JP2020104925A - Method of manufacturing metal can, and metal can - Google Patents

Method of manufacturing metal can, and metal can Download PDF

Info

Publication number
JP2020104925A
JP2020104925A JP2018247695A JP2018247695A JP2020104925A JP 2020104925 A JP2020104925 A JP 2020104925A JP 2018247695 A JP2018247695 A JP 2018247695A JP 2018247695 A JP2018247695 A JP 2018247695A JP 2020104925 A JP2020104925 A JP 2020104925A
Authority
JP
Japan
Prior art keywords
metal
winding
welding
film
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018247695A
Other languages
Japanese (ja)
Inventor
孝典 尾熊
Takanori Oguma
孝典 尾熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kinzoku Corp
Original Assignee
Toyo Kinzoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kinzoku Corp filed Critical Toyo Kinzoku Corp
Priority to JP2018247695A priority Critical patent/JP2020104925A/en
Publication of JP2020104925A publication Critical patent/JP2020104925A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rigid Containers With Two Or More Constituent Elements (AREA)

Abstract

To provide a method of manufacturing a metal can that includes shaping a metal plate having a resin film laminated into members of the metal can such as a can body, a lid, a cap, etc., and then seaming the members and heating and welding seamed parts, and that can tightly weld the seamed parts to suppress contents from leaking from the seamed part.SOLUTION: The present invention relates to a method of manufacturing a metal can that includes shaping metal plates 3c, 5c having films 3a, 3b and 5a, 5b of crystalline resin laminated into members of the metal can, then seaming the members, and heating and welding the seamed part 10, wherein the seamed part is cooled by using cooling means after the seamed part is heated and welded so as to increase a low-temperature crystallization rate of the films at the seamed part.SELECTED DRAWING: Figure 2

Description

本発明は、結晶性樹脂のフィルムをラミネートした金属板を巻締め、巻締め部を加熱し溶着する金属缶の製造方法及び金属缶に関する。 TECHNICAL FIELD The present invention relates to a method for manufacturing a metal can and a metal can in which a metal plate laminated with a film of a crystalline resin is fastened and the fastened portion is heated and welded.

従来、角型金属缶等の金属缶は、液体や固体の様々な内容物を移送、保管等する手段として使用されている。 Conventionally, metal cans such as rectangular metal cans have been used as means for transferring and storing various liquid or solid contents.

金属缶は、移送、保管時等に、内容物の加熱による加圧や、落下、外力等による衝撃が加わったときに内容物が漏洩しない密封性が要求される。 The metal can is required to have a sealing property such that the contents are not leaked when the contents are pressed by heating, dropped, or shocked by an external force during transportation or storage.

金属缶は、例えば、缶胴と、缶胴の天地のうち少なくとも一方に巻締めされる蓋として、天板及び/又は地板を備えている。蓋には、例えば、収容した内容物の排出口を封じる栓である口金が蓋に固定されている。 The metal can includes, for example, a can body and a top plate and/or a base plate as a lid that is wound around at least one of the top and bottom of the can body. For example, a cap, which is a stopper that closes the outlet of the stored contents, is fixed to the lid.

金属缶からの内容物の漏洩は、口金と蓋との巻締め部、蓋と缶胴との巻締め部が不充分であると、その部分から発生する。従来、口金、蓋、缶胴には、樹脂フィルムをラミネートした金属板を使用する場合があるが、この樹脂フィルムをラミネートした金属板を使用した金属缶における、ダブルシームやシングルシーム(カシメ)等の巻締め部をより強固に接着する為に、樹脂等を主原料とする封止剤である、ラバーやコンパウンド等のシーリング材を塗布し、シーリング材で巻締め部を封止していた。 Leakage of the contents from the metal can occurs from the portions where the winding-fastened portion between the base and the lid and the winding-fastened portion between the lid and the can body are insufficient. Conventionally, a metal plate laminated with a resin film may be used for the mouthpiece, lid, and can body. In a metal can using the metal plate laminated with this resin film, double seam, single seam (caulking), etc. In order to bond the winding-fastened portion more firmly, a sealing material such as rubber or compound, which is a sealant mainly made of resin or the like, is applied, and the winding-fastened portion is sealed with the sealing material.

シーリング材は、巻締め部の封止に優れている。一方で、製造工程の短縮、コストダウン、環境問題への観点や、溶剤等の危険物を内容物とした場合における耐溶剤性の観点から、シーリング材不使用による技術の検討もされており、例えば、巻締め部を高周波等により加熱し、金属板にラミネートした樹脂フィルムを直接に溶着する技術が提案されている(特許文献1、2)。 The sealing material is excellent in sealing the wound portion. On the other hand, shortening the manufacturing process, cost reduction, from the viewpoint of environmental problems, and from the viewpoint of solvent resistance in the case of using dangerous substances such as solvents as contents, technology without using sealing materials is also being considered, For example, a technique has been proposed in which a winding-up portion is heated by high frequency or the like, and a resin film laminated on a metal plate is directly welded (Patent Documents 1 and 2).

特開2000−6978号公報JP 2000-6978 A 特開2015−160351号公報JP, 2005-160351, A

しかしながら、樹脂フィルムをラミネートした金属板を巻締め、巻締め部を加熱し溶着する従来の方法においては、内容物の漏洩を十分に抑制できず、樹脂フィルムも限定され、更なる改良が望まれていた。 However, in the conventional method of winding a metal plate laminated with a resin film and heating and welding the winding portion, leakage of the contents cannot be sufficiently suppressed, the resin film is also limited, and further improvement is desired. Was there.

本発明は、以上のような事情に鑑みてなされたものであり、樹脂フィルムをラミネートした金属板を金属缶の部材に成形した後、該部材を巻締め、巻締め部を加熱し溶着する金属缶の製造方法において、巻締め部を強固に溶着し、巻締め部からの内容物の漏洩を抑制可能な金属缶の製造方法及び金属缶を提供することを課題としている。 The present invention has been made in view of the above circumstances, and after forming a metal plate laminated with a resin film into a member of a metal can, winding the member, heating the winding portion, and welding the metal. In a can manufacturing method, it is an object to provide a metal can manufacturing method and a metal can in which a winding portion is firmly welded and leakage of contents from the winding portion can be suppressed.

