JP2020106221A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2020106221A
JP2020106221A JP2018245828A JP2018245828A JP2020106221A JP 2020106221 A JP2020106221 A JP 2020106221A JP 2018245828 A JP2018245828 A JP 2018245828A JP 2018245828 A JP2018245828 A JP 2018245828A JP 2020106221 A JP2020106221 A JP 2020106221A
Authority
JP
Japan
Prior art keywords
heat exchange
tank
section
exchange section
surface side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018245828A
Other languages
Japanese (ja)
Inventor
祐一 佐原
Yuichi Sawara
祐一 佐原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyorad Sales Co Ltd
Original Assignee
Koyorad Sales Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyorad Sales Co Ltd filed Critical Koyorad Sales Co Ltd
Priority to JP2018245828A priority Critical patent/JP2020106221A/en
Publication of JP2020106221A publication Critical patent/JP2020106221A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

To provide a new heat exchanger capable of improving cooling performance.SOLUTION: A heat exchanger includes: a heat exchange part in which a coolant flows, which exchanges heat, and has a front surface side heat exchange part and a rear surface side heat exchange part arranged side by side in a back and forth direction; and a tank which is provided on both end parts in one direction of the heat exchange part and temporarily stores the coolant. The tank is an inflow/outflow tank which is connected to one end part in one direction of the heat exchange part and whose inside is divided, includes: an inflow/outflow tank which feeds coolant flown by a cooling part into either the front surface side heat exchange part or the rear surface side heat exchange part and discharges the coolant after heat exchange fed by the other heat exchange part; and a turning tank which is connected to the other end part in one direction of the heat exchange part, turns the direction in which the coolant flows, feeds the coolant flown by either the front surface side heat exchange part or the rear surface side heat exchange part into the other heat exchange part.SELECTED DRAWING: Figure 3

Description

本発明は、熱交換装置に関する。 The present invention relates to a heat exchange device.

図1は、従来の車両用熱交換装置の一例を示す。図1の従来の車両用熱交換装置1xは、熱交換を行う熱交換領域2xの両側に第1タンク6x、第2タンク7xが設けられている。熱交換領域2xは、冷媒が横方向(水平方向)に流れるチューブが縦方向(垂直方向)に複数配置され、チューブとチューブの間には、フィンが設けられている。 FIG. 1 shows an example of a conventional vehicle heat exchange device. The conventional vehicle heat exchange device 1x of FIG. 1 is provided with a first tank 6x and a second tank 7x on both sides of a heat exchange area 2x for heat exchange. In the heat exchange region 2x, a plurality of tubes in which the refrigerant flows in the horizontal direction (horizontal direction) are arranged in the vertical direction (vertical direction), and fins are provided between the tubes.

図2は、従来の車両用熱交換装置のその他の例を示す。図2の従来の車両用熱交換装置1xは、熱交換を行う熱交換領域2xのコア厚(前後方向の厚み)を大きくし、縦方向に複数配置されたチューブが前後方向に2列配置されている。 FIG. 2 shows another example of the conventional vehicle heat exchange device. In the conventional vehicle heat exchange device 1x of FIG. 2, the core thickness (thickness in the front-rear direction) of the heat exchange area 2x for heat exchange is increased, and a plurality of tubes arranged in the longitudinal direction are arranged in two rows in the front-rear direction. ing.

また、従来の車両用熱交換装置として、例えば、特許文献1に記載の技術がある。特許文献1に記載の車両用熱交換装置は、熱交換領域を冷媒が横方向に流れる所謂サイドフローのラジエータである。特許文献1に記載の車両用熱交換装置では、熱交換領域が、流路が互いに並列な3つの領域に分割されている。 Further, as a conventional vehicle heat exchange device, for example, there is a technique described in Patent Document 1. The vehicle heat exchange device described in Patent Document 1 is a so-called side flow radiator in which a refrigerant flows laterally in a heat exchange region. In the vehicle heat exchange device described in Patent Document 1, the heat exchange region is divided into three regions in which the flow paths are parallel to each other.

特開2006−316747号公報JP 2006-316747 A

熱交換装置において、冷却性能を向上させるため(効率よく熱交換を行うため)、熱交換領域のコア厚を大きくし冷媒が流れるチューブを前後方向に2列配置する従来技術や、熱交換領域を分割する従来技術がある。例えば、図2の従来の車両用熱交換装置では、熱交換を行う熱交換領域2xのコア厚を大きくし、縦方向に複数配置されたチューブが前後方向に2列配置。図2の従来の車両用熱交換装置1xは、熱交換領域2xのコア厚、熱交換領域2xに設置されたフィンの表面積が、図1の従来の車両用熱交換装置1xのコア厚、フィンの表面積よりも増している。その結果、図2の従来の車両用熱交換装置1xの冷却性能は、図1の従来の車両用熱交換装置1xよりも向上することが期待される。しかしながら、図2の従来の車両用熱交換装置1xでは、第1タンク6x,第2タンク7xに対するチューブの数が増えることで、チューブ1本あたりの内部流速が低下し、チューブと冷媒との熱伝達効率が低下することが懸念される。また、後面側から流入した冷媒は、前面側の熱交換領域のチューブに流れ込みやすい。そのため、前面側の熱交換領域と後面側の熱交換領域では、チューブの内部流速にバラツキが出ることが懸念される。特に、前面側と比較して、後面側の熱交換領域のチューブの内部流速が減少し、後面側の熱交換領域のチューブと冷媒との熱伝達効率が低下することが懸念される。以上より、図2の従来の車両用熱交換装置は、熱交換領域2xのコア厚を増加させたにもかかわらず、冷却性能が僅かしか向上しないことが懸念される。 In the heat exchange device, in order to improve the cooling performance (in order to efficiently perform heat exchange), the core thickness of the heat exchange region is increased and the conventional technology in which the tubes through which the refrigerant flows are arranged in two rows in the front-rear direction and the heat exchange region There is a conventional technique of dividing. For example, in the conventional vehicle heat exchange device of FIG. 2, the core thickness of the heat exchange area 2x for heat exchange is increased, and a plurality of tubes arranged in the longitudinal direction are arranged in two rows in the front-rear direction. In the conventional vehicle heat exchange device 1x of FIG. 2, the core thickness of the heat exchange region 2x and the surface area of the fins installed in the heat exchange region 2x are the same as the core thickness of the conventional vehicle heat exchange device 1x of FIG. More than the surface area of. As a result, it is expected that the cooling performance of the conventional vehicle heat exchange device 1x of FIG. 2 will be improved as compared with the conventional vehicle heat exchange device 1x of FIG. However, in the conventional vehicle heat exchange device 1x of FIG. 2, since the number of tubes for the first tank 6x and the second tank 7x increases, the internal flow velocity per tube decreases, and the heat between the tubes and the refrigerant is reduced. There is concern that the transmission efficiency will decrease. Further, the refrigerant flowing from the rear surface side easily flows into the tubes in the heat exchange area on the front surface side. Therefore, there is a concern that the internal flow velocity of the tube may vary between the heat exchange area on the front surface side and the heat exchange area on the rear surface side. In particular, there is a concern that the internal flow velocity of the tube in the heat exchange area on the rear surface side is reduced and the heat transfer efficiency between the tube and the refrigerant in the heat exchange area on the rear surface side is reduced as compared with the front surface side. From the above, it is feared that the conventional vehicle heat exchange device shown in FIG. 2 has a slight improvement in the cooling performance despite the increase in the core thickness of the heat exchange region 2x.

