JP2020106244A - Fluidized bed furnace - Google Patents

Fluidized bed furnace Download PDF

Info

Publication number
JP2020106244A
JP2020106244A JP2018247383A JP2018247383A JP2020106244A JP 2020106244 A JP2020106244 A JP 2020106244A JP 2018247383 A JP2018247383 A JP 2018247383A JP 2018247383 A JP2018247383 A JP 2018247383A JP 2020106244 A JP2020106244 A JP 2020106244A
Authority
JP
Japan
Prior art keywords
fluidized bed
fluidized
medium
fuel
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018247383A
Other languages
Japanese (ja)
Other versions
JP7251978B2 (en
Inventor
五十嵐 実
Minoru Igarashi
実 五十嵐
祐司 小川
Yuji Ogawa
祐司 小川
敬哲 清水
Takaaki Shimizu
敬哲 清水
貞行 武藤
Sadayuki Muto
貞行 武藤
元 清瀧
Hajime Kiyotaki
元 清瀧
雄介 飯田
Yusuke Iida
雄介 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2018247383A priority Critical patent/JP7251978B2/en
Priority to BR112021012320-2A priority patent/BR112021012320A2/en
Priority to CN201980086088.4A priority patent/CN113227652A/en
Priority to PCT/JP2019/051575 priority patent/WO2020138484A1/en
Publication of JP2020106244A publication Critical patent/JP2020106244A/en
Application granted granted Critical
Publication of JP7251978B2 publication Critical patent/JP7251978B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/01Fluidised bed combustion apparatus in a fluidised bed of catalytic particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

To inhibit a fluidized medium from agglomerating by using the relatively inexpensive and easily available fluidized medium in a fluidized bed furnace that burns fuel including alkali metal.SOLUTION: A fluidized bed furnace includes a fluidized bed fluidizing a fluidized medium and burning supplied fuel. The fuel includes alkali metal. The fluidized medium comprises particle mineral and/or particle slug and the content of quartz is 14 mass% or smaller.SELECTED DRAWING: Figure 1

Description

本発明は、アルカリ金属を含む燃料を燃焼させる流動床炉に関する。 The present invention relates to a fluidized bed furnace that burns a fuel containing an alkali metal.

近年、バイオマスは、有力な再生可能エネルギーの一つとして考えられている。例えば、バイオマス発電では、バイオマス燃料を燃やして出る水蒸気やガスを使って、タービンを回すことで発電する。バイオマス燃料を燃やすために、例えば、流動床炉が用いられる。流動床炉は、吹き上がる加圧空気によって高温の流動媒体を流動させた流動層を備え、流動層の中で供給された燃料を燃焼するものである。上記の流動媒体として、一般的に、珪砂が用いられる。珪砂とは、主に石英粒からなる砂である。 In recent years, biomass has been considered as one of the leading renewable energy sources. For example, in biomass power generation, steam or gas produced by burning biomass fuel is used to rotate a turbine to generate power. A fluidized bed furnace, for example, is used to burn the biomass fuel. The fluidized bed furnace includes a fluidized bed in which a high-temperature fluidized medium is made to flow by blown pressurized air, and burns fuel supplied in the fluidized bed. Quartz sand is generally used as the fluid medium. Quartz sand is sand mainly composed of quartz grains.

バイオマスの中でも、従来は廃棄されていたパーム椰子空果房(EFB:Empty Fruit Bunches)の利用が注目されている。EFBは、含水量が約60質量%で、発熱量が約4000kcal/kgの有効な燃料であるが、乾燥ベースで約2質量%のカリウム(K)を含む。流動媒体が珪砂である流動床炉において、カリウムやナトリウム(Na)などのアルカリ金属成分を含有する燃料を用いた場合には、アルカリ金属成分と珪砂粒子(即ち、石英粒子)との間の化学反応により、アルカリ金属の珪酸塩が形成される。この珪酸塩は、炉内温度(約800〜900℃)よりも低い700℃程度で溶融する低融点化合物であり、珪砂粒子表面に粘着層を形成する。この粘着層を介して珪砂粒子同士が固着して、珪砂の凝集や塊化が生じる。このように流動媒体が塊化すると、流動層の良好な流動が妨げられ、燃料の安定した燃焼が困難となる。このような課題に対し、特許文献1〜3では、流動床炉において流動媒体の凝集を防止する技術が提案されている。 Among biomass, the use of Palm Fruit Empty Bunches (EFB), which has been conventionally discarded, is drawing attention. EFB is an effective fuel with a water content of about 60 wt% and a calorific value of about 4000 kcal/kg, but contains about 2 wt% potassium (K) on a dry basis. In a fluidized bed furnace where the fluid medium is silica sand, when a fuel containing an alkali metal component such as potassium or sodium (Na) is used, the chemistry between the alkali metal component and the silica sand particles (that is, quartz particles) is used. The reaction forms an alkali metal silicate. This silicate is a low melting point compound that melts at about 700° C., which is lower than the furnace temperature (about 800 to 900° C.), and forms an adhesive layer on the surface of silica sand particles. The silica sand particles are fixed to each other through the adhesive layer, and the silica sand is aggregated or agglomerated. When the fluidized medium agglomerates in this way, good fluidization of the fluidized bed is hindered, and stable combustion of fuel becomes difficult. With respect to such a problem, Patent Documents 1 to 3 propose techniques for preventing the agglomeration of a fluid medium in a fluidized bed furnace.

特許文献1では、酸化マグネシウムを30質量%程度含む製錬スラグを流動媒体として利用し、流動層に投入された燃料中のアルカリ金属成分と製錬スラグとを反応させて、製錬スラグの表面に高融点のコーティングを形成させながら燃料を燃焼させることが開示されている。 In Patent Document 1, a smelting slag containing about 30% by mass of magnesium oxide is used as a fluid medium, and an alkali metal component in a fuel put into a fluidized bed is reacted with the smelting slag to obtain a surface of the smelting slag. It is disclosed to burn fuel while forming a high melting point coating on the.

また、特許文献2では、泥炭、褐炭及び亜瀝青炭のようにナトリウム分が多い炭素質燃料をガス化する流動層ガス化炉において、流動媒体として生石灰を用い、H、CO及びHOを含むガス化剤で流動媒体を流動させることが開示されている。 Further, in Patent Document 2, in a fluidized bed gasification furnace that gasifies a carbonaceous fuel having a high sodium content such as peat, lignite and subbituminous coal, quick lime is used as a fluidizing medium, and H 2 , CO 2 and H 2 O are used. It is disclosed that the fluidizing medium is fluidized with a gasifying agent containing.

