5126150 B2 JP 5126150B2 JP 2009095159 A JP2009095159 A JP 2009095159A JP 2009095159 A JP2009095159 A JP 2009095159A JP 5126150 B2 JP5126150 B2 JP 5126150B2
Authority
JP
Japan
Prior art keywords
polarization
secondary battery
voltage
storage capacity
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009095159A
Other languages
Japanese (ja)
Other versions
JP2010243447A (en
Inventor
清仁 町田
潤一 松本
真 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009095159A priority Critical patent/JP5126150B2/en
Publication of JP2010243447A publication Critical patent/JP2010243447A/en
Application granted granted Critical
Publication of JP5126150B2 publication Critical patent/JP5126150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、蓄電容量推定装置および蓄電容量推定方法に関し、詳しくは、放電可能な蓄電容量が小さいほど内部抵抗が大きくなる特性を有する二次電池の開放電圧に基づいて二次電池の放電可能な蓄電容量を推定する蓄電容量推定装置および蓄電容量推定方法に関する。   The present invention relates to a storage capacity estimation device and a storage capacity estimation method, and more specifically, a secondary battery can be discharged based on an open-circuit voltage of a secondary battery having a characteristic that an internal resistance increases as a dischargeable storage capacity decreases. The present invention relates to a storage capacity estimation device and a storage capacity estimation method for estimating a storage capacity.

従来、この種の蓄電容量推定装置としては、リチウムイオン電池やニッケル水素電池などの二次電池の開放端電圧に基づいて二次電池のSOCを推定するものが提案されている(例えば、特許文献1参照)。この装置では、二次電池を充放電しているときの二次電池の端子間電圧および充放電電流に基づいて算出される電圧電流特性において電流値が値0のときの電圧値を二次電池の開放端電圧として算出し、算出した開放端電圧に基づいて予め設定されたマップやモデル式を用いて二次電池のSOCを推定している。   Conventionally, as this type of storage capacity estimation device, a device that estimates the SOC of a secondary battery based on the open-circuit voltage of a secondary battery such as a lithium ion battery or a nickel metal hydride battery has been proposed (for example, Patent Documents). 1). In this device, the voltage value when the current value is 0 in the voltage-current characteristic calculated based on the voltage between the terminals of the secondary battery and the charge / discharge current when charging / discharging the secondary battery is the secondary battery. The SOC of the secondary battery is estimated using a map or model formula set in advance based on the calculated open-end voltage.

特開2008−220080号公報Japanese Patent Laid-Open No. 2008-222008

上述の装置のようなSOCの推定は、できるだけ適正に行なわれることが望ましい。例えば、二次電池と電力をやり取りする電動機を備える駆動装置では、二次電池のSOCに基づいて二次電池を充放電する際の最大許容電力としての入出力制限を演算し、この入出力制限の範囲内で電動機の駆動が行なわれるが、SOCが適正に推定されていないときには、二次電池に許容される電力を超えて充放電が行なわれるなど、バッテリを適正に保護することができない場合が生じる。特に、上述の装置のように二次電池の開放端電圧を算出してSOCを推定する際には、開放端電圧を適正に算出することが望まれる。   It is desirable that the SOC estimation as in the above-described apparatus is performed as appropriately as possible. For example, in a drive device including an electric motor that exchanges power with a secondary battery, an input / output limit is calculated as the maximum allowable power when charging / discharging the secondary battery based on the SOC of the secondary battery, and this input / output limit is calculated. If the motor is driven within the range, but when the SOC is not estimated properly, the battery cannot be adequately protected, such as being charged or discharged exceeding the power allowed for the secondary battery. Occurs. In particular, when the SOC is estimated by calculating the open-circuit voltage of the secondary battery as in the above-described device, it is desirable to appropriately calculate the open-circuit voltage.

本発明の蓄電容量推定装置および蓄電容量推定方法は、二次電池の放電可能な蓄電容量をより適正に推定することを主目的とする。   The main object of the storage capacity estimation device and storage capacity estimation method of the present invention is to more appropriately estimate the dischargeable storage capacity of the secondary battery.

本発明の蓄電容量推定装置および蓄電容量推定方法は、上述の主目的を達成するために以下の手段を採った。   The storage capacity estimation device and the storage capacity estimation method of the present invention employ the following means in order to achieve the main object described above.

本発明の蓄電容量推定装置は、
放電可能な蓄電容量が小さいほど内部抵抗が大きくなる傾向の特性を有する二次電池の開放電圧に基づいて前記二次電池の放電可能な蓄電容量を推定する蓄電容量推定装置であって、
現在までに推定された前記二次電池の放電可能な蓄電容量である推定蓄電容量と前記二次電池の内部抵抗を補正する補正係数との関係として前記推定蓄電容量が小さいほど前記補正係数が大きくなる傾向の蓄電容量関係を有する補正関係に前記推定蓄電容量を適用して得られる前記補正係数により前記二次電池の内部抵抗の基準となる基準内部抵抗を補正したものに対して前記二次電池の充放電電流を乗じることによって前記二次電池を充放電したときに該二次電池の内部抵抗により生じる電圧を演算する内部抵抗電圧演算手段と、
現在までに演算された前記二次電池の分極により生じる電圧に所定の時定数に応じた割合を乗じたものと前記二次電池の分極により生じる電圧の最大値である最大分極電圧に単位時間を前記所定の時定数で割ったものを乗じたものとの和によって前記二次電池を充放電したときに該二次電池の分極により生じる電圧を演算する分極電圧演算手段と、
前記二次電池の端子間電圧から前記演算された二次電池の内部抵抗により生じる電圧と前記演算された二次電池の分極により生じる電圧とを減じて得られる前記二次電池の開放電圧に基づいて前記二次電池の放電可能な蓄電容量を推定する蓄電容量推定手段と、
を備えることを要旨とする。
The storage capacity estimation device of the present invention is
A storage capacity estimation device that estimates the dischargeable storage capacity of the secondary battery based on the open-circuit voltage of the secondary battery having a characteristic that the internal resistance tends to increase as the dischargeable storage capacity decreases.
As the relationship between the estimated storage capacity, which is the dischargeable storage capacity of the secondary battery estimated to date, and the correction coefficient for correcting the internal resistance of the secondary battery, the correction coefficient increases as the estimated storage capacity decreases. The secondary battery is obtained by correcting a reference internal resistance serving as a reference of the internal resistance of the secondary battery by the correction coefficient obtained by applying the estimated storage capacity to a correction relationship having a storage capacity relationship of Internal resistance voltage calculation means for calculating a voltage generated by the internal resistance of the secondary battery when the secondary battery is charged and discharged by multiplying the charge / discharge current of
Unit time is calculated by multiplying the voltage generated by the polarization of the secondary battery calculated up to now by a ratio corresponding to a predetermined time constant and the maximum polarization voltage which is the maximum value of the voltage generated by the polarization of the secondary battery. A polarization voltage calculating means for calculating a voltage generated by polarization of the secondary battery when the secondary battery is charged / discharged by a sum of the product divided by the predetermined time constant;
Based on the open-circuit voltage of the secondary battery obtained by subtracting the voltage generated by the calculated internal resistance of the secondary battery from the voltage between the terminals of the secondary battery and the voltage generated by the polarization of the calculated secondary battery. Storage capacity estimation means for estimating the dischargeable storage capacity of the secondary battery,
It is a summary to provide.

この本発明の蓄電容量推定装置では、現在までに推定された二次電池の放電可能な蓄電容量である推定蓄電容量と二次電池の内部抵抗を補正する補正係数との関係として推定蓄電容量が小さいほど補正係数が大きくなる傾向の蓄電容量関係を有する補正関係に推定蓄電容量を適用して得られる補正係数により二次電池の内部抵抗の基準となる基準内部抵抗を補正したものに対して二次電池の充放電電流を乗じることによって二次電池を充放電したときに二次電池の内部抵抗により生じる電圧を演算し、現在までに演算された二次電池の分極により生じる電圧に所定の時定数に応じた割合を乗じたものと二次電池の分極により生じる電圧の最大値である最大分極電圧に単位時間を所定の時定数で割ったものを乗じたものとの和によって二次電池を充放電したときに二次電池の分極により生じる電圧を演算する。そして、二次電池の端子間電圧から演算された二次電池の内部抵抗により生じる電圧と演算された二次電池の分極により生じる電圧とを減じて得られる二次電池の開放電圧に基づいて二次電池の放電可能な蓄電容量を推定する。これにより、二次電池の開放電圧をより適正に演算することができるから、二次電池の放電可能な蓄電容量をより適正に推定することができる。   In the storage capacity estimation apparatus of the present invention, the estimated storage capacity is calculated as a relationship between the estimated storage capacity that is the dischargeable storage capacity of the secondary battery estimated up to now and the correction coefficient for correcting the internal resistance of the secondary battery. A correction coefficient obtained by applying the estimated storage capacity to a correction relationship having a storage capacity relationship in which the correction coefficient tends to increase as the correction coefficient decreases. The voltage generated by the internal resistance of the secondary battery when the secondary battery is charged and discharged by multiplying the charge / discharge current of the secondary battery is calculated, and the voltage generated by the polarization of the secondary battery calculated so far Rechargeable battery by the sum of the ratio according to the constant multiplied by the maximum polarization voltage, which is the maximum value of the voltage generated by the polarization of the secondary battery, multiplied by the unit time divided by the predetermined time constant Calculating a voltage generated by the polarization of the secondary battery when charging and discharging. Then, based on the open voltage of the secondary battery obtained by subtracting the voltage generated by the internal resistance of the secondary battery calculated from the voltage between the terminals of the secondary battery and the voltage generated by the polarization of the calculated secondary battery. Estimate the dischargeable storage capacity of the secondary battery. Thereby, since the open circuit voltage of a secondary battery can be calculated more appropriately, the storage capacity of the secondary battery that can be discharged can be estimated more appropriately.

こうした本発明の蓄電容量推定装置において、前記補正関係は、前記二次電池の温度と前記補正係数との関係として前記二次電池の温度が所定温度以上では該温度が低いほど前記補正係数が大きくなり前記二次電池の温度が前記所定温度未満では該温度が低いほど前記補正係数が小さくなる傾向の温度関係と前記蓄電容量関係とを有する関係であり、前記内部抵抗電圧演算手段は、前記補正関係に前記二次電池の温度と前記推定蓄電容量とを適用して得られる前記補正係数により前記基準内部抵抗を補正する手段である、ものとすることもできる。こうすれば、基準内部抵抗をより適正に補正することができる。   In such a storage capacity estimation device according to the present invention, the correction relationship is a relationship between the temperature of the secondary battery and the correction coefficient. When the temperature of the secondary battery is equal to or higher than a predetermined temperature, the correction coefficient increases as the temperature decreases. When the temperature of the secondary battery is less than the predetermined temperature, the correction coefficient tends to be smaller as the temperature is lower, and the relationship between the storage capacity and the storage capacity relationship. The reference internal resistance may be corrected by the correction coefficient obtained by applying the temperature of the secondary battery and the estimated storage capacity to the relationship. In this way, the reference internal resistance can be corrected more appropriately.

また、本発明の蓄電容量推定装置において、前記分極電圧演算手段は、前記二次電池を充放電したときに第1の時定数をもって変化する前記二次電池の第1の分極により生じる電圧の現在までに演算された値に前記第1の時定数に応じた割合を乗じたものと前記二次電池の第1の分極により生じる電圧の最大値である第1の最大分極電圧に前記単位時間を前記第1の時定数で割ったものを乗じたものとの和によって前記二次電池を充放電したときに該二次電池の第1の分極により生じる電圧を演算し、前記二次電池を充放電したときに前記第1の時定数より大きい第2の時定数をもって変化する前記二次電池の第2の分極により生じる電圧の現在までに演算された値に前記第2の時定数に応じた割合を乗じたものと前記二次電池の第2の分極により生じる電圧の最大値である第2の最大分極電圧に前記単位時間を前記第2の時定数で割ったものを乗じたものとの和によって前記二次電池を充放電したときに該二次電池の第2の分極により生じる電圧を演算し、前記演算した二次電池の第1の分極により生じる電圧と前記演算した二次電池の第2の分極により生じる電圧との和として前記二次電池の分極により生じる電圧を演算する手段である、ものとすることもできる。こうすれば、二次電池の分極により生じる電圧をより適正に演算することができる。   In the storage capacity estimation device of the present invention, the polarization voltage calculation means may be configured to provide a current voltage generated by the first polarization of the secondary battery that changes with a first time constant when the secondary battery is charged / discharged. The unit time is calculated by multiplying the value calculated so far by a ratio corresponding to the first time constant and the first maximum polarization voltage which is the maximum value of the voltage generated by the first polarization of the secondary battery. The voltage generated by the first polarization of the secondary battery when the secondary battery is charged / discharged by the sum of the product divided by the first time constant is multiplied by the secondary battery. A value calculated by the present time of the voltage generated by the second polarization of the secondary battery that changes with a second time constant larger than the first time constant when discharged corresponds to the second time constant. Multiplied by the ratio and the second polarization of the secondary battery When the secondary battery is charged / discharged by the sum of the second maximum polarization voltage, which is the maximum value of the generated voltage, multiplied by the unit time divided by the second time constant. The voltage generated by the second polarization of the battery is calculated, and the secondary battery is calculated as the sum of the voltage generated by the calculated first polarization of the secondary battery and the voltage generated by the calculated second polarization of the secondary battery. It is also possible to use a means for calculating a voltage generated by the polarization. In this way, the voltage generated by the polarization of the secondary battery can be calculated more appropriately.