また、特許文献1に記載されているような、熱交換領域を分割する従来技術によれば、熱交換領域を分割しない場合と比較して、冷却性能の向上が期待できる。但し、特許文献1に記載の技術では、風速によって、分割した熱交換領域を流れる冷媒の流量を制御する必要がある。本発明は、上記問題を解決することを課題とする。但し、本発明は、車両用熱交換装置に限らず、種々の熱交換装置について、冷却性能を向上するものである。 Further, according to the conventional technique of dividing the heat exchange region as described in Patent Document 1, improvement in cooling performance can be expected as compared with the case where the heat exchange region is not divided. However, in the technique described in Patent Document 1, it is necessary to control the flow rate of the refrigerant flowing through the divided heat exchange regions depending on the wind speed. An object of the present invention is to solve the above problem. However, the present invention is not limited to the vehicle heat exchange device, but improves the cooling performance of various heat exchange devices.

本発明は、上記の問題に鑑み、冷却性能を向上できる、新たな熱交換装置を提供することを課題とする。 In view of the above problems, it is an object of the present invention to provide a new heat exchange device that can improve cooling performance.

上記課題を解決するため、本発明に係る熱交換装置は、冷媒が流れ、熱交換を行う熱交換部であって、前後方向に並べて配置された前面側熱交換部、後面側熱交換部を有する熱交換部と、熱交換部の一方向の両端部に設けられ、冷媒を一時的に貯留するタンクと、を備え、タンクは、熱交換部の一方向の一方の端部に接続され、内部が仕切られた流入送出用タンクであって、冷却部から流入する冷媒を前面側熱交換部と後面側熱交換部とのうち何れか一方の熱交換部に送り込み、他方の熱交換部から送り出される熱交換後の冷媒を冷却部へ排出する流入送出用タンクと、熱交換部の一方向の他方の端部に接続され、冷媒の流れる方向を転回させ、前面側熱交換部と後面側熱交換部とのうち何れか一方の熱交換部から送り出される冷媒を他方の熱交換部へ送り込む転回用タンクと、を含む。 In order to solve the above problems, the heat exchange device according to the present invention is a heat exchange part in which a refrigerant flows and performs heat exchange, and includes a front side heat exchange part and a rear side heat exchange part arranged side by side in the front-rear direction. A heat exchange unit having and a tank provided at both ends in one direction of the heat exchange unit and temporarily storing a refrigerant, the tank is connected to one end in one direction of the heat exchange unit, An inflow/outflow tank whose interior is partitioned, in which the refrigerant flowing from the cooling section is sent to either one of the front side heat exchange section and the rear side heat exchange section, and from the other heat exchange section. An inflow/outflow tank that discharges the heat-exchanged refrigerant that has been sent out to the cooling section, and is connected to the other end of the heat exchange section in one direction to turn the flow direction of the refrigerant and to change the direction of the front side heat exchange section and the rear side. And a turning tank for sending the refrigerant sent from one of the heat exchange parts to the other heat exchange part.

本発明に係る熱交換装置は、前面側熱交換部、後面側熱交換部を有することで、例えば、これらのうち1つの熱交換部で構成する場合と比較して、熱交換部の前後方向の厚み(コア厚)が大きくなる。その結果、熱交換部の熱交換する面積が増加する。そのため、本発明に係る熱交換装置は、1つの熱交換部で構成する場合と比較して、冷却性能を向上できる。また、本発明に係る熱交換装置は、流入送出用タンクの内部が仕切られていることで、例えば、流入送出用タンクの内部を仕切らず、一方のタンクで流入した冷却された冷媒を熱交換部へ送り出し、他方のタンクで熱交換された冷媒を排出する場合と比較して、熱交換部を流れる冷媒の流速を均一化できる。流入送出用タンクの内部を仕切らない場合、前面側熱交換部と後面側熱交換部を流れる冷媒の流速に差が出てしまい、冷却性能が低下することが懸念される。本発明に係る熱交換装置は、流入送出用タンクの内部が仕切られており、一方の熱交換部へ冷媒が送り込まれるため、熱交換部を流れる冷媒の流速を均一化でき、冷却性能を向上できる。また、熱交換部へ送り込まれた冷媒は、転回用タンクで流れる方向が転回される。すなわち、熱交換部へ送り込まれた冷媒は、熱交換部内を往復し、周囲の空気と熱交換する(冷却される)。冷媒と周囲の空気との温度差は、十分に確保されており、熱交換部内を冷媒が往復することで、冷媒が一方向に流れる場合と比較して、冷却性能を向上できる。また、本発明に係る熱交換装置では、風速によって、熱交換領域を流れる冷媒の流量を制御する必要もない。 The heat exchange device according to the present invention has the front side heat exchange section and the rear side heat exchange section, so that, for example, as compared with the case where the heat exchange section is configured by one of the heat exchange sections, the front and rear direction of the heat exchange section. Thickness (core thickness) increases. As a result, the heat exchange area of the heat exchange section increases. Therefore, the heat exchange device according to the present invention can improve the cooling performance as compared with the case where the heat exchange device is configured by one heat exchange part. Further, the heat exchange device according to the present invention is such that the inside of the inflow/outflow tank is partitioned, so that, for example, the inside of the inflow/outflow tank is not partitioned, and the cooled refrigerant flowing in one tank is heat-exchanged. The flow velocity of the refrigerant flowing through the heat exchange section can be made uniform as compared with the case where the refrigerant that has been sent to the heat exchange section and has undergone heat exchange in the other tank is discharged. If the inside of the inflow/outflow tank is not partitioned, there is a difference in the flow rate of the refrigerant flowing through the front side heat exchange section and the rear side heat exchange section, which may reduce the cooling performance. In the heat exchange device according to the present invention, the inside of the inflow/outflow tank is partitioned, and since the refrigerant is sent to one of the heat exchange parts, the flow velocity of the refrigerant flowing through the heat exchange part can be made uniform, and the cooling performance is improved. it can. In addition, the direction in which the refrigerant sent to the heat exchange section flows in the turning tank is turned. That is, the refrigerant sent to the heat exchange section reciprocates in the heat exchange section and exchanges heat with the surrounding air (is cooled). The temperature difference between the refrigerant and the surrounding air is sufficiently secured, and the refrigerant reciprocates in the heat exchange section, so that the cooling performance can be improved as compared with the case where the refrigerant flows in one direction. Further, in the heat exchange device according to the present invention, it is not necessary to control the flow rate of the refrigerant flowing through the heat exchange area by the wind speed.

本発明に係る熱交換装置は、自動車、オートバイなどの車両用熱交換装置として好適に用いることができる。また、本発明に係る熱交換装置は、産業機械用熱交換装置、非常用発電機用熱交換装置、空調用熱交換装置、電子機器用熱交換器など、種々の熱交換装置として用いることができる。熱交換部の一方向には、横方向(水平方向)、縦方向(垂直方向)が例示される。冷却部とは、冷却が必要とされる装置や機器であり、発熱する装置や機器、例えば、エンジン、モータ等が例示される。冷媒には、冷却水が例示されるがこれに限定されない。冷媒は、例えば、オイルクーラーを用いてもよい。 The heat exchange device according to the present invention can be suitably used as a heat exchange device for vehicles such as automobiles and motorcycles. Further, the heat exchange device according to the present invention can be used as various heat exchange devices such as a heat exchange device for industrial machines, a heat exchange device for emergency generators, a heat exchange device for air conditioning, and a heat exchanger for electronic devices. it can. Examples of the one direction of the heat exchange section include a horizontal direction (horizontal direction) and a vertical direction (vertical direction). The cooling unit is a device or device that requires cooling, and examples thereof include devices and devices that generate heat, such as an engine and a motor. Examples of the coolant include, but are not limited to, cooling water. An oil cooler may be used as the refrigerant, for example.