また、特許文献3では、泥炭、褐炭及び亜瀝青炭のようにナトリウム分が多い炭素質燃料をガス化する流動層ガス化炉において、流動媒体として酸化アルミニウムを用い、H、CO及びHOを含むガス化剤で流動媒体を流動させることが開示されている。 Further, in Patent Document 3, in a fluidized bed gasification furnace that gasifies a carbonaceous fuel having a high sodium content such as peat, lignite, and sub-bituminous coal, H 2 , CO 2, and H 2 are used by using aluminum oxide as a fluidizing medium. It is disclosed that a fluidizing medium is fluidized with a gasifying agent containing O 2.

特許第5536063号公報Patent No. 5536063 特開2017−088831号公報JP, 2017-088831, A 特開2017−071692号公報JP, 2017-071692, A

特許文献1に記載された技術は、流動媒体を構成する粒子の表面に、炉内温度よりも融点の高い化合物を付着させることにより、粒子の凝集や塊化を抑制している。また、特許文献2,3に記載された技術は、流動媒体の粒子とナトリウムとの反応によって炉内温度よりも融点の低いソーダガラスの生成を抑制している。 The technique described in Patent Document 1 suppresses agglomeration and agglomeration of particles by adhering a compound having a melting point higher than the temperature in the furnace to the surface of the particles forming the fluidized medium. Further, the techniques described in Patent Documents 2 and 3 suppress the generation of soda glass having a melting point lower than the temperature in the furnace by the reaction between particles of the fluid medium and sodium.

流動媒体として酸化アルミニウムを採用すると、酸化アルミニウムは珪砂と比較して高価であり、費用が嵩む。また、流動媒体として生石灰を採用すると、生石灰は水分と反応しやすいことから、バイオマス燃料のように水分の多い燃料を燃やす場合には適さない。 When aluminum oxide is used as the fluid medium, aluminum oxide is more expensive and more expensive than silica sand. Further, when quick lime is adopted as the fluid medium, quick lime easily reacts with water, and is not suitable when burning a fuel having a high water content such as biomass fuel.

本発明は以上の事情に鑑みてされたものであり、その目的は、アルカリ金属を含む燃料を燃焼させる流動床炉において、比較的安価且つ入手容易な流動媒体を用いて、流動媒体の塊化を抑制することにある。 The present invention has been made in view of the above circumstances, and an object thereof is to agglomerate a fluid medium by using a relatively inexpensive and easily available fluid medium in a fluidized bed furnace that burns a fuel containing an alkali metal. To suppress.

本発明の一態様に係る流動床炉は、流動媒体を流動させて供給された燃料を燃焼する流動層を備え、前記燃料は、アルカリ金属を含有し、前記流動媒体は、粒子状鉱物及び/又は粒子状スラグからなり、石英の含有量が14質量%以下であることを特徴とするものである。 A fluidized bed furnace according to an aspect of the present invention includes a fluidized bed that fluidizes a fluidized medium to burn a supplied fuel, the fuel contains an alkali metal, and the fluidized medium is a particulate mineral and/or Alternatively, it is characterized by comprising particulate slag and having a quartz content of 14 mass% or less.

上記流動床炉において、前記鉱物が、ガーネット(ざくろ石)、イルメナイト、かんらん石、及び、クロマイトよりなる群から選択される少なくとも1種の鉱物であってよい。 In the fluidized bed furnace, the mineral may be at least one mineral selected from the group consisting of garnet (garnet), ilmenite, olivine, and chromite.

また、上記流動床炉において、前記スラグが、フェロニッケルスラグ、及び、銅スラグよりなる群から選択される少なくとも1種のスラグであってよい。 In the fluidized bed furnace, the slag may be at least one slag selected from the group consisting of ferronickel slag and copper slag.

上記構成の流動床炉では、流動媒体の石英の含有量が14質量%以下であるので、流動媒体中の石英と燃料中のアルカリ金属成分とが反応して粒子表面に粘着層が形成されても、流動媒体の凝集や塊化が生じない又は生じても僅かであり、流動層は良好な流動を維持することができる。そして、上記に例示されるように、石英の含有量が14質量%以下の流動媒体には、比較的安価で且つ容易に入手可能なものがある。 In the fluidized bed furnace configured as described above, since the content of quartz in the fluidized medium is 14 mass% or less, the quartz in the fluidized medium reacts with the alkali metal component in the fuel to form an adhesive layer on the particle surface. Also, the fluidized bed can maintain good fluidity, with no or only slight agglomeration or agglomeration of the fluidized medium. Then, as exemplified above, some fluid media having a quartz content of 14 mass% or less are relatively inexpensive and easily available.

本発明によれば、アルカリ金属を含む燃料を燃焼させる流動床炉において、比較的安価且つ入手容易な流動媒体を用いて、流動媒体の塊化を抑制することができる。 According to the present invention, in a fluidized bed furnace that burns a fuel containing an alkali metal, it is possible to suppress agglomeration of a fluidized medium by using a fluidized medium that is relatively inexpensive and easily available.

図1は、本発明の一実施形態に係る流動床炉の概略構成図である。FIG. 1 is a schematic configuration diagram of a fluidized bed furnace according to an embodiment of the present invention. 図2は、流動加熱試験装置の概略構成図である。FIG. 2 is a schematic configuration diagram of a flow heating test apparatus.

次に、図面を参照して本発明の実施の形態を説明する。図1は本発明の一実施形態に係る流動床炉1の概略構成図である。図1に例示される流動床炉1は、内部循環流動層式の流動床炉1である。但し、本発明において流動床炉1に制約はなく、内部循環流動層式の他に、一般的な、気泡流動層式、高速流動層式、及び、外部循環流動層式などの公知の各種形式の流動床炉に本発明を適用できる。 Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a fluidized bed furnace 1 according to an embodiment of the present invention. The fluidized bed furnace 1 illustrated in FIG. 1 is an internal circulation fluidized bed type fluidized bed furnace 1. However, in the present invention, the fluidized bed furnace 1 is not limited, and in addition to the internal circulating fluidized bed type, various known types such as a general bubbling fluidized bed type, a high speed fluidized bed type, and an external circulating fluidized bed type. The present invention can be applied to the fluidized bed furnace of.

流動床炉1は、燃焼容器10を備える。流動床炉1には、燃焼容器10の下部を3種のセル61,62,63に仕切る仕切壁41,42と、各セル61,62,63に充填された流動媒体4と、各セル61,62,63に流動媒体4を流動させる流動化ガス110を供給する流動化ガス供給装置7とによって、内部循環流動層2が形成されている。 The fluidized bed furnace 1 includes a combustion container 10. In the fluidized bed furnace 1, partition walls 41 and 42 partitioning the lower part of the combustion container 10 into three types of cells 61, 62 and 63, a fluid medium 4 filled in each cell 61, 62 and 63, and each cell 61. , 62 and 63, the fluidizing gas supply device 7 that supplies the fluidizing gas 110 that causes the fluidizing medium 4 to flow forms the internal circulation fluidized bed 2.