本発明者は上記課題を解決するために鋭意検討した結果、巻締め部の溶着後に、巻締め部のフィルムのDSCチャート(1stラン測定チャート)から低温結晶化による発熱量ΔHcと融解吸熱量ΔHmを測定し、その比率であるΔHc/ΔHmに100を乗じて低温結晶化率と定義し、この低温結晶化率ΔHc/ΔHmと接着強度や密封性の関係を調査した結果、このDSC1stラン測定チャートでの低温結晶化率が上昇すると接着強度が高くなり、金属缶の密封性も向上することを見出した。特に、巻締め部の溶着後に、強制的な冷却によって低温結晶化率が上昇すると接着強度が高くなり、金属缶の密封性も向上することを見出し、本発明を完成するに至った。 As a result of earnest studies to solve the above-mentioned problems, the present inventor has found that, after welding the winding-fastened portion, from the DSC chart (1st run measurement chart) of the film of the wound-fastened portion, the heat generation amount ΔHc and the melting endothermic amount ΔHm due to low-temperature crystallization are obtained. Was measured, and the ratio ΔHc/ΔHm was multiplied by 100 to define as the low temperature crystallization rate. As a result of investigating the relationship between the low temperature crystallization rate ΔHc/ΔHm and the adhesive strength and sealing property, this DSC 1st run measurement chart It was found that when the low-temperature crystallization rate at 1 is increased, the adhesive strength is increased and the sealing property of the metal can is also improved. In particular, it has been found that the adhesive strength is increased and the sealing property of the metal can is improved when the low temperature crystallization rate is increased by the forced cooling after the welding of the winding tightening portion, and the present invention has been completed.

DSC測定では、対象サンプルを測定する場合、対象物質の温度範囲での昇温工程での熱容量変化を測定するが、最初の昇温工程での測定を1stランと称し、同じサンプルをそのまま2回目として昇温し測定することがあり、この場合2ndランと称し区別しているが、以後のDSC熱分析の表現ではこの1stランを示すものであることを付記しておく。 In DSC measurement, when measuring a target sample, the heat capacity change in the temperature raising process of the target substance in the temperature range is measured. The measurement in the first temperature raising process is called 1st run, and the same sample is used as it is for the second time. However, in this case, it is referred to as a 2nd run and is distinguished, but it should be additionally noted that the 1st run is shown in the expression of DSC thermal analysis thereafter.

すなわち、本発明の金属缶の製造方法は、結晶性樹脂のフィルムをラミネートした金属板を金属缶の部材に成形した後、該部材を巻締め、巻締め部を加熱し溶着する金属缶の製造方法であって、
前記巻締め部を加熱し溶着した後、冷却手段を用いて前記巻締め部を冷却することにより、前記巻締め部における、DSC熱分析(1stランチャート)で得られる前記フィルムの低温結晶化率を上昇させることを特徴としている。
That is, the method for producing a metal can of the present invention is a method of producing a metal can in which a metal plate laminated with a film of a crystalline resin is molded into a member of a metal can, and the member is wound and the winding portion is heated and welded. Method,
The low-temperature crystallization rate of the film obtained by DSC thermal analysis (1st run chart) in the winding portion is obtained by heating and welding the winding portion and then cooling the winding portion using a cooling means. Is characterized by increasing.

また本発明の金属缶の製造方法は、結晶性PET樹脂のフィルムをラミネートした金属板を金属缶の部材に成形した後、該部材を巻締め、巻締め部を加熱し溶着する金属缶の製造方法であって、
前記巻締め部を加熱し溶着し、その後、必要に応じて冷却手段を用いて前記巻締め部を冷却することにより、DSC熱分析(1stランチャート)で得られる前記フィルムの低温結晶化率が4%以上である前記巻締め部を形成することを特徴としている。
The method for producing a metal can of the present invention is a method for producing a metal can in which a metal plate laminated with a film of a crystalline PET resin is formed into a member of a metal can, which is then wound and the wound portion is heated and welded. Method,
The low-temperature crystallization rate of the film obtained by DSC thermal analysis (1st run chart) can be improved by heating and welding the winding portion, and then cooling the winding portion using a cooling means if necessary. It is characterized in that the winding tightening portion is 4% or more.

本発明の金属缶は、結晶性PET樹脂のフィルムをラミネートした金属板を金属缶の部材に成形した後、該部材を巻締め、巻締め部を加熱し溶着した金属缶であって、
前記巻締め部における、DSC熱分析(1stランチャート)で得られる前記フィルムの低温結晶化率が4%以上であることを特徴としている。
The metal can of the present invention is a metal can obtained by molding a metal plate laminated with a film of a crystalline PET resin into a member of the metal can, winding the member, heating the winding portion, and welding.
The low temperature crystallization rate of the film obtained by DSC thermal analysis (1st run chart) in the winding portion is 4% or more.

本発明によれば、樹脂フィルムをラミネートした金属板を金属缶の部材に成形した後、該部材を巻締め、巻締め部を加熱し溶着する金属缶の製造方法において、巻締め部を強固に溶着し、巻締め部からの内容物の漏洩を抑制できる。 According to the present invention, after molding a metal plate laminated with a resin film into a member of a metal can, the member is wound, and the winding part is heated and welded, in the method of manufacturing a metal can, the winding part is firmly fixed. It can be welded and the leakage of the contents from the winding portion can be suppressed.

本発明の方法が適用される一例を示す、角型金属缶の斜視図である。It is a perspective view of a square metal can which shows an example to which the method of the present invention is applied. 本発明の方法が適用される一例を示す、金属缶における口金と蓋を部分的に示す縦断面図である。It is a longitudinal cross-sectional view which partially shows the base and lid in a metal can showing an example to which the method of the present invention is applied. 金属缶における口金とキャップの嵌合状態を示す縦断面図である。It is a longitudinal cross-sectional view showing a fitting state of a cap and a cap in a metal can. 本発明の方法が適用される一例を示す、金属缶における蓋と缶胴を部分的に示す縦断面図である。It is a longitudinal cross-sectional view which partially shows a lid and a can body in a metal can showing an example to which the method of the present invention is applied. 巻締め部の別例を示す断面写真である。It is a cross-sectional photograph which shows another example of a winding fastening part. 実施例における耐圧試験を説明する写真である。It is a photograph explaining the pressure resistance test in an example.