ここで、本発明に係る熱交換装置において、流入送出用タンクは、後面側に設けられ、冷却部から流入する冷媒を後面側熱交換部に送り込む流入側タンクと、前面側に設けられ、後面側熱交換部から送り出される熱交換後の冷媒を冷却部へ送り出す送出側タンクと、を含むようにしてもよい。 Here, in the heat exchange device according to the present invention, the inflow/outflow tank is provided on the rear surface side, the inflow side tank for sending the refrigerant flowing from the cooling section to the rear surface side heat exchange section, and the front surface side are provided on the rear surface side. A delivery-side tank for delivering the heat-exchanged refrigerant delivered from the side heat exchange section to the cooling section may be included.

本発明に係る熱交換装置は、冷媒が横方向(水平方向)に流れるサイドフロー式ラジエータとして機能させる場合の一例である。本発明に係る熱交換装置では、高温の冷媒が後面側熱交換部で冷却され、転回用タンクで流れる方向が転回され、前面側熱交換部で更に冷却される。その結果、冷媒が一方向に流れる場合と比較して、冷却性能を向上できる。 The heat exchange device according to the present invention is an example of a case where the refrigerant functions as a side-flow radiator in which the refrigerant flows laterally (horizontally). In the heat exchange device according to the present invention, the high temperature refrigerant is cooled in the rear heat exchange section, the direction of flow in the turning tank is turned, and further cooled in the front heat exchange section. As a result, the cooling performance can be improved as compared with the case where the refrigerant flows in one direction.

また、本発明に係る熱交換装置において、流入送出用タンクは、前面側に設けられ、冷却部から流入する冷媒を前面側熱交換部に送り込む流入側タンクと、後面側に設けられ、前面側熱交換部から送り出される熱交換後の冷媒を冷却部へ送り出す送出側タンクと、を含むようにしてもよい。 Further, in the heat exchange device according to the present invention, the inflow/outflow tank is provided on the front surface side, and the inflow side tank for sending the refrigerant flowing from the cooling portion to the front surface side heat exchange portion and the rear surface side are provided on the front surface side. A delivery side tank for delivering the heat-exchanged refrigerant delivered from the heat exchange section to the cooling section may be included.

本発明に係る熱交換装置は、冷媒が横方向(水平方向)に流れるサイドフロー式ラジエータとして機能させる場合のその他の例である。本発明に係る熱交換装置では、高温の冷媒が前面側熱交換部で冷却され、転回用タンクで流れる方向が転回され、後面側熱交換部で更に冷却される。その結果、冷媒が一方向に流れる場合と比較して、冷却性能を向上できる。なお、本発明に係る熱交換装置は、冷媒が縦方向(垂直方向)に流れるダウンフロー式ラジエータとして機能させることもできる。 The heat exchange device according to the present invention is another example of the case where the refrigerant functions as a sideflow radiator in which the refrigerant flows in the lateral direction (horizontal direction). In the heat exchange device according to the present invention, the high temperature refrigerant is cooled in the front side heat exchange section, the direction of flow in the turning tank is turned, and further cooled in the rear side heat exchange section. As a result, the cooling performance can be improved as compared with the case where the refrigerant flows in one direction. The heat exchange device according to the present invention can also function as a downflow radiator in which the refrigerant flows in the vertical direction (vertical direction).

また、本発明に係る熱交換装置において、前面側熱交換部の前後方向の厚みと、後面側熱交換部の前後方向の厚みを異なるようにしてもよい。前面側熱交換部の前後方向の厚みと、後面側熱交換部の前後方向の厚みは、本発明に係る熱交換装置を用いる装置や機器、前面側と後面側の外気温度等によって変更することができる。その結果、より効率よく冷却性能を向上できる。 Further, in the heat exchange device according to the present invention, the front-side thickness of the front-side heat exchange section may be different from the front-side thickness of the rear-side heat exchange section. The thickness in the front-rear direction of the front-side heat exchange section and the thickness in the front-rear direction of the rear-side heat exchange section should be changed depending on the device or equipment using the heat exchange device according to the present invention, the outside air temperature on the front side and the rear side, etc. You can As a result, the cooling performance can be improved more efficiently.

例えば、本発明に係る熱交換装置において、流入送出用タンクは、前面側に設けられ、冷却部から流入する冷媒を前面側熱交換部に送り込む流入側タンクと、後面側に設けられ、前面側熱交換部から送り出される熱交換後の冷媒を冷却部へ送り出す送出側タンクと、を含むようにし、前面側熱交換部の前後方向の厚みは、後面側熱交換部の前後方向の厚みよりも小さくしてもよい。 For example, in the heat exchange device according to the present invention, the inflow/outflow tank is provided on the front surface side, the inflow side tank that sends the refrigerant flowing from the cooling section to the front surface side heat exchange section, and the rear surface side, the front surface side A delivery side tank that sends out the refrigerant after heat exchange sent out from the heat exchange section to the cooling section, and the thickness of the front side heat exchange section in the front-rear direction is greater than the thickness of the rear side heat exchange section in the front-rear direction. May be smaller.

本発明に係る熱交換装置は、前面側の外気温度が後面側の外気温度よりも高い場合に有用である。前面側熱交換部を流れる冷媒は、前面側の外気温度が後面側よりも低いため、十分な温度差の下、冷却される。後面側熱交換部を流れる冷媒は、後面側の外気温度が前面側よりも高いものの、後面側熱交換部の厚みが前面側熱交換部よりも大きく、すなわち熱交換面積が前面側熱交換部よりも大きく、かつ、温度差も確保されていることで冷却される。その結果、より効率よく冷却性能を向上できる。 The heat exchange device according to the present invention is useful when the outside air temperature on the front surface side is higher than the outside air temperature on the rear surface side. Since the temperature of the outside air on the front surface side is lower than that on the rear surface side, the refrigerant flowing through the front surface side heat exchange section is cooled with a sufficient temperature difference. The refrigerant flowing through the rear heat exchange section has a higher outside air temperature on the rear side than the front side, but the thickness of the rear heat exchange section is larger than that of the front side heat exchange section, that is, the heat exchange area is the front side heat exchange section. Is larger than the above, and the temperature difference is secured, so that it is cooled. As a result, the cooling performance can be improved more efficiently.

本発明によれば、冷却性能を向上できる、新たな熱交換装置を提供することができる。 According to the present invention, it is possible to provide a new heat exchange device capable of improving cooling performance.

図1は、従来の車両用熱交換装置の一例を示す。FIG. 1 shows an example of a conventional vehicle heat exchange device. 図2は、従来の車両用熱交換装置のその他の例を示す。FIG. 2 shows another example of the conventional vehicle heat exchange device. 図3は、第1実施形態に係る熱交換装置の斜視図を示す。FIG. 3 shows a perspective view of the heat exchange device according to the first embodiment. 図4は、第2実施形態に係る熱交換装置の斜視図を示すFIG. 4 shows a perspective view of the heat exchange device according to the second embodiment. 図5は、放熱性能比較試験における、仕切縦、仕切無、仕切横の供試体の仕様を示す。FIG. 5 shows the specifications of test pieces with vertical partitions, no partitions, and horizontal partitions in the heat dissipation performance comparison test. 図6は、放熱性能比較試験における、特定風速、特定水流量、入口水温度差を示す。FIG. 6 shows specific wind speeds, specific water flow rates, and inlet water temperature differences in heat dissipation performance comparison tests. 図7は、放熱性能比較試験における、換算放熱量の結果を示す。FIG. 7 shows the result of the converted heat radiation amount in the heat radiation performance comparison test. 図8は、放熱性能比較試験における、換算放熱量比の結果を示す。FIG. 8 shows the result of the converted heat radiation amount ratio in the heat radiation performance comparison test. 図9は、放熱性能比較試験における、水側圧損の結果を示す。FIG. 9 shows the results of water side pressure loss in the heat dissipation performance comparison test.