この二次電池の第1の分極により生じる電圧と第2の分極により生じる電圧との和として二次電池の分極により生じる電圧を演算する態様の本発明の蓄電容量推定装置において、前記分極電圧演算手段は、前記推定蓄電容量と前記第1の最大分極電圧を補正する第1の分極用補正係数との関係として前記推定蓄電容量が小さいほど前記第1の分極用補正係数が大きくなる傾向の第2の蓄電容量関係を有する第1の分極用補正関係に前記推定蓄電容量を適用して得られる前記第1の分極用補正係数により前記第1の最大分極電圧を補正したものを前記第1の最大分極電圧に代えて用いて前記二次電池の第1の分極により生じる電圧を演算し、前記推定蓄電容量と前記第2の最大分極電圧を補正する第2の分極用補正係数との関係として前記推定蓄電容量が小さいほど前記第2の分極用補正係数が大きくなる傾向の第3の蓄電容量関係を有する第2の分極用補正関係に前記推定蓄電容量を適用して得られる前記第2の分極用補正係数により前記第2の最大分極電圧を補正したものを前記第2の最大分極電圧に代えて用いて前記二次電池の第2の分極により生じる電圧を演算する手段である、ものとすることもできる。こうすれば、二次電池の第1の分極により生じる電圧と第2の分極により生じる電圧とをより適正に演算することができる。   In the storage capacity estimation device according to the aspect of the present invention, wherein the voltage generated by the polarization of the secondary battery is calculated as the sum of the voltage generated by the first polarization of the secondary battery and the voltage generated by the second polarization, the polarization voltage calculation According to a first aspect of the present invention, the first polarization correction coefficient tends to increase as the estimated storage capacity decreases as the relationship between the estimated storage capacity and the first polarization correction coefficient that corrects the first maximum polarization voltage. The first maximum polarization voltage is corrected by the first polarization correction coefficient obtained by applying the estimated storage capacity to the first polarization correction relation having two storage capacity relations. As a relationship between the estimated storage capacity and the second polarization correction coefficient that corrects the second maximum polarization voltage by calculating the voltage generated by the first polarization of the secondary battery using instead of the maximum polarization voltage The estimation For the second polarization obtained by applying the estimated storage capacity to a second polarization correction relation having a third storage capacity relation in which the second polarization correction coefficient tends to increase as the electric capacity decreases. It is a means for calculating a voltage generated by the second polarization of the secondary battery by using the correction of the second maximum polarization voltage by a correction coefficient instead of the second maximum polarization voltage. You can also. In this way, the voltage generated by the first polarization and the voltage generated by the second polarization of the secondary battery can be calculated more appropriately.

この第1の最大分極電圧と第2の最大分極電圧とを補正して二次電池の第1の分極により生じる電圧と第2の分極により生じる電圧との和として二次電池の分極により生じる電圧を演算する態様の本発明の蓄電容量推定装置において、前記第1の分極用補正関係は、前記二次電池の温度と前記第1の分極用補正係数との関係として前記二次電池の温度が第2の所定温度以上では該温度が低いほど前記第1の分極用補正係数が大きくなり前記二次電池の温度が前記第2の所定温度未満では該温度が低いほど前記第1の分極用補正係数が小さくなる傾向の第2の温度関係と前記第2の蓄電容量関係とを有する関係であり、前記第2の分極用補正関係は、前記二次電池の温度と前記第2の分極用補正係数との関係として前記二次電池の温度が第3の所定温度以上では該温度が低いほど前記第2の分極用補正係数が大きくなり前記二次電池の温度が前記第3の所定温度未満では該温度が低いほど前記第2の分極用補正係数が小さくなる傾向の第3の温度関係と前記第3の蓄電容量関係とを有する関係であり、前記分極電圧演算手段は、前記第1の分極用補正関係に前記二次電池の温度と前記推定蓄電容量とを適用して得られる前記第1の分極用補正係数により前記第1の最大分極電圧を補正し、前記第2の分極用補正係数に前記二次電池の温度と前記推定蓄電容量とを適用して得られる前記第2の分極用補正係数により前記第2の最大分極電圧を補正する手段である、ものとすることもできる。こうすれば、第1の最大分極電圧と第2の最大分極電圧とをより適正に補正することができる。   The voltage generated by the polarization of the secondary battery as the sum of the voltage generated by the first polarization of the secondary battery and the voltage generated by the second polarization by correcting the first maximum polarization voltage and the second maximum polarization voltage. In the storage capacity estimation device of the present invention that calculates A, the first polarization correction relationship is the relationship between the temperature of the secondary battery and the first polarization correction coefficient. If the temperature is lower than the second predetermined temperature, the first polarization correction coefficient becomes larger as the temperature is lower. If the temperature of the secondary battery is lower than the second predetermined temperature, the lower the temperature is, the lower the first polarization correction coefficient is. The second polarization relationship is a relationship having a second temperature relationship in which the coefficient tends to be smaller and the second storage capacity relationship, and the second polarization correction relationship is the temperature of the secondary battery and the second polarization correction. As a relationship with the coefficient, the temperature of the secondary battery is the third If the temperature is lower than a predetermined temperature, the second polarization correction coefficient increases as the temperature decreases. If the temperature of the secondary battery is lower than the third predetermined temperature, the second polarization correction coefficient decreases as the temperature decreases. A third voltage relationship and a third power storage capacity relationship, and the polarization voltage calculating means includes the second battery temperature and the estimated power storage capacity in the first polarization correction relationship. The first maximum polarization voltage is corrected by the first polarization correction coefficient obtained by applying the above and the temperature of the secondary battery and the estimated storage capacity are applied to the second polarization correction coefficient. The second maximum polarization voltage can be corrected by the second polarization correction coefficient obtained as described above. In this way, the first maximum polarization voltage and the second maximum polarization voltage can be corrected more appropriately.

また、第1の最大分極電圧と第2の最大分極電圧とを補正して二次電池の第1の分極により生じる電圧と第2の分極により生じる電圧との和として二次電池の分極により生じる電圧を演算する態様の本発明の蓄電容量推定装置において、前記分極電圧演算手段は、前記第1の最大分極電圧をFI1,前記第1の分極用補正係数をKb,前記第1の時定数をτ1,前記二次電池の第1の分極により生じる電圧の現在までに演算された値をVdyn1(前回),前記第2の最大分極電圧をFI2,前記第2の分極用補正係数をKc,前記第2の所定の時定数をτ2,前記二次電池の第2の分極により生じる電圧の現在までに演算された値をVdyn2(前回),前記単位時間をΔtとしたときに、Vdyn1(前回)・exp(−Δt/τ1)+FI1・Kb・Δt/τ1により前記二次電池の第1の分極により生じる電圧を演算し、Vdyn2(前回)・exp(−Δt/τ2)+FI2・Kc・Δt/τ2により前記二次電池の第2の分極により生じる電圧を演算する手段である、ものとすることもできる。   Further, the first maximum polarization voltage and the second maximum polarization voltage are corrected, and the sum of the voltage generated by the first polarization of the secondary battery and the voltage generated by the second polarization is generated by the polarization of the secondary battery. In the storage capacity estimation device of the present invention that calculates a voltage, the polarization voltage calculation means includes FI as the first maximum polarization voltage, Kb as the first correction coefficient for polarization, and the first time constant as the first time constant. τ1, Vdyn1 (previous) a value calculated to date of the voltage generated by the first polarization of the secondary battery, FI2 as the second maximum polarization voltage, Kc as the second correction coefficient for polarization, Vdyn1 (previous) when τ2 is a second predetermined time constant, Vdyn2 (previous) is a value calculated to date of the voltage generated by the second polarization of the secondary battery, and Δt is the unit time. Exp (−Δt / τ1) + FI The voltage generated by the first polarization of the secondary battery is calculated by 1 · Kb · Δt / τ1, and the secondary battery's second voltage is calculated by Vdyn2 (previous) · exp (−Δt / τ2) + FI2 · Kc · Δt / τ2. It can also be a means for calculating a voltage generated by the polarization of 2.

本発明の蓄電容量推定方法は、
放電可能な蓄電容量が小さいほど内部抵抗が大きくなる傾向の特性を有する二次電池の開放電圧に基づいて前記二次電池の放電可能な蓄電容量を推定する蓄電容量推定方法であって、
(a)現在までに推定された前記二次電池の放電可能な蓄電容量である推定蓄電容量と前記二次電池の内部抵抗を補正する補正係数との関係として前記推定蓄電容量が小さいほど前記補正係数が大きくなる傾向の蓄電容量関係を有する補正関係に前記推定蓄電容量を適用して得られる前記補正係数により前記二次電池の内部抵抗の基準となる基準内部抵抗を補正したものに対して前記二次電池の充放電電流を乗じることによって前記二次電池を充放電したときに該二次電池の内部抵抗により生じる電圧を演算し、現在までに演算された前記二次電池の分極により生じる電圧に所定の時定数に応じた割合を乗じたものと前記二次電池の分極により生じる電圧の最大値である最大分極電圧に単位時間を前記所定の時定数で割ったものを乗じたものとの和によって前記二次電池を充放電したときに該二次電池の分極により生じる電圧を演算し、
(b)前記二次電池の端子間電圧から前記演算された二次電池の内部抵抗により生じる電圧と前記演算された二次電池の分極により生じる電圧とを減じて得られる前記二次電池の開放電圧に基づいて前記二次電池の放電可能な蓄電容量を推定する、
ことを要旨とする。
The storage capacity estimation method of the present invention is:
A storage capacity estimation method for estimating a dischargeable storage capacity of the secondary battery based on an open circuit voltage of the secondary battery having a characteristic that the internal resistance tends to increase as the dischargeable storage capacity decreases,
(A) The correction as the estimated storage capacity is smaller as the relationship between the estimated storage capacity that is the dischargeable storage capacity of the secondary battery estimated up to now and the correction coefficient for correcting the internal resistance of the secondary battery The reference internal resistance that is a reference of the internal resistance of the secondary battery is corrected by the correction coefficient obtained by applying the estimated storage capacity to the correction relation having the storage capacity relation in which the coefficient tends to increase. The voltage generated by the internal resistance of the secondary battery when the secondary battery is charged / discharged by multiplying the charge / discharge current of the secondary battery, and the voltage generated by the polarization of the secondary battery calculated so far Multiplied by a ratio corresponding to a predetermined time constant multiplied by a maximum polarization voltage, which is the maximum voltage generated by the polarization of the secondary battery, divided by a unit time divided by the predetermined time constant By the sum of calculating the voltage generated by the polarization of the secondary battery when charging and discharging the secondary battery,
(B) Opening of the secondary battery obtained by subtracting the voltage generated by the calculated internal resistance of the secondary battery from the voltage between the terminals of the secondary battery and the voltage generated by the polarization of the calculated secondary battery Estimating the dischargeable storage capacity of the secondary battery based on the voltage;
This is the gist.

この本発明の蓄電容量推定方法では、現在までに推定された二次電池の放電可能な蓄電容量である推定蓄電容量と二次電池の内部抵抗を補正する補正係数との関係として推定蓄電容量が小さいほど補正係数が大きくなる傾向の蓄電容量関係を有する補正関係に推定蓄電容量を適用して得られる補正係数により二次電池の内部抵抗の基準となる基準内部抵抗を補正したものに対して二次電池の充放電電流を乗じることによって二次電池を充放電したときに二次電池の内部抵抗により生じる電圧を演算し、現在までに演算された二次電池の分極により生じる電圧に所定の時定数に応じた割合を乗じたものと二次電池の分極により生じる電圧の最大値である最大分極電圧に単位時間を所定の時定数で割ったものを乗じたものとの和によって二次電池を充放電したときに二次電池の分極により生じる電圧を演算する。そして、二次電池の端子間電圧から演算された二次電池の内部抵抗により生じる電圧と演算された二次電池の分極により生じる電圧とを減じて得られる二次電池の開放電圧に基づいて二次電池の放電可能な蓄電容量を推定する。これにより、二次電池の開放電圧をより適正に演算することができるから、二次電池の放電可能な蓄電容量をより適正に推定することができる。   In this method of estimating the storage capacity of the present invention, the estimated storage capacity is calculated as the relationship between the estimated storage capacity that is the dischargeable storage capacity of the secondary battery estimated up to now and the correction coefficient for correcting the internal resistance of the secondary battery. A correction coefficient obtained by applying the estimated storage capacity to a correction relationship having a storage capacity relationship in which the correction coefficient tends to increase as the correction coefficient decreases. The voltage generated by the internal resistance of the secondary battery when the secondary battery is charged and discharged by multiplying the charge / discharge current of the secondary battery is calculated, and the voltage generated by the polarization of the secondary battery calculated so far Rechargeable battery by the sum of the ratio according to the constant multiplied by the maximum polarization voltage, which is the maximum value of the voltage generated by the polarization of the secondary battery, multiplied by the unit time divided by the predetermined time constant Calculating a voltage generated by the polarization of the secondary battery when charging and discharging. Then, based on the open voltage of the secondary battery obtained by subtracting the voltage generated by the internal resistance of the secondary battery calculated from the voltage between the terminals of the secondary battery and the voltage generated by the polarization of the calculated secondary battery. Estimate the dischargeable storage capacity of the secondary battery. Thereby, since the open circuit voltage of a secondary battery can be calculated more appropriately, the storage capacity of the secondary battery that can be discharged can be estimated more appropriately.

本発明の一実施例である蓄電容量推定装置を搭載したハイブリッド自動車20の構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the hybrid vehicle 20 carrying the electrical storage capacity estimation apparatus which is one Example of this invention. 実施例のバッテリECU52により実行される蓄電量推定ルーチンの一例を示すフローチャートである。It is a flowchart which shows an example of the electrical storage amount estimation routine performed by battery ECU52 of an Example. バッテリ50を充電しているときの端子間電圧Vbと開放電圧Voとの時間変化の様子の一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the mode of the time change of the voltage Vb between terminals when the battery 50 is charging, and the open circuit voltage Vo. バッテリ50を放電しているときの端子間電圧Vbと開放電圧Voとの時間変化の様子の一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the mode of the time change of the voltage Vb between terminals when the battery 50 is discharged, and the open circuit voltage Vo. バッテリ50の蓄電量設定用マップの一例を示す説明図である。4 is an explanatory diagram showing an example of a storage amount setting map of a battery 50. FIG. 内部抵抗用補正係数設定用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the correction coefficient setting map for internal resistance. バッテリ50の第1分極により生じる電圧Vdyn1と第1時定数τ1と第1最大分極電圧FI1との関係の一例を示す説明図である。6 is an explanatory diagram showing an example of a relationship among a voltage Vdyn1, a first time constant τ1, and a first maximum polarization voltage FI1 generated by the first polarization of the battery 50. FIG. 第1分極用補正係数設定用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the correction coefficient setting map for 1st polarization. 第2分極用補正係数設定用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the correction coefficient setting map for 2nd polarization. バッテリ50を放電しているときの端子間電圧Vbと開放電圧Voとの時間変化の様子の一例を示す説明図である。It is explanatory drawing which shows an example of the mode of a time change of the voltage Vb between terminals when the battery 50 is discharged, and the open circuit voltage Vo. 変形例の補正係数設定用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the correction coefficient setting map of a modification.