燃焼容器10内下部は、中央に位置する「燃焼セル61」、燃焼セル61の外側に位置する「循環セル62」、及び、循環セル62の外側に位置する「収熱セル63」の3種類のセルに仕切られている。 The inner lower part of the combustion container 10 has three types: a "combustion cell 61" located in the center, a "circulation cell 62" located outside the combustion cell 61, and a "heat collection cell 63" located outside the circulation cell 62. It is divided into cells.

第1仕切壁41は、燃焼セル61と循環セル62との間を仕切る。第1仕切壁41の下端と燃焼容器10の底とは離間しており、燃焼セル61から第1仕切壁41の下を通過して循環セル62への流動媒体4の移動が許容される。第2仕切壁42は、循環セル62と収熱セル63との間を仕切る。第2仕切壁42の下端と燃焼容器10の底とは離間しており、収熱セル63から第1仕切壁41及び第2仕切壁42の下を通過して燃焼セル61への流動媒体4の移動が許容される。第2仕切壁42の上端は、燃焼容器10に収容された流動媒体4の表面レベル又はその近傍にあり、循環セル62から第2仕切壁42を飛び越えて収熱セル63への流動媒体4の移動が許容される。 The first partition wall 41 partitions between the combustion cell 61 and the circulation cell 62. The lower end of the first partition wall 41 and the bottom of the combustion container 10 are separated from each other, and the movement of the fluidized medium 4 to the circulation cell 62 from the combustion cell 61 under the first partition wall 41 is allowed. The second partition wall 42 partitions the circulation cell 62 and the heat collection cell 63. The lower end of the second partition wall 42 and the bottom of the combustion container 10 are separated from each other, and the fluidized medium 4 passing from the heat collecting cell 63 to under the first partition wall 41 and the second partition wall 42 to the combustion cell 61. Is allowed to move. The upper end of the second partition wall 42 is at or near the surface level of the fluidized medium 4 housed in the combustion container 10, and the fluidized medium 4 jumps from the circulation cell 62 over the second partition wall 42 to the heat collecting cell 63. Movement is allowed.

燃焼セル61の上方には、燃料投入口11が設けられている。燃料投入口11へは、図示されない燃料供給装置により定量的に燃料3が供給される。燃料投入口11から炉内へ投入された燃料3は、燃焼セル61に落下する。また、燃料投入口11の近傍には、二次燃焼ガス120を吹き込む二次燃焼ガス供給口12が設けられている。更に、二次燃焼ガス供給口12よりも上方には、三次燃焼ガス130を吹き込む三次燃焼ガス供給口13が設けられている。 A fuel inlet 11 is provided above the combustion cell 61. The fuel 3 is quantitatively supplied to the fuel inlet 11 by a fuel supply device (not shown). The fuel 3 injected into the furnace from the fuel injection port 11 falls into the combustion cell 61. Further, a secondary combustion gas supply port 12 for injecting the secondary combustion gas 120 is provided near the fuel input port 11. Further, a tertiary combustion gas supply port 13 for blowing in the tertiary combustion gas 130 is provided above the secondary combustion gas supply port 12.

収熱セル63には、過熱器や蒸発器などの伝熱管64が設けられている。この伝熱管64を通過する熱媒体により熱回収が行われる。 The heat collection cell 63 is provided with a heat transfer tube 64 such as a superheater or an evaporator. The heat is recovered by the heat medium passing through the heat transfer tube 64.

流動化ガス供給装置7は、燃焼セル61、循環セル62、及び収熱セル63の各々に独立して流量が調整された流動化ガス110を供給する。燃焼容器10の底部は、多数の気孔が設けられた分散板で構成されている。燃焼容器10の下方には、気孔を通じて燃焼容器10の内部と連通された風箱71,72,73が設けられている。風箱71,72,73は、各セル61,62,63に対応して設けられている。各風箱71,72,73には、図示されない押込みファンから高温の流動化ガス110が圧送される。各風箱71,72,73へ供給される流動化ガス110の流量は、図示されない弁又はダンパによって調整されてよい。 The fluidizing gas supply device 7 supplies the fluidizing gas 110 whose flow rate is independently adjusted to each of the combustion cell 61, the circulation cell 62, and the heat collecting cell 63. The bottom of the combustion container 10 is composed of a dispersion plate provided with a large number of pores. Below the combustion container 10, there are provided air boxes 71, 72, 73 which communicate with the inside of the combustion container 10 through pores. The wind boxes 71, 72, 73 are provided corresponding to the cells 61, 62, 63. A high temperature fluidized gas 110 is pressure-fed to each of the air boxes 71, 72, 73 from a pushing fan (not shown). The flow rate of the fluidizing gas 110 supplied to each air box 71, 72, 73 may be adjusted by a valve or a damper (not shown).

流動化ガス供給装置7では、各セル61,62,63の流動化ガス110の空塔速度が流動媒体4に循環流動を生じさせる所定の相関関係となるように、各風箱71,72,73へ供給される流動化ガス110の流量が調整される。ここで、「所定の相関関係」とは、各セル61,62,63の流動化ガス110の空塔速度が流動媒体4の流動化速度よりも大きいことを前提として、循環セル62の流動化ガス110の空塔速度が燃焼セル61の流動化ガス110の空塔速度よりも大きく、且つ、燃焼セル61の流動化ガス110の空塔速度が収熱セル63の流動化ガス110の空塔速度よりも大きい、各セル61,62,63の流動化ガス110の空塔速度の関係を意味する。これにより、燃焼セル61の流動媒体4は第1仕切壁41の下方を通って循環セル62へ移動し、循環セル62の流動媒体4は第2仕切壁42の上方を通って収熱セル63へ移動し、収熱セル63の流動媒体4は第1仕切壁41及び第2仕切壁42の下方を通って燃焼セル61へ循環する。 In the fluidizing gas supply device 7, each of the air boxes 71, 72, 72, 72, so that the superficial velocity of the fluidizing gas 110 in each of the cells 61, 62, 63 has a predetermined correlation that causes a circulating flow in the fluidized medium 4. The flow rate of the fluidizing gas 110 supplied to 73 is adjusted. Here, the "predetermined correlation" means that the superficial velocity of the fluidizing gas 110 in each of the cells 61, 62, 63 is higher than the fluidizing velocity of the fluidizing medium 4, and the fluidizing of the circulation cell 62 is performed. The superficial velocity of the gas 110 is higher than the superficial velocity of the fluidizing gas 110 of the combustion cell 61, and the superficial velocity of the fluidizing gas 110 of the combustion cell 61 is the superficial velocity of the fluidizing gas 110 of the heat collecting cell 63. It means a superficial velocity relationship of the fluidizing gas 110 in each cell 61, 62, 63 which is higher than the velocity. As a result, the fluidized medium 4 of the combustion cell 61 moves to below the first partition wall 41 and moves to the circulation cell 62, and the fluidized medium 4 of the circulation cell 62 passes to above the second partition wall 42 and the heat collection cell 63. Then, the fluidized medium 4 of the heat collection cell 63 is circulated to the combustion cell 61 through the lower sides of the first partition wall 41 and the second partition wall 42.