次に、本発明の実施形態について図面に基づいて説明する。本発明に係る熱交換装置の一例として、サイドフロー型の車両用のラジエータを例に説明する。以下の説明は例示であり、本発明は以下の内容に限定されるものではない。以下の説明では、図3の矢印で示すように、外気の流れの上流側、換言すると車両の正面側を「前」、背面側を「後ろ」として説明する。また、縦方向(上下)、横方向(左右)については、正面(前面)側から見た場合を基準に説明する。 Next, an embodiment of the present invention will be described with reference to the drawings. A radiator for a side-flow type vehicle will be described as an example of the heat exchange device according to the present invention. The following description is an example, and the present invention is not limited to the following contents. In the following description, as shown by the arrow in FIG. 3, the upstream side of the flow of the outside air, in other words, the front side of the vehicle is “front” and the back side is “rear”. Further, the vertical direction (up and down) and the horizontal direction (left and right) will be described based on the case of being viewed from the front (front) side.

<第1実施形態>
<熱交換装置の構成>
図3は、第1実施形態に係る熱交換装置の斜視図を示す。第1実施形態に係る熱交換装置1は、冷却水が流れ熱交換を行う熱交換部2、熱交換部2の横方向の両端部に設けられ、冷却水を一時的に貯留するタンク5を備える。
<First Embodiment>
<Structure of heat exchange device>
FIG. 3 shows a perspective view of the heat exchange device according to the first embodiment. The heat exchanging device 1 according to the first embodiment includes a heat exchanging portion 2 through which cooling water flows to perform heat exchange, and a tank 5 that is provided at both lateral ends of the heat exchanging portion 2 and temporarily stores the cooling water. Prepare

熱交換部2は、本発明の熱交換部2の一例であり、冷却水(冷媒の一例)が流れ、熱交換を行う。熱交換部2は、正面視(前面側から見た場合)、横長の長方形である。熱交換部2は、前後方向に並べて配置された前面側熱交換部4、後面側熱交換部3を有する。前面側熱交換部4は、冷却水が流れる、縦方向(垂直方向)に配列された複数のチューブ41、チューブ41を挟み込むように配置されたフィン42を含む。後面側熱交換部3も基本的な構成は前面側熱交換部4と同じであり、冷却水が流れる、縦方向(垂直報告)に配列された複数のチューブ31、チューブ31を挟み込むように配置されたフィン32を含む。本発明に係る熱交換装置では、高温の冷媒が前面側熱交換部で冷却され、転回用タンクで流れる方向が転回され、後面側熱交換部で更に冷却される。その結果、冷媒が一方向に流れる場合と比較して、冷却性能を向上できる。なお、本発明に係る熱交換装置は、冷媒が縦方向(垂直方向)に流れるダウンフロー式ラジエータとして機能させることもできる。後面側熱交換部3のチューブ31、及びフィン32は、前面側熱交換部4のチューブ41、及びフィン42と基本的に同じ機能を有するが、前面側熱交換部4と後面側熱交換部3とで区別するため、符号を区別する。 The heat exchange unit 2 is an example of the heat exchange unit 2 of the present invention, and cooling water (an example of a refrigerant) flows through the heat exchange unit 2 to perform heat exchange. The heat exchange section 2 is a horizontally long rectangle when viewed from the front (when viewed from the front side). The heat exchange section 2 has a front heat exchange section 4 and a rear heat exchange section 3 which are arranged side by side in the front-rear direction. The front-side heat exchange unit 4 includes a plurality of tubes 41 arranged in the vertical direction (vertical direction) through which cooling water flows, and fins 42 arranged so as to sandwich the tubes 41. The rear side heat exchange section 3 also has the same basic configuration as the front side heat exchange section 4, and is arranged so as to sandwich the plurality of tubes 31 arranged in the vertical direction (vertical report) in which cooling water flows, and the tubes 31. Including the fins 32 formed. In the heat exchange device according to the present invention, the high temperature refrigerant is cooled in the front side heat exchange section, the direction of flow in the turning tank is turned, and further cooled in the rear side heat exchange section. As a result, the cooling performance can be improved as compared with the case where the refrigerant flows in one direction. The heat exchange device according to the present invention can also function as a downflow radiator in which the refrigerant flows in the vertical direction (vertical direction). The tubes 31 and the fins 32 of the rear surface side heat exchange section 3 have basically the same functions as the tubes 41 and the fins 42 of the front surface side heat exchange section 4, but the front surface side heat exchange section 4 and the rear surface side heat exchange section. In order to distinguish with 3, the signs are distinguished.

タンク5は、流入送出用タンク6、転回用タンク7を含む。流入送出用タンク6は、熱交換部2の横方向の一方の端部(左)に接続され、内部が仕切り部60で仕切られている。流入送出用タンク6は、流入側タンク61と、排出側タンク62と、を含む。流入側タンク61は、後面側に設けられ、駆動源としてのエンジン(本発明の冷却部の一例。図示せず。)から流入ホース8を介して流入する冷却水を後面側熱交換部3に送り込む。排出側タンク62は、前面側に設けられ、前面側熱交換部4から送り出される熱交換後の冷却水を排出ホース9を介して駆動源へ送り出す。流入側タンク61は、前後方向の厚み、及び縦方向の長さが、後面側熱交換部3の前後方向の厚み(コア厚)、及び縦方向の長さとほぼ同じか僅かに大きくに設計されている。排出側タンク62は、前後方向の厚み、及び縦方向の長さが、前面側熱交換部4の前後方向の厚み(コア厚)、及び縦方向の長さとほぼ同じか僅かに大きくに設計されている。転回用タンク7は、熱交換部2の横方向の他方の端部(右)に接続され、冷却水の流れる方向を転回させ、後面側熱交換部3から送り出される冷却水を前面側熱交換部4へ送り込む。転回用タンク7は、前後方向の厚み、及び縦方向の長さが、熱交換部2の前後方向の厚み(コア厚)、及び縦方向の長さとほぼ同じか僅かに大きくに設計されている。 The tank 5 includes an inflow/delivery tank 6 and a turning tank 7. The inflow/outflow tank 6 is connected to one end portion (left side) of the heat exchange section 2 in the horizontal direction, and the inside is partitioned by the partition section 60. The inflow/outflow tank 6 includes an inflow side tank 61 and a discharge side tank 62. The inflow side tank 61 is provided on the rear surface side, and the cooling water that flows in from the engine (an example of the cooling section of the present invention, not shown) as a drive source through the inflow hose 8 to the rear surface side heat exchange section 3. Send in. The discharge side tank 62 is provided on the front surface side, and sends out the cooling water after heat exchange sent out from the front surface side heat exchange section 4 to the drive source via the discharge hose 9. The inflow side tank 61 is designed such that the thickness in the front-rear direction and the length in the vertical direction are substantially the same as or slightly larger than the thickness in the front-rear direction (core thickness) and the length in the vertical direction of the rear surface side heat exchange section 3. ing. The discharge side tank 62 is designed such that the thickness in the front-rear direction and the length in the vertical direction are substantially the same as or slightly larger than the thickness in the front-rear direction (core thickness) and the length in the vertical direction of the front heat exchange section 4. ing. The turning tank 7 is connected to the other end (right) in the lateral direction of the heat exchange section 2 to turn the direction of flow of the cooling water and to turn the cooling water sent from the rear side heat exchange section 3 into the front side heat exchange. Send to Part 4. The turning tank 7 is designed such that the thickness in the front-rear direction and the length in the vertical direction are substantially the same as or slightly larger than the thickness in the front-rear direction (core thickness) and the length in the vertical direction of the heat exchange section 2. ..

