JP2020101085A - Steel sheet pile and construction method of the same - Google Patents

Steel sheet pile and construction method of the same Download PDF

Info

Publication number
JP2020101085A
JP2020101085A JP2020057074A JP2020057074A JP2020101085A JP 2020101085 A JP2020101085 A JP 2020101085A JP 2020057074 A JP2020057074 A JP 2020057074A JP 2020057074 A JP2020057074 A JP 2020057074A JP 2020101085 A JP2020101085 A JP 2020101085A
Authority
JP
Japan
Prior art keywords
steel sheet
sheet pile
steel
patent document
shaped steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020057074A
Other languages
Japanese (ja)
Other versions
JP2020101085A5 (en
JP7037130B2 (en
Inventor
謙治 河野
Kenji Kono
謙治 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020057074A priority Critical patent/JP7037130B2/en
Publication of JP2020101085A publication Critical patent/JP2020101085A/en
Publication of JP2020101085A5 publication Critical patent/JP2020101085A5/ja
Application granted granted Critical
Publication of JP7037130B2 publication Critical patent/JP7037130B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

To provide a steel sheet pile formed of a combination of an H-shaped steel and a half-cut linear steel sheet pile, and a construction method of the same, which solves various problems of an existing steel component.SOLUTION: A steel sheet pile 1 of this invention is constituted of an H-shaped steel welded with half-cut linear steel sheet piles (half-cut bodies 9) in a Z-shape at each of flange end portions 5E of either one of two pairs of flange end portions 5E that are symmetrical with respect to a point, with a web 3 of the H-shaped steel 7 interposed in between.SELECTED DRAWING: Figure 1

Description

本発明は、土木・建築分野における、土留め壁、地下壁、擁壁、護岸などの構築に用いられる鋼矢板及びその施工方法に関し、とくにH形鋼と半裁した直線形鋼矢板を組合せた鋼矢板及びその施工方法に関する。 The present invention relates to a steel sheet pile used for constructing earth retaining walls, underground walls, retaining walls, revetments and the like in the field of civil engineering and construction, and a construction method thereof, and in particular, a steel sheet combining H-section steel and a half-cut straight sheet pile. The present invention relates to a sheet pile and a construction method thereof.

H形鋼と半裁した直線形鋼矢板を組合せた鋼製部材を用いて、地下壁などを構築する従来技術としては、例えば下記に示す特許文献1、2に開示されたものがある。
特許文献1では、H形鋼のフランジ両端に、直線形鋼矢板の半裁体を溶接接合したH形鋼矢板が開示されている。
これによれば、高い断面性能を備えると共に、寸法精度が優れ、施工性が良く、かつ経済的な製造が可能、とされている。
As a conventional technique for constructing an underground wall or the like by using a steel member that is a combination of an H-shaped steel and a half-cut straight steel sheet pile, there are those disclosed in Patent Documents 1 and 2 shown below, for example.
Patent Document 1 discloses an H-shaped steel sheet pile in which a half-cut body of a straight-shaped steel sheet pile is welded and joined to both ends of a flange of the H-shaped steel.
According to this, it is said that it has high cross-sectional performance, excellent dimensional accuracy, good workability, and economical manufacturing.

また、特許文献2では、H形鋼の一方のフランジ両端に、半割した直線形鋼矢板を溶接固着させた鋼製部材(T形鋼矢板)を用いた、地下構造物の外周壁の構造と、その構築方法が開示されている。
これによれば、直線矢板等の連結部を介して連続した鋼製壁を構築でき、従来のソイルセメント柱列壁のH形鋼のように埋め殺しでなく、鋼製壁を本設構造として利用できる、とされている。
Moreover, in patent document 2, the structure of the outer peripheral wall of the underground structure using the steel member (T-shaped steel sheet pile) which welded and fixed the straight-lined steel sheet pile which was halved to one flange both ends of H-section steel. And its construction method is disclosed.
According to this, it is possible to construct a continuous steel wall through a connecting portion such as a straight sheet pile, and instead of burying the H-shaped steel of conventional soil cement column walls, the steel wall is constructed as a permanent structure. It is said to be available.

特開平2−66215号公報JP-A-2-66215 特開2002−70045号公報JP 2002-70045 A

上記の特許文献1および2の鋼製部材を詳細に分析したところ、これらの技術には次のような問題点があることが明らかとなった。 Detailed analysis of the steel members of Patent Documents 1 and 2 described above revealed that these techniques have the following problems.