上記構成の流動床炉1では、流動層2において低空気比燃焼が行われる。酸素濃度の低い還元雰囲気の流動層2では、燃料3の緩慢な乾燥と熱分解によって、可燃性熱分解ガスと熱分解残渣が生じる。熱分解残渣や燃料3の燃え残りは、燃焼セル61の底部に設けられた流動媒体4及び不燃物の抜出口15から炉外へ排出される。循環セル62及び収熱セル63を吹き抜けた流動化ガス110、並びに、循環セル62及び収熱セル63で生じた熱分解ガスは、二次燃焼ガス120として、二次燃焼ガス供給口12から吹き出す。燃焼セル61で生じた熱分解ガスは二次燃焼ガス120で燃焼し、その燃焼ガス中の未燃分は、三次燃焼ガス130で完全燃焼し、その燃焼排ガスが炉外へ排出される。 In the fluidized bed furnace 1 configured as described above, low air ratio combustion is performed in the fluidized bed 2. In the fluidized bed 2 in a reducing atmosphere with a low oxygen concentration, combustible pyrolysis gas and pyrolysis residue are generated due to slow drying and pyrolysis of the fuel 3. The thermal decomposition residue and the unburned residue of the fuel 3 are discharged to the outside of the furnace through the fluidized medium 4 and the incombustibles outlet 15 provided at the bottom of the combustion cell 61. The fluidized gas 110 blown through the circulation cell 62 and the heat collection cell 63, and the pyrolysis gas generated in the circulation cell 62 and the heat collection cell 63 are blown out from the secondary combustion gas supply port 12 as the secondary combustion gas 120. .. The pyrolysis gas generated in the combustion cell 61 is combusted in the secondary combustion gas 120, unburned components in the combustion gas are completely combusted in the tertiary combustion gas 130, and the combustion exhaust gas is discharged to the outside of the furnace.

上記の流動床炉1では、燃料3として、カリウムやナトリウムなどのアルカリ金属を含有するバイオマス燃料や低品位炭が用いられてよい。そのために、流動媒体4は、粒子状鉱物及び/又は粒子状スラグからなり、石英の含有量が14質量%以下である。 In the fluidized bed furnace 1 described above, as the fuel 3, a biomass fuel containing an alkali metal such as potassium or sodium or low-grade coal may be used. Therefore, the fluidized medium 4 is made of particulate minerals and/or particulate slag, and the content of quartz is 14% by mass or less.

上記の鉱物は、ガーネット(ざくろ石)、イルメナイト(FeTiO)、かんらん石((Mg,Fe)SiO)、及び、クロマイト((Fe,Mg)Cr)よりなる群から選択される少なくとも1種の鉱物であってよい。これらの鉱物は、含有する石英が珪砂と比較して十分に少ない。ガーネットは、一般式A(SiO、又は、A12と表される。主成分は、Aとしてカルシウム,マグネシウム,鉄(II),マンガンなど、Bとして鉄(III),アルミニウム,クロム,チタンなど、Cとしてケイ素,アルミニウム,鉄(III)などが入る。 The above minerals are selected from the group consisting of garnet (garnet), ilmenite (FeTiO 3 ), olivine ((Mg,Fe) 2 SiO 4 ), and chromite ((Fe,Mg)Cr 2 O 4 ). May be at least one mineral. These minerals contain much less quartz than silica sand. Garnet is represented by the general formula A 3 B 2 (SiO 4 ) 3 or A 3 B 2 C 3 O 12 . The main components are calcium, magnesium, iron (II), manganese, etc. as A, iron (III), aluminum, chromium, titanium etc. as B, and silicon, aluminum, iron (III) etc. as C.

また、上記のスラグは、フェロニッケルスラグ、及び、銅スラグよりなる群から選択される少なくとも1種のスラグであってよい。これらのスラグは、含有する石英が珪砂と比較して十分に少ない。フェロニッケルスラグは、ステンレス鋼などの原料となるフェロニッケルを製錬する際に発生する残留物である。フェロニッケルスラグは、SiO(シリカ)とMgOを主な成分とする。銅スラグは、銅を製錬する際に発生する残留物である。銅スラグは、FeO,SiO,CaO,Alを主な成分とする。 The slag may be at least one slag selected from the group consisting of ferronickel slag and copper slag. These slags contain much less quartz than silica sand. Ferronickel slag is a residue generated when smelting ferronickel, which is a raw material for stainless steel and the like. The ferronickel slag contains SiO 2 (silica) and MgO as main components. Copper slag is a residue generated when smelting copper. The copper slag contains FeO, SiO 2 , CaO, and Al 2 O 3 as main components.

流動媒体4の石英の含有量は、X線回折法で測定され得る。流動媒体4中の石英と燃料3中のアルカリ金属成分とが反応して、粒子表面に粘着層が形成される結果、流動媒体4の凝集や塊化が生じる。石英の含有量が14質量%を超えると、流動媒体4の凝集や塊化により流動層2の流動が妨げられて、燃料3の安定した燃焼が困難となる。石英の含有量が14質量%以下では、流動媒体4の凝集や塊化が生じない又は生じても僅かであり、流動層2は良好な流動を維持することができる。流動媒体4は石英を含有しなくてもよい。このような観点から、流動媒体4の石英の含有量は、0質量%以上14質量%以下とする。なお、流動媒体4の元素としてのSiOの含有量は特に制限されない。 The content of quartz in the fluidized medium 4 can be measured by an X-ray diffraction method. Quartz in the fluid medium 4 reacts with the alkali metal component in the fuel 3 to form an adhesive layer on the surface of the particles. As a result, the fluid medium 4 aggregates or agglomerates. If the content of quartz exceeds 14% by mass, the fluidization of the fluidized bed 2 is hindered by the agglomeration and agglomeration of the fluidized medium 4, which makes stable combustion of the fuel 3 difficult. When the content of quartz is 14% by mass or less, aggregation or agglomeration of the fluid medium 4 does not occur or is small, and the fluidized bed 2 can maintain a good fluidity. The fluidized medium 4 may not contain quartz. From such a viewpoint, the content of quartz in the fluidized medium 4 is set to 0 mass% or more and 14 mass% or less. The content of SiO 2 as an element of the fluidized medium 4 is not particularly limited.