<熱交換装置の作用>
第1実施形態に係る熱交換装置1では、駆動源で熱交換することで高温となった冷却水が、流入側タンク61の上部に接続された流入ホース8を介して流入側タンク61に流れ込む。流入側タンク61に流れ込んだ高温の冷却水は、後面側熱交換部3の縦方向に配列された複数のチューブ31に流れ込む。後面側熱交換部3のチューブ31内を流れる高温の冷却水は、後面側熱交換部3のフィン32を介して外気と熱交換しながら徐々に冷却され、転回用タンク7に流れ込む。後面側熱交換部3で冷却された冷却水は、転回用タンク7で流れる方向が転回(反転)され、前面側熱交換部4の縦方向に配列された複数のチューブ41に流れ込む。前面側熱交換部4のチューブ41内を流れる冷却水は、前面側熱交換部4のフィン42を介して外気と熱交換しながら更に徐々に冷却され、排出側タンク62に流れ込む。後面側熱交換部3、及び前面側熱交換部4で冷却され、排出側タンク62に流れ込んだ冷却水は、流入側タンク61を貫通し排出側タンク62の下部に接続された排出ホース9を介して駆動源へ送り出される。冷却された冷却水は、駆動源で熱交換することで温度が上昇する。高温となった冷却水は、流入側タンク61の上部に接続された流入ホース8を介して流入側タンク61に再度流れ込む。
<Operation of heat exchange device>
In the heat exchange device 1 according to the first embodiment, the cooling water having a high temperature due to the heat exchange with the drive source flows into the inflow side tank 61 via the inflow hose 8 connected to the upper part of the inflow side tank 61. .. The high-temperature cooling water that has flowed into the inflow-side tank 61 flows into the plurality of tubes 31 that are arranged in the vertical direction of the rear surface side heat exchange section 3. The high-temperature cooling water flowing in the tube 31 of the rear surface side heat exchange section 3 is gradually cooled while exchanging heat with the outside air via the fins 32 of the rear surface side heat exchange section 3, and flows into the turning tank 7. The cooling water cooled in the rear heat exchange section 3 is turned (reversed) in the turning tank 7 and flows into the plurality of tubes 41 arranged in the vertical direction of the front heat exchange section 4. The cooling water flowing in the tube 41 of the front side heat exchange section 4 is further gradually cooled while exchanging heat with the outside air through the fins 42 of the front side heat exchange section 4, and flows into the discharge side tank 62. The cooling water that has been cooled by the rear surface side heat exchange section 3 and the front surface side heat exchange section 4 and has flowed into the discharge side tank 62 passes through the inflow side tank 61 and the discharge hose 9 connected to the lower portion of the discharge side tank 62. It is sent out to the drive source via. The temperature of the cooled cooling water rises by exchanging heat with the drive source. The high temperature cooling water flows into the inflow side tank 61 again through the inflow hose 8 connected to the upper part of the inflow side tank 61.

<熱交換装置の効果>
第1実施形態に係る熱交換装置1は、前面側熱交換部4、後面側熱交換部3を有することで、例えば、これらのうち1つの熱交換部で構成する場合と比較して、熱交換部2の前後方向の厚み(コア厚)が大きくなる。その結果、熱交換部2の熱交換する面積が増加する。そのため、第1実施形態に係る熱交換装置1は、1つの熱交換部で構成する場合と比較して、冷却性能を向上できる。また、第1実施形態に係る熱交換装置1は、流入送出用タンク6の内部が仕切り部60で仕切られていることで、例えば、流入送出用タンク6の内部を仕切らず、図2に示す従来技術のように、一方のタンクで流入した冷却水を熱交換部2へ送り出し、他方のタンクで熱交換された冷却水を排出する場合と比較して、熱交換部2を流れる冷媒の流速を均一化できる。流入送出用タンク6の内部を仕切らない場合、前面側熱交換部4と後面側熱交換部3を流れる冷却水の流速に差が出てしまい、冷却性能が低下することが懸念される。第1実施形態に係る熱交換装置1は、流入送出用タンク6の内部が仕切り部60で仕切られており、流入側タンク61に流れ込んだ冷却水は、後面側熱交換部3へ効率よく送り込まれる。また、流入側タンク61は、厚み、及び高さが、後面側熱交換部3の厚み、及び高さとほぼ同じに設計されている。そのため、流入側タンク61に流れ込んだ冷却水は、効率よく後面側熱交換部3に送り込まれる。その結果、後面側熱交換部3のチューブ31を流れる冷却水の内部流速のバラツキを抑えることができ、冷却性能を向上できる。
<Effect of heat exchange device>
The heat exchange device 1 according to the first embodiment has the front-side heat exchange section 4 and the rear-side heat exchange section 3, so that, for example, as compared with the case where it is configured by one of these heat exchange sections, The thickness (core thickness) of the exchange part 2 in the front-rear direction increases. As a result, the area for heat exchange of the heat exchange section 2 increases. Therefore, the heat exchange device 1 according to the first embodiment can improve the cooling performance, as compared with the case where the heat exchange device 1 is configured by one heat exchange unit. Further, in the heat exchange device 1 according to the first embodiment, the inside of the inflow/outflow tank 6 is partitioned by the partition portion 60, so that the inside of the inflow/outflow tank 6 is not partitioned, for example, and is shown in FIG. 2. The flow velocity of the refrigerant flowing through the heat exchange unit 2 is greater than that in the case where the cooling water that has flowed in one tank is sent to the heat exchange unit 2 and the cooling water that has undergone heat exchange in the other tank is discharged as in the conventional technique. Can be made uniform. If the inside of the inflow/outflow tank 6 is not partitioned, there is a difference in the flow rate of the cooling water flowing through the front heat exchange section 4 and the rear heat exchange section 3, which may deteriorate the cooling performance. In the heat exchange device 1 according to the first embodiment, the inside of the inflow/outflow tank 6 is partitioned by the partition part 60, and the cooling water flowing into the inflow side tank 61 is efficiently sent to the rear surface side heat exchange part 3. Be done. Further, the inflow side tank 61 is designed so that the thickness and the height thereof are substantially the same as the thickness and the height of the rear surface side heat exchange section 3. Therefore, the cooling water flowing into the inflow side tank 61 is efficiently sent to the rear surface side heat exchange section 3. As a result, it is possible to suppress variations in the internal flow velocity of the cooling water flowing through the tubes 31 of the rear surface side heat exchange section 3, and it is possible to improve the cooling performance.