以下に、本発明の実施形態について説明する。
(実施形態1)
この実施形態における金属缶の製造方法では、結晶性樹脂のフィルムをラミネートした金属板を金属缶の部材に成形した後、該部材を巻締め、巻締め部を加熱し溶着する。
Hereinafter, embodiments of the present invention will be described.
(Embodiment 1)
In the method for manufacturing a metal can according to this embodiment, a metal plate laminated with a crystalline resin film is formed into a member of a metal can, and then the member is wound and the tightened portion is heated and welded.

金属缶としては、特に限定されないが、例えば、角型金属缶、丸型金属缶等が挙げられる。 The metal can is not particularly limited, and examples thereof include a square metal can and a round metal can.

金属缶の部材としては、特に限定されないが、例えば、缶胴や蓋、口金等が挙げられる。巻締め部としては、特に限定されないが、例えば、口金と蓋との巻締め部、蓋と缶胴との巻締め部等が挙げられる。 The member of the metal can is not particularly limited, but examples thereof include a can body, a lid, and a base. The winding portion is not particularly limited, but examples thereof include a winding portion between the base and the lid, a winding portion between the lid and the can body, and the like.

巻締めの態様としては、特に限定されないが、例えば、ダブルシーム、シングルシーム(カシメ)等が挙げられ、口金と蓋との巻締め部においては、上カシメ、下カシメ等が挙げられる。 The form of the tightening is not particularly limited, but examples thereof include a double seam and a single seam (caulking), and examples of the caulking portion between the mouthpiece and the lid include upper caulking and lower caulking.

この実施形態において、巻締めする一対の金属板は、両方が結晶性樹脂のフィルムをラミネートした金属板であってもよく、一方のみが結晶性樹脂のフィルムをラミネートした金属板であってもよい。結晶性樹脂のフィルムは、金属板の片面にラミネートされたものであってもよく、両面にラミネートされたものであってもよい。 In this embodiment, the pair of metal plates to be fastened may be both metal plates laminated with a crystalline resin film, or only one may be a metal plate laminated with a crystalline resin film. .. The crystalline resin film may be laminated on one side of the metal plate or may be laminated on both sides.

この実施形態において結晶性樹脂とは、分子鎖が規則正しく配列された状態を結晶領域の量の比率が高いもの(結晶化度の高いもの)をいう。これに対して非晶性樹脂は、結晶化度が極めて低いか、結晶化状態になり得ない高分子であり、無定形高分子やアモルファスポリマーが含まれる。結晶性樹脂のフィルムは、特に限定されないが、例えば、ポリエチレンテレフタレート(PET)樹脂、ポリエチレン樹脂、ポリプロピレン樹脂等が挙げられる。 In this embodiment, the crystalline resin refers to a resin having a high ratio of the amount of crystal regions (a resin having a high degree of crystallinity) in a state where molecular chains are regularly arranged. On the other hand, the amorphous resin is a polymer having extremely low crystallinity or being unable to be in a crystallized state, and includes an amorphous polymer and an amorphous polymer. The crystalline resin film is not particularly limited, and examples thereof include polyethylene terephthalate (PET) resin, polyethylene resin, and polypropylene resin.

この実施形態において金属板は、結晶性樹脂のフィルムを単独でラミネートしたものであってもよく、あるいは、結晶性樹脂のフィルムを最表面層とし、かつ、最表面層と金属板表面との間に、結晶性樹脂の層及び/又は非晶性樹脂の層が単数又は複数積層されたフィルムであってもよい。 In this embodiment, the metal plate may be a film obtained by laminating a film of a crystalline resin alone, or the film of the crystalline resin may be the outermost surface layer, and between the outermost surface layer and the surface of the metal plate. In addition, a film in which a single layer or a plurality of layers of a crystalline resin and/or a layer of an amorphous resin are laminated may be used.

この実施形態において、最表面層である結晶性樹脂のフィルムの膜厚は、特に限定されないが、50μm以下が好ましく、材料コスト面を考えると30μm以下がより好ましい。 In this embodiment, the film thickness of the crystalline resin film, which is the outermost surface layer, is not particularly limited, but is preferably 50 μm or less, and more preferably 30 μm or less in view of material cost.

金属缶のうち角型金属缶の例について図1〜図4を参照しながら説明する。図1に示すように角型金属缶1は、金属板を加工して形成された、内容物を収容する空洞を内部に有する直方体状の缶胴2と、この缶胴2の天地の開口端縁のそれぞれに蓋をする角型金属缶用蓋を備えている。同図では天板の蓋を符号3で示している。缶胴2の天地の開口端縁のそれぞれに、天地2つの角型金属缶用蓋を巻締めることで、角型金属缶用蓋が缶胴2の天地に二重巻締めされた角型金属缶1が得られる。天板の角型金属缶用蓋3には、収容した内容物の排出口を封じるキャップ4が口金に固定されていてもよい。 An example of a square metal can among the metal cans will be described with reference to FIGS. 1 to 4. As shown in FIG. 1, a rectangular metal can 1 has a rectangular parallelepiped can body 2 formed by processing a metal plate and having a cavity for containing contents therein, and an open end of the can body 2 from above and below. It is equipped with a lid for a rectangular metal can that covers each edge. In the figure, the lid of the top plate is indicated by reference numeral 3. A square metal can lid is double-wound around the top and bottom of the can body 2 by winding two top and bottom lids for a square metal can around the top and bottom of the can body 2. Can 1 is obtained. On the lid 3 for the rectangular metal can of the top plate, a cap 4 for sealing the outlet of the stored contents may be fixed to the base.

図2は口金5の巻締め状態(上カシメの場合)、図3は口金5とキャップ4の嵌合状態を示している。図2に示すように、口金5と蓋3で、結晶性樹脂のフィルム5a、3aを内面として巻締め部10を形成している。口金5は、TFS(ティンフリースチール)やぶりき等の金属板5cの内面に、結晶性樹脂のフィルム5aが積層され、外面には結晶性樹脂のフィルム5bが積層されている。蓋3は、TFSやぶりき等の金属板3cの内面に、結晶性樹脂のフィルム3aが積層され、外面には結晶性樹脂のフィルム3bが積層されている。なお、金属板5cや3cの内面、外面は、口金5と蓋3の間に、口金5と蓋3のいずれかにラミネートされた結晶性樹脂のフィルムが介在するのであれば、無地であってもよく、塗料が塗布された塗工面であってもよい。なお、図2の点線内に示してある巻締め部10は、図5の写真に示すように先端が丸くカールされている場合もある。 FIG. 2 shows a state in which the base 5 is fastened (in the case of upper caulking), and FIG. 3 shows a state in which the base 5 and the cap 4 are fitted. As shown in FIG. 2, the base 5 and the lid 3 form a winding portion 10 with the crystalline resin films 5a and 3a as inner surfaces. The base 5 has a crystalline resin film 5a laminated on the inner surface of a metal plate 5c such as TFS (tin-free steel) or tin plate, and a crystalline resin film 5b laminated on the outer surface. In the lid 3, a crystalline resin film 3a is laminated on the inner surface of a metal plate 3c such as TFS or tin plate, and a crystalline resin film 3b is laminated on the outer surface. The inner and outer surfaces of the metal plates 5c and 3c are plain as long as a crystalline resin film laminated on either the mouthpiece 5 or the lid 3 is interposed between the mouthpiece 5 and the lid 3. It may be a coated surface coated with a coating material. The winding tightening portion 10 shown within the dotted line in FIG. 2 may have a rounded curl at the tip as shown in the photograph of FIG.