試料1:ガーネット(インド産ガーネットサンド(アルミナ系のアルマンダイト(FeAl(SiO)),株式会社MAC)、
試料2:フェロニッケルスラグ(NEサンド6号,山川産業株式会社)、
試料3:イルメナイト(豪州産イルメナイト,岩谷産業株式会社)、
試料4:クロマイト(クロマイトサンド、山川産業株式会社)
試料5:かんらん石(オリビンサンド,東邦オリビン工業株式会社)、
比較試料:珪砂(竹折硅砂5号,有限会社竹折砿業所)、
の各試料を用意した。表1には、試料1〜3及び比較試料の元素分析結果を示す。なお、表1には、ガーネット(アルマンダイト)、フェロニッケルスラグ、及び、イルメナイトの標準的組成も併せて示す。また、表2に、試料1〜5及び比較試料の価格、X線回折の分析結果、耐久性試験結果、及び流動加熱試験結果を示す。比較試料の珪砂では、含まれるSiOの殆どが石英として存在している。一方、試料1〜3にはSiOが含まれるものの、その殆どが石英として存在せず、石英の含有量が14質量%以下である。試料4,5には石英が殆ど含まれない。また、試料1〜3の価格は、珪砂の価格の10倍以下に抑えられている。なお、酸化アルミニウムの価格は、珪砂の価格の10倍以上である。
Sample 1: Garnet (Indian garnet sand (alumina almandite (Fe 3 Al 2 (SiO 4 ) 3 )), MAC Co., Ltd.),
Sample 2: Ferronickel slag (NE Sand No. 6, Yamakawa Sangyo Co., Ltd.),
Sample 3: Ilmenite (Ilmenite from Australia, Iwatani Corporation),
Sample 4: Chromite (Chromite sand, Yamakawa Sangyo Co., Ltd.)
Sample 5: olivine (Olivine Sand, Toho Olivine Industry Co., Ltd.),
Comparative sample: Quartz sand (Bamboo folding sand No.5, Bamboo folding mill)
Each sample was prepared. Table 1 shows the elemental analysis results of Samples 1 to 3 and Comparative Sample. Table 1 also shows standard compositions of garnet (almandite), ferronickel slag, and ilmenite. Table 2 shows the prices of the samples 1 to 5 and the comparative sample, the X-ray diffraction analysis results, the durability test results, and the flow heating test results. In the silica sand of the comparative sample, most of the contained SiO 2 is present as quartz. On the other hand, although Samples 1 to 3 contain SiO 2 , most of them do not exist as quartz and the content of quartz is 14% by mass or less. Samples 4 and 5 contain almost no quartz. Further, the prices of Samples 1 to 3 are suppressed to 10 times or less the price of silica sand. The price of aluminum oxide is more than 10 times the price of silica sand.

Figure 2020106244
Figure 2020106244

Figure 2020106244
Figure 2020106244

Figure 2020106244
Figure 2020106244

流動媒体4の平均粒子径は、流動層内の流動媒体の流速(目標流速)に応じて適切な範囲が設定される。表3に、内部循環流動床ボイラ(ICFB)及び循環流動床ボイラ(CFB)の各々について、流動層内の流動媒体の流速と粒径との関係を示す。好適な流動媒体4の平均粒子径は、例えば、流動層の層温度:550〜1000℃、流動媒体4の比重:2.5〜5.0を仮定して、流動化開始速度Umfが0.129m/s以下となる粒子径の最小値から最大値までの範囲として計算され得る。このような流動媒体4の平均粒子径は、概ね0.37mm以上0.61mm以下の範囲に収まる。例えば、層温度が800℃、流動媒体(試料1)の比重が4g/cmである場合、粒子径が0.48mmのときにUmfが約0.129m/sとなる。そこで、流動媒体(試料1)の平均粒子径を、好ましくは0.48mmとする。また、例えば、層温度が800℃、流動媒体(試料2)の比重が2.8g/cmである場合、粒子径が0.58mmのときにUmfが約0.129m/sとなる。そこで、流動媒体(試料2)の平均粒子径を、好ましくは0.58mmとする。また、例えば、層温度が800℃、流動媒体(試料3)の比重が4.7g/cmである場合、粒子径が0.44mmのときにUmfが約0.129m/sとなる。そこで、流動媒体(試料3)の平均粒子径を、好ましくは0.44mmとする。 The average particle diameter of the fluidized medium 4 is set in an appropriate range according to the flow velocity (target flow velocity) of the fluidized medium in the fluidized bed. Table 3 shows the relationship between the flow velocity and particle size of the fluid medium in the fluidized bed for each of the internal circulating fluidized bed boiler (ICFB) and the circulating fluidized bed boiler (CFB). A suitable average particle diameter of the fluidized medium 4 is, for example, assuming that the bed temperature of the fluidized bed is 550 to 1000° C. and the specific gravity of the fluidized medium 4 is 2.5 to 5.0. It can be calculated as a range from the minimum value to the maximum value of the particle diameter of 129 m/s or less. The average particle diameter of the fluidized medium 4 is generally within the range of 0.37 mm or more and 0.61 mm or less. For example, when the bed temperature is 800° C. and the specific gravity of the fluidized medium (Sample 1) is 4 g/cm 3 , Umf is about 0.129 m/s when the particle diameter is 0.48 mm. Therefore, the average particle size of the fluid medium (Sample 1) is preferably 0.48 mm. Further, for example, when the bed temperature is 800° C. and the specific gravity of the fluid medium (Sample 2) is 2.8 g/cm 3 , the Umf is about 0.129 m/s when the particle diameter is 0.58 mm. Therefore, the average particle size of the fluid medium (Sample 2) is preferably 0.58 mm. Further, for example, when the bed temperature is 800° C. and the specific gravity of the fluid medium (Sample 3) is 4.7 g/cm 3 , the Umf is about 0.129 m/s when the particle diameter is 0.44 mm. Therefore, the average particle size of the fluid medium (Sample 3) is preferably 0.44 mm.

なお、流動媒体4の平均粒子径は、ふるい分け法によって測定されてよい。具体的には、JIS Z 8801に規定するふるいを用いてふるい分け、それぞれのふるい上に残った試料の質量を計測し、グラフに累積分布を記載して、累積分布(粒度分布)の体積基準の相対粒子量が50%になる粒子径(d50)を平均粒子径として求める。 The average particle diameter of the fluidized medium 4 may be measured by a sieving method. Specifically, it is sieved using a sieve specified in JIS Z 8801, the mass of the sample remaining on each sieve is measured, the cumulative distribution is described in a graph, and the cumulative distribution (particle size distribution) based on the volume standard is measured. The particle diameter (d50) at which the relative particle amount is 50% is determined as the average particle diameter.