また、後面側熱交換部3へ送り込まれた冷却水は、転回用タンク7で流れる方向が転回される。すなわち、熱交換部2へ送り込まれた冷却水は、熱交換部2内を往復し、周囲の空気と熱交換する(冷却される)。冷却水と周囲の空気との温度差は、十分に確保されており、熱交換部2内を冷却水が往復することで、冷却水が一方向に流れる場合と比較して、冷却性能を向上できる。第1実施形態に係る熱交換装置1は、例えば、風速によって、熱交換領域を流れる冷媒の流量を制御する必要もない。 In addition, the direction in which the cooling water sent to the rear heat exchange section 3 flows in the turning tank 7 is turned. That is, the cooling water sent to the heat exchange section 2 reciprocates in the heat exchange section 2 and exchanges heat with the surrounding air (is cooled). The temperature difference between the cooling water and the surrounding air is sufficiently secured, and the cooling water reciprocates in the heat exchange section 2 to improve the cooling performance as compared with the case where the cooling water flows in one direction. it can. The heat exchange device 1 according to the first embodiment does not need to control the flow rate of the refrigerant flowing through the heat exchange area, for example, by the wind speed.

<第2実施形態>
図4は、第2実施形態に係る熱交換装置の斜視図を示す。第2実施形態に係る熱交換装置1では、流入送出用タンク6が、前面側に設けられ、駆動源から流入する冷却水を前面側熱交換部4に送り込む流入側タンク61と、後面側に設けられ、後面側熱交換部3から送り出される熱交換後の冷却水を駆動源へ送り出す排出側タンク62と、を含む。そして、前面側熱交換部4の前後方向の厚みは、後面側熱交換部3の前後方向の厚みよりも小さく設計されている。また、前面側熱交換部4の厚み、及び後面側熱交換部3の厚みに合わせて、前面側に設けられた流入側タンク61の前後方向の厚みは、後面側に設けられた排出側タンク62の厚みよりも小さく設計されている。
<Second Embodiment>
FIG. 4 shows a perspective view of the heat exchange device according to the second embodiment. In the heat exchange device 1 according to the second embodiment, the inflow/outflow tank 6 is provided on the front surface side, and the inflow side tank 61 that sends the cooling water that flows in from the drive source to the front surface side heat exchange section 4 and the rear surface side. A discharge side tank 62 which is provided and sends out the cooling water after heat exchange sent out from the rear surface side heat exchange section 3 to a drive source. The front-side heat exchange section 4 is designed to have a thickness in the front-rear direction smaller than that of the rear-side heat exchange section 3 in the front-rear direction. In addition, the thickness in the front-rear direction of the inflow-side tank 61 provided on the front side is determined according to the thickness of the front-side heat exchange section 4 and the thickness of the rear-side heat exchange section 3, and the discharge-side tank provided on the rear side. It is designed to be smaller than the thickness of 62.

第2実施形態に係る熱交換装置1では、駆動源で熱交換することで高温となった冷却水が、排出側タンク62を貫通し、流入側タンク61の上部に接続された流入ホース8を介して、前面側に設けられた流入側タンク61に流れ込む。流入側タンク61に流れ込んだ高温の冷却水は、前面側熱交換部4の縦方向に配列された複数のチューブ41に流れ込む。前面側熱交換部4のチューブ41内を流れる高温の冷却水は、前面側熱交換部4のフィン42を介して外気と熱交換しながら徐々に冷却され、転回用タンク7に流れ込む。前面側熱交換部4で冷却された冷却水は、転回用タンク7で流れる方向が転回(反転)され、後面側熱交換部3の縦方向に配列された複数のチューブ31に流れ込む。後面側熱交換部3のチューブ31内を流れる冷却水は、後面側熱交換部3のフィン32を介して外気と熱交換しながら更に徐々に冷却され、後面側に設けられた排出側タンク62に流れ込む。後面側熱交換部3、及び前面側熱交換部4で冷却され、排出側タンク62に流れ込んだ冷却水は、排出側タンク62の下部に接続された排出ホース9を介して駆動源へ送り出される。冷却された冷却水は、駆動源で熱交換することで温度が上昇する。高温となった冷却水は、流入側タンク61の上部に接続された流入ホース8を介して流入側タンク61に再度流れ込む。 In the heat exchange device 1 according to the second embodiment, the cooling water that has become high in temperature by exchanging heat with the drive source penetrates the discharge side tank 62 and connects the inflow hose 8 connected to the upper part of the inflow side tank 61. Through the inflow side tank 61 provided on the front side. The high-temperature cooling water that has flowed into the inflow-side tank 61 flows into the plurality of tubes 41 that are arranged in the vertical direction of the front heat exchange section 4. The high temperature cooling water flowing in the tube 41 of the front heat exchange unit 4 is gradually cooled while exchanging heat with the outside air via the fins 42 of the front heat exchange unit 4, and flows into the turning tank 7. The cooling water cooled in the front heat exchange section 4 is turned (reversed) in the turning tank 7 and flows into the plurality of tubes 31 arranged in the longitudinal direction of the rear heat exchange section 3. The cooling water flowing in the tube 31 of the rear surface side heat exchange section 3 is further gradually cooled while exchanging heat with the outside air through the fins 32 of the rear surface side heat exchange section 3, and the discharge side tank 62 provided on the rear surface side. Flow into. The cooling water that has been cooled by the rear surface side heat exchange section 3 and the front surface side heat exchange section 4 and has flowed into the discharge side tank 62 is sent to the drive source via the discharge hose 9 connected to the lower portion of the discharge side tank 62. .. The temperature of the cooled cooling water rises by exchanging heat with the drive source. The high temperature cooling water flows into the inflow side tank 61 again through the inflow hose 8 connected to the upper part of the inflow side tank 61.

第2実施形態に係る熱交換装置1は、車両のように、前面側の外気温度が後面側の外気温度よりも高い場合に有用である。前面側熱交換部4を流れる冷却水は、前面側の外気温度が後面側よりも低いため、十分な温度差の下、冷却される。後面側熱交換部3を流れる冷却水は、後面側の外気温度が前面側よりも高いものの、後面側熱交換部3の厚みが前面側熱交換部4よりも大きく、すなわち熱交換面積が前面側熱交換部4よりも大きく、かつ、温度差も確保されていることで冷却される。その結果、より効率よく冷却性能を向上できる。 The heat exchange device 1 according to the second embodiment is useful when the outside air temperature on the front surface side is higher than the outside air temperature on the rear surface side, as in a vehicle. Since the outside air temperature on the front surface side is lower than that on the rear surface side, the cooling water flowing through the front surface side heat exchange section 4 is cooled with a sufficient temperature difference. Although the outside temperature of the rear surface of the cooling water flowing through the rear side heat exchange section 3 is higher than that of the front side, the thickness of the rear side heat exchange section 3 is larger than that of the front side heat exchange section 4, that is, the heat exchange area is larger than that of the front side. It is cooled because it is larger than the side heat exchange section 4 and the temperature difference is secured. As a result, the cooling performance can be improved more efficiently.

以上、本発明の実施形態を説明したが、本発明に係る熱交換装置は、これらに限られず、可能な限りこれらを組み合わせることができる。本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、前面側熱交換部4の前後方向の厚みと後面側熱交換部3の前後方向の厚みを同じに設計し、冷却水を先に後面側熱交換部3を流れるようにしてもよい。また、流入ホース8、排出ホース9の高さ位置は、入れ替えてもよく、適宜変更することができる。 Although the embodiments of the present invention have been described above, the heat exchange device according to the present invention is not limited to these, and they can be combined as much as possible. Various modifications can be made without departing from the scope of the present invention. For example, the front-side heat exchange section 4 and the rear-side heat exchange section 3 may be designed to have the same thickness in the front-rear direction, and the cooling water may flow through the rear-side heat exchange section 3 first. Further, the height positions of the inflow hose 8 and the discharge hose 9 may be interchanged and can be changed appropriately.