図4は、蓋3と缶胴2の巻締め状態を示している。このように、蓋3と缶胴2で、ラミネートした結晶性樹脂のフィルム(不図示)を介在させて巻締め部10を形成することができる。 FIG. 4 shows a state in which the lid 3 and the can body 2 are tightly wound. In this manner, the lid 3 and the can body 2 can form the winding portion 10 with the laminated crystalline resin film (not shown) interposed.

角型金属缶としては、例えば、18リットル缶、半缶(半切缶)、5リットル缶を代表とするが、例えば4〜22リットルの容量を持つ缶も挙げられる。この実施形態の角型金属缶には、JIS Z 1602等のJIS規格に適合したものの他、JIS規格で統一されたものではない一般缶(変寸缶)が含まれる。その材質は、特に限定されないが、JIS規格に適合するぶりき及びぶりき原板、ティンフリースチール、新素材(各種特殊表面処理鋼板)、ラミネート材等が挙げられる。角型金属缶における蓋と缶胴の厚さは、特に限定されない。 As the rectangular metal can, for example, 18 liter cans, half cans (half cut cans) and 5 liter cans are representative, but cans having a capacity of 4 to 22 liters are also exemplified. The rectangular metal can of this embodiment includes not only those conforming to the JIS standard such as JIS Z 1602 but also general cans (variable cans) that are not unified by the JIS standard. The material thereof is not particularly limited, and examples thereof include tinplate and tinplate original plate conforming to the JIS standard, tin-free steel, new materials (various special surface-treated steel plates), laminate materials and the like. The thickness of the lid and the body of the rectangular metal can is not particularly limited.

この実施形態において、金属缶の内容物は食品用途、工業用途等特に限定されないが、工業用途の中で危険物としては、例えば、消防、船舶安全等のような安全性の観点からその取扱いが法規制される、トルエン、ヘキサン、MEK、酢酸エチル、アセトン等の第一石油類、メチルアルコール、エチルアルコール、イソプロピルアルコール等のアルコール類、スチレン、キシレン、軽油等の第二石油類、エチレングリコール、クレゾール、ニトロベンゼン等の第三石油類、ギヤー油、シリンダー油、潤滑油、マシン油、モーター油等の第四石油類等挙げられる。 In this embodiment, the content of the metal can is not particularly limited to food use, industrial use, and the like, but as a dangerous substance in industrial use, for example, it is handled from the viewpoint of safety such as firefighting and ship safety. Legally regulated primary petroleum such as toluene, hexane, MEK, ethyl acetate, acetone, alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, secondary petroleum such as styrene, xylene, gas oil, ethylene glycol, etc. Examples include ternary petroleum such as cresol and nitrobenzene, quaternary petroleum such as gear oil, cylinder oil, lubricating oil, machine oil and motor oil.

巻締め部を加熱し溶着する手段としては、特に限定されないが、例えば、高周波加熱、赤外線、熱風、直火等によって巻締め部を加熱する方法、ヒーターによる接触加熱等が挙げられる。 The means for heating and welding the winding portion is not particularly limited, and examples thereof include a method of heating the winding portion by high frequency heating, infrared rays, hot air, open flame, and the like, contact heating by a heater, and the like.

この実施形態では、巻締め部を加熱し溶着した後、冷却手段を用いて巻締め部を冷却することにより、巻締め部における、DSC熱分析で得られるフィルムの低温結晶化率を上昇させる。DSC熱分析で測定される低温結晶化率が小さいと結晶化により残留歪が大きくなり、溶着樹脂自体は脆くなり溶着部分の接着強度が低下する為、金属缶の巻締め強度の向上には寄与せず、内圧等の圧力や衝撃が掛かると、接着強度が低下し密封性が低下することになる。低温結晶化率が上昇することによって、溶着のための加熱からの温度低下履歴において非晶性部分が多くなる為、靱性が向上し、溶着部分の残留歪は小さくなる為、金属缶の巻締め強度は向上する。また、内圧等の圧力や衝撃が掛かった場合でも密封機能が確保でき、内容物が漏洩しないように封止することができる。 In this embodiment, the winding portion is heated and welded, and then the winding portion is cooled by using a cooling means to increase the low temperature crystallization rate of the film obtained by DSC thermal analysis in the winding portion. If the low temperature crystallization rate measured by DSC thermal analysis is small, the residual strain becomes large due to crystallization, the welding resin itself becomes brittle, and the adhesive strength of the welded part decreases, contributing to the improvement of the winding strength of the metal can. However, if pressure such as internal pressure or impact is applied, the adhesive strength will be reduced and the sealing performance will be reduced. As the low-temperature crystallization rate increases, the amorphous part increases in the temperature decrease history from heating for welding, the toughness improves and the residual strain in the welding part decreases, so the metal can is tightened. Strength is improved. Further, even if pressure such as internal pressure or impact is applied, the sealing function can be secured and the contents can be sealed so as not to leak.