〔流動加熱試験及びその結果〕
ここで、流動媒体4の凝集抑制効果を評価するための、流動加熱試験について説明する。
[Fluid heating test and its results]
Here, a flow heating test for evaluating the aggregation suppressing effect of the fluid medium 4 will be described.

図2は、流動加熱試験装置8の概略構成を示す図である。流動加熱試験装置8は、SUS製の炉心管81、炉心管81を加熱する管状炉80、流動化ガス源であるArガスボンベ82及びPRガスボンベ83、流動化ガスを加熱するエアヒータ84、並びに、炉心管81からの排ガス系統に設けられた集塵用サイクロン88及びコールドトラップ89を備える。炉心管81には、流動媒体4の試料が静止層高60mmとなるように充填されている。Arガスボンベ82からのArガス供給量は第1マスフローコントローラ85により調整され、PRガスボンベ83からのPRガス供給量は第2マスフローコントローラ86により調整される。流動加熱試験装置8は、流動層2の層内圧力を検出する第1圧力センサ91、炉心管81の出口圧力を検出する第2圧力センサ92、流動層2の温度を検出する温度センサ95、及び、流動層2の層内圧力と炉心管81の出口圧力との差である流動層差圧ΔP2を計測する流動層差圧計94を更に備える。 FIG. 2 is a diagram showing a schematic configuration of the flow heating test apparatus 8. The fluid heating test apparatus 8 includes a SUS core tube 81, a tubular furnace 80 that heats the core tube 81, an Ar gas cylinder 82 and a PR gas cylinder 83 that are fluidizing gas sources, an air heater 84 that heats the fluidizing gas, and a core. A cyclone 88 for collecting dust and a cold trap 89 provided in the exhaust gas system from the pipe 81 are provided. The core tube 81 is filled with a sample of the fluidized medium 4 so that the height of the stationary layer is 60 mm. The Ar gas supply amount from the Ar gas cylinder 82 is adjusted by the first mass flow controller 85, and the PR gas supply amount from the PR gas cylinder 83 is adjusted by the second mass flow controller 86. The fluidized-bed heating test apparatus 8 includes a first pressure sensor 91 that detects the pressure inside the fluidized bed 2, a second pressure sensor 92 that detects the outlet pressure of the core tube 81, and a temperature sensor 95 that detects the temperature of the fluidized bed 2. Further, a fluidized bed differential pressure gauge 94 for measuring a fluidized bed differential pressure ΔP2 which is a difference between the in-layer pressure of the fluidized bed 2 and the outlet pressure of the core tube 81 is further provided.

上記構成の流動加熱試験装置8では、Arガスボンベ82及びPRガスボンベ83からのガスは、マスフローコントローラ85,86により流量調整されたのち合流して、エアヒータ84で200℃まで加熱され、流動化ガスとして炉心管81の底部入口に流入する。流動化ガスは炉心管81を下方から上方へ向けて通過し、これにより流動媒体4が流動して、流動層2が形成される。流動するうちに割れて微細となった流動媒体4は、流動層2から飛散してフリーボード層を通過し、排ガスに同伴して炉心管81から排出される。炉心管81からの排ガスはサイクロン88を通過し、ここで排ガスに同伴する微細な流動媒体が分離回収される。サイクロン88を通過した排ガスは、コールドトラップ89で冷却されて放散される。 In the flow heating test apparatus 8 having the above-described configuration, the gases from the Ar gas cylinder 82 and the PR gas cylinder 83 are combined after being adjusted in flow rate by the mass flow controllers 85 and 86, and heated by the air heater 84 to 200° C. It flows into the bottom inlet of the core tube 81. The fluidized gas passes through the core tube 81 from the lower side to the upper side, whereby the fluidized medium 4 flows and the fluidized bed 2 is formed. The fluidized medium 4 which is broken into fine particles while flowing is scattered from the fluidized bed 2, passes through the freeboard layer, and is discharged from the core tube 81 along with the exhaust gas. The exhaust gas from the core tube 81 passes through the cyclone 88, where the fine fluidized medium that accompanies the exhaust gas is separated and collected. The exhaust gas that has passed through the cyclone 88 is cooled by the cold trap 89 and is diffused.

流動加熱試験は、以下の(1)〜(6)の手順で行う。
(1)11.5gの模擬灰(KCO)を測り取り、流動層2中の模擬灰体積濃度が0.117g/mLとなるように、ビーカー内で流動媒体の試料と模擬灰とを混合する。
(2)炉心管81に、初期静止層高が60mmとなるように、試料と模擬灰との混合物を充填する。
(3)2.0NL/minのArガスで通気しながら、管状炉80で炉心管81を昇温させる。流動層2内の温度が750℃付近になれば、Arガスの流量をU/Umf=5.0相当となるように調整する。
(4)流動層2内の温度が750℃に安定してから、ArガスにPRガス(CH 10%+ArベースのProportional Gas)を添加することにより、CH濃度が4%となるように調整して、試験を開始する。
(5)流動媒体が凝集して流動しなくなると、流動層差圧ΔP1が低下する。そこで、流動層差圧ΔP1の変化を波形チャートに基づいて観察し、流動層差圧ΔP1が急激に減少した時点で試験を終了する。流動層差圧ΔP1の急激な変化が観察されない場合には、5時間で試験を終了する。
(6)試験終了後、炉心管81を降温し、炉心管81内の状況(凝集物生成によるブリッジ、管内付着状況等)を確認する。更に、炉心管81の内容物を取り出し、目開き500μmの篩を用いて、分級後の各重量を測定する。
The flow heating test is performed by the following procedures (1) to (6).
(1) 11.5 g of simulated ash (K 2 CO 3 ) was measured, and the fluid medium sample and the simulated ash were mixed in a beaker so that the simulated ash volume concentration in the fluidized bed 2 was 0.117 g/mL. To mix.
(2) The core tube 81 is filled with the mixture of the sample and the simulated ash so that the initial stationary layer height is 60 mm.
(3) While ventilating with 2.0 NL/min of Ar gas, the furnace core tube 81 is heated in the tubular furnace 80. When the temperature in the fluidized bed 2 is near 750° C., the flow rate of Ar gas is adjusted so as to correspond to U/Umf=5.0.
(4) After the temperature in the fluidized bed 2 was stabilized at 750° C., PR gas (CH 4 10%+Ar-based Proportional Gas) was added to Ar gas so that the CH 4 concentration became 4%. Adjust and start the test.
(5) When the fluidized medium agglomerates and stops flowing, the fluidized bed differential pressure ΔP1 decreases. Therefore, the change in the fluidized bed differential pressure ΔP1 is observed based on the waveform chart, and the test is terminated when the fluidized bed differential pressure ΔP1 suddenly decreases. If no rapid change in the fluidized bed differential pressure ΔP1 is observed, the test is finished in 5 hours.
(6) After completion of the test, the temperature of the core tube 81 is lowered, and the conditions inside the core tube 81 (bridge due to agglomerate formation, tube adhesion state, etc.) are confirmed. Further, the contents of the furnace core tube 81 are taken out, and each weight after classification is measured using a sieve having an opening of 500 μm.