また、第1実施形態、第2実施形態では、本発明に係る熱交換装置の一例として、サイドフロー型の車両(自動車)用のラジエータを例に説明した。本発明に係る熱交換装置は、オートバイなどの車両用熱交換装置として用いることもできる。また、本発明に係る熱交換装置は、産業機械用熱交換装置、非常用発電機用熱交換装置、空調用熱交換装置、電子機器用熱交換器など、種々の熱交換装置として用いることができる。また、本発明に係る熱交換装置1は、ダウンフロー型のラジエータとして用いるようにしてもよい。冷却部は、冷却が必要とされる装置や機器であればよく、モータなどでもよい。 Further, in the first and second embodiments, as an example of the heat exchange device according to the present invention, a radiator for a side flow type vehicle (automobile) has been described as an example. The heat exchange device according to the present invention can also be used as a heat exchange device for a vehicle such as a motorcycle. Further, the heat exchange device according to the present invention can be used as various heat exchange devices such as a heat exchange device for industrial machines, a heat exchange device for emergency generators, a heat exchange device for air conditioning, and a heat exchanger for electronic devices. it can. Further, the heat exchange device 1 according to the present invention may be used as a downflow type radiator. The cooling unit may be any device or device that requires cooling, and may be a motor or the like.

また、第1実施形態に係る熱交換装置1、及び第2実施形態に係る熱交換装置1は、熱交換部2の後面側に設けられた冷却ファン、冷却水の圧力が一定以上の場合、余分な冷却水を一時的に貯留するリザーバタンクを更に備える構成としてもよい。 In addition, the heat exchange device 1 according to the first embodiment and the heat exchange device 1 according to the second embodiment include a cooling fan provided on the rear surface side of the heat exchange portion 2 and a pressure of cooling water of a certain level or more, It may be configured to further include a reservoir tank that temporarily stores excess cooling water.

<放熱性能比較試験>
<試験の目的>
第1実施形態に係る熱交換装置1について、放熱性能比較試験を行った。放熱性能比較試験では、仕切り部60が縦に設けられた第1実施形態に係る熱交換装置1を仕切縦と称する。比較例として、仕切り部60を設けないもの(以下、仕切無という)、仕切り部60を横に設けたもの(以下、仕切横という)を準備した。
<Heat dissipation performance comparison test>
<Purpose of the test>
A heat dissipation performance comparison test was conducted on the heat exchange device 1 according to the first embodiment. In the heat dissipation performance comparison test, the heat exchange device 1 according to the first embodiment in which the partition section 60 is provided vertically is referred to as a partition vertical. As comparative examples, one without the partition part 60 (hereinafter, referred to as no partition) and one with the partition part 60 provided laterally (hereinafter, referred to as lateral partition) were prepared.

<供試体>
図5は、放熱性能比較試験における、仕切縦、仕切無、仕切横の供試体の仕様を示す。コアサイズとは、熱交換部2のサイズであり、コア高400mm、コア巾409.6mm、F−F‘393.6mm、コア厚36mmとした。また、チューブピッチ8.6mm、フィンピッチ2.5mm、チューブ本数45本、フィン枚数46枚とした。F−F‘は、横方向におけるフィンの端部からフィンの端部までの距離である。
<Sample>
FIG. 5 shows the specifications of test pieces with vertical partitions, no partitions, and horizontal partitions in the heat dissipation performance comparison test. The core size is the size of the heat exchange unit 2, and the core height is 400 mm, the core width is 409.6 mm, the F-F'393.6 mm, and the core thickness is 36 mm. The tube pitch was 8.6 mm, the fin pitch was 2.5 mm, the number of tubes was 45, and the number of fins was 46. F-F' is the distance from the end of the fin to the end of the fin in the lateral direction.

<試験内容>
試験は、JIS D1614に基づいて実施した。収集したデータサンプルの換算放熱量を算出した。換算放熱量の近似式を出し、特定の風速・水流量における換算放熱量を算出した。図6は、放熱性能比較試験における、特定風速、特定水流量、入口水温度差を示す。特定風速(m/s)は、2.1、2.5、3.0、4.0、5.0、6.0とした。特定水流量(L/min)は、20、40、60、80、100、120、140とした。入口気水温度差ΔT(℃)は、60とした。入口気水温度差とは、熱交換装置(ラジエータ)に流入する冷却水の入口温度と空気の入口温度との差である。
<Test contents>
The test was performed based on JIS D1614. The converted heat radiation amount of the collected data sample was calculated. An approximate expression for the converted heat dissipation amount was created, and the converted heat dissipation amount at a specific wind speed and water flow rate was calculated. FIG. 6 shows specific wind speeds, specific water flow rates, and inlet water temperature differences in heat dissipation performance comparison tests. The specific wind speed (m/s) was 2.1, 2.5, 3.0, 4.0, 5.0, 6.0. The specific water flow rate (L/min) was set to 20, 40, 60, 80, 100, 120, 140. The inlet steam temperature difference ΔT (° C.) was set to 60. The inlet air/water temperature difference is the difference between the inlet temperature of the cooling water flowing into the heat exchange device (radiator) and the inlet temperature of the air.

<試験結果>
図7は、放熱性能比較試験における、換算放熱量の結果を示す。図8は、放熱性能比較試験における、換算放熱量比の結果を示す。図9は、放熱性能比較試験における、水側圧損の結果を示す。水側圧損は、熱交換装置の流入ホース、排出ホースの圧力を測定することで算出した。放射性能について、仕切横は、仕切無より約6%上昇することが確認された。放射性能について、仕切縦は、仕切無より約9%上昇することが確認された。水側圧損について、水流量140L/minでは、仕切横が仕切無より約28kPa上昇(約0.28kgf/cm)することが確認された。水側圧損について、水流量140L/minでは、仕切縦が仕切無より約46kPa上昇(約0.28kgf/cm)することが確認された。以上より、仕切り部60が縦に設けられた第1実施形態に係る熱交換装置1(仕切縦)は、仕切り部60を設けないもの(仕切無)、仕切り部60を横に設けたもの(仕切横)と比較して、優れた放熱性能を有することが確認できた。また、この度の放射性能比較試験では、熱交換装置の供試体として、熱交換部が同じ面積のものを用いた。したがって、放射性能が向上した理由の一つとして、仕切り部60が縦に設けられた第1実施形態に係る熱交換装置1(仕切縦)は、他の供試体と比較して、熱交換部において、均一に冷却できたことが考えられる。そこで、本発明に係る熱交換装置を既存のダウンフロー型やサイドフロー型の熱交換装置に適用することで、熱交換部の面積を変更せずに、放射性能を向上できるものと思われる。
<Test results>
FIG. 7 shows the result of the converted heat radiation amount in the heat radiation performance comparison test. FIG. 8 shows the result of the converted heat radiation amount ratio in the heat radiation performance comparison test. FIG. 9 shows the results of water side pressure loss in the heat dissipation performance comparison test. The water side pressure loss was calculated by measuring the pressure of the inflow hose and the exhaust hose of the heat exchange device. Regarding the radiation performance, it was confirmed that the width of the partition was about 6% higher than that without the partition. Regarding the radiation performance, it was confirmed that the vertical length of the partition was about 9% higher than that without the vertical partition. Regarding the water-side pressure loss, it was confirmed that at a water flow rate of 140 L/min, the partition side increased by about 28 kPa (about 0.28 kgf/cm 2 ) from that without the partition. Regarding the water-side pressure loss, it was confirmed that when the water flow rate was 140 L/min, the partition length increased by about 46 kPa (about 0.28 kgf/cm 2 ) from that without the partition. As described above, the heat exchange device 1 according to the first embodiment in which the partition part 60 is provided vertically (partition length) has no partition part 60 (no partition) and has the partition part 60 provided horizontally ( It was confirmed that it has an excellent heat dissipation performance compared to the partition side). Further, in this radiation performance comparison test, a heat exchange device having a heat exchange section having the same area was used. Therefore, as one of the reasons why the radiation performance is improved, the heat exchange device 1 (partition vertical) according to the first embodiment in which the partition part 60 is vertically provided has a heat exchange part as compared with other specimens. In, it is considered that the cooling could be performed uniformly. Therefore, by applying the heat exchange device according to the present invention to an existing down-flow type or side-flow type heat exchange device, it seems that the radiation performance can be improved without changing the area of the heat exchange part.