次に、本発明を実施するための形態を実施例を用いて説明する。   Next, the form for implementing this invention is demonstrated using an Example.

図1は、本発明の一実施例である蓄電容量推定装置を搭載したハイブリッド自動車20の構成の概略を示す構成図である。実施例のハイブリッド自動車20は、図示するように、ガソリンや軽油などを燃料とする内燃機関として構成されたエンジン32と、種々の検出値や制御値を入力してエンジン32を駆動制御するエンジン用電子制御ユニット(以下、エンジンECUという)36と、エンジン32のクランクシャフト34にキャリアが接続されると共に駆動輪26a,26bにデファレンシャルギヤ24を介して連結された駆動軸22にリングギヤが接続された遊星歯車機構38と、例えば同期発電電動機として構成されて回転子が遊星歯車機構38のサンギヤに接続されたモータMG1と、例えば同期発電電動機として構成されて回転子が駆動軸22に接続されたモータMG2と、モータMG1,MG2を駆動するインバータ41,42と、種々の検出値や制御値を入力してインバータ41,42の図示しないスイッチング素子をスイッチング制御することによってモータMG1,MG2を駆動制御するモータ用電子制御ユニット(以下、モータECUという)44と、インバータ41,42が共用する電力ライン46を介してモータMG1,MG2と電力をやりとりするバッテリ50と、バッテリ50を管理するバッテリ用電子制御ユニット(以下、バッテリECUという)52と、電力ライン46を介してバッテリ50を外部電源70からの電力を用いて充電する充電器54と、車両全体を制御するハイブリッド用電子制御ユニット60と、を備える。なお、実施例の蓄電容量推定装置としては、主としてバッテリECU52が該当する。   FIG. 1 is a configuration diagram showing an outline of the configuration of a hybrid vehicle 20 equipped with a storage capacity estimation device according to an embodiment of the present invention. As shown in the figure, the hybrid vehicle 20 of the embodiment is for an engine 32 configured as an internal combustion engine using gasoline, light oil, or the like as fuel, and an engine for driving and controlling the engine 32 by inputting various detection values and control values. A carrier is connected to an electronic control unit (hereinafter referred to as an engine ECU) 36 and a crankshaft 34 of the engine 32, and a ring gear is connected to a drive shaft 22 connected to drive wheels 26a and 26b via a differential gear 24. A planetary gear mechanism 38, for example, a motor MG1 configured as a synchronous generator motor and having a rotor connected to the sun gear of the planetary gear mechanism 38, and a motor configured as a synchronous generator motor and having a rotor connected to the drive shaft 22, for example. MG2, inverters 41 and 42 for driving motors MG1 and MG2, and various detection values The inverters 41 and 42 are commonly used by a motor electronic control unit (hereinafter referred to as a motor ECU) 44 that drives and controls the motors MG1 and MG2 by inputting control values to control switching of the switching elements (not shown) of the inverters 41 and 42. A battery 50 that exchanges power with the motors MG1 and MG2 via the power line 46, a battery electronic control unit (hereinafter referred to as a battery ECU) 52 that manages the battery 50, and the battery 50 externally via the power line 46. A charger 54 that charges using electric power from a power source 70 and a hybrid electronic control unit 60 that controls the entire vehicle are provided. Note that the battery ECU 52 mainly corresponds to the storage capacity estimation device of the embodiment.

バッテリ50は、リチウムイオン電池などとして構成された複数のセルを直列接続してなる複数の電池モジュールが直列に接続された二次電池として構成されており、家庭用電源(AC100V)などの車外の外部電源70が接続されたコネクタ72と充電器54が接続されたコネクタ56とが連結されたときには、車両が走行を開始する前に外部電源70からの電力を用いて充電器54により充電することができるようになっている。充電器54は、図示しないAC/DCコンバータやDC/DCコンバータ,バッテリ50への電力供給を遮断するリレーなどを有する。   The battery 50 is configured as a secondary battery in which a plurality of battery modules formed by connecting a plurality of cells configured as lithium ion batteries or the like in series are connected in series. When the connector 72 to which the external power source 70 is connected and the connector 56 to which the charger 54 is connected, the battery 54 is charged by using the power from the external power source 70 before the vehicle starts traveling. Can be done. The charger 54 includes an AC / DC converter or a DC / DC converter (not shown), a relay that cuts off power supply to the battery 50, and the like.

バッテリECU52は、CPU52aを中心とするマイクロプロセッサとして構成されており、CPU52aの他に処理プログラムを記憶するROM52bとデータを一時的に記憶するRAM52cと図示しない入出力ポートおよび通信ポートとを備える。バッテリECU52には、バッテリ50の端子間に取り付けられた電圧センサ51aからの端子間電圧Vbやバッテリ50の正極端子近傍に取り付けられてバッテリ50を充放電する電流を検出する電流センサ51bからの充放電電流Ib,バッテリ50の一部(例えば、複数の電池モジュールのうちの1つなど)に取り付けられた温度センサ51cからの電池温度Tb,複数の電池モジュールの各々の端子間電圧を検出する図示しない複数の電圧センサからの電圧などが入力ポートを介して入力されており、必要に応じてバッテリ50の状態に関するデータを通信によりハイブリッド用電子制御ユニット60に出力する。また、バッテリECU52は、バッテリ50の全容量に対する蓄電されている容量の割合(全容量に対する放電可能な蓄電容量の割合)である蓄電量SOCを推定したり、推定した残容量SOCと電池温度Tbとに基づいてバッテリ50を充放電してもよい最大許容電力である入出力制限Win,Woutを演算している。バッテリ50の入出力制限Win,Woutは、電池温度Tbに基づいて入出力制限Win,Woutの基本値を設定し、バッテリ50の蓄電量SOCに基づいて入力制限用補正係数と出力制限用補正係数とを設定し、設定した入出力制限Win,Woutの基本値に補正係数を乗じることにより設定することができる。なお、バッテリ50は、各セルが同一のものとして構成されており、同じセル数の各電池モジュールも同一のものとして構成されている。また、バッテリ50を構成する各セルは、各セルの容量に対する蓄電されている容量の割合(容量に対する放電可能な蓄電容量の割合)が小さいほど内部抵抗が大きくなる特性を有しているため、バッテリ50は、バッテリ50の蓄電量SOCが小さいほど内部抵抗が大きくなる特性を有するものとなっている。   The battery ECU 52 is configured as a microprocessor centered on the CPU 52a, and includes a ROM 52b for storing a processing program, a RAM 52c for temporarily storing data, an input / output port and a communication port (not shown), in addition to the CPU 52a. The battery ECU 52 is charged / charged from a current sensor 51b that detects an inter-terminal voltage Vb from a voltage sensor 51a attached between terminals of the battery 50 and a current that is attached near the positive terminal of the battery 50 and charges / discharges the battery 50. The discharge current Ib, the battery temperature Tb from the temperature sensor 51c attached to a part of the battery 50 (for example, one of the battery modules, etc.), and the inter-terminal voltage of each of the battery modules are illustrated. Voltages from a plurality of voltage sensors that are not input are input via the input port, and data related to the state of the battery 50 is output to the hybrid electronic control unit 60 by communication as necessary. Further, the battery ECU 52 estimates the stored amount SOC, which is the ratio of the stored capacity to the total capacity of the battery 50 (the ratio of the dischargeable storage capacity to the total capacity), or the estimated remaining capacity SOC and the battery temperature Tb. Based on the above, the input / output limits Win and Wout, which are the maximum allowable power that may charge / discharge the battery 50, are calculated. The input / output limits Win and Wout of the battery 50 set basic values of the input / output limits Win and Wout based on the battery temperature Tb, and the input limiting correction coefficient and the output limiting correction coefficient based on the storage amount SOC of the battery 50. Can be set by multiplying the basic values of the set input / output limits Win and Wout by a correction coefficient. In the battery 50, each cell is configured to be the same, and each battery module having the same number of cells is also configured to be the same. Further, each cell constituting the battery 50 has a characteristic that the internal resistance increases as the ratio of the stored capacity to the capacity of each cell (the ratio of the dischargeable storage capacity to the capacity) decreases. The battery 50 has a characteristic that the internal resistance increases as the charged amount SOC of the battery 50 decreases.

ハイブリッド用電子制御ユニット60は、図示しないCPUを中心とするマイクロプロセッサとして構成されており、CPUの他にROMやRAM,入出力ポートおよび通信ポートを備える。ハイブリッド用電子制御ユニット60は、シフトレバーのポジションを検出するシフトポジションセンサ62からのシフトポジションやアクセルペダルの踏み込み量を検出するアクセルペダルポジションセンサ64からのアクセル開度,ブレーキペダルの踏み込み量を検出するブレーキペダルポジションセンサ66からのブレーキポジション,車速センサ68からの車速などを入力ポートを介して入力すると共に、充電器54の図示しないAC/DCコンバータやDC/DCコンバータ,リレーを駆動する制御信号などを出力ポートを介して出力し、通信ポートを介して接続されたエンジンECU36やモータECU44,バッテリECU52と各種制御信号やデータのやりとりを行なっている。   The hybrid electronic control unit 60 is configured as a microprocessor centered on a CPU (not shown), and includes a ROM, a RAM, an input / output port, and a communication port in addition to the CPU. The hybrid electronic control unit 60 detects the shift position from the shift position sensor 62 that detects the position of the shift lever, the accelerator opening degree from the accelerator pedal position sensor 64 that detects the depression amount of the accelerator pedal, and the depression amount of the brake pedal. The brake position from the brake pedal position sensor 66 and the vehicle speed from the vehicle speed sensor 68 are input via the input port, and a control signal for driving an AC / DC converter, DC / DC converter, and relay (not shown) of the charger 54. Etc. are output via the output port, and various control signals and data are exchanged with the engine ECU 36, the motor ECU 44, and the battery ECU 52 connected via the communication port.

また、ハイブリッド用電子制御ユニット60により実行される駆動制御では、外部電源70からの電力を用いた充電器54によるバッテリ50の充電によりバッテリ50を満充電などの状態として走行を開始したときに、バッテリ50の蓄電量SOCが所定の下限値(例えば、25%や35%など)未満に至るまでは、エンジン32の運転を停止した状態とするよう運転停止指令をエンジンECU36に送信し、モータMG1のトルク指令に値0を設定すると共にバッテリ50の入出力制限Win,Woutの範囲内で駆動軸22に要求トルクが出力されるようモータMG2のトルク指令を設定し、設定したトルク指令をモータECU44に送信する。運転停止指令を受信したエンジンECU36はエンジン32の燃料噴射制御や点火制御などの運転制御を停止し、トルク指令を受信したモータECU44はモータMG1を駆動停止するようインバータ41を制御すると共にトルク指令でモータMG2が駆動されるようインバータ42のスイッチング素子のスイッチング制御を行なう。こうした制御により、実施例のハイブリッド自動車20は、バッテリ50の蓄電量SOCが所定の下限値未満に至るまでバッテリ50の電力を用いてモータMG2からの動力により走行する。   Further, in the drive control executed by the hybrid electronic control unit 60, when the battery 50 is charged by the charger 54 using the electric power from the external power source 70 and the battery 50 is in a fully charged state or the like, An operation stop command is transmitted to the engine ECU 36 so that the operation of the engine 32 is stopped until the charged amount SOC of the battery 50 is less than a predetermined lower limit value (for example, 25%, 35%, etc.), and the motor MG1 The torque command of the motor MG2 is set so that the required torque is output to the drive shaft 22 within the range of the input / output limits Win and Wout of the battery 50, and the set torque command is set to the motor ECU 44. Send to. The engine ECU 36 that has received the operation stop command stops operation control such as fuel injection control and ignition control of the engine 32, and the motor ECU 44 that has received the torque command controls the inverter 41 to stop driving the motor MG 1 and uses the torque command. Switching control of the switching element of the inverter 42 is performed so that the motor MG2 is driven. By such control, the hybrid vehicle 20 of the embodiment travels by the power from the motor MG2 using the electric power of the battery 50 until the charged amount SOC of the battery 50 reaches less than a predetermined lower limit value.

次に、こうして構成された実施例のハイブリッド自動車20に搭載された蓄電容量推定装置の動作、即ちバッテリ50の蓄電量SOCの推定について説明する。図2はバッテリECU52により実行される蓄電量推定ルーチンの一例を示すフローチャートである。このルーチンは、所定時間毎(例えば数msec毎)に繰り返し実行される。   Next, the operation of the storage capacity estimation device mounted on the hybrid vehicle 20 of the embodiment thus configured, that is, the estimation of the storage amount SOC of the battery 50 will be described. FIG. 2 is a flowchart illustrating an example of a storage amount estimation routine executed by the battery ECU 52. This routine is repeatedly executed every predetermined time (for example, every several msec).

蓄電量推定ルーチンが実行されると、バッテリECU52のCPU52aは、まず、電圧センサ51aからのバッテリ50の端子間電圧Vbや電流センサ51bからのバッテリ50の充放電電流Ib,温度センサ51cからのバッテリ50の電池温度Tbなど蓄電量SOCの推定に必要なデータを入力する処理を実行する(ステップS100)。続いて、入力した充放電電流Ibが値0であるか否かを判定し(ステップS110)、充放電電流Ibが値0のときには後述の計算式で用いる充放電係数Kiに値0を設定し(ステップS120)、充放電電流Ibが値0でないときには充放電電流Ibを充放電電流Ibの絶対値で割ったものを充放電係数Kiとして計算する(ステップS130)。充放電電流Ibは、実施例では、バッテリ50を充電するときに正の値,バッテリ50を放電するときに負の値となるものとした。したがって、充放電係数Kiは、バッテリ50を充電しているときに値1,バッテリ50を放電しているときに値−1として計算され、バッテリ50の充放電が行なわれていないときには値0となる。   When the stored charge amount estimation routine is executed, the CPU 52a of the battery ECU 52 firstly has a voltage Vb between the terminals of the battery 50 from the voltage sensor 51a, a charge / discharge current Ib of the battery 50 from the current sensor 51b, and a battery from the temperature sensor 51c. A process of inputting data necessary for estimating the storage amount SOC such as the battery temperature Tb of 50 is executed (step S100). Subsequently, it is determined whether or not the input charging / discharging current Ib has a value of 0 (step S110). When the charging / discharging current Ib has a value of 0, a value of 0 is set to the charging / discharging coefficient Ki used in the calculation formula described later. (Step S120) When the charge / discharge current Ib is not 0, a value obtained by dividing the charge / discharge current Ib by the absolute value of the charge / discharge current Ib is calculated as the charge / discharge coefficient Ki (step S130). In the embodiment, the charge / discharge current Ib is a positive value when the battery 50 is charged and a negative value when the battery 50 is discharged. Therefore, the charge / discharge coefficient Ki is calculated as a value 1 when the battery 50 is charged, and a value −1 when the battery 50 is discharged, and a value 0 when the battery 50 is not charged / discharged. Become.