この実施形態において、低温結晶化率の測定は、次の条件を参照して行う。示差走査型熱量計の機種等の各条件は、測定結果に有意な相違が生じない範囲内において適宜変更することも考慮される。
<低温結晶化率の測定>
溶融後の巻締め部における溶着部より5mgのサンプルを採取し、示差走査型熱量計(日立テクノス社製DSC−7200)を用い、昇温速度10℃/minの条件で測定しDSCチャート(低温結晶化及び融解吸熱曲線)を得る。具体的には、130℃付近における低温結晶化の発熱ピーク、250℃付近における融解の吸熱ピークを測定し、低温結晶化ピーク、融解ピークにおいて、ピーク下端に接線を引き、曲線と接線との2つの接点及びピークで規定される面積(ピーク面積)を測定し、結晶化発熱(ΔHc(J/g))、融解熱(ΔHm(J/g))の比率ΔHc/ΔHmに100を乗じて低温結晶化率(%)とする。
In this embodiment, the measurement of the low temperature crystallization rate is performed with reference to the following conditions. It is considered that each condition such as the model of the differential scanning calorimeter is appropriately changed within a range in which a significant difference does not occur in the measurement result.
<Measurement of low temperature crystallization rate>
A 5 mg sample was taken from the welded portion in the winding tightened portion after melting, and measured with a differential scanning calorimeter (DSC-7200 manufactured by Hitachi Technos Co., Ltd.) at a temperature rising rate of 10° C./min to obtain a DSC chart (low temperature). Crystallization and melting endotherm curve). Specifically, an exothermic peak of low temperature crystallization near 130° C. and an endothermic peak of melting around 250° C. were measured, and a tangent line was drawn at the lower end of each of the low temperature crystallization peak and the melting peak. Measure the area (peak area) defined by two contact points and peaks, and multiply the ratio ΔHc/ΔHm of heat of crystallization (ΔHc (J/g)) and heat of fusion (ΔHm (J/g)) by 100 to obtain a low temperature. The crystallization rate (%).

一般に結晶性高分子では、加熱溶融後の冷却の過程では非晶部の他に結晶部が生成される。例えば、PETを溶融後、水中に浸漬する等して急冷したものでは、70℃付近にガラス転移、130℃付近に結晶化による発熱ピーク、250℃付近に融解による吸熱ピークが観測されるが、PETを溶融後、空気中に放冷する等してゆっくり冷却(徐冷)したものをDSC測定すると、ゆっくり冷却(徐冷)した為、130℃付近には低温結晶化のピークは見られず、250℃付近の融解による吸熱ピークのみが観測される(工業化学雑誌 73巻 11号(1970) 217−222頁等参照)。このことは、昇温で融解したPETを徐冷したことで結晶化が進んだ為に、DSCチャートの130℃付近には低温結晶化のピークは発生しないことを示している。 Generally, in a crystalline polymer, a crystal part is generated in addition to an amorphous part in the process of cooling after heating and melting. For example, when PET is melted and then rapidly cooled by immersion in water, a glass transition is observed at around 70°C, an exothermic peak due to crystallization is observed around 130°C, and an endothermic peak due to melting is observed around 250°C. After PET was melted, it was slowly cooled (gradual cooling) by allowing it to cool in the air, etc., and DSC measurement showed that it was slowly cooled (gradual cooling), so no peak of low-temperature crystallization was observed at around 130°C. , Only an endothermic peak due to melting around 250° C. is observed (see Industrial Chemistry Magazine, Vol. 73, No. 11, (1970), pages 217-222, etc.). This indicates that the low temperature crystallization peak does not occur at around 130° C. in the DSC chart because the crystallization progressed by gradually cooling the PET melted at the temperature rise.

つまり、徐冷する場合と比較し、急冷する場合は非晶質領域を増加できる為、その非晶質領域がDSC測定時の昇温の際に低温結晶化し、この低温結晶化による発熱量が、樹脂全体の融解熱量に占める割合を測定することで冷却履歴の指標とすることができる。 That is, as compared with the case of slow cooling, the amorphous region can be increased in the case of rapid cooling, so that the amorphous region is crystallized at a low temperature when the temperature is raised during DSC measurement, and the amount of heat generated by this low temperature crystallization is By measuring the ratio of the entire resin to the heat of fusion, it can be used as an index of the cooling history.

すなわち徐冷(放冷)した場合、結晶化が進む為に低温結晶化は見られないが、急冷すればする程、低温結晶化ピークは顕著になり、低温結晶化発熱量も増加する。この実施形態では、巻締め部を加熱し溶着した後、冷却手段を用いて巻締め部を冷却することにより、低温結晶化率が上昇し、溶着のための加熱からの温度低下履歴において非晶性部分が多くなる為、靱性が向上し、溶着部分の残留歪は小さくなる、従って金属缶の巻締め強度は向上し、巻締め部からの内容物の漏洩を抑制できる。 That is, in the case of slow cooling (cooling), low temperature crystallization is not observed because crystallization proceeds, but as the temperature is rapidly cooled, the low temperature crystallization peak becomes more prominent and the low temperature crystallization heat value increases. In this embodiment, after the winding portion is heated and welded, the winding portion is cooled by using the cooling means, so that the low temperature crystallization rate is increased, and the amorphous material is used in the temperature decrease history from the heating for welding. Since the number of flexible portions is increased, the toughness is improved and the residual strain in the welded portion is reduced. Therefore, the winding strength of the metal can is improved and leakage of the contents from the winding portion can be suppressed.

この実施形態において、冷却手段としては、特に限定されないが、製造ラインへの適用を考慮すると、巻締め部を直接、冷風や冷水で冷却する方法の他、冷却水を通した冷却治具を接触させて冷却する方法等が挙げられる。冷却手段の使用は主に、空気中での放冷に比べて、巻締め部を加熱し溶着した後の冷却速度を促進する。
(実施形態2)
この実施形態における金属缶の製造方法は、結晶性PET樹脂のフィルムをラミネートした金属板を金属缶の部材に成形した後、該部材を巻締め、巻締め部を加熱し溶着する金属缶の製造方法であって、巻締め部を加熱し溶着し、その後、必要に応じて冷却手段を用いて巻締め部を冷却することにより、DSC熱分析で得られるフィルムの低温結晶化率が4%以上、好ましくは5%以上である巻締め部を形成する。
In this embodiment, the cooling means is not particularly limited, but in consideration of application to the production line, in addition to a method of directly cooling the winding tightening portion with cold air or cold water, a cooling jig through which cooling water passes is contacted. Examples of the method include cooling by cooling. The use of the cooling means mainly accelerates the cooling rate after heating and welding the winding portion, as compared with cooling in the air.
(Embodiment 2)
The method for manufacturing a metal can in this embodiment is a method of manufacturing a metal can in which a metal plate laminated with a film of a crystalline PET resin is molded into a member of a metal can, and then the member is wound and the winding portion is heated and welded. In this method, the winding tightening portion is heated and welded, and then the winding tightening portion is cooled if necessary by using a cooling means so that the low temperature crystallization rate of the film obtained by DSC thermal analysis is 4% or more. , Preferably 5% or more.