<問題点1:断面性能の最大化が未達(特許文献2)>
特許文献2に記載の鋼製部材21は、図25に示すように、H形鋼7の一方のフランジ両端に、半割した直線形鋼矢板(半裁体9)が溶接固着されている。そのため、この鋼製部材21の中立軸は、H形鋼7の中立軸位置(ウェブ中心)よりも直線形鋼矢板側にずれることになる。
ここで、ウェブ中心を基準とすると、鋼製部材21の中立軸の偏心量eは、下式で表される。
e=(2As・a+Ah・e2)/{2(As+Ah)}
=As・a/(As+Ah) ・・・(式1)
ここに、As:直線形鋼矢板の面積
Ah:H形鋼の面積
a :継手嵌合重心位置
e2:H形鋼の重心位置
一方、鋼製部材21の断面性能(壁幅1m当りの断面2次モーメントIおよび断面係数Z)は、下式で表される。
I={2Is+2As・(a−e)2+2Ih+Ah(e−e1)2+Ah(e−e2)2}/2(Bs+Bh)
={Is+As・(a−e)2+Ih+Ah・e2}/(Bs+Bh) ・・・(式2)
Z=min{I/(d−e),I/(c+e),I/(d’−e),I/(c’+e)} ・(式3)
ここに、Is:直線形鋼矢板の断面二次モーメント
Ih:H形鋼の断面二次モーメント
Bs:直線形鋼矢板の有効幅(=500mm)
Bh:H形鋼のフランジ幅
d、d’、c、c’:H形鋼中立軸からの縁端距離
<Problem 1: Maximization of cross-sectional performance has not been achieved (Patent Document 2)>
In the steel member 21 described in Patent Document 2, as shown in FIG. 25, half-divided linear steel sheet piles (half-cut body 9) are welded and fixed to both ends of one flange of the H-shaped steel 7. Therefore, the neutral axis of the steel member 21 is displaced from the neutral axis position (center of the web) of the H-shaped steel 7 to the linear steel sheet pile side.
Here, based on the web center, the eccentricity e of the neutral axis of the steel member 21 is expressed by the following equation.
e=(2As・a+Ah・e2)/{2(As+Ah)}
=As・a/(As+Ah) (Equation 1)
Where As: area of straight steel sheet pile
Ah: Area of H-section steel
a: Joint fitting center of gravity position
e2: Center of gravity of H-section steel On the other hand, the sectional performance (second moment of area I and sectional modulus Z per 1 m of wall width) of the steel member 21 is expressed by the following formula.
I={2Is+2As.(a-e) 2 +2Ih+Ah(e-e1) 2 +Ah(e-e2) 2 }/2(Bs+Bh)
={Is+As·(a−e) 2 +Ih+Ah·e 2 }/(Bs+Bh) (Equation 2)
Z=min{I/(d−e), I/(c+e), I/(d′−e), I/(c′+e)} (Equation 3)
Where Is is the moment of inertia of area of the linear steel sheet pile.
Ih: Second moment of area of H-section steel
Bs: Effective width of straight steel sheet pile (=500mm)
Bh: Flange width of H-section steel
d, d', c, c': Edge distance from H-section steel neutral axis

上記の式を具体的に示すために、一例として、H-700×300×13×24サイズのH形鋼と、半裁した直線形鋼矢板を組合せた、特許文献2に記載の鋼製部材21を考える。
図26は、横軸にウェブ中心からの中立軸の偏心量eを、縦軸に壁幅1m当りのIを示している。なお、Iは、鋼製部材としての値の他、直線形鋼矢板およびH形鋼の寄与分を分離して示した。
In order to specifically show the above formula, as an example, a steel member 21 described in Patent Document 2 in which an H-shaped steel of H-700×300×13×24 size and a half-cut straight steel sheet pile are combined. think of.
In FIG. 26, the horizontal axis shows the eccentricity e of the neutral axis from the web center, and the vertical axis shows I per 1 m of wall width. In addition to the value of I as a steel member, I shows the contributions of the straight steel sheet pile and the H-shaped steel separately.

実際には、鋼製部材21の中立軸の偏心量eは(式1)より一義的に決まるが、このときのeは図26で言うと、鋼製部材のIが最小値となるeを意味している(図26のA点)。
すなわち、特許文献2の鋼製部材21では、連続した鋼製壁を構成するために、H形鋼7の一方のフランジ両端に半裁した直線形鋼矢板を溶接しているが、力学的には特許文献2よりも、さらに合理的な、断面性能を最大化した断面(e=0、中立軸がH形鋼のウェブ中心となる断面)があることを示唆している(図26のB点)。
Actually, the eccentricity e of the neutral axis of the steel member 21 is uniquely determined from (Equation 1), and e at this time is expressed by FIG. It means (point A in FIG. 26).
That is, in the steel member 21 of Patent Document 2, half-cut linear steel sheet piles are welded to both ends of one flange of the H-shaped steel 7 in order to form a continuous steel wall, but mechanically It suggests that there is a more rational cross section (e=0, cross section where the neutral axis is the web center of the H-section steel) that is more rational than in Patent Document 2 (point B in FIG. 26). ).

<問題点2:製造コストの増大(特許文献1)>
特許文献1に記載の鋼製部材23は、H形鋼7のフランジ両端に、直線形鋼矢板の半裁体9を溶接接合している(図28参照)。この鋼製部材23の中立軸は、H形鋼7の中立軸位置(ウェブ中心)と一致するため、上述の断面性能を最大化した断面となっている。
<Problem 2: Increase in manufacturing cost (Patent Document 1)>
In the steel member 23 described in Patent Document 1, a straight-cut steel sheet pile half-cut body 9 is welded to both ends of the flange of the H-shaped steel 7 (see FIG. 28 ). Since the neutral axis of the steel member 23 coincides with the neutral axis position (web center) of the H-shaped steel 7, it has a cross section in which the above-mentioned cross section performance is maximized.

ただし、特許文献2の鋼製部材21と異なり、特許文献1の鋼製部材23はH形鋼7のフランジ両端の4箇所に半裁体9を溶接している。すなわち、図26で言うと、偏心量0の直線形鋼矢板の2箇所分の断面性能が、鋼製部材21の断面性能にさらに加算されることを意味している(図26のC点)。 However, unlike the steel member 21 of Patent Document 2, the steel member 23 of Patent Document 1 welds the half-cut body 9 to four positions on both ends of the flange of the H-shaped steel 7. That is, referring to FIG. 26, it means that the cross-sectional performance of two locations of the straight steel sheet pile with the eccentricity amount of 0 is further added to the cross-sectional performance of the steel member 21 (point C in FIG. 26). ..