流動加熱試験の結果を表2に示す。篩で500μm以上に分級された流動媒体を「凝集した流動媒体」とし、初期の流動媒体の全質量に対する凝集した流動媒体の質量の割合[%]を凝集率とした。試料1〜3,5は、いずれも比較試料である珪砂よりも著しく低い凝集率が得られ、且つ、流動層2の流動不良は観察されなかった。 The results of the flow heating test are shown in Table 2. The fluidized medium classified by a sieve to 500 μm or more was defined as “aggregated fluidized medium”, and the ratio [%] of the mass of the aggregated fluidized medium to the total mass of the initial fluidized medium was defined as the aggregation rate. Samples 1 to 3 and 5 all had a significantly lower agglomeration rate than silica sand as a comparative sample, and no fluidity failure in the fluidized bed 2 was observed.

〔耐久試験及びその結果〕
流動媒体4は、所定の耐久性を備えることが好ましい。流動媒体4の耐久性は、流動加熱後の残留率で評価することができる。耐久性の評価の基準は、例えば、一般的に流動媒体として使用されてきた珪砂の耐久性としてよい。
[Durability test and its results]
The fluidized medium 4 preferably has a predetermined durability. The durability of the fluid medium 4 can be evaluated by the residual rate after fluidized heating. The criterion for the durability evaluation may be, for example, the durability of silica sand that has been generally used as a fluid medium.

耐久試験は、前述の流動加熱試験と同時に行われる。具体的には、流動加熱試験において、サイクロン88で回収された流動媒体の質量を測定する。そして、試験開始時に炉心管81に充填された流動媒体の質量とサイクロン88で回収された流動媒体の質量との差を、試験開始時に炉心管81に充填された流動媒体の質量で割って、これに100を掛けた値を残留率[%]とする。 The durability test is performed at the same time as the above-mentioned flow heating test. Specifically, in the flow heating test, the mass of the fluid medium collected by the cyclone 88 is measured. Then, the difference between the mass of the fluid medium filled in the core tube 81 at the start of the test and the mass of the fluid medium recovered by the cyclone 88 is divided by the mass of the fluid medium filled in the core tube 81 at the start of the test, The value obtained by multiplying this by 100 is taken as the residual rate [%].

耐久試験の結果を表2に示す。試料1〜3,5は、いずれも比較試料である珪砂よりも高い残留率が得られた。よって、試料1〜3,5は、流動媒体としての所定の耐久性を備えるといえる。 Table 2 shows the results of the durability test. Samples 1 to 3 and 5 all had a higher residual rate than silica sand as a comparative sample. Therefore, it can be said that the samples 1 to 3 and 5 have a predetermined durability as a fluid medium.

以上から、本発明に係る流動床炉1では、アルカリ金属を含む燃料3を燃焼させる場合に、比較的安価且つ入手容易な流動媒体を用いて流動媒体の塊化を抑制することができることが明らかである。 From the above, it is clear that in the fluidized bed furnace 1 according to the present invention, when burning the fuel 3 containing an alkali metal, it is possible to suppress the agglomeration of the fluid medium by using the fluid medium which is relatively inexpensive and easily available. Is.

1 :流動床炉
2 :流動層
3 :燃料
4 :流動媒体
7 :流動化ガス供給装置
8 :流動加熱試験装置
10 :燃焼容器
11 :燃料投入口
12 :二次燃焼ガス供給口
13 :三次燃焼ガス供給口
15 :抜出口
41,42 :仕切壁
61 :燃焼セル
62 :循環セル
63 :収熱セル
64 :伝熱管
71,72,73 :風箱
80 :管状炉
81 :炉心管
82 :Arガスボンベ
83 :PRガスボンベ
84 :エアヒータ
85,86 :マスフローコントローラ
88 :サイクロン
89 :コールドトラップ
91,92 :圧力センサ
94 :流動層差圧計
95 :温度センサ
110:流動化ガス
120:二次燃焼ガス
130:三次燃焼ガス
1 :fluidized bed furnace 2 :fluidized bed 3 :fuel 4 :fluid medium 7 :fluidized gas supply device 8 :fluidized heating test device 10 :combustion vessel 11 :fuel input port 12 :secondary combustion gas supply port 13 :tertiary combustion Gas supply port 15: outlet 41, 42: partition wall 61: combustion cell 62: circulation cell 63: heat collection cell 64: heat transfer tubes 71, 72, 73: wind box 80: tubular furnace 81: core tube 82: Ar gas cylinder 83: PR gas cylinder 84: Air heaters 85, 86: Mass flow controller 88: Cyclone 89: Cold trap 91, 92: Pressure sensor 94: Fluidized bed differential pressure gauge 95: Temperature sensor 110: Fluidized gas 120: Secondary combustion gas 130: Tertiary combustion gas Combustion gas

Claims (3)

流動媒体を流動させて供給された燃料を燃焼する流動層を備え、
前記燃料は、アルカリ金属を含有し、
前記流動媒体は、粒子状鉱物及び/又は粒子状スラグからなり、石英の含有量が14質量%以下である、
流動床炉。
A fluidized bed that fluidizes a fluidized medium to burn the supplied fuel,
The fuel contains an alkali metal,
The fluidized medium is made of particulate minerals and/or particulate slag, and the content of quartz is 14% by mass or less.
Fluidized bed furnace.
前記鉱物が、ガーネット、イルメナイト、かんらん石、及び、クロマイトよりなる群から選択される少なくとも1種の鉱物である、
請求項1に記載の流動床炉。
The mineral is at least one mineral selected from the group consisting of garnet, ilmenite, olivine, and chromite;
The fluidized bed furnace according to claim 1.
前記スラグが、フェロニッケルスラグ、及び、銅スラグよりなる群から選択される少なくとも1種のスラグである、
請求項1又は2に記載の流動床炉。
The slag is ferronickel slag, and at least one slag selected from the group consisting of copper slag,
The fluidized bed furnace according to claim 1.
JP2018247383A 2018-12-28 2018-12-28 Fluidized bed furnace Active JP7251978B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018247383A JP7251978B2 (en) 2018-12-28 2018-12-28 Fluidized bed furnace
BR112021012320-2A BR112021012320A2 (en) 2018-12-28 2019-12-27 FLUID BED OVEN
CN201980086088.4A CN113227652A (en) 2018-12-28 2019-12-27 Fluidized bed furnace
PCT/JP2019/051575 WO2020138484A1 (en) 2018-12-28 2019-12-27 Fluidized bed furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018247383A JP7251978B2 (en) 2018-12-28 2018-12-28 Fluidized bed furnace