こうしてデータを入力し計算すると、バッテリ50を充放電したときにバッテリ50の内部抵抗により生じる電圧(充電時は開放電圧Voに対する電圧上昇分,放電時は開放電圧Voに対する電圧降下分)としての電圧Vrを計算すると共に(ステップS135)、バッテリ50を充放電したときにバッテリ50の分極(例えば、電極表面の電解質の濃度が減少することによる分極など)により生じる電圧としての電圧Vdynを計算し(ステップS155)、入力した端子間電圧Voから計算した内部抵抗による電圧Vrと分極による電圧Vdynとを減じたものをバッテリ50の開放電圧Voとして計算し(ステップS210)、計算した開放電圧Voに基づいてバッテリ50の蓄電量SOCを推定して(ステップS220)、蓄電量推定ルーチンを終了する。図3および図4にそれぞれバッテリ50を充電および放電しているときの端子間電圧Vbと開放電圧Voとの時間変化の様子の一例を模式的に示す。図3および図4中、電圧Vdyn1は、第1時定数τ1をもって変化する(例えば数百msec程度で最大値に至る)特性をもつ第1分極により生じる電圧を示し、電圧Vdyn2は、第1時定数τ1より大きい第2時定数τ2をもって変化する(例えば数秒程度で最大値に至る)特性をもつ第2分極により生じる電圧を示す。図3に示すように、バッテリ50を充電しているときには、端子間電圧Vbは、開放電圧Voよりも内部抵抗による電圧Vrと分極による電圧Vdynとの和の電圧分だけ大きくなると考えられる。また、図4に示すように、バッテリ50を放電しているときには、端子間電圧Vbは、開放電圧Voよりも内部抵抗による電圧Vrと分極による電圧Vdynとの和の電圧分だけ小さくなると考えられる。また、蓄電量SOCの推定は、実施例では、開放電圧Voと蓄電量SOCとの関係をバッテリ50の特性に基づいて予め実験などにより求めて蓄電量設定用マップとしてROM52bに記憶しておき、開放電圧Voが与えられると記憶したマップから対応する蓄電量SOCを導出して設定するものとした。図5に蓄電量設定用マップの一例を示す。したがって、内部抵抗による電圧Vrや分極による電圧Vdynをより正確に計算することができれば、端子間電圧Vbから開放電圧Voをより正確に計算することができ、こうして計算された開放電圧Voを蓄電量設定用マップに適用することによりバッテリ50の蓄電量SOCをより正確に推定することができるものとなる。以下、バッテリ50の内部抵抗により生じる電圧Vrの計算とバッテリ50の分極により生じる電圧Vdynの計算との詳細について説明する。   When the data is input and calculated in this way, the voltage as a voltage generated by the internal resistance of the battery 50 when the battery 50 is charged / discharged (a voltage increase with respect to the open circuit voltage Vo during charging and a voltage drop with respect to the open circuit voltage Vo during discharging) Vr is calculated (step S135), and a voltage Vdyn as a voltage generated by polarization of the battery 50 (for example, polarization due to decrease in the electrolyte concentration on the electrode surface) when the battery 50 is charged / discharged is calculated ( In step S155), a value obtained by subtracting the voltage Vr due to the internal resistance and the voltage Vdyn due to polarization calculated from the input terminal voltage Vo is calculated as the open circuit voltage Vo of the battery 50 (step S210), and based on the calculated open circuit voltage Vo. Then, the storage amount SOC of the battery 50 is estimated (step S220), and the storage amount estimation is performed. To end the routine. FIG. 3 and FIG. 4 schematically show an example of how the terminal voltage Vb and the open circuit voltage Vo change with time when the battery 50 is charged and discharged, respectively. 3 and 4, the voltage Vdyn1 indicates a voltage generated by the first polarization having a characteristic that changes with the first time constant τ1 (for example, reaches a maximum value in about several hundred msec), and the voltage Vdyn2 is the first time constant. A voltage generated by the second polarization having a characteristic that changes with a second time constant τ2 larger than the constant τ1 (for example, reaches a maximum value in several seconds) is shown. As shown in FIG. 3, when the battery 50 is charged, the inter-terminal voltage Vb is considered to be larger than the open circuit voltage Vo by the sum of the voltage Vr due to the internal resistance and the voltage Vdyn due to polarization. As shown in FIG. 4, when the battery 50 is discharged, the inter-terminal voltage Vb is considered to be smaller than the open circuit voltage Vo by the sum of the voltage Vr due to internal resistance and the voltage Vdyn due to polarization. . In addition, in the embodiment, the estimation of the storage amount SOC is obtained by previously obtaining the relationship between the open circuit voltage Vo and the storage amount SOC based on the characteristics of the battery 50 through experiments or the like, and stored in the ROM 52b as a storage amount setting map. When the open circuit voltage Vo is given, the corresponding stored power amount SOC is derived from the stored map and set. FIG. 5 shows an example of the storage amount setting map. Therefore, if the voltage Vr due to the internal resistance and the voltage Vdyn due to the polarization can be calculated more accurately, the open circuit voltage Vo can be calculated more accurately from the inter-terminal voltage Vb, and the open circuit voltage Vo thus calculated can be stored. By applying to the setting map, the charged amount SOC of the battery 50 can be estimated more accurately. Hereinafter, details of calculation of the voltage Vr generated by the internal resistance of the battery 50 and calculation of the voltage Vdyn generated by the polarization of the battery 50 will be described.

バッテリ50の内部抵抗による電圧Vrの計算では、バッテリ50の内部抵抗の基準となる基準内部抵抗Rbaseを補正するための内部抵抗用補正係数Kaを前回このルーチンを実行したときに推定された蓄電量(前回SOC)と電池温度Tbとに基づいて設定し(ステップS140)、設定した内部抵抗用補正係数Kaと基準内部抵抗Rbaseとの積に充放電電流Ibを乗じたものを内部抵抗による電圧Vrとして計算する(ステップS150)。ここで、基準内部抵抗Rbaseは、例えば、バッテリ50の電池温度Tbが常温(例えば15℃や20℃など)の状態でバッテリ50の蓄電量SOCがその蓄電量SOCを管理するための目標値(例えば55%や60%など)にあるときのバッテリ50の内部抵抗としてバッテリ50の特性に基づいて予め実験などにより求められたものなどを用いることができる。また、内部抵抗用補正係数Kaは、実施例では、前回SOCと電池温度Tbと内部抵抗用補正係数Kaとの関係をバッテリ50の特性に基づいて予め実験などにより求めて内部抵抗用補正係数設定用マップとしてROM52bに記憶しておき、前回SOCと電池温度Tbとが与えられると記憶したマップから対応する内部抵抗用補正係数Kaを導出して設定するものとした。図6に内部抵抗用補正係数設定用マップの一例を示す。図中、所定量Srefと所定温度Tbrefとは、実施例では、基準内部抵抗Rbaseを求めたときの蓄電量SOCと電池温度Tbとを用いるものとした。図示するように、内部抵抗用補正係数Kaは、前回SOCが所定量Sref以上の領域では値1.0が設定され、前回SOCが所定量Srefより小さいほど値1.0より大きくなる値が設定される。これは、バッテリ50の蓄電量SOCが小さいほど内部抵抗が大きくなるバッテリ50の特性に基づく。また、内部抵抗用補正係数Kaは、電池温度Tbが所定温度Tbref以上では電池温度Tbが温度Tb6,Tb5,Tb4と低くなるほど大きくなると共に電池温度Tbが所定温度Tbref未満では電池温度Tbが温度Tb3,Tb2,Tb1と低くなるほど小さくなる値が設定される。これは、電池温度Tbが所定温度Tbref近傍のときに効率よく充放電を行なうためのバッテリ50の仕様に基づく。この意味は、電池温度Tbが所定温度Tbref近傍のときには、基本的には電荷の授受をより多く行なうことができる一方で蓄電量SOCが小さくなり内部抵抗が大きくなるとこうした電荷の授受がより大きく制約されるという電池温度Tbの蓄電量SOCへの依存性に基づく、というものと考えられる。こうして基準内部抵抗Rbaseを補正したものを用いてバッテリ50の内部抵抗により生じる電圧Vrを計算するから、電圧Vrをより適正に計算することができる。   In the calculation of the voltage Vr due to the internal resistance of the battery 50, the amount of stored electricity estimated when the routine was executed last time with the internal resistance correction coefficient Ka for correcting the reference internal resistance Rbase serving as the reference for the internal resistance of the battery 50. (Previous SOC) is set based on the battery temperature Tb (step S140), and the product of the set internal resistance correction coefficient Ka and the reference internal resistance Rbase is multiplied by the charge / discharge current Ib to obtain a voltage Vr due to the internal resistance. (Step S150). Here, the reference internal resistance Rbase is, for example, a target value for managing the storage amount SOC of the storage amount SOC of the battery 50 when the battery temperature Tb of the battery 50 is normal temperature (for example, 15 ° C. or 20 ° C.). For example, as the internal resistance of the battery 50 at 55%, 60%, or the like, it is possible to use what is obtained in advance through experiments or the like based on the characteristics of the battery 50. Further, in the embodiment, the internal resistance correction coefficient Ka is obtained by experimentally determining in advance the relationship between the previous SOC, the battery temperature Tb, and the internal resistance correction coefficient Ka based on the characteristics of the battery 50 and setting the internal resistance correction coefficient Ka. It is stored in the ROM 52b as an operational map, and when the previous SOC and battery temperature Tb are given, the corresponding internal resistance correction coefficient Ka is derived and set from the stored map. FIG. 6 shows an example of the internal resistance correction coefficient setting map. In the drawing, the predetermined amount Sref and the predetermined temperature Tbref are assumed to use the charged amount SOC and the battery temperature Tb when the reference internal resistance Rbase is obtained in the embodiment. As shown in the figure, the internal resistance correction coefficient Ka is set to a value of 1.0 when the previous SOC is equal to or larger than the predetermined amount Sref, and is set to a value that becomes larger than the value 1.0 as the previous SOC is smaller than the predetermined amount Sref. Is done. This is based on the characteristics of the battery 50 in which the internal resistance increases as the charged amount SOC of the battery 50 decreases. The internal resistance correction coefficient Ka increases as the battery temperature Tb decreases to temperatures Tb6, Tb5, Tb4 when the battery temperature Tb is equal to or higher than the predetermined temperature Tbref, and the battery temperature Tb decreases to the temperature Tb3 when the battery temperature Tb is lower than the predetermined temperature Tbref. , Tb2 and Tb1 are set to be smaller values. This is based on the specification of the battery 50 for efficiently charging and discharging when the battery temperature Tb is in the vicinity of the predetermined temperature Tbref. This means that when the battery temperature Tb is in the vicinity of the predetermined temperature Tbref, more charge can be exchanged. However, when the charged amount SOC is reduced and the internal resistance is increased, the exchange of charge is more restricted. This is considered to be based on the dependence of the battery temperature Tb on the storage amount SOC. Since the voltage Vr generated by the internal resistance of the battery 50 is calculated using the corrected reference internal resistance Rbase, the voltage Vr can be calculated more appropriately.