また、この実施形態における金属缶は、結晶性PET樹脂のフィルムをラミネートした金属板を金属缶の部材に成形した後、該部材を巻締め、巻締め部を加熱し溶着する金属缶であって、巻締め部における、DSC熱分析で得られる前記フィルムの低温結晶化率が4%以上、好ましくは5%以上である。 The metal can according to this embodiment is a metal can in which a metal plate laminated with a film of a crystalline PET resin is molded into a member of the metal can, and the member is wound, and the wound portion is heated and welded. The low temperature crystallization rate of the film obtained by DSC thermal analysis in the winding tightening portion is 4% or more, preferably 5% or more.

上記実施形態1と同様の部分は、その詳細な説明を省略する。 The detailed description of the same parts as those in the first embodiment will be omitted.

この実施形態では、結晶性PET樹脂のフィルムをラミネートした金属板を使用すること、そしてDSC熱分析で得られるフィルムの低温結晶化率が4%以上である巻締め部を形成することを特徴としている。これにより、溶着のための加熱からの温度低下履歴において非晶性部分が多くなる為、靱性が向上し、溶着部分の残留歪は小さくなる、従って金属缶の巻締め強度は向上し、巻締め部からの内容物の漏洩を抑制できる。そのために、上記実施形態1と同様に、巻締め部を加熱し溶着した後、冷却手段を用いて巻締め部を冷却することができる。一方、従来において金属缶の樹脂ラミネート金属板に使用されている結晶性ホモPET樹脂では、DSC熱分析で得られるフィルムの低温結晶化率は、PETを溶融後、空気中に放冷する徐冷条件では0%であるが、例えば、ホモPET樹脂より結晶性をおとした共重合PET樹脂においてDSC熱分析で得られるフィルムの低温結晶化率が4%以上である場合には、冷却手段を用いて巻締め部を冷却することを要しない。 This embodiment is characterized by using a metal plate laminated with a film of a crystalline PET resin, and forming a winding part having a low temperature crystallization rate of 4% or more obtained by DSC thermal analysis. There is. As a result, the amorphous part increases in the temperature decrease history from the heating for welding, the toughness is improved and the residual strain in the welded part is reduced. Therefore, the winding strength of the metal can is improved and the winding tightening is improved. Leakage of contents from parts can be suppressed. Therefore, as in the first embodiment, the winding fastening portion can be cooled by using the cooling means after heating and welding the winding fastening portion. On the other hand, in the case of the crystalline homo-PET resin that has been conventionally used for the resin-laminated metal plate of the metal can, the low temperature crystallization rate of the film obtained by DSC thermal analysis is the slow cooling in which PET is melted and then allowed to cool in the air. Although it is 0% under the condition, for example, when the low temperature crystallization rate of the film obtained by DSC thermal analysis is 4% or more in the copolymer PET resin having crystallinity lower than that of the homo PET resin, a cooling means is used. It is not necessary to use and cool the tightening portion.

DSC熱分析で測定される低温結晶化率が小さくなると結晶化により残留歪が大きくなり、溶着部分の接着強度が低下する為、溶着樹脂自体は脆くなり金属缶の巻締め強度の向上には寄与せず、内圧等の圧力や衝撃が掛かると、接着強度が低下し密封性が低下することになる。低温結晶化率が4%以上になると結晶化により非晶性部分が多くなる為、靱性が向上し、溶着部分の残留歪は小さくなる為、金属缶の巻締め強度は向上する。そのため、内圧等の圧力や衝撃が掛かった場合でも密封機能が確保できる。 When the low temperature crystallization rate measured by DSC thermal analysis becomes small, the residual strain becomes large due to crystallization and the adhesive strength of the welded part decreases, so the welding resin itself becomes brittle and contributes to the improvement of the winding strength of the metal can. However, if pressure such as internal pressure or impact is applied, the adhesive strength will be reduced and the sealing performance will be reduced. When the low temperature crystallization rate is 4% or more, the amorphous portion increases due to crystallization, the toughness is improved, and the residual strain in the welded portion is reduced, so that the winding strength of the metal can is improved. Therefore, the sealing function can be secured even when pressure such as internal pressure or impact is applied.

結晶性PET樹脂としては、特に限定されない。製缶用途等のラミネート鋼板に使用されるPET樹脂は一般的にテレフタル酸とエチレングリコールをモノマー成分としたPET、特に結晶性ホモPET樹脂である。この実施形態では、結晶性ホモPET樹脂の他、ホモPET樹脂より結晶性をおとした共重合PET樹脂を使用することができる。ホモPET樹脂より結晶性をおとした共重合PET樹脂は、テレフタル酸とエチレングリコールに加え、第3成分として他のモノマー成分を共重合したものであり、例えば、加工性を付与する為に一部、酸(イソフタル酸等)やアルコール(CHDM等)を添加して共重合させたPET樹脂等が挙げられる。このホモPET樹脂より結晶性をおとした共重合PET樹脂において、溶融後、空気中に放冷する徐冷条件で、DSC熱分析で得られるフィルムの低温結晶化率が4%以上である場合には、冷却手段を用いて巻締め部を冷却することを要しない。 The crystalline PET resin is not particularly limited. The PET resin used for a laminated steel sheet for can manufacturing and the like is generally PET containing terephthalic acid and ethylene glycol as monomer components, particularly a crystalline homo-PET resin. In this embodiment, in addition to the crystalline homo-PET resin, a copolymerized PET resin having crystallinity lower than that of the homo-PET resin can be used. The copolymerized PET resin, which has a higher crystallinity than the homo-PET resin, is obtained by copolymerizing terephthalic acid and ethylene glycol with another monomer component as the third component. And a PET resin copolymerized by adding an acid (isophthalic acid or the like) or an alcohol (CHDM or the like). In the case of a copolymerized PET resin having crystallinity lower than that of the homo-PET resin, the low-temperature crystallization rate of the film obtained by DSC thermal analysis is 4% or more under a slow cooling condition of cooling in air after melting. Does not require cooling the winding portion by using a cooling means.

以上に、実施形態に基づき本発明を説明したが、本発明はこれらの実施形態に限定されるものではなく、その要旨を逸脱しない範囲内において各種の変更が可能である。 The present invention has been described above based on the embodiments, but the present invention is not limited to these embodiments, and various modifications can be made without departing from the scope of the invention.