1・・・熱交換装置
2・・・熱交換部
3・・・後面側熱交換部
31・・・チューブ
32・・・フィン
4・・・前面側熱交換部
41・・・チューブ
42・・・フィン
5・・・タンク
6・・・流入送出用タンク
60・・・仕切り部
61・・・流入側タンク
62・・・排出側タンク
7・・・転回用タンク
8・・・流入ホース
9・・・排出ホース
DESCRIPTION OF SYMBOLS 1... Heat exchange device 2... Heat exchange part 3... Rear side heat exchange part 31... Tube 32... Fins 4... Front side heat exchange part 41... Tube 42...・Fin 5... Tank 6... Inflow/outflow tank 60... Partition 61... Inflow side tank 62... Discharge side tank 7... Turning tank 8... Inflow hose 9... ..Discharge hose

Claims (4)

冷媒が流れ、熱交換を行う熱交換部であって、前後方向に並べて配置された前面側熱交換部、後面側熱交換部を有する熱交換部と、
熱交換部の一方向の両端部に設けられ、冷媒を一時的に貯留するタンクと、を備え、
タンクは、熱交換部の一方向の一方の端部に接続され、内部が仕切られた流入送出用タンクであって、冷却部から流入する冷媒を前面側熱交換部と後面側熱交換部とのうち何れか一方の熱交換部に送り込み、他方の熱交換部から送り出される熱交換後の冷媒を冷却部へ排出する流入送出用タンクと、熱交換部の一方向の他方の端部に接続され、冷媒の流れる方向を転回させ、前面側熱交換部と後面側熱交換部とのうち何れか一方の熱交換部から送り出される冷媒を他方の熱交換部へ送り込む転回用タンクと、を含む熱交換装置。
Refrigerant flows, a heat exchange unit that performs heat exchange, a front side heat exchange unit arranged side by side in the front-rear direction, a heat exchange unit having a rear side heat exchange unit,
The heat exchange section is provided at both ends in one direction, and a tank for temporarily storing the refrigerant is provided,
The tank is an inflow/outflow tank that is connected to one end in one direction of the heat exchange section and has an internal partition, and transfers the refrigerant flowing from the cooling section to the front side heat exchange section and the rear side heat exchange section. Connected to the inflow/outflow tank that sends the heat-exchanged refrigerant to one of the heat exchange parts and discharges the heat-exchanged refrigerant that has been sent out from the other heat exchange part to the cooling part, and the other end in one direction of the heat exchange part. And a turning tank that turns the direction of flow of the refrigerant and feeds the refrigerant sent from any one of the front side heat exchange section and the rear side heat exchange section to the other heat exchange section, Heat exchange equipment.
流入送出用タンクは、後面側に設けられ、冷却部から流入する冷媒を後面側熱交換部に送り込む流入側タンクと、前面側に設けられ、後面側熱交換部から送り出される熱交換後の冷媒を冷却部へ送り出す送出側タンクと、を含む請求項1に記載の熱交換装置。 The inflow/outflow tank is provided on the rear surface side, and the inflow side tank that sends the refrigerant flowing from the cooling section to the rear surface side heat exchange section, and the refrigerant after heat exchange that is provided on the front surface side and is sent out from the rear surface side heat exchange section The heat exchange device according to claim 1, further comprising: a delivery-side tank that delivers the heat to the cooling unit. 流入送出用タンクは、前面側に設けられ、冷却部から流入する冷媒を前面側熱交換部に送り込む流入側タンクと、後面側に設けられ、前面側熱交換部から送り出される熱交換後の冷媒を冷却部へ送り出す送出側タンクと、を含む請求項1に記載の熱交換装置。 The inflow and outflow tanks are provided on the front surface side, the inflow side tank for sending the refrigerant flowing from the cooling section to the front surface heat exchange section, and the rear surface side, and the refrigerant after heat exchange sent out from the front surface heat exchange section. The heat exchange device according to claim 1, further comprising: a delivery-side tank that delivers the heat to the cooling unit. 前面側熱交換部の前後方向の厚みは、後面側熱交換部の前後方向の厚みよりも小さい、請求項3に記載の熱交換装置。


The heat exchange device according to claim 3, wherein the front-side heat exchange section has a front-rear thickness that is smaller than the front-side thickness of the rear-side heat exchange section.


JP2018245828A 2018-12-27 2018-12-27 Heat exchanger Pending JP2020106221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018245828A JP2020106221A (en) 2018-12-27 2018-12-27 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018245828A JP2020106221A (en) 2018-12-27 2018-12-27 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2020106221A true JP2020106221A (en) 2020-07-09

Family

ID=71448733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018245828A Pending JP2020106221A (en) 2018-12-27 2018-12-27 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2020106221A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428160U (en) * 1977-07-28 1979-02-23
JP2003121092A (en) * 2001-09-29 2003-04-23 Halla Aircon Co Ltd Heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428160U (en) * 1977-07-28 1979-02-23
JP2003121092A (en) * 2001-09-29 2003-04-23 Halla Aircon Co Ltd Heat exchanger

Similar Documents

Publication Publication Date Title
JP5668610B2 (en) Water-cooled condenser
KR101405234B1 (en) Radiator for vehicle
JP5609339B2 (en) Oil cooler
JP5585543B2 (en) Vehicle cooling system
KR102408712B1 (en) Cooling module for vehicle
US20210331579A1 (en) Heat exchanger
JP5533685B2 (en) Air conditioner for vehicles
US11603790B2 (en) Heat exchanger
JP2020106221A (en) Heat exchanger
JP6296439B2 (en) Vehicle radiator
JP3627295B2 (en) Heat exchanger
WO2015170567A1 (en) Cooling device for hybrid vehicle
JP6382788B2 (en) Cooling system
JP5748010B1 (en) Combined heat exchanger
JP2006207944A (en) Heat exchanger
JP6382787B2 (en) Cooling system
JP2009074739A (en) Heat exchanging device for vehicle
JP4947001B2 (en) Heat exchanger
US20090114366A1 (en) Heat exchanger for vehicle
JP2013159267A (en) Vehicular air conditioner
WO2019111574A1 (en) Radiator
JP4397676B2 (en) Automotive heat exchanger
KR20230136254A (en) Cooling module
KR102602089B1 (en) Cooling System of Fuel Cell Vehicle
KR20070097607A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230217

A603 Late request for extension of time limit during examination

Free format text: JAPANESE INTERMEDIATE CODE: A603

Effective date: 20230217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230621

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240227