バッテリ50の分極による電圧Vdynの計算では、まず、バッテリ50を充電または放電したときに第1時定数τ1をもって変化する第1分極による電圧Vdyn1の計算に用いられる第1最大分極電圧FI1を補正するために、第1分極用補正係数Kbを前回SOCと電池温度Tbとに基づいて設定し(ステップS160)、前回このルーチンを実行したときに計算した第1分極による電圧(前回Vdyn1)と本ルーチンの実行間隔としての単位時間Δtと第1時定数τ1と第1最大分極電圧FI1に第1分極用補正係数Kbを乗じて補正したものと充放電係数Kiとを用いて次式(1)により第1分極による電圧Vdyn1を計算する(ステップS170)。式(1)は、第1分極により生じる一次遅れ系に近似した電圧Vdyn1を計算するためのものであり、式(1)中、第1時定数τ1は、バッテリ50の特性に基づいて予め実験などにより求められたものを用いることができる。最大分極電圧FI1は、比較的短い時間で最大値に至る第1分極により生じる電圧の最大値(例えば、バッテリ50の電池温度Tbが常温の状態で蓄電量SOCが目標値にあるときの最大値(最終値)など)として、バッテリ50の特性に基づいて予め実験などにより求められたものを用いることができる。式(1)中、指数関数による値(exp(−Δt/τ1))は減衰率を示す。図7に、式(1)により計算されるバッテリ50の第1分極により生じる電圧Vdyn1と第1時定数τ1と第1最大分極電圧FI1との関係の一例を示す。なお、式(1)の左辺では充放電係数Kiを乗じるものとしたから、第1分極による電圧Vdyn1は、バッテリ50を充電しているときには正の値,バッテリ50を放電しているときには負の値,バッテリ50の充放電が行なわれていないときには前回Vdyn1に拘わらず値0になる。また、第1分極用補正係数Kbは、実施例では、前回SOCと電池温度Tbと第1分極用補正係数Kbとの関係をバッテリ50の特性に基づいて予め実験などにより求めて第1分極用補正係数設定用マップとしてROM52bに記憶しておき、前回SOCと電池温度Tbとが与えられると記憶したマップから対応する第1分極用補正係数Kbを導出して設定するものとした。図8に第1分極用補正係数設定用マップの一例を示す。図示するように、実施例では、図6の内部抵抗用補正係数設定用マップにおける内部抵抗用補正係数Kaの前回SOCに対する傾向と電池温度Tbに対する傾向と同じ傾向をもって前回SOCと電池温度Tbとに対して第1分極用補正係数Kbが設定されるように予め定められている。これは、バッテリ50の分極により生じる電圧の大きさは内部抵抗が大きいほど大きくなる傾向にあると考えられることに基づく。こうして第1最大分極電圧FI1を補正したものを用いてバッテリ50の第1分極により生じる電圧Vdyn1を計算するから、電圧Vdyn1をより適正に計算することができる。   In the calculation of the voltage Vdyn due to the polarization of the battery 50, first, the first maximum polarization voltage FI1 used for the calculation of the voltage Vdyn1 due to the first polarization that changes with the first time constant τ1 when the battery 50 is charged or discharged is corrected. Therefore, the correction coefficient Kb for the first polarization is set based on the previous SOC and the battery temperature Tb (step S160), the voltage by the first polarization (previous Vdyn1) calculated when the routine was executed last time, and the present routine. The following equation (1) is used by using a unit time Δt as an execution interval, a first time constant τ1, a first maximum polarization voltage FI1 multiplied by a first polarization correction coefficient Kb, and a charge / discharge coefficient Ki. The voltage Vdyn1 due to the first polarization is calculated (step S170). Expression (1) is for calculating the voltage Vdyn1 approximated to the first-order lag system caused by the first polarization. In the expression (1), the first time constant τ1 is previously determined based on the characteristics of the battery 50. What was calculated | required by etc. can be used. The maximum polarization voltage FI1 is the maximum value of the voltage generated by the first polarization that reaches the maximum value in a relatively short time (for example, the maximum value when the battery temperature Tb of the battery 50 is normal temperature and the charged amount SOC is at the target value). (Final value) etc.) can be used that has been obtained in advance by experiments or the like based on the characteristics of the battery 50. In the formula (1), a value (exp (−Δt / τ1)) by an exponential function indicates an attenuation rate. FIG. 7 shows an example of the relationship among the voltage Vdyn1, the first time constant τ1, and the first maximum polarization voltage FI1 generated by the first polarization of the battery 50 calculated by the equation (1). Since the left side of Equation (1) is multiplied by the charge / discharge coefficient Ki, the voltage Vdyn1 due to the first polarization is a positive value when the battery 50 is being charged, and is negative when the battery 50 is being discharged. When the battery 50 is not charged or discharged, the value is 0 regardless of the previous Vdyn1. Further, in the embodiment, the first polarization correction coefficient Kb is obtained by previously obtaining the relationship among the previous SOC, the battery temperature Tb, and the first polarization correction coefficient Kb based on the characteristics of the battery 50 by experiments or the like. The correction coefficient setting map is stored in the ROM 52b, and when the previous SOC and battery temperature Tb are given, the corresponding first polarization correction coefficient Kb is derived and set from the stored map. FIG. 8 shows an example of the first polarization correction coefficient setting map. As shown in the drawing, in the example, the internal SOC correction coefficient Ka in the internal resistance correction coefficient setting map shown in FIG. 6 has the same tendency as the previous SOC and the battery temperature Tb with respect to the previous SOC and the battery temperature Tb. On the other hand, it is determined in advance so that the first polarization correction coefficient Kb is set. This is based on the fact that the magnitude of the voltage generated by the polarization of the battery 50 tends to increase as the internal resistance increases. Since the voltage Vdyn1 generated by the first polarization of the battery 50 is calculated using the corrected first maximum polarization voltage FI1, the voltage Vdyn1 can be calculated more appropriately.

Vdyn1=[前回Vdyn1・exp(-Δt/τ1)+(FI1・Kb)・Δt/τ1]・Ki (1)   Vdyn1 = [previous Vdyn1 ・ exp (-Δt / τ1) + (FI1 ・ Kb) ・ Δt / τ1] ・ Ki (1)

バッテリ50の分極による電圧Vdynの計算では、更に、バッテリ50を充電または放電したときに第1時定数τ1より大きい第2時定数τ2をもって変化する第2分極による電圧Vdyn2の計算に用いられる第2最大分極電圧FI2を補正するために、第2分極用補正係数Kcを前回SOCと電池温度Tbとに基づいて設定し(ステップS180)、前回このルーチンを実行したときに計算した第2分極による電圧(前回Vdyn2)と本ルーチンの実行間隔としての単位時間Δtと第2時定数τ2と第2最大分極電圧FI2に第2分極用補正係数Kcを乗じて補正したものと充放電係数Kiとを用いて次式(2)により第2分極による電圧Vdyn2を計算し(ステップS190)、計算した第1分極による電圧Vdyn1に第2分極による電圧Vdyn2を加えたものをバッテリ50の分極により生じる電圧Vdynとして計算する(ステップS200)。式(2)は、第2分極により生じる一次遅れ系に近似した電圧Vdyn2を計算するためのものであり、式(2)中、第2時定数τ2は、バッテリ50の特性に基づいて予め実験などにより求められたものを用いることができる。第2最大分極電圧FI2は、比較的長い時間で最大値に至る第2分極により生じる電圧の最大値(例えば、バッテリ50の電池温度Tbが常温の状態で蓄電量SOCが目標値にあるときの最大値(最終値)など)として、バッテリ50の特性に基づいて予め実験などにより求められたものを用いることができる。なお、式(2)は、式(1)の前回Vdyn1,第1時定数τ1,第1最大分極電圧FI1,第1分極用補正係数Kbに代えて前回Vdyn2,第2時定数τ2,第2最大分極電圧FI2,第2分極用補正係数Kcを用いる点を除いて、式(1)と同じ計算を行なうためのものである。また、第2分極用補正係数Kcは、実施例では、前回SOCと電池温度Tbと第2分極用補正係数Kbとの関係をバッテリ50の特性に基づいて予め実験などにより求めて第2分極用補正係数設定用マップとしてROM52bに記憶しておき、前回SOCと電池温度Tbとが与えられると記憶したマップから対応する第2分極用補正係数Kcを導出して設定するものとした。図9に第2分極用補正係数設定用マップの一例を示す。図示するように、実施例では、図6の内部抵抗用補正係数設定用マップにおける内部抵抗用補正係数Kaの前回SOCに対する傾向と電池温度Tbに対する傾向と同じ傾向をもって前回SOCと電池温度Tbとに対して第2分極用補正係数Kcが設定されるように予め定められている。この理由については前述したのと同様である。こうして第2最大分極電圧FI2を補正したものを用いてバッテリ50の第2分極により生じる電圧Vdyn2を計算するから電圧Vdyn2をより適正に計算することができ、電圧Vdyn1と電圧Vdyn2との和としてのバッテリ50の分極により生じる電圧Vdynをより適正に計算することができる。これにより、端子間電圧Vbから電圧Vrと電圧Vdynとを減じて得られる開放電圧Voをより正確に計算することができ、こうして計算された開放電圧Voを蓄電量設定用マップに適用することによりバッテリ50の蓄電量SOCをより正確に推定することができる。   In the calculation of the voltage Vdyn due to the polarization of the battery 50, the second voltage Vdyn2 used for the calculation of the voltage Vdyn2 due to the second polarization that changes with the second time constant τ2 larger than the first time constant τ1 when the battery 50 is charged or discharged. In order to correct the maximum polarization voltage FI2, the second polarization correction coefficient Kc is set based on the previous SOC and battery temperature Tb (step S180), and the voltage due to the second polarization calculated when this routine was executed last time. (Previous Vdyn2), unit time Δt as the execution interval of this routine, the second time constant τ2, the second maximum polarization voltage FI2 multiplied by the second polarization correction coefficient Kc, and the charge / discharge coefficient Ki are used. Then, the voltage Vdyn2 due to the second polarization is calculated by the following equation (2) (step S190), and the second polarization is converted to the calculated voltage Vdyn1 due to the first polarization. The plus According voltage Vdyn2 calculated as the voltage Vdyn caused by polarization of the battery 50 (step S200). Expression (2) is for calculating the voltage Vdyn2 approximated to the first-order lag system generated by the second polarization, and in the expression (2), the second time constant τ2 is previously tested based on the characteristics of the battery 50. What was calculated | required by etc. can be used. The second maximum polarization voltage FI2 is the maximum value of the voltage generated by the second polarization that reaches the maximum value in a relatively long time (for example, when the battery temperature Tb of the battery 50 is normal temperature and the charged amount SOC is at the target value). As a maximum value (final value, etc.), a value that has been obtained in advance through experiments or the like based on the characteristics of the battery 50 can be used. The formula (2) is obtained by replacing the previous Vdyn1, the first time constant τ1, the first maximum polarization voltage FI1, the first polarization correction coefficient Kb of the formula (1) with the previous Vdyn2, the second time constant τ2, and the second time constant τ2. This is for performing the same calculation as the equation (1) except that the maximum polarization voltage FI2 and the second polarization correction coefficient Kc are used. Further, in the embodiment, the second polarization correction coefficient Kc is obtained by experimentally determining the relationship between the previous SOC, the battery temperature Tb, and the second polarization correction coefficient Kb based on the characteristics of the battery 50 in advance. The correction coefficient setting map is stored in the ROM 52b, and when the previous SOC and battery temperature Tb are given, the corresponding second polarization correction coefficient Kc is derived and set from the stored map. FIG. 9 shows an example of the second polarization correction coefficient setting map. As shown in the drawing, in the example, the internal SOC correction coefficient Ka in the internal resistance correction coefficient setting map shown in FIG. 6 has the same tendency as the previous SOC and the battery temperature Tb with respect to the previous SOC and the battery temperature Tb. On the other hand, the second polarization correction coefficient Kc is set in advance. The reason for this is the same as described above. Since the voltage Vdyn2 generated by the second polarization of the battery 50 is calculated using the correction of the second maximum polarization voltage FI2 in this way, the voltage Vdyn2 can be calculated more appropriately, and as the sum of the voltage Vdyn1 and the voltage Vdyn2 The voltage Vdyn generated by the polarization of the battery 50 can be calculated more appropriately. Thereby, the open circuit voltage Vo obtained by subtracting the voltage Vr and the voltage Vdyn from the inter-terminal voltage Vb can be calculated more accurately, and the open circuit voltage Vo thus calculated is applied to the storage amount setting map. The amount of charge SOC of the battery 50 can be estimated more accurately.

Vdyn2=[前回Vdyn2・exp(-Δt/τ2)+(FI2・Kc)・Δt/τ2]・Ki (2)   Vdyn2 = [previous Vdyn2 ・ exp (-Δt / τ2) + (FI2 ・ Kc) ・ Δt / τ2] ・ Ki (2)

図10に、バッテリ50を放電しているときの端子間電圧Vbと開放電圧Voとの時間変化の様子の一例を示す。図中、破線は、実施例におけるバッテリ50の開放電圧Voの計算のうち内部抵抗用補正係数Kaと第1分極用補正係数Kbと第2分極用補正係数Kcとを用いずに計算された比較例のバッテリ50の開放電圧Voを示す。バッテリ50を放電しているときには端子間電圧Vbは開放電圧Voよりも小さくなるが、比較例のように基準内部抵抗Rbaseや第1最大分極電圧FI1,第2最大分極電圧FI2を補正することなく、即ち蓄電量SOCが小さいほど内部抵抗が大きくなるバッテリ50の特性を考慮することなく、バッテリ50の開放電圧Voを計算すると、計算された開放電圧Voは実際の開放電圧Voよりも小さくなり、推定される蓄電量SOCと実際の蓄電量SOCとの乖離が大きくなりやすい。これに対し、実施例では、バッテリ50の特性を考慮して基準内部抵抗Rbaseや第1最大分極電圧FI1,第2最大分極電圧FI2を補正して開放電圧Voを計算するから、バッテリ50の蓄電量SOCをより正確に推定することができる。特に、実施例のハイブリッド自動車20では、バッテリ50の蓄電量SOCが所定の下限値未満に至るまでバッテリ50からの電力を用いてモータMG2の動力により走行するために、蓄電量SOCが比較的小さい領域でバッテリ50の充放電が行なわれるが、こうした領域では内部抵抗が大きくなるバッテリ50の特性を反映して蓄電量SOCを推定するから、バッテリ50の蓄電量SOCが所定の下限値未満に至るまでの走行をより適正に行なうことができる。また、蓄電量SOCに基づいて演算されるバッテリ50の入出力制限Win,Woutの範囲内でモータMG2のトルク指令が設定されるから、モータMG2からのトルクをより適正なものとして駆動軸22に出力することができる。   FIG. 10 shows an example of how the terminal voltage Vb and the open circuit voltage Vo change with time when the battery 50 is discharged. In the figure, a broken line indicates a comparison calculated without using the internal resistance correction coefficient Ka, the first polarization correction coefficient Kb, and the second polarization correction coefficient Kc in the calculation of the open circuit voltage Vo of the battery 50 in the embodiment. The open circuit voltage Vo of the battery 50 of an example is shown. When the battery 50 is discharged, the inter-terminal voltage Vb is smaller than the open circuit voltage Vo, but without correcting the reference internal resistance Rbase, the first maximum polarization voltage FI1, and the second maximum polarization voltage FI2 as in the comparative example. That is, when the open-circuit voltage Vo of the battery 50 is calculated without considering the characteristics of the battery 50 in which the internal resistance increases as the charged amount SOC decreases, the calculated open-circuit voltage Vo becomes smaller than the actual open-circuit voltage Vo, The difference between the estimated storage amount SOC and the actual storage amount SOC tends to be large. On the other hand, in the embodiment, the open-circuit voltage Vo is calculated by correcting the reference internal resistance Rbase, the first maximum polarization voltage FI1, and the second maximum polarization voltage FI2 in consideration of the characteristics of the battery 50. The quantity SOC can be estimated more accurately. In particular, in the hybrid vehicle 20 of the embodiment, since the electric power from the battery 50 is used to drive the electric power from the battery 50 until the electric storage amount SOC of the battery 50 reaches less than a predetermined lower limit value, the electric storage amount SOC is relatively small. Although charging / discharging of the battery 50 is performed in the region, the storage amount SOC of the battery 50 is less than a predetermined lower limit value because the storage amount SOC is estimated reflecting the characteristics of the battery 50 in which the internal resistance increases. Can be performed more appropriately. Further, since the torque command of the motor MG2 is set within the range of the input / output limits Win and Wout of the battery 50 calculated based on the storage amount SOC, the torque from the motor MG2 is set to be more appropriate for the drive shaft 22. Can be output.