以下に、実施例により本発明を更に詳しく説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

材質がTFS(ティンフリースチール)である角型金属缶(18リットル缶)の口金部の巻締め部について、膜厚12μmの結晶性ホモPET樹脂を溶着面にラミネートした角型金属缶の蓋(金属板の厚さ0.32mm)と、膜厚12μmの結晶性ホモPET樹脂を溶着面にラミネートした口金(金属板の厚さ0.30mm)を用いて、双方のラミネート板を巻締め(カシメ)後、270℃×20secで溶融し、直ちに表1に記載した冷却方法によって冷却した。 The lid of the rectangular metal can (18 liter can) with a material of TFS (tin-free steel) is formed by laminating a crystalline homo-PET resin with a film thickness of 12 μm on the welding surface of the tightening part of the base ( Using a metal plate having a thickness of 0.32 mm) and a spinneret (thickness of the metal plate of 0.30 mm) laminated with a crystalline homo-PET resin having a film thickness of 12 μm on the welding surface, both laminate plates are wound (caulked). ), melted at 270° C. for 20 seconds, and immediately cooled by the cooling method described in Table 1.

270℃へ溶融後の冷却方法としては、水没冷却、コールダー冷却器(サンワエンタープライズ製の簡易スポット冷却器)を使用した場合とスポットクーラー((株)スイデン製スポットエアコン)を使用した場合について、冷風吹き出しノズル口からの距離を変更することにより低温結晶化率の異なるサンプルを作製した。
<低温結晶化率の測定>
溶融後の巻締め部における溶着部より5mgのサンプルを採取し、示差走査型熱量計(日立テクノス社製DSC−7200)を用い、昇温速度10℃/minの条件で測定しDSCチャート(低温結晶化及び融解吸熱曲線)を得た。具体的には、130℃付近における低温結晶化の発熱ピーク、250℃付近における融解の吸熱ピークを測定し、低温結晶化ピーク、融解ピークにおいて、ピーク下端に接線を引き、曲線と接線との2つの接点及びピークで規定される面積(ピーク面積)を測定し、結晶化発熱(ΔHc(J/g))、融解熱(ΔHm(J/g))の比率ΔHc/ΔHmに100を乗じて低温結晶化率(%)とした。
<T剥離接着強度>
PETラミネート板を10mm巾×40mm角にカットし、PETフィルム同士を2枚重ねて10mm×10mmの面積を290℃×20秒間加熱した後、所定の冷却処理を行ない1日経過後引張試験機にてT剥離強度を測定した。
<耐圧試験>
口金部にキャップを嵌合閉栓し角型金属缶のフラット部に耐圧試験用の治具を取り付け、水圧にて缶の内圧を100Kpa×5分間加圧し口金巻締め部からの漏れの有無を確認した。図6の写真は、この耐圧試験(内圧試験)の状態を示している。口金巻締め部から少しでも滲みだしてきたものを漏洩有りと判断し、表1の実施例及び比較例において、テスト数10缶のうち合格であった個数を記載した。
As a cooling method after melting to 270°C, cold air was used when submerged cooling, a cold cooler (simple spot cooler manufactured by Sanwa Enterprise) and a spot cooler (spot air conditioner manufactured by Suiden Co., Ltd.) were used. Samples having different low-temperature crystallization rates were prepared by changing the distance from the outlet of the blowing nozzle.
<Measurement of low temperature crystallization rate>
A 5 mg sample was taken from the welded portion in the winding tightened portion after melting, and measured with a differential scanning calorimeter (DSC-7200 manufactured by Hitachi Technos Co., Ltd.) at a temperature rising rate of 10° C./min to obtain a DSC chart (low temperature). A crystallization and melting endotherm curve) was obtained. Specifically, an exothermic peak of low temperature crystallization near 130° C. and an endothermic peak of melting around 250° C. were measured, and a tangent line was drawn at the lower end of each of the low temperature crystallization peak and the melting peak. Measure the area (peak area) defined by two contact points and peaks, and multiply the ratio ΔHc/ΔHm of heat of crystallization (ΔHc (J/g)) and heat of fusion (ΔHm (J/g)) by 100 to obtain a low temperature. The crystallization rate (%) was used.
<T-peel adhesion strength>
A PET laminated plate was cut into a 10 mm width×40 mm square, two PET films were stacked, and an area of 10 mm×10 mm was heated at 290° C. for 20 seconds, and then a predetermined cooling treatment was performed, and after one day, a tensile tester was used. The T peel strength was measured.
<Voltage test>
The cap is fitted and closed on the mouthpiece part, the jig for pressure resistance test is attached to the flat part of the rectangular metal can, and the inner pressure of the can is pressurized with water pressure of 100 Kpa x 5 minutes to check for leakage from the mouthpiece tightening part. did. The photograph of FIG. 6 shows the state of this pressure resistance test (internal pressure test). It was judged that there was leakage even if it spilled out from the mouthpiece tightening portion, and in the examples and comparative examples of Table 1, the number of passing tests out of 10 cans was described.

上記の測定及び評価の結果を表1に示す。 The results of the above measurement and evaluation are shown in Table 1.

1 角型金属缶
2 缶胴
3 蓋
3a 結晶性樹脂のフィルム
3b 結晶性樹脂のフィルム
3c 金属板
4 キャップ
5 口金
5a 結晶性樹脂のフィルム
5b 結晶性樹脂のフィルム
5c 金属板
10 巻締め部
1 Square Metal Can 2 Can Body 3 Lid 3a Crystalline Resin Film 3b Crystalline Resin Film 3c Metal Plate 4 Cap 5 Cap 5a Crystalline Resin Film 5b Crystalline Resin Film 5c Metal Plate 10 Winding Part

Claims (3)