Publications (2)

Publication Number Publication Date
JP2020106244A true JP2020106244A (en) 2020-07-09
JP7251978B2 JP7251978B2 (en) 2023-04-04

Family

ID=71126012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018247383A Active JP7251978B2 (en) 2018-12-28 2018-12-28 Fluidized bed furnace

Country Status (4)

Country Link
JP (1) JP7251978B2 (en)
CN (1) CN113227652A (en)
BR (1) BR112021012320A2 (en)
WO (1) WO2020138484A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115337874A (en) * 2022-09-15 2022-11-15 南京理工大学 Membrane-breaking reaction method for metal fuel particle fluidized bed

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6460472B1 (en) * 1998-04-30 2002-10-08 Kvaerner Pulping Oy Fluidized bed material, method for its production, and method in a fluidized bed process
WO2011007618A1 (en) * 2009-07-13 2011-01-20 住友重機械工業株式会社 Combustion method for fluidized bed boiler, and fluidized bed boiler
JP2017071692A (en) * 2015-10-07 2017-04-13 Jfeスチール株式会社 Gasification method of carbonaceous fuel, operation method of iron mill and manufacturing method of gasified gas
JP2017088831A (en) * 2015-11-17 2017-05-25 Jfeスチール株式会社 Gasification method of carbonaceous fuel, operation method of iron mill and manufacturing method of gasification gas
US20180038586A1 (en) * 2014-12-22 2018-02-08 Improbed Ab Bed material for bubbling fluidised bed combustion

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE7712262L (en) * 1977-06-20 1978-12-21 Energy Products Of Idaho DEVICE FOR COMBUSTION, PYROLYSIS OR GASIFICATION OF WASTE
JPH0433817U (en) * 1990-06-29 1992-03-19
JP2005068297A (en) * 2003-08-25 2005-03-17 Ebara Corp Apparatus for generating gas and method for generating gas
JP2005226930A (en) * 2004-02-13 2005-08-25 Kawasaki Heavy Ind Ltd Biomass fuel burning fluidized bed combustion method and apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6460472B1 (en) * 1998-04-30 2002-10-08 Kvaerner Pulping Oy Fluidized bed material, method for its production, and method in a fluidized bed process
WO2011007618A1 (en) * 2009-07-13 2011-01-20 住友重機械工業株式会社 Combustion method for fluidized bed boiler, and fluidized bed boiler
JP5536063B2 (en) * 2009-07-13 2014-07-02 住友重機械工業株式会社 Fluidized bed boiler combustion method and fluidized bed boiler
US20180038586A1 (en) * 2014-12-22 2018-02-08 Improbed Ab Bed material for bubbling fluidised bed combustion
JP2017071692A (en) * 2015-10-07 2017-04-13 Jfeスチール株式会社 Gasification method of carbonaceous fuel, operation method of iron mill and manufacturing method of gasified gas
JP2017088831A (en) * 2015-11-17 2017-05-25 Jfeスチール株式会社 Gasification method of carbonaceous fuel, operation method of iron mill and manufacturing method of gasification gas

Also Published As

Publication number Publication date
BR112021012320A2 (en) 2021-09-08
WO2020138484A1 (en) 2020-07-02
CN113227652A (en) 2021-08-06
JP7251978B2 (en) 2023-04-04

Similar Documents

Publication Publication Date Title
Salour et al. Control of in-bed agglomeration by fuel blending in a pilot scale straw and wood fueled AFBC
Song et al. Transformation characteristics of sodium in Zhundong coal under circulating fluidized bed gasification
Elled et al. Composition of agglomerates in fluidized bed reactors for thermochemical conversion of biomass and waste fuels: Experimental data in comparison with predictions by a thermodynamic equilibrium model
JPH0657831B2 (en) Combustion of alkali-containing fuel
Nguyen et al. Ash characteristics of oxy-biomass combustion in a circulating fluidized bed with kaolin addition
Liu et al. Ash deposition behavior of a high-alkali coal in circulating fluidized bed combustion at different bed temperatures and the effect of kaolin
CN103884013B (en) Manifold type environment-friendly type fluidized-bed combustion boiler combustion method and device
Li et al. Investigation on formation mechanisms of ash and deposit from cotton stalk vibrating grate boiler combustion based on their characteristics
Sun et al. Effects of oxy-fuel condition on morphology and mineral composition of ash deposit during combustion of Zhundong high-alkali coal
WO2020138484A1 (en) Fluidized bed furnace
Han et al. Effects of torrefaction on ash-related issues during biomass combustion and co-combustion with coal. Part 3: Ash slagging behavior
Sun et al. Experimental study on cotton stalk combustion in a circulating fluidized bed
CN103339442A (en) Method to enhance operation of circulating mass reactor and reactor to carry out such method
CN205640928U (en) Fluidized bed waste incineration system
US2509866A (en) Low-temperature combustion and apparatus therefor
CN111133253B (en) Fluidizing medium for fluidized bed
CN202392778U (en) Circulating fluidized bed boiler for improving burning temperature stability in boiler
TW414844B (en) Process of burning or gasifying in the circulating fluidized bed
Namkung et al. Coal fouling characteristic to deposit probe with different temperatures under the gasification condition
Kim et al. Enhancing oxygen savings and carbon dioxide purity in biomass oxy-circulating fluidized bed combustion with an oxygen carrier
Nasir et al. Performance of enugu sub-bituminous coal in fluidized bed combustor
EP1075626A1 (en) Fluidized bed material, method for its production, and method in a fluidized bed process
CN108644763A (en) A kind of circulating fluidized bed boiler and its operation method
Li et al. Investigation on Formation Mechanisms of Ash/Deposit from Cotton Stalk Vibrating Boiler Combustion Based on Their Characteristics
Kosowska-Golachowska et al. An investigation on oxy-fuel combustion of sewage sludge in a 12-kW bench-scale CFB combustor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230323

R150 Certificate of patent or registration of utility model

Ref document number: 7251978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150