以上説明した実施例の蓄電容量推定装置を搭載したハイブリッド自動車20によれば、蓄電量SOCが小さいほど内部抵抗が大きくなるバッテリ50の特性を考慮して、バッテリ50の前回SOCに基づく内部抵抗用補正係数Kaにより基準内部抵抗Rbaseを補正したものに充放電電流Ibを乗じることによってバッテリ50の内部抵抗により生じる電圧Vrを計算し、バッテリ50の分極により生じる一次遅れ系に近似した電圧Vdynを計算し、バッテリ50の端子間電圧Vbから電圧Vrと電圧Vdynとを減じて得られる開放電圧Voに基づいて蓄電量SOCを推定することにより、バッテリ50の蓄電量SOCをより適正に推定することができる。   According to the hybrid vehicle 20 equipped with the storage capacity estimation device of the embodiment described above, the internal resistance based on the previous SOC of the battery 50 is considered in consideration of the characteristics of the battery 50 in which the internal resistance increases as the storage amount SOC decreases. The voltage Vr generated by the internal resistance of the battery 50 is calculated by multiplying the reference internal resistance Rbase corrected by the correction coefficient Ka by the charge / discharge current Ib, and the voltage Vdyn approximated to the first-order lag system generated by the polarization of the battery 50 is calculated. Then, by estimating the charged amount SOC based on the open circuit voltage Vo obtained by subtracting the voltage Vr and the voltage Vdyn from the inter-terminal voltage Vb of the battery 50, the charged amount SOC of the battery 50 can be estimated more appropriately. it can.

実施例の蓄電容量推定装置を搭載したハイブリッド自動車20では、基準内部抵抗Rbaseや第1最大分極電圧FI1,第2最大分極電圧FI2を補正する際に、前回SOCと電池温度Tbとに基づく補正係数を乗じるものとしたが、電池温度Tbに関係のない前回SOCだけに基づく補正係数を乗じるものとしてもよい。また、バッテリの特性によっては、基準内部抵抗Rbaseや第1最大分極電圧FI1,第2最大分極電圧FI2を補正する際に、図11に示すように前回SOCが小さいほど補正係数が大きくなると共に電池温度Tbが低いほど補正係数が大きくなる傾向に定められたマップを用いて設定される補正係数を乗じるものとしてもよい。   In the hybrid vehicle 20 equipped with the storage capacity estimation device of the embodiment, when correcting the reference internal resistance Rbase, the first maximum polarization voltage FI1, and the second maximum polarization voltage FI2, a correction coefficient based on the previous SOC and the battery temperature Tb However, it may be multiplied by a correction coefficient based only on the previous SOC that is not related to the battery temperature Tb. Further, depending on the characteristics of the battery, when correcting the reference internal resistance Rbase, the first maximum polarization voltage FI1, and the second maximum polarization voltage FI2, the correction coefficient increases as the previous SOC decreases as shown in FIG. The correction coefficient may be multiplied by a correction coefficient that is set using a map that has a tendency that the correction coefficient increases as the temperature Tb decreases.

実施例の蓄電容量推定装置を搭載したハイブリッド自動車20では、バッテリ50の第1分極により生じる電圧Vdyn1と第2分極により生じる電圧Vdyn2とを計算する際に、第1最大分極電圧FI1を前回SOCと電池温度Tbとに基づく第1分極用補正係数Kbにより補正すると共に第2最大分極電圧FI2を前回SOCと電池温度Tbとに基づく第2分極用補正係数Kcにより補正するものとしたが、第1最大分極電圧FI1を補正せずに電圧Vdyn1を計算するものとしてもよいし、第2最大分極電圧FI2を補正せずに電圧Vdyn2を計算するものとしてもよいし、第1最大分極電圧FI1および第2最大分極電圧FI2の両方を補正せずに電圧Vdyn1および電圧Vdyn2を計算するものとしてもよい。   In the hybrid vehicle 20 equipped with the storage capacity estimation device of the embodiment, when calculating the voltage Vdyn1 generated by the first polarization of the battery 50 and the voltage Vdyn2 generated by the second polarization, the first maximum polarization voltage FI1 is calculated as the previous SOC. The first polarization correction coefficient Kb based on the battery temperature Tb and the second maximum polarization voltage FI2 are corrected using the second polarization correction coefficient Kc based on the previous SOC and the battery temperature Tb. The voltage Vdyn1 may be calculated without correcting the maximum polarization voltage FI1, the voltage Vdyn2 may be calculated without correcting the second maximum polarization voltage FI2, and the first maximum polarization voltage FI1 and the first The voltage Vdyn1 and the voltage Vdyn2 may be calculated without correcting both of the two maximum polarization voltages FI2.

実施例の蓄電容量推定装置を搭載したハイブリッド自動車20では、第1時定数τ1をもって変化するバッテリ50の第1分極により生じる電圧Vdyn1と第1時定数τ1より大きい第2時定数τ2をもって変化するバッテリ50の第2分極により生じる電圧Vdyn2との和としてバッテリ50の分極により生じる電圧Vdynを計算して開放電圧Voの計算に用いるものとしたが、バッテリの特性によっては、こうして計算される電圧Vdynに代えて、1つの時定数をもって変化するバッテリ50の分極により生じる電圧を開放電圧Voの計算に用いるものとしてもよい。   In the hybrid vehicle 20 equipped with the storage capacity estimation device of the embodiment, a battery that changes with a voltage Vdyn1 generated by the first polarization of the battery 50 that changes with the first time constant τ1 and a second time constant τ2 that is larger than the first time constant τ1. The voltage Vdyn generated by the polarization of the battery 50 is calculated as the sum of the voltage Vdyn2 generated by the second polarization of 50 and used for the calculation of the open circuit voltage Vo. However, depending on the characteristics of the battery, the voltage Vdyn calculated in this way is used. Instead, the voltage generated by the polarization of the battery 50 that changes with one time constant may be used for the calculation of the open circuit voltage Vo.

実施例の蓄電容量推定装置を搭載したハイブリッド自動車20では、内部抵抗用補正係数Kaや第1分極用補正係数Kb,第2分極用補正係数Kcの設定用の各マップにおいて、前回SOCと電池温度Tbとに基づいて値1.0以上の値を設定するものとしたが、基準内部抵抗Rbaseや第1最大分極電圧Vdyn1,第2最大分極電圧Vdyn2の値や設定方法によっては、前回SOCと電池温度Tbとに基づいて値1.0未満の値を設定するものとしても構わない。   In the hybrid vehicle 20 equipped with the storage capacity estimation device of the embodiment, in each map for setting the internal resistance correction coefficient Ka, the first polarization correction coefficient Kb, and the second polarization correction coefficient Kc, the previous SOC and battery temperature A value of 1.0 or more is set based on Tb, but depending on the value and setting method of the reference internal resistance Rbase, the first maximum polarization voltage Vdyn1, and the second maximum polarization voltage Vdyn2, the previous SOC and battery A value less than 1.0 may be set based on the temperature Tb.

実施例の蓄電容量推定装置を搭載したハイブリッド自動車20では、内部抵抗用補正係数設定用マップと第1分極用補正係数設定用マップと第2分極用補正係数設定用マップとで共通の所定量Srefおよび所定温度Trefを用いて各補正係数を設定するものとしたが、所定量Srefや所定温度Trefに代えて、内部抵抗用補正係数設定用マップと第1分極用補正係数設定用マップと第2分極用補正係数設定用マップとでそれぞれ異なる蓄電量SOCとしての所定量および電池温度Tbとしての所定温度を用いて各補正係数を設定するものとしてもよい。   In the hybrid vehicle 20 equipped with the storage capacity estimation device of the embodiment, a predetermined amount Sref common to the internal resistance correction coefficient setting map, the first polarization correction coefficient setting map, and the second polarization correction coefficient setting map. Each correction coefficient is set using the predetermined temperature Tref, but instead of the predetermined amount Sref and the predetermined temperature Tref, the internal resistance correction coefficient setting map, the first polarization correction coefficient setting map, and the second Each correction coefficient may be set using a predetermined amount as the storage amount SOC and a predetermined temperature as the battery temperature Tb that are different from each other in the polarization correction coefficient setting map.

実施例の蓄電容量推定装置を搭載したハイブリッド自動車20では、第1最大分極電圧FI1および第2最大分極電圧FI2として、第1分極により生じる電圧の最大値および第2分極により生じる電圧の最大値としての一定値をそれぞれ用いるものとしたが、例えば充放電電流Ibの大きさが大きいほど大きくなると共に電池温度Tbが低いほど大きくなる値としての第1分極により生じる電圧の最大値および第2分極により生じる電圧の最大値をそれぞれ用いるものとしてもよい。   In the hybrid vehicle 20 equipped with the storage capacity estimation device of the embodiment, as the first maximum polarization voltage FI1 and the second maximum polarization voltage FI2, the maximum value of the voltage generated by the first polarization and the maximum value of the voltage generated by the second polarization are used. For example, the maximum value of the voltage generated by the first polarization and the second polarization that increase as the charge / discharge current Ib increases and increase as the battery temperature Tb decreases. The maximum value of the generated voltage may be used.

実施例の蓄電容量推定装置を搭載したハイブリッド自動車20では、バッテリ50の全容量に対する放電可能な蓄電容量の割合としての蓄電量SOCを推定するものとしたが、バッテリ50を構成する各電池モジュールの容量に対する放電可能な蓄電容量の割合としての蓄電量(ここでは、モジュール蓄電量SOCmという)を推定するものとしてもよい。この場合、バッテリ50の蓄電量SOCを推定する際に実施例で用いたバッテリ50の端子間電圧Vbや前回SOCに代えてモジュール蓄電量SOCmの前回値としての前回SOCmや各電池モジュールの端子間電圧を用いると共にバッテリ50の充放電電流Ibと電池温度Tbとを用いてモジュール蓄電量SOCmを推定することができる。   In the hybrid vehicle 20 equipped with the storage capacity estimation device of the embodiment, the storage amount SOC as a ratio of the dischargeable storage capacity to the total capacity of the battery 50 is estimated. It is good also as what estimates the electrical storage amount (here module electrical storage amount SOCm) as a ratio of the electrical storage capacity which can be discharged with respect to a capacity | capacitance. In this case, when estimating the charged amount SOC of the battery 50, the voltage Vb between the terminals of the battery 50 used in the embodiment or the previous SOCm as the previous value of the module charged amount SOCm instead of the previous SOC or between the terminals of each battery module. The module power storage amount SOCm can be estimated using the voltage and the charge / discharge current Ib of the battery 50 and the battery temperature Tb.

また、こうしたハイブリッド自動車に適用するものに限定されるものではなく、自動車以外の車両や船舶,航空機などの移動体に搭載される二次電池の蓄電容量推定装置の形態や建設設備などの移動しない設備に組み込まれた二次電池の蓄電容量推定装置の形態としても構わない。さらに、二次電池の蓄電容量推定方法の形態としてもよい。   Moreover, it is not limited to what is applied to such a hybrid vehicle, The form of the storage capacity estimation apparatus of a secondary battery mounted on a moving body such as a vehicle other than an automobile, a ship, an aircraft, or a construction facility does not move. A storage capacity estimation device for a secondary battery incorporated in the facility may be used. Furthermore, it is good also as a form of the storage capacity estimation method of a secondary battery.

実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、バッテリ50が「二次電池」に相当し、前回SOCと温度センサ51cからの電池温度Tbとに基づいて内部抵抗用補正係数設定用マップを用いて設定された内部抵抗用補正係数Kaを基準内部抵抗Rbaseに乗じて補正したものに電流センサ51bからの充放電電流Ibと乗じることによってバッテリ50の内部抵抗により生じる電圧Vrを計算する図2の蓄電量推定ルーチンのステップS140,S150の処理を実行するバッテリECU52が「内部抵抗電圧演算手段」に相当し、前回Vdyn1に第1時定数τ1に応じた減衰率を乗じたものと最大分極電圧FI1に単位時間Δtを第1時定数τ1で割ったものを乗じたものとの和としてバッテリ50の第1分極により生じる電圧Vdyn1を計算したり前回Vdyn2に第2時定数τ2に応じた減衰率を乗じたものと最大分極電圧FI2に単位時間Δtを第2時定数τ2で割ったものを乗じたものとの和としてバッテリ50の第2分極により生じる電圧Vdyn2を計算したりしてバッテリ50の分極により生じる電圧Vdynを計算する図2の蓄電量推定ルーチンのステップS160〜S200の処理を実行するバッテリECU52が「分極電圧演算手段」に相当し、電圧センサ51aからの端子間電圧Vbから内部抵抗による電圧Vrと分極による電圧Vdynとを減じて得られる開放電圧Voに基づいてバッテリ50の蓄電量SOCを推定する図2の蓄電量推定ルーチンのステップS210,S220の処理を実行するバッテリECU52が「蓄電容量推定手段」に相当する。   The correspondence between the main elements of the embodiment and the main elements of the invention described in the column of means for solving the problems will be described. In the embodiment, the battery 50 corresponds to a “secondary battery”, and the internal resistance correction coefficient set using the internal resistance correction coefficient setting map based on the previous SOC and the battery temperature Tb from the temperature sensor 51c. Steps S140 and S150 of the storage amount estimation routine of FIG. 2 for calculating the voltage Vr generated by the internal resistance of the battery 50 by multiplying the correction obtained by multiplying Ka by the reference internal resistance Rbase and the charge / discharge current Ib from the current sensor 51b. The battery ECU 52 that executes the above process corresponds to “internal resistance voltage calculation means”, and the unit time Δt is set to the unit time Δt to the maximum polarization voltage FI1 obtained by multiplying the previous Vdyn1 by the decay rate corresponding to the first time constant τ1. The voltage Vdyn1 generated by the first polarization of the battery 50 is calculated as the sum of the product divided by τ1 and multiplied by the previous Vdyn2 The voltage generated by the second polarization of the battery 50 as the sum of the product of the decay rate corresponding to the second time constant τ2 and the product of the maximum polarization voltage FI2 multiplied by the unit time Δt divided by the second time constant τ2. The battery ECU 52 that executes steps S160 to S200 of the storage amount estimation routine of FIG. 2 for calculating Vdyn2 and calculating the voltage Vdyn generated by the polarization of the battery 50 corresponds to the “polarization voltage calculating means”, and is a voltage sensor. Step S210 of the storage amount estimation routine of FIG. 2 for estimating the storage amount SOC of the battery 50 based on the open circuit voltage Vo obtained by subtracting the voltage Vr due to internal resistance and the voltage Vdyn due to polarization from the inter-terminal voltage Vb from 51a, The battery ECU 52 that executes the process of S220 corresponds to “power storage capacity estimating means”.