これにより、特許文献1では、特許文献2よりも、断面二次モーメントIで38%、断面係数Zで55%の大幅な向上が図れるが、一方で、特許文献1は、特許文献2よりも、直線形鋼矢板の材料費および加工費が少なくとも2倍となるため製造コストの増大(65%)は否めず、断面性能の向上に見合うコストパフォーマンスに大きな課題がある。 As a result, in Patent Document 1, the secondary moment of area I and the sectional modulus Z can be significantly improved by 38% and 55%, respectively, as compared with Patent Document 2, while Patent Document 1 is more significant than Patent Document 2. Since the material cost and the processing cost of the straight-lined steel sheet pile are at least doubled, the manufacturing cost increase (65%) cannot be denied and there is a big problem in the cost performance commensurate with the improvement of the sectional performance.

<問題点3:深度方向の断面性能の最適化が未達(特許文献1・2)>
特許文献1および2とも、土留め壁や地下壁に用いられる鋼製部材23、21に関するものであるが、深度方向への断面性能の最適化については記述されていない。
すなわち、土留め壁や地下壁の壁体となる鋼製部材では、一般的に掘削底面付近で最大曲げモーメントが発生する傾向にあるため、それより以浅および以深で断面変化(断面性能を低減)させても、設計上成立する可能性が十分ある。経済的な設計を行うには、深度方向の断面性能の最適化への対応も必要である。
<Problem 3: Optimization of sectional performance in the depth direction has not been achieved (Patent Documents 1 and 2)>
Patent Documents 1 and 2 relate to steel members 23 and 21 used for earth retaining walls and underground walls, but do not describe optimization of cross-sectional performance in the depth direction.
In other words, in steel members used as earth retaining walls and underground walls, the maximum bending moment generally tends to occur near the bottom of the excavation, so the cross-section changes at shallower and deeper depths (reduces cross-sectional performance). However, there is a good chance that it will be established by design. In order to carry out economical design, it is necessary to deal with optimization of cross-sectional performance in the depth direction.

<問題点4:継手嵌合抵抗の増大(特許文献1)>
鋼製部材23を地中に打設する際の、施工性に関することになるが、特許文献1では継手嵌合が常に2箇所となるため、1箇所の特許文献2よりも継手嵌合抵抗は大きくなる。
また、もともと直線形鋼矢板の継手の余裕度(クリアランス)が小さいことに加えて、直線形鋼矢板の半裁時の曲り、さらにH形鋼7のフランジ端部への溶接時の曲り、反りおよび倒れ(傘折れ)など、深度方向の製造精度に起因する継手嵌合抵抗の増大も考えられる。
<Problem 4: Increase in joint fitting resistance (Patent Document 1)>
Although it relates to the workability when the steel member 23 is driven into the ground, the joint fitting resistance in Patent Document 1 is always two places, and therefore the joint fitting resistance is one place more than in Patent Document 2. growing.
Further, in addition to originally having a small margin (clearance) of the joint of the linear steel sheet pile, the bending of the linear steel sheet pile at the time of half-cutting, the bending at the time of welding to the flange end portion of the H-section steel 7, warpage and It is also conceivable that the fitting resistance of the joint may increase due to manufacturing accuracy in the depth direction, such as a fall (folding of the umbrella).

なお実際には、製造時には、施工性に支障ない範囲での寸法許容差を設定して、加熱矯正などを駆使して精度確保を図るが、これも上述の問題点2に示した製造コストの増大に直結する。しかも、特許文献1の場合、両フランジ端部の4箇所とも精度を要求されることになり、コストの増大は大きい。 Actually, at the time of manufacturing, a dimensional tolerance is set within a range that does not hinder the workability, and the accuracy is ensured by making full use of heating correction or the like, but this also causes the manufacturing cost of the problem 2 described above. Directly connected to the increase. Moreover, in the case of Patent Document 1, precision is required at four locations on both flange end portions, resulting in a large increase in cost.

<問題点5:打設精度の確保が困難(特許文献1・2)>
土留め壁や地下壁などを構築する場合、あらかじめ設定した打設法線に沿って、鋼製部材23、21を順次打設していく。このとき、打設法線からずれが生じた場合、継手部の回転角度で調整することになる。
しかしながら、直線形鋼矢板の継手部の回転角度は、設計上でもたかだか±10°程度であり、さらに上述した、深度方向の製造精度を考慮すると、実際に打設時に使える回転角度はもっと小さいと考えられる。
<Problem 5: It is difficult to secure the placement accuracy (Patent Documents 1 and 2)>
When constructing an earth retaining wall or an underground wall, the steel members 23 and 21 are sequentially placed along a preset placing normal. At this time, if there is a deviation from the driving normal, the rotation angle of the joint is adjusted.
However, the rotation angle of the joint portion of the straight steel sheet pile is at most ±10° even in design, and considering the manufacturing accuracy in the depth direction described above, the rotation angle that can actually be used during driving is much smaller. Conceivable.

特許文献2の鋼製部材21では、上述したH-700×300サイズを例とすると、フランジ幅300mm+直線形鋼矢板の有効幅500mm=鋼製部材21の有効幅800mmのアーム長が±10°足らずの回転角度で作る円弧上という、限られた範囲で調整することになる(図27参照)。
一方、特許文献1では、継手嵌合が2箇所のため、継手の余裕度以外は、ほとんど回転できない。これは、1本目の打設精度を十分向上させた上で順次打設すれば、その後の打設精度も確保されることになるが、逆に言えば、製造精度起因などで、一旦、打設精度が狂い出すと、その後の修正は非常に困難となることを意味している(図28参照)。
In the steel member 21 of Patent Document 2, if the above-mentioned H-700×300 size is taken as an example, the arm length of the flange width 300 mm+the effective width of the linear steel sheet pile 500 mm=the effective width 800 mm of the steel member 21 is ±10°. The adjustment is made within a limited range, that is, on an arc formed by the rotation angle that is not enough (see FIG. 27).
On the other hand, in Patent Document 1, since the joints are fitted at two places, almost no rotation is possible except for the margin of the joints. This is because if the placement accuracy of the first piece is sufficiently improved and then the placement accuracy is increased, the placement accuracy will be secured after that. If the installation accuracy starts to go wrong, it means that subsequent correction becomes very difficult (see FIG. 28).