結晶性樹脂のフィルムをラミネートした金属板を金属缶の部材に成形した後、該部材を巻締め、巻締め部を加熱し溶着する金属缶の製造方法であって、
前記巻締め部を加熱し溶着した後、冷却手段を用いて前記巻締め部を冷却することにより、前記巻締め部における、DSC熱分析で得られる前記フィルムの低温結晶化率を上昇させる、金属缶の製造方法。
A method of manufacturing a metal can, comprising forming a metal plate laminated with a film of a crystalline resin into a member of a metal can, and then tightening the member, heating and welding the tightening portion,
After heating and welding the winding portion, and then cooling the winding portion using a cooling means, to increase the low temperature crystallization rate of the film obtained by DSC thermal analysis in the winding portion, metal Can manufacturing method.
結晶性PET樹脂のフィルムをラミネートした金属板を金属缶の部材に成形した後、該部材を巻締め、巻締め部を加熱し溶着する金属缶の製造方法であって、
前記巻締め部を加熱し溶着し、その後、必要に応じて冷却手段を用いて前記巻締め部を冷却することにより、DSC熱分析で得られる前記フィルムの低温結晶化率が4%以上である前記巻締め部を形成する、金属缶の製造方法。
A method for producing a metal can, comprising forming a metal plate laminated with a film of a crystalline PET resin into a member of a metal can, winding the member, heating the winding portion, and welding.
The low-temperature crystallization rate of the film obtained by DSC thermal analysis is 4% or more by heating and welding the winding-up portion and then cooling the winding-up portion using a cooling means as needed. A method of manufacturing a metal can, wherein the winding portion is formed.
結晶性PET樹脂のフィルムをラミネートした金属板を金属缶の部材に成形した後、該部材を巻締め、巻締め部を加熱し溶着した金属缶であって、
前記巻締め部における、DSC熱分析で得られる前記フィルムの低温結晶化率が4%以上である、金属缶。
A metal can obtained by molding a metal plate laminated with a film of a crystalline PET resin into a member of a metal can, winding the member, heating the winding portion, and welding.
A metal can in which the low temperature crystallization rate of the film obtained by DSC thermal analysis in the winding portion is 4% or more.
JP2018247695A 2018-12-28 2018-12-28 Method of manufacturing metal can, and metal can Pending JP2020104925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018247695A JP2020104925A (en) 2018-12-28 2018-12-28 Method of manufacturing metal can, and metal can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018247695A JP2020104925A (en) 2018-12-28 2018-12-28 Method of manufacturing metal can, and metal can

Publications (1)

Publication Number Publication Date
JP2020104925A true JP2020104925A (en) 2020-07-09

Family

ID=71447973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018247695A Pending JP2020104925A (en) 2018-12-28 2018-12-28 Method of manufacturing metal can, and metal can

Country Status (1)

Country Link
JP (1) JP2020104925A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54131485A (en) * 1978-03-31 1979-10-12 Toyo Kohan Co Ltd Can coated with polyolefin resin
WO1997037846A1 (en) * 1996-04-10 1997-10-16 Toyo Kohan Co., Ltd. Metallic sheet covered with polyester resin film and having high workability, and method of manufacturing same
JPH10110046A (en) * 1996-10-09 1998-04-28 Unitika Ltd Polyester film for lamination with metallic sheet or plate and its production
JP2006089090A (en) * 2004-09-24 2006-04-06 Jfe Steel Kk Steel container
JP2007519546A (en) * 2004-01-29 2007-07-19 イーストマン ケミカル カンパニー Compression-induced crystallization of crystalline polymers
US20080050206A1 (en) * 2006-08-17 2008-02-28 Corus Staal Bv Method for manufacturing a metal container
US20110095030A1 (en) * 2009-10-28 2011-04-28 Dave Dunn Container assembly having a heat-sealed metal end, a metal end therefor, and a method for making same
JP2012224809A (en) * 2011-04-22 2012-11-15 Kureha Corp Biodegradable aliphatic polyester particle, and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54131485A (en) * 1978-03-31 1979-10-12 Toyo Kohan Co Ltd Can coated with polyolefin resin
WO1997037846A1 (en) * 1996-04-10 1997-10-16 Toyo Kohan Co., Ltd. Metallic sheet covered with polyester resin film and having high workability, and method of manufacturing same
JPH10110046A (en) * 1996-10-09 1998-04-28 Unitika Ltd Polyester film for lamination with metallic sheet or plate and its production
JP2007519546A (en) * 2004-01-29 2007-07-19 イーストマン ケミカル カンパニー Compression-induced crystallization of crystalline polymers
JP2006089090A (en) * 2004-09-24 2006-04-06 Jfe Steel Kk Steel container
US20080050206A1 (en) * 2006-08-17 2008-02-28 Corus Staal Bv Method for manufacturing a metal container
US20110095030A1 (en) * 2009-10-28 2011-04-28 Dave Dunn Container assembly having a heat-sealed metal end, a metal end therefor, and a method for making same
JP2012224809A (en) * 2011-04-22 2012-11-15 Kureha Corp Biodegradable aliphatic polyester particle, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP7283093B2 (en) BATTERY PACKAGING MATERIAL, MANUFACTURING METHOD THEREOF, AND BATTERY
JP5114260B2 (en) Packaging material for flat electrochemical cells
KR100901214B1 (en) Battery device and lead wire film
JP6458338B2 (en) Secondary battery exterior material, secondary battery, and secondary battery exterior material manufacturing method
US20090206096A1 (en) Three-piece square can and method of manufacturing the same
JP4736164B2 (en) Battery laminated film and battery container using the same
WO2001045183A1 (en) Packaging material for polymer cell and method for producing the same
JP2002056823A (en) Laminated film for battery, and battery container using it
JP2005022336A (en) Packaging material excellent in moldability and packaging container molded by using the material
JP2002093385A (en) Laminated film for battery and receptacle for battery using same
JP2006066113A (en) Laminating material and outer packaging for battery using laminating material
WO2019124281A1 (en) Packaging material for battery, method for producing same, and battery
JP6555454B1 (en) Battery packaging material, manufacturing method thereof, battery and aluminum alloy foil
JP2011142092A (en) Laminated film for batter and container for battery using the same
JP6331468B2 (en) Film for metal lamination, laminated metal plate and metal container
JP2020104925A (en) Method of manufacturing metal can, and metal can
JP2001176465A (en) Laminated film for battery and battery case using the same
JP5174593B2 (en) Lid that is welded and pasted by high frequency induction heating
JP5611848B2 (en) Battery laminated film and battery container using the same
WO2019112051A1 (en) Heat-seal lid and can
JP6574366B2 (en) Sealant film for exterior material of electricity storage device, exterior material for electricity storage device, and electricity storage device
JP6979847B2 (en) Exterior materials for power storage devices and power storage devices
JP2002216719A (en) Adhesive film used at tab part of lithium battery
JP2013001409A (en) Liquid container
CN112978003B (en) Cup-shaped container and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210820

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230912