ここで、「二次電池」としては、バッテリ50に限定されるものではなく、バッテリ50を構成する電池モジュールなど、放電可能な蓄電容量が小さいほど内部抵抗が大きくなる傾向の特性を有する二次電池であれば如何なるものとしても構わない。「内部抵抗電圧演算手段」としては、前回SOCと温度センサ51cからの電池温度Tbとに基づいて内部抵抗用補正係数設定用マップを用いて設定された内部抵抗用補正係数Kaを基準内部抵抗Rbaseに乗じて補正したものに電流センサ51bからの充放電電流Ibと乗じることによってバッテリ50の内部抵抗により生じる電圧Vrを計算するものに限定されるものではなく、現在までに推定された二次電池の放電可能な蓄電容量である推定蓄電容量と二次電池の内部抵抗を補正する補正係数との関係として推定蓄電容量が小さいほど補正係数が大きくなる傾向の蓄電容量関係を有する補正関係に推定蓄電容量を適用して得られる補正係数により二次電池の内部抵抗の基準となる基準内部抵抗を補正したものに対して二次電池の充放電電流を乗じることによって二次電池を充放電したときに二次電池の内部抵抗により生じる電圧を演算するものであれば如何なるものとしても構わない。「分極電圧演算手段」としては、前回Vdyn1に第1時定数τ1に応じた減衰率を乗じたものと最大分極電圧FI1に単位時間Δtを第1時定数τ1で割ったものを乗じたものとの和としてバッテリ50の第1分極により生じる電圧Vdyn1を計算したり前回Vdyn2に第2時定数τ2に応じた減衰率を乗じたものと最大分極電圧FI2に単位時間Δtを第2時定数τ2で割ったものを乗じたものとの和としてバッテリ50の第2分極により生じる電圧Vdyn2を計算したりしてバッテリ50の分極により生じる電圧Vdynを計算するものに限定されるものではなく、バッテリ50の1つの分極により生じる電圧を計算するものなど、現在までに演算された二次電池の分極により生じる電圧に所定の時定数に応じた割合を乗じたものと二次電池の分極により生じる電圧の最大値である最大分極電圧に単位時間を所定の時定数で割ったものを乗じたものとの和によって二次電池を充放電したときに二次電池の分極により生じる電圧を演算するものであれば如何なるものとしても構わない。「蓄電容量推定手段」としては、電圧センサ51aからの端子間電圧Vbから内部抵抗による電圧Vrと分極による電圧Vdynとを減じて得られる開放電圧Voに基づいてバッテリ50の蓄電量SOCを推定するものに限定されるものではなく、バッテリ50を構成する電池モジュールの蓄電量を推定するものなど、二次電池の端子間電圧から演算された二次電池の内部抵抗により生じる電圧と演算された二次電池の分極により生じる電圧とを減じて得られる二次電池の開放電圧に基づいて二次電池の放電可能な蓄電容量を推定するものであれば如何なるものとしても構わない。   Here, the “secondary battery” is not limited to the battery 50, and a secondary battery having a characteristic that the internal resistance tends to increase as the dischargeable storage capacity decreases, such as a battery module constituting the battery 50. Any battery can be used. As the “internal resistance voltage calculation means”, the internal resistance correction coefficient Ka set using the internal resistance correction coefficient setting map based on the previous SOC and the battery temperature Tb from the temperature sensor 51c is used as the reference internal resistance Rbase. Is not limited to calculating the voltage Vr generated by the internal resistance of the battery 50 by multiplying the corrected value by the charge / discharge current Ib from the current sensor 51b, but the secondary battery estimated to date As the relationship between the estimated storage capacity that is the dischargeable storage capacity of the battery and the correction coefficient that corrects the internal resistance of the secondary battery, the estimated storage capacity is in a correction relationship having a storage capacity relationship in which the correction coefficient tends to increase as the estimated storage capacity decreases. Charge / discharge the secondary battery against the standard internal resistance that is the standard of the internal resistance of the secondary battery by the correction coefficient obtained by applying the capacity As long as it calculates a voltage generated by the internal resistance of the secondary battery when charging and discharging the secondary battery by multiplying the current may be any ones. The “polarization voltage calculation means” is obtained by multiplying the previous Vdyn1 by an attenuation factor corresponding to the first time constant τ1, and multiplying the maximum polarization voltage FI1 by the unit time Δt divided by the first time constant τ1. The voltage Vdyn1 generated by the first polarization of the battery 50 is calculated as the sum of the above, or the previous Vdyn2 multiplied by the decay rate corresponding to the second time constant τ2, and the maximum polarization voltage FI2 with the unit time Δt as the second time constant τ2. The voltage Vdyn2 generated by the second polarization of the battery 50 is calculated as the sum of the product obtained by dividing the divided value and the voltage Vdyn generated by the polarization of the battery 50 is not limited. The voltage generated by the polarization of the secondary battery calculated so far, such as calculating the voltage generated by one polarization, multiplied by the ratio according to the predetermined time constant When the secondary battery is charged / discharged by the sum of the maximum polarization voltage, which is the maximum value of the voltage generated by the polarization of the secondary battery, multiplied by the unit time divided by the predetermined time constant, the polarization of the secondary battery Anything can be used as long as it can calculate the generated voltage. As the “storage capacity estimation means”, the storage amount SOC of the battery 50 is estimated based on the open-circuit voltage Vo obtained by subtracting the voltage Vr due to the internal resistance and the voltage Vdyn due to polarization from the inter-terminal voltage Vb from the voltage sensor 51a. It is not limited to the above, but the voltage generated by the internal resistance of the secondary battery calculated from the voltage between the terminals of the secondary battery, such as the one that estimates the stored amount of the battery module that constitutes the battery 50, is calculated. Any battery can be used as long as it can estimate the dischargeable storage capacity of the secondary battery based on the open-circuit voltage of the secondary battery obtained by reducing the voltage generated by the polarization of the secondary battery.

なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。   The correspondence between the main elements of the embodiment and the main elements of the invention described in the column of means for solving the problem is the same as that of the embodiment described in the column of means for solving the problem. Therefore, the elements of the invention described in the column of means for solving the problems are not limited. That is, the interpretation of the invention described in the column of means for solving the problems should be made based on the description of the column, and the examples are those of the invention described in the column of means for solving the problems. It is only a specific example.

以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   As mentioned above, although the form for implementing this invention was demonstrated using the Example, this invention is not limited at all to such an Example, In the range which does not deviate from the summary of this invention, it is with various forms. Of course, it can be implemented.

本発明は、蓄電容量推定装置の製造産業などに利用可能である。   The present invention can be used in the manufacturing industry of a storage capacity estimation device.

20 ハイブリッド自動車、22 駆動軸、24 デファレンシャルギヤ、26a,26b 駆動輪、32 エンジン、34 クランクシャフト、36 エンジン用電子制御ユニット、38 プラネタリギヤ、41,42 インバータ、44 モータ用電子制御ユニット、46 電力ライン、50 バッテリ、51a 電圧センサ、51b 電流センサ、51c 温度センサ、52 バッテリ用電子制御ユニット、52a CPU、52b ROM、52c RAM、54 充電器、56 コネクタ、60 ハイブリッド用電子制御ユニット、61 イグニッションスイッチ、62 シフトポジションセンサ、64 アクセルペダルポジションセンサ、66 ブレーキペダルポジションセンサ、68 車速センサ、70 外部電源、72 コネクタ、MG1,MG2 モータ。   20 hybrid vehicle, 22 drive shaft, 24 differential gear, 26a, 26b drive wheel, 32 engine, 34 crankshaft, 36 electronic control unit for engine, 38 planetary gear, 41, 42 inverter, 44 electronic control unit for motor, 46 power line 50 battery, 51a voltage sensor, 51b current sensor, 51c temperature sensor, 52 battery electronic control unit, 52a CPU, 52b ROM, 52c RAM, 54 charger, 56 connector, 60 hybrid electronic control unit, 61 ignition switch, 62 Shift position sensor, 64 Accelerator pedal position sensor, 66 Brake pedal position sensor, 68 Vehicle speed sensor, 70 External power supply, 72 Connector, MG1, MG 2 Motor.

Claims (7)