このように、直線形鋼矢板の有効幅を半裁して、間にフランジを挟んで再度有効幅を構成し直した、特許文献1や2の鋼製部材23、21では、打設精度の調整にはその有効幅と継手部の回転角度に頼るしかなく、いわゆる打設法線方向への可撓性がほとんどない。
さらに実際には、鉛直精度の確保、そして打ち伸び・打ち縮みへの対応も必要であり、特許文献1や2の鋼製部材23、21を精度良く連続的に打設していくことは容易ではないと想定される。
In this way, in the steel members 23 and 21 of Patent Documents 1 and 2 in which the effective width of the straight-lined steel sheet pile is cut in half and a flange is sandwiched between them to reconfigure the effective width, the accuracy of driving is adjusted. Has to rely on its effective width and the angle of rotation of the joint, and has little flexibility in the so-called driving normal direction.
Further, in reality, it is necessary to secure vertical accuracy and to cope with stretch and shrinkage, and it is easy to accurately and continuously cast the steel members 23 and 21 of Patent Documents 1 and 2. Not supposed to.

<問題点6:現場への搬入効率の低下(特許文献1・2)>
特許文献1および2の鋼製部材23、21はいずれも、工場にてH形鋼7および直線形鋼矢板を製造し、所定の加工を施した後、工場からトラックなどで出荷、現場に搬入して初めて打設できるものである。
ここで、特許文献1および2の鋼製部材23、21の形状から考えられる荷姿は、図29、30が想定される。もっと詰めて積載したいところだが、継手部の変形防止や荷崩れ防止を前提に考える必要がある。
このように、これら鋼製部材23、21はかなり積載効率が悪いことが分かる。その結果、現場への搬入回数が増加するため、物流コストの増大はもとより、交通量および交通事故リスクの増大につながってしまう。
<Problem 6: Reduction of delivery efficiency to the site (Patent Documents 1 and 2)>
As for the steel members 23 and 21 of Patent Documents 1 and 2, the H-shaped steel 7 and the straight-shaped steel sheet pile are manufactured in the factory, and after predetermined processing, shipped from the factory by a truck or the like and brought to the site. Only then can it be placed.
Here, FIGS. 29 and 30 are assumed to be the packing shapes that can be considered from the shapes of the steel members 23 and 21 of Patent Documents 1 and 2. I would like to pack more, but it is necessary to consider on the premise of preventing deformation of joints and preventing collapse of loads.
Thus, it can be seen that these steel members 23 and 21 have a considerably low loading efficiency. As a result, the number of times of delivery to the site increases, which leads to not only an increase in physical distribution cost but also an increase in traffic volume and traffic accident risk.

本発明は上述した種々の課題を解決するためになされたものであり、具体的には以下の構成を備えたものである。 The present invention has been made to solve the various problems described above, and specifically has the following configuration.

(1)本発明に係る鋼矢板は、H形鋼におけるウェブを挟んで点対称となる2対のフランジ端部におけるいずれか一方の対をなすフランジ端部のそれぞれに、半裁した直線形鋼矢板を溶接によって取り付けてZ形の形状にしたことを特徴とするものである。 (1) The steel sheet pile according to the present invention is a linear steel sheet pile half-cut on each of the pair of flange end portions of the two pairs of flange end portions which are point-symmetrical with respect to the web in the H-shaped steel. Is attached by welding to form a Z shape.

(2)また、上記(1)に記載のものにおいて、前記H形鋼は、平行なフランジの間にウェブが前記フランジに対して傾斜して取り付けられていることにより、平行なフランジ間にウェブが直交して取り付けられている場合に比較して、有効幅が大きく又は小さくなるように設定されていることを特徴とするものである。 (2) Further, in the one described in the above (1), in the H-section steel, the web is mounted between the parallel flanges so that the web is inclined between the parallel flanges. Is set so that the effective width is larger or smaller than that in the case where they are mounted orthogonally.

(3)また、上記(1)又は(2)に記載のものにおいて、前記H形鋼は、前記半裁した直線形鋼矢板よりも打設方向下方側に延出していることを特徴とするものである。 (3) Moreover, in the thing as described in said (1) or (2), the said H-section steel is extended below the said half-cut straight-line steel sheet pile in the driving direction. Is.

(4)本発明に係る鋼矢板の施工方法は、(1)乃至(3)のいずれかに記載の鋼矢板2枚を、π形になるように予め継手嵌合させる工程と、π形に継手嵌合された2枚の鋼矢板を同時に打設する工程とを備えたことを特徴とするものである。 (4) A method of constructing a steel sheet pile according to the present invention comprises a step of fitting jointly two steel sheet piles according to any one of (1) to (3) so as to form a π shape, and a π shape. And a step of simultaneously driving two steel sheet piles fitted with a joint.

本発明においては、H形鋼におけるウェブを挟んで点対称となる2対のフランジ端部におけるいずれか一方の対をなすフランジ端部のそれぞれに、半裁した直線形鋼矢板を溶接によって取り付けてZ形の形状にしたことにより、以下のような効果を奏することができる。
(a)中立軸が常にH形鋼のウェブ中心位置となるため、使用する鋼材で発揮し得る断面性能が常に最大となる。
(b)フランジ端部の2箇所での溶接であり、かつ製造効率を向上させることができるため、特許文献2と同等もしくはそれ以下のコストとすることができる。
(c)片押しの場合、継手嵌合は1箇所のため、特許文献2と同等だが、施工方法として2枚をあらかじめ継手嵌合させておけば、打設時の継手嵌合箇所数自体を1/2に低減することが可能な上、有効幅が2倍となるため打設歩掛も1/2となる。
(d)打設法線を修正する際の、継手部の回転角度とアーム長の関係からは、特許文献1や2と比較しても、本発明が最も自由度が高く、打ち伸び・打ち縮みの対応を含めて、打設精度の確保は容易である。
(e)Z形状をしているため、特許文献1や2のようなH形鋼矢板やT形鋼矢板に比べて、積付けの工夫により積載効率を向上させることが可能である。
In the present invention, a half-cut linear steel sheet pile is attached by welding to each of the pair of flange end portions of the two pairs of flange end portions which are point-symmetrical with respect to the web in the H-section steel, and Z With the shape, the following effects can be achieved.
(A) Since the neutral axis is always located at the web center position of the H-section steel, the sectional performance that can be exhibited by the steel material used is always the maximum.
(B) Since the welding is performed at two points on the flange end and the manufacturing efficiency can be improved, the cost can be the same as or lower than that of Patent Document 2.
(C) In the case of one-sided pressing, the joint fitting is one place, so it is equivalent to Patent Document 2, but if two pieces are joint-fitted in advance as a construction method, the number of joint fitting places itself when placing is It can be reduced to 1/2, and the effective width is doubled, so the placement step is also halved.
(D) From the relationship between the rotation angle of the joint portion and the arm length when the driving normal is corrected, the present invention has the highest degree of freedom, and is stretched/contracted even in comparison with Patent Documents 1 and 2. It is easy to secure the placement accuracy, including the above.
(E) Since it has a Z shape, it is possible to improve the loading efficiency by devising the stowage, as compared with the H-shaped steel sheet pile and the T-shaped steel sheet pile as in Patent Documents 1 and 2.

本発明の実施の形態に係る鋼矢板の斜視図である。It is a perspective view of the steel sheet pile which concerns on embodiment of this invention. 本発明の実施の形態に係る鋼矢板の正面図である。It is a front view of the steel sheet pile which concerns on embodiment of this invention. 本発明の実施の形態に係る鋼矢板の態様(パターン)の説明図である(その1)。It is explanatory drawing of the aspect (pattern) of the steel sheet pile which concerns on embodiment of this invention (the 1). 本発明の実施の形態に係る鋼矢板の態様(パターン)の説明図である(その2)。It is explanatory drawing of the aspect (pattern) of the steel sheet pile which concerns on embodiment of this invention (the 2). 本発明の実施の形態に係る鋼矢板における半裁体の溶接位置の態様の説明図である。It is explanatory drawing of the aspect of the welding position of the half-cut body in the steel sheet pile which concerns on embodiment of this invention. 本発明の実施の形態に係る鋼矢板の他の態様の説明図である(その1)。It is explanatory drawing of the other aspect of the steel sheet pile which concerns on embodiment of this invention (the 1). 本発明の実施の形態に係る鋼矢板の他の態様の説明図である(その2)。It is explanatory drawing of the other aspect of the steel sheet pile which concerns on embodiment of this invention (the 2). 本発明の実施の形態に係る鋼矢板における半裁体の溶接方法の態様の説明図である。It is explanatory drawing of the aspect of the welding method of the half-cut body in the steel sheet pile which concerns on embodiment of this invention. 特許文献1に開示された鋼製部材において想定される溶接工程の説明図である。It is explanatory drawing of the welding process assumed in the steel member disclosed by patent document 1. 特許文献2に開示された鋼製部材において想定される溶接工程の説明図である。It is explanatory drawing of the welding process assumed in the steel member disclosed by patent document 2. 実施の形態の鋼矢板の溶接工程の説明図である。It is explanatory drawing of the welding process of the steel sheet pile of embodiment. 実施の形態の鋼矢板の作用・効果を説明する図である(その1)。It is a figure explaining the operation and effect of the steel sheet pile of an embodiment (the 1). 実施の形態の鋼矢板の作用・効果を説明する図である(その2)。It is a figure explaining the operation and effect of the steel sheet pile of an embodiment (the 2). 実施の形態の鋼矢板の作用・効果を説明する図である(その3)。It is a figure explaining the operation and effect of the steel sheet pile of an embodiment (the 3). 実施の形態の鋼矢板の作用・効果を説明する図である(その4)。It is a figure explaining an operation and effect of a steel sheet pile of an embodiment (the 4). 実施の形態の鋼矢板の作用・効果を説明する図である(その5)。It is a figure explaining the operation and effect of the steel sheet pile of an embodiment (the 5). 実施の形態の鋼矢板の作用・効果を説明する図である(その6)。It is a figure explaining the operation and effect of the steel sheet pile of an embodiment (the 6). 実施例1において特許文献に開示のものと本発明との断面性能の比較を説明するグラフである(その1)。3 is a graph illustrating a comparison of cross-sectional performance between the one disclosed in the patent document and the present invention in Example 1 (No. 1). 実施例1において特許文献に開示のものと本発明との断面性能の比較を説明するグラフである(その2)。3 is a graph illustrating a comparison of cross-sectional performance between the one disclosed in the patent document and the present invention in Example 1 (No. 2). 実施例1において特許文献に開示のものと本発明との断面性能の比較を説明するグラフである(その3)。5 is a graph illustrating a comparison of cross-sectional performance between the one disclosed in the patent document and the present invention in Example 1 (No. 3). 実施例1において特許文献に開示のものと本発明との断面性能の比較を説明するグラフである(その4)。5 is a graph illustrating a comparison of cross-sectional performance between the one disclosed in the patent document and the present invention in Example 1 (No. 4). 実施例2において既往の鋼製部材と本発明との比較を説明するグラフである。5 is a graph illustrating a comparison between a steel member of the past and the present invention in Example 2. 本発明の実施の形態の鋼矢板の6面図及び斜視図であり、図(a)、(b)、(c)、(d)、(e)、(f)、(g)はそれぞれ、正面図、背面図、右側面図、左側面図、平面図、底面図、斜視図を示している。It is a 6-plane view and a perspective view of the steel sheet pile of an embodiment of the present invention, and Drawings (a), (b), (c), (d), (e), (f), and (g) are respectively, A front view, a rear view, a right side view, a left side view, a plan view, a bottom view and a perspective view are shown. 本実施の形態の他の態様の鋼矢板の6面図及び斜視図であり、図(a)、(b)、(c)、(d)、(e)、(f)、(g)はそれぞれ、正面図、背面図、右側面図、左側面図、平面図、底面図、斜視図を示している。It is a 6th figure and perspective view of the steel sheet pile of other modes of this embodiment, and Drawing (a), (b), (c), (d), (e), (f), (g) is a figure. A front view, a rear view, a right side view, a left side view, a plan view, a bottom view and a perspective view are shown, respectively. 発明が解決しようとする課題を説明する説明図である(その1)。It is explanatory drawing explaining the subject which an invention tends to solve (the 1). 発明が解決しようとする課題を説明する説明図である(その2)。It is explanatory drawing explaining the subject which an invention tends to solve (the 2). 特許文献2の問題点の説明図である(その1)。It is explanatory drawing of the problem of patent document 2 (the 1). 特許文献1の問題点の説明図である(その1)。It is explanatory drawing of the problem of patent document 1 (the 1). 特許文献1の問題点の説明図である(その2)。It is explanatory drawing of the problem of patent document 1 (the 2). 特許文献2の問題点の説明図である(その2)。It is explanatory drawing of the problem of patent document 2 (the 2).

本発明の実施の形態に係る鋼矢板1は、図1、図2に示すように、ウェブ3とフランジ5を有するH形鋼7におけるウェブ3を挟んで点対称となる2対のフランジ端部5Eにおける一方の対をなすフランジ端部5Eのそれぞれに、半裁した直線形鋼矢板(以下、「半裁体9」という)を溶接によって取り付けてZ形の形状にしたものである。
すなわち、本実施の形態の鋼矢板1は、H形鋼7および半裁体9から構成されるが、半裁体9は、H形鋼7の一方のフランジ端部5Eの1箇所と、もう一方のフランジ5で上記と反対側のフランジ端部5Eに1箇所の計2箇所に溶接取付され、全体形状がZ形となるようにしたものである。
As shown in FIGS. 1 and 2, the steel sheet pile 1 according to the embodiment of the present invention has two pairs of flange end portions which are point-symmetrical with respect to the web 3 in the H-shaped steel 7 having the web 3 and the flange 5. A half-cut straight steel sheet pile (hereinafter referred to as "half-cut body 9") is attached by welding to each of the one pair of flange ends 5E in 5E to form a Z-shape.
That is, the steel sheet pile 1 of the present embodiment is composed of the H-shaped steel 7 and the half-cut body 9. The half-cut body 9 has one flange end portion 5E of the H-section steel 7 and the other half. The flange 5 is welded and attached to the flange end portion 5E on the opposite side to the above at two locations, one location, so that the overall shape is Z-shaped.

ここで、本実施の形態の鋼矢板1は、H形鋼7と半裁体9によって構成されるが、半裁体9を構成する直線形鋼矢板の継手11(主爪13および副爪15)には向きがある、すなわち継手11の向きによって形状が異なり、またH形鋼7には2対のうちのいずれのフランジ端部5Eに半裁体9を取り付けるかという選択がある。このため、本実施の形態の鋼矢板1は、半裁体9の向きと選択するフランジ端部5Eによって複数のパターンが存在する。
具体的には、頭部(TOP)側から見て、「フランジ端部」2×「左の継手の向き」2×「右の継手の向き」2=8パターン(パターンA〜H)がある(図3参照)。
Here, the steel sheet pile 1 of the present embodiment is composed of the H-shaped steel 7 and the half-cut body 9. However, in the joint 11 (the main claw 13 and the sub-claw 15) of the linear steel sheet pile forming the half-cut body 9, Has a different orientation, that is, the shape differs depending on the orientation of the joint 11, and the H-section steel 7 has a choice of which of the two pairs of flange ends 5E the half cut body 9 is attached to. Therefore, the steel sheet pile 1 according to the present embodiment has a plurality of patterns depending on the orientation of the half-cut body 9 and the flange end 5E selected.
Specifically, when viewed from the head (TOP) side, there are "flange end" 2 x "direction of left joint" 2 x "direction of right joint" 2 = 8 patterns (patterns A to H) (See Figure 3).

ただし、軸回転、または頭部(TOP)と先端部(BOTTOM)の天地を逆転させると同じパターンとなるものがあり、具体的にはパターンA、B、Cの天地逆転したものはそれぞれパターンE、F、Gと同じであり、パターンA、Eの軸回転したものはそれぞれパターンD、Hと同じである。
したがって、集約すると、図3に示す3パターン(A・B・C)となる。
However, there are some patterns that have the same pattern when the top and bottom of the head (TOP) and the top (BOTTOM) are rotated, or the patterns are the same as those of patterns A, B, and C. , F, and G, and the patterns A and E rotated about the axis are the same as patterns D and H, respectively.
Therefore, when aggregated, the three patterns (A, B, C) shown in FIG. 3 are obtained.

これら3パターンの鋼矢板1を連結して連続壁を構築することができる。なお、パターンンAについては、図4(b)に示すように、基本形を天地逆転し、それをさらに軸回転したものをパターンA´とすると、図4(a)に示すように、パターンA、A´のみで連続壁を構築することができる。すなわち、パターンAのみを製造すれば連続壁の構築ができるため、製造効率の大幅な向上につながる。 A continuous wall can be constructed by connecting the steel sheet piles 1 having these three patterns. As for the pattern A, as shown in FIG. 4B, if the basic form is turned upside down and further axially rotated to form a pattern A′, as shown in FIG. , A'can be used to construct a continuous wall. That is, if only the pattern A is manufactured, a continuous wall can be constructed, which leads to a great improvement in manufacturing efficiency.

さらに、現場継手がある場合、通常、隣接する鋼矢板の現場継手位置を1m以上の間隔の千鳥配置とするが、例えば、パターンAで上矢板10m+下矢板9mの矢板構成でのみ製造すれば、打設時に1枚毎に天地逆転させるため、パターンA’は上矢板9m+下矢板10mとなり、自然と現場継手位置が1mの千鳥配置となるというメリットもある。
なお、H形鋼7のフランジ端部5Eに対する半裁体9の溶接取付け位置は、図5に示すように、フランジ最内縁(図5(a))、フランジ中心(図5(b))、フランジ最外縁(図5(c))での態様が考えられるが、断面性能上は中立軸から最も遠くなるフランジ最外縁が望ましい(なお、本明細書では、断面性能の値はすべてフランジ最外縁位置を前提としている)。
Furthermore, when there is a field joint, usually, the field joint positions of adjacent steel sheet piles are arranged in a staggered manner with an interval of 1 m or more, but for example, if pattern A is manufactured with a sheet pile configuration of 10 m upper sheet pile + 9 m lower sheet pile, The pattern A'has an upper sheet pile of 9 m and a lower sheet pile of 10 m, which is naturally staggered with a joint position of 1 m.
The welding attachment position of the half-cut body 9 to the flange end 5E of the H-section steel 7 is, as shown in FIG. 5, the innermost edge of the flange (FIG. 5(a)), the center of the flange (FIG. 5(b)), the flange. The outermost edge (Fig. 5(c)) can be considered, but the outermost edge of the flange that is farthest from the neutral axis is desirable in terms of sectional performance (in this specification, all the values of sectional performance are the outermost edge position of the flange). Is assumed).

<他の態様について>
本発明の鋼矢板1については、図1、図2に示したものの他、図6に示すように、H形鋼7として、平行なフランジ5間にウェブ3がフランジ5に対して傾斜して取り付けられているものを用いることで、有効幅を増減させた構造にしてもよい。
図6(a)に示すように、ウェブ3とフランジ5の成す角度が鈍角となる側のフランジ端部5Eに半裁体9を取り付けた場合には、ウェブ3とフランジ5が直角のH形鋼7のときよりも両フランジ5が中立軸に近づくため、壁幅1m当りの断面性能は低下するが、有効幅が増加し、矢板枚数を削減することで鋼材重量も低下するため、施工効率を向上させたいときには有効である。
<About other aspects>
Regarding the steel sheet pile 1 of the present invention, as shown in FIG. 6, in addition to the ones shown in FIGS. 1 and 2, as the H-shaped steel 7, the web 3 is inclined between the parallel flanges 5 with respect to the flanges 5. A structure in which the effective width is increased or decreased by using the attached one may be adopted.
As shown in Fig. 6(a), when the half-cut body 9 is attached to the flange end 5E on the side where the angle formed by the web 3 and the flange 5 is an obtuse angle, the H-shaped steel having the right angle between the web 3 and the flange 5 is formed. Since both flanges 5 are closer to the neutral axis than in the case of 7, the cross-sectional performance per 1 m of wall width is reduced, but the effective width is increased and the steel material weight is also reduced by reducing the number of sheet piles, so construction efficiency is improved. It is effective when you want to improve.

なお、本態様の製造に当たっては、ウェブ3の傾斜を圧延時に出来れば望ましいが、プレス加工やビルドH加工によって製造するようにしてもよい。 In the production of this embodiment, it is desirable that the inclination of the web 3 can be obtained during rolling, but the web 3 may be produced by press working or build H working.

また、他の態様として図7(a)に示すように、半裁体9の長さを短くしたものや、図7(b)に示すように、片方のフランジ端部5Eに取り付ける半裁体9の長さを短くしたものも考えられ、これらは打ち伸び・打ち縮みへの対応として、幅調整矢板としての機能を持たせることができる。 As another aspect, as shown in FIG. 7(a), a half-cut body 9 having a shorter length or a half-cut body 9 attached to one flange end 5E as shown in FIG. 7(b) is used. Shorter lengths are also conceivable, and these can have a function as a width adjusting sheet pile in response to stretching and shrinking.

次に、本実施の形態の鋼矢板1の製造方法について説明する。
本実施の形態の鋼矢板1は、以下に示すような工程を経て製造される。
(1)受入検査
直線形鋼矢板とH形鋼を受け入れる。
(2)直線形鋼矢板の切断
プラズマもしくはガスなどにより、直線形鋼矢板を2枚に切断する。
(3)仮組立
H形鋼のフランジ対角2箇所に、半裁した直線形鋼矢板をそれぞれ仮溶接する。
(4)本溶接
(5)矯正
(6)検査
(7)出荷
Next, a method for manufacturing the steel sheet pile 1 of the present embodiment will be described.
The steel sheet pile 1 of the present embodiment is manufactured through the steps described below.
(1) Acceptance inspection Accepts straight steel sheet piles and H steel.
(2) Cutting straight steel sheet piles Cut straight steel sheet piles into two pieces by plasma or gas.
(3) Temporary assembly Temporarily weld the half-cut straight steel sheet piles to the two diagonal corners of the H-section steel.
(4) Main welding
(5) Straightening
(6) Inspection
(7) Shipment

半裁した直線形鋼矢板(半裁体9)と、H形鋼7のフランジ5との溶接仕様の態様に関し、図8に示すような3つの態様が考えられる。
図8(a)に示した両側隅肉溶接が最も溶接コストが安くなるが、両側溶接のため反転が必要であり、またフランジ厚が小さく、もしくはフランジ最外縁位置では、隅肉溶接ができなくなってくる。
一方、図8(b)に示した部分溶込み開先溶接では、片側からのみの溶接となり反転が不要となるが、一般に引張が作用する場合には適用ができないとされている。
そこで、図8(c)に示した完全溶込み開先溶接が最も望ましいが、片側からの溶接では裏当て金が必要であり、溶接コストは最も高くなる。
Regarding the aspect of the welding specification between the half-cut straight-line steel sheet pile (half-cut body 9) and the flange 5 of the H-section steel 7, three aspects as shown in FIG. 8 are conceivable.
The double-sided fillet welding shown in FIG. 8(a) has the lowest welding cost, but requires double-sided welding and requires reversal, and the flange thickness is small or fillet welding cannot be performed at the outermost flange position of the flange. Come on.
On the other hand, in the partial penetration groove welding shown in FIG. 8(b), welding is performed only from one side and reversal is unnecessary, but it is generally not applicable when tension acts.
Therefore, the full penetration groove welding shown in FIG. 8(c) is most desirable, but a welding from one side requires a backing metal, and the welding cost becomes the highest.

溶接工程((3)仮組立、(4)本溶接)に関しては、本発明の鋼矢板1であれば効率的な溶接が可能であり、コストダウンもできるので、この点を特許文献1、2に開示された鋼製部材と比較して説明する。
図9、図10、図11はそれぞれ特許文献1、2、本発明の鋼矢板1について図8(b)、(c)の溶接方法を想定した場合の溶接工程を図示したものであり、各図の(a)が仮組立、(b)が本溶接を示している。
Regarding the welding process ((3) temporary assembly, (4) main welding), the steel sheet pile 1 of the present invention enables efficient welding and cost reduction. It will be described in comparison with the steel member disclosed in.
FIG. 9, FIG. 10, and FIG. 11 illustrate welding steps in the case of assuming the welding methods of FIGS. 8B and 8C for the steel sheet piles 1 and 2 of the present invention, respectively. In the figure, (a) shows temporary assembly, and (b) shows main welding.

特許文献1に開示のものでは、図9に示すように、仮組立で4回、本溶接で左右2ライン×2回=4回の溶接作業、および反転が2回必要となる。
また、特許文献2に開示のものでは、図10に示すように、仮組立で2回、本溶接で左右2ライン×1回=2回の溶接作業となる。
一方、本発明の鋼矢板1では、図11に示すように、仮組立で2回、本溶接で1ライン×2回=2回、および反転が2回となるが、常に溶接位置が一定で、特に本溶接で自動溶接ラインを使用する場合は高効率となり、コストダウンが可能となる。
In the one disclosed in Patent Document 1, as shown in FIG. 9, temporary assembly requires four welding operations, and main welding requires two left and right lines×2 times=4 welding operations and two reversing operations.
Further, in the one disclosed in Patent Document 2, as shown in FIG. 10, the welding work is performed twice for temporary assembly and two lines on the left and right sides×1 time=2 times for main welding.
On the other hand, in the steel sheet pile 1 of the present invention, as shown in FIG. 11, temporary assembly is twice, main welding is 1 line×2 times=2 times, and reversal is twice, but the welding position is always constant. Especially, when the automatic welding line is used in the main welding, the efficiency becomes high and the cost can be reduced.

次に、本実施の形態の鋼矢板1の有する優れた作用・効果について説明する。
<断面性能>
図12は、2枚の鋼矢板1を継手嵌合した場合の中立軸の位置を示したものであり、図12(a)、(b)、(c)は、それぞれ本実施の形態の鋼矢板1、特許文献1の鋼製部材、特許文献2の鋼製部材を示している。
Next, the excellent action and effect of the steel sheet pile 1 of the present embodiment will be described.
<Cross section performance>
FIG. 12 shows the position of the neutral shaft when two steel sheet piles 1 are joint-fitted, and FIGS. 12(a), 12(b), and 12(c) show the steel of the present embodiment, respectively. The sheet pile 1, the steel member of patent document 1, and the steel member of patent document 2 are shown.

本実施の形態の鋼矢板1は、上述したような構造のため、少なくとも2枚を継手嵌合した時点で、中立軸がウェブ中心位置となる(図12(a))。これを図26で説明すると、横軸のウェブ中心からの中立軸の偏心量eが0であり、本発明の鋼矢板1の構成(直線形鋼矢板とH形鋼7の組合せ)上、断面性能が最大となる断面となっていることが分かる(図26のB点)。 Since the steel sheet pile 1 of the present embodiment has the above-described structure, the neutral axis is at the web center position when at least two sheets are joint-fitted (FIG. 12(a)). This will be described with reference to FIG. 26. The eccentricity e of the neutral axis from the web center of the horizontal axis is 0, and the cross section in view of the configuration of the steel sheet pile 1 of the present invention (combination of the straight steel sheet pile and the H-shaped steel 7). It can be seen that the cross section has the maximum performance (point B in Fig. 26).

<深度方向の断面変化>
先に述べた通り、特許文献1および2では、深度方向の断面変化についての記述はなく、そもそも既