放電可能な蓄電容量が小さいほど内部抵抗が大きくなる傾向の特性を有する二次電池の開放電圧に基づいて前記二次電池の放電可能な蓄電容量を推定する蓄電容量推定装置であって、
現在までに推定された前記二次電池の放電可能な蓄電容量である推定蓄電容量と前記二次電池の内部抵抗を補正する補正係数との関係として前記推定蓄電容量が小さいほど前記補正係数が大きくなる傾向の蓄電容量関係を有する補正関係に前記推定蓄電容量を適用して得られる前記補正係数により前記二次電池の内部抵抗の基準となる基準内部抵抗を補正したものに対して前記二次電池の充放電電流を乗じることによって前記二次電池を充放電したときに該二次電池の内部抵抗により生じる電圧を演算する内部抵抗電圧演算手段と、
現在までに演算された前記二次電池の分極により生じる電圧に所定の時定数に応じた割合を乗じたものと前記二次電池の分極により生じる電圧の最大値である最大分極電圧に単位時間を前記所定の時定数で割ったものを乗じたものとの和によって前記二次電池を充放電したときに該二次電池の分極により生じる電圧を演算する分極電圧演算手段と、
前記二次電池の端子間電圧から前記演算された二次電池の内部抵抗により生じる電圧と前記演算された二次電池の分極により生じる電圧とを減じて得られる前記二次電池の開放電圧に基づいて前記二次電池の放電可能な蓄電容量を推定する蓄電容量推定手段と、
を備える蓄電容量推定装置。
A storage capacity estimation device that estimates the dischargeable storage capacity of the secondary battery based on the open-circuit voltage of the secondary battery having a characteristic that the internal resistance tends to increase as the dischargeable storage capacity decreases.
As the relationship between the estimated storage capacity, which is the dischargeable storage capacity of the secondary battery estimated to date, and the correction coefficient for correcting the internal resistance of the secondary battery, the correction coefficient increases as the estimated storage capacity decreases. The secondary battery is obtained by correcting a reference internal resistance serving as a reference of the internal resistance of the secondary battery by the correction coefficient obtained by applying the estimated storage capacity to a correction relationship having a storage capacity relationship of Internal resistance voltage calculation means for calculating a voltage generated by the internal resistance of the secondary battery when the secondary battery is charged and discharged by multiplying the charge / discharge current of
Unit time is calculated by multiplying the voltage generated by the polarization of the secondary battery calculated up to now by a ratio corresponding to a predetermined time constant and the maximum polarization voltage which is the maximum value of the voltage generated by the polarization of the secondary battery. A polarization voltage calculating means for calculating a voltage generated by polarization of the secondary battery when the secondary battery is charged / discharged by a sum of the product divided by the predetermined time constant;
Based on the open-circuit voltage of the secondary battery obtained by subtracting the voltage generated by the calculated internal resistance of the secondary battery from the voltage between the terminals of the secondary battery and the voltage generated by the polarization of the calculated secondary battery. Storage capacity estimation means for estimating the dischargeable storage capacity of the secondary battery,
A storage capacity estimation device comprising:
請求項1記載の蓄電容量推定装置であって、
前記補正関係は、前記二次電池の温度と前記補正係数との関係として前記二次電池の温度が所定温度以上では該温度が低いほど前記補正係数が大きくなり前記二次電池の温度が前記所定温度未満では該温度が低いほど前記補正係数が小さくなる傾向の温度関係と前記蓄電容量関係とを有する関係であり、
前記内部抵抗電圧演算手段は、前記補正関係に前記二次電池の温度と前記推定蓄電容量とを適用して得られる前記補正係数により前記基準内部抵抗を補正する手段である、
蓄電容量推定装置。
The storage capacity estimation device according to claim 1,
The correction relationship is a relationship between the temperature of the secondary battery and the correction coefficient. When the temperature of the secondary battery is equal to or higher than a predetermined temperature, the correction coefficient increases as the temperature decreases, and the temperature of the secondary battery becomes the predetermined temperature. If the temperature is lower than the temperature, the correction coefficient tends to be smaller as the temperature is lower.
The internal resistance voltage calculation means is means for correcting the reference internal resistance by the correction coefficient obtained by applying the temperature of the secondary battery and the estimated storage capacity to the correction relationship.
Storage capacity estimation device.
請求項1または2記載の蓄電容量推定装置であって、
前記分極電圧演算手段は、前記二次電池を充放電したときに第1の時定数をもって変化する前記二次電池の第1の分極により生じる電圧の現在までに演算された値に前記第1の時定数に応じた割合を乗じたものと前記二次電池の第1の分極により生じる電圧の最大値である第1の最大分極電圧に前記単位時間を前記第1の時定数で割ったものを乗じたものとの和によって前記二次電池を充放電したときに該二次電池の第1の分極により生じる電圧を演算し、前記二次電池を充放電したときに前記第1の時定数より大きい第2の時定数をもって変化する前記二次電池の第2の分極により生じる電圧の現在までに演算された値に前記第2の時定数に応じた割合を乗じたものと前記二次電池の第2の分極により生じる電圧の最大値である第2の最大分極電圧に前記単位時間を前記第2の時定数で割ったものを乗じたものとの和によって前記二次電池を充放電したときに該二次電池の第2の分極により生じる電圧を演算し、前記演算した二次電池の第1の分極により生じる電圧と前記演算した二次電池の第2の分極により生じる電圧との和として前記二次電池の分極により生じる電圧を演算する手段である、
蓄電容量推定装置。
The storage capacity estimation device according to claim 1 or 2,
The polarization voltage calculating means is configured to calculate the first voltage to a value calculated so far by the first polarization of the secondary battery that changes with a first time constant when the secondary battery is charged and discharged. Multiplying the ratio according to the time constant and the first maximum polarization voltage, which is the maximum value of the voltage generated by the first polarization of the secondary battery, divided by the unit time by the first time constant The voltage generated by the first polarization of the secondary battery when the secondary battery is charged / discharged by the sum of the multiplied value and the secondary battery is charged / discharged. From the first time constant when the secondary battery is charged / discharged A value obtained by multiplying the voltage calculated by the second polarization of the secondary battery, which changes with a large second time constant, to a current value by a ratio corresponding to the second time constant, A second maximum which is the maximum value of the voltage produced by the second polarization The voltage generated by the second polarization of the secondary battery when the secondary battery is charged / discharged by the sum of the polar voltage multiplied by the unit time divided by the second time constant is calculated. A means for calculating a voltage generated by the polarization of the secondary battery as a sum of a voltage generated by the first polarization of the calculated secondary battery and a voltage generated by the second polarization of the calculated secondary battery;
Storage capacity estimation device.
請求項3記載の蓄電容量推定装置であって、
前記分極電圧演算手段は、前記推定蓄電容量と前記第1の最大分極電圧を補正する第1の分極用補正係数との関係として前記推定蓄電容量が小さいほど前記第1の分極用補正係数が大きくなる傾向の第2の蓄電容量関係を有する第1の分極用補正関係に前記推定蓄電容量を適用して得られる前記第1の分極用補正係数により前記第1の最大分極電圧を補正したものを前記第1の最大分極電圧に代えて用いて前記二次電池の第1の分極により生じる電圧を演算し、前記推定蓄電容量と前記第2の最大分極電圧を補正する第2の分極用補正係数との関係として前記推定蓄電容量が小さいほど前記第2の分極用補正係数が大きくなる傾向の第3の蓄電容量関係を有する第2の分極用補正関係に前記推定蓄電容量を適用して得られる前記第2の分極用補正係数により前記第2の最大分極電圧を補正したものを前記第2の最大分極電圧に代えて用いて前記二次電池の第2の分極により生じる電圧を演算する手段である、
蓄電容量推定装置。
The storage capacity estimation device according to claim 3,
The polarization voltage calculation means is configured such that the first polarization correction coefficient increases as the estimated storage capacity decreases as the relationship between the estimated storage capacity and the first polarization correction coefficient for correcting the first maximum polarization voltage. The first maximum polarization voltage corrected by the first polarization correction coefficient obtained by applying the estimated storage capacity to the first polarization correction relation having the second storage capacity relation of the tendency A second correction coefficient for polarization for calculating the voltage generated by the first polarization of the secondary battery instead of the first maximum polarization voltage and correcting the estimated storage capacity and the second maximum polarization voltage Obtained by applying the estimated storage capacity to a second polarization correction relation having a third storage capacity relation in which the second polarization correction coefficient tends to increase as the estimated storage capacity decreases. For the second polarization A means for calculating a voltage generated by the second polarization of the secondary battery used in place of those obtained by correcting the second maximum polarization voltage to the second maximum polarization voltage by a positive factor,
Storage capacity estimation device.
請求項4記載の蓄電容量推定装置であって、
前記第1の分極用補正関係は、前記二次電池の温度と前記第1の分極用補正係数との関係として前記二次電池の温度が第2の所定温度以上では該温度が低いほど前記第1の分極用補正係数が大きくなり前記二次電池の温度が前記第2の所定温度未満では該温度が低いほど前記第1の分極用補正係数が小さくなる傾向の第2の温度関係と前記第2の蓄電容量関係とを有する関係であり、
前記第2の分極用補正関係は、前記二次電池の温度と前記第2の分極用補正係数との関係として前記二次電池の温度が第3の所定温度以上では該温度が低いほど前記第2の分極用補正係数が大きくなり前記二次電池の温度が前記第3の所定温度未満では該温度が低いほど前記第2の分極用補正係数が小さくなる傾向の第3の温度関係と前記第3の蓄電容量関係とを有する関係であり、
前記分極電圧演算手段は、前記第1の分極用補正関係に前記二次電池の温度と前記推定蓄電容量とを適用して得られる前記第1の分極用補正係数により前記第1の最大分極電圧を補正し、前記第2の分極用補正係数に前記二次電池の温度と前記推定蓄電容量とを適用して得られる前記第2の分極用補正係数により前記第2の最大分極電圧を補正する手段である、
蓄電容量推定装置。
The storage capacity estimation device according to claim 4,
The first polarization correction relationship is the relationship between the temperature of the secondary battery and the first polarization correction coefficient. The lower the temperature of the secondary battery is equal to or higher than a second predetermined temperature, the lower the temperature. When the temperature of the secondary battery is lower than the second predetermined temperature and the temperature of the secondary battery is lower than the second predetermined temperature, the first temperature correction coefficient tends to decrease as the temperature decreases. Two storage capacity relationships,
The second polarization correction relationship is the relationship between the temperature of the secondary battery and the second polarization correction coefficient, and the second battery correction temperature is lower when the temperature of the secondary battery is equal to or higher than a third predetermined temperature. When the temperature of the secondary battery is lower than the third predetermined temperature and the temperature of the secondary battery is lower than the third predetermined temperature, the second temperature correction coefficient tends to decrease as the temperature decreases, and the second temperature correction coefficient increases. 3 storage capacity relationship,
The polarization voltage calculation means uses the first polarization correction coefficient obtained by applying the temperature of the secondary battery and the estimated storage capacity to the first polarization correction relationship, and the first maximum polarization voltage. And the second maximum polarization voltage is corrected by the second polarization correction coefficient obtained by applying the temperature of the secondary battery and the estimated storage capacity to the second polarization correction coefficient. Means,
Storage capacity estimation device.
請求項4または5記載の蓄電容量推定装置であって、
前記分極電圧演算手段は、前記第1の最大分極電圧をFI1,前記第1の分極用補正係数をKb,前記第1の時定数をτ1,前記二次電池の第1の分極により生じる電圧の現在までに演算された値をVdyn1(前回),前記第2の最大分極電圧をFI2,前記第2の分極用補正係数をKc,前記第2の所定の時定数をτ2,前記二次電池の第2の分極により生じる電圧の現在までに演算された値をVdyn2(前回),前記単位時間をΔtとしたときに、Vdyn1(前回)・exp(−Δt/τ1)+FI1・Kb・Δt/τ1により前記二次電池の第1の分極により生じる電圧を演算し、Vdyn2(前回)・exp(−Δt/τ2)+FI2・Kc・Δt/τ2により前記二次電池の第2の分極により生じる電圧を演算する手段である、
蓄電容量推定装置。
The storage capacity estimation device according to claim 4 or 5,
The polarization voltage calculation means includes the first maximum polarization voltage as FI1, the first polarization correction coefficient as Kb, the first time constant as τ1, and the voltage generated by the first polarization of the secondary battery. The value calculated to date is Vdyn1 (previous), the second maximum polarization voltage is FI2, the second polarization correction coefficient is Kc, the second predetermined time constant is τ2, and the secondary battery Vdyn2 (previous) · exp (−Δt / τ1) + FI1 · Kb · Δt / τ1 where Vdyn2 (previous) is the value of the voltage generated by the second polarization so far and Δt is the unit time. To calculate the voltage generated by the first polarization of the secondary battery, and the voltage generated by the second polarization of the secondary battery by Vdyn2 (previous) · exp (−Δt / τ2) + FI2 · Kc · Δt / τ2. Is a means to calculate,
Storage capacity estimation device.
放電可能な蓄電容量が小さいほど内部抵抗が大きくなる傾向の特性を有する二次電池の開放電圧に基づいて前記二次電池の放電可能な蓄電容量を推定する蓄電容量推定方法であって、
(a)現在までに推定された前記二次電池の放電可能な蓄電容量である推定蓄電容量と前記二次電池の内部抵抗を補正する補正係数との関係として前記推定蓄電容量が小さいほど前記補正係数が大きくなる傾向の蓄電容量関係を有する補正関係に前記推定蓄電容量を適用して得られる前記補正係数により前記二次電池の内部抵抗の基準となる基準内部抵抗を補正したものに対して前記二次電池の充放電電流を乗じることによって前記二次電池を充放電したときに該二次電池の内部抵抗により生じる電圧を演算し、現在までに演算された前記二次電池の分極により生じる電圧に所定の時定数に応じた割合を乗じたものと前記二次電池の分極により生じる電圧の最大値である最大分極電圧に単位時間を前記所定の時定数で割ったものを乗じたものとの和によって前記二次電池を充放電したときに該二次電池の分極により生じる電圧を演算し、
(b)前記二次電池の端子間電圧から前記演算された二次電池の内部抵抗により生じる電圧と前記演算された二次電池の分極により生じる電圧とを減じて得られる前記二次電池の開放電圧に基づいて前記二次電池の放電可能な蓄電容量を推定する、
蓄電容量推定方法。
A storage capacity estimation method for estimating a dischargeable storage capacity of the secondary battery based on an open circuit voltage of the secondary battery having a characteristic that the internal resistance tends to increase as the dischargeable storage capacity decreases,
(A) The correction as the estimated storage capacity is smaller as the relationship between the estimated storage capacity that is the dischargeable storage capacity of the secondary battery estimated up to now and the correction coefficient for correcting the internal resistance of the secondary battery The reference internal resistance that is a reference of the internal resistance of the secondary battery is corrected by the correction coefficient obtained by applying the estimated storage capacity to the correction relation having the storage capacity relation in which the coefficient tends to increase. The voltage generated by the internal resistance of the secondary battery when the secondary battery is charged / discharged by multiplying the charge / discharge current of the secondary battery, and the voltage generated by the polarization of the secondary battery calculated so far Multiplied by a ratio corresponding to a predetermined time constant multiplied by a maximum polarization voltage, which is the maximum voltage generated by the polarization of the secondary battery, divided by a unit time divided by the predetermined time constant By the sum of calculating the voltage generated by the polarization of the secondary battery when charging and discharging the secondary battery,
(B) Opening of the secondary battery obtained by subtracting the voltage generated by the calculated internal resistance of the secondary battery from the voltage between the terminals of the secondary battery and the voltage generated by the polarization of the calculated secondary battery Estimating the dischargeable storage capacity of the secondary battery based on the voltage;
Storage capacity estimation method.
JP2009095159A 2009-04-09 2009-04-09 Storage capacity estimation device and storage capacity estimation method Active JP5126150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009095159A JP5126150B2 (en) 2009-04-09 2009-04-09 Storage capacity estimation device and storage capacity estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009095159A JP5126150B2 (en) 2009-04-09 2009-04-09 Storage capacity estimation device and storage capacity estimation method

Publications (2)

Publication Number Publication Date
JP2010243447A JP2010243447A (en) 2010-10-28
JP5126150B2 true JP5126150B2 (en) 2013-01-23

Family

ID=43096604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009095159A Active JP5126150B2 (en) 2009-04-09 2009-04-09 Storage capacity estimation device and storage capacity estimation method

Country Status (1)

Country Link
JP (1) JP5126150B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11828806B2 (en) 2019-10-01 2023-11-28 Lg Energy Solution, Ltd. Apparatus and method for calculating battery power

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9201121B2 (en) * 2010-12-06 2015-12-01 Texas Instruments Incorporated System and method for sensing battery capacity
JP2012222907A (en) * 2011-04-06 2012-11-12 Toyota Motor Corp Electric vehicle
JP5929711B2 (en) * 2012-11-02 2016-06-08 トヨタ自動車株式会社 Charging system and voltage drop calculation method
CN104407298A (en) * 2014-11-18 2015-03-11 柳州市金旭节能科技有限公司 Lithium ion battery pack available surplus capacity calculation method
JP2016170063A (en) * 2015-03-13 2016-09-23 住友重機械工業株式会社 Work machine
EP4130767A4 (en) * 2020-04-30 2023-05-24 Huawei Technologies Co., Ltd. Lithium plating detection method and apparatus, and polarization proportion acquisition method and apparatus
CN111641001B (en) * 2020-06-05 2021-07-13 安徽江淮汽车集团股份有限公司 Correction method, device, storage medium and device of battery system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4012644B2 (en) * 1999-03-12 2007-11-21 トヨタ自動車株式会社 Battery charge state detection device
JP2002189066A (en) * 2000-12-22 2002-07-05 Hitachi Ltd Method for estimating remaining capacity of secondary battery
JP5170851B2 (en) * 2005-07-15 2013-03-27 古河電気工業株式会社 Storage battery charge state detection method and storage battery charge state detection device
JP2007292666A (en) * 2006-04-26 2007-11-08 Toyota Motor Corp Device for estimating charged state of secondary battery
JP4823974B2 (en) * 2007-06-19 2011-11-24 古河電気工業株式会社 Storage battery remaining capacity detection method and remaining capacity detection apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11828806B2 (en) 2019-10-01 2023-11-28 Lg Energy Solution, Ltd. Apparatus and method for calculating battery power

Also Published As

Publication number Publication date
JP2010243447A (en) 2010-10-28

Similar Documents

Publication Publication Date Title
JP5126150B2 (en) Storage capacity estimation device and storage capacity estimation method
US10859632B2 (en) Secondary battery system and SOC estimation method for secondary battery
US10838011B2 (en) Method for estimating state of charge and on-vehicle battery system
JP5379672B2 (en) Secondary battery polarization voltage calculation device and charging state estimation device
US9608468B2 (en) Charge control apparatus and charge control method
US20220069370A1 (en) Secondary battery system and method for controlling secondary battery
US7750640B2 (en) Electromotive force computing device and state of charge estimating device
JP2008220080A (en) Electric vehicle, charged state estimating method, and computer-readable storage medium recording program for making computer excute charged state estimating method
US10557891B2 (en) Battery system and control method thereof
JP2015139346A (en) Available mileage calculation system
US9197078B2 (en) Battery parameter estimation
US11750006B2 (en) Estimation system and estimation method
JP5803849B2 (en) Power storage system
JP5556636B2 (en) Electric vehicle and its abnormality determination method
US20230137917A1 (en) Deterioration diagnosis apparatus of assembled battery and deterioration diagnosis method of assembled battery
JP2017071299A (en) Charge-discharge control apparatus for power storage device
JP5310156B2 (en) Drive device, abnormality determination method thereof, and vehicle
JP5803518B2 (en) Vehicle and vehicle control method
JP5391831B2 (en) Driving device, automobile equipped with the same, and abnormality determination method
JP2020065422A (en) Display device and vehicle comprising the same
WO2015152405A1 (en) Power supply system and vehicle
US20230152386A1 (en) Deterioration diagnosis apparatus of battery and deterioration diagnosis method of battery
JP5288140B2 (en) Capacitor control device
JP2020125914A (en) Full charge capacity estimation device
JP2020092052A (en) Drive system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R151 Written notification of patent or utility model registration

Ref document number: 5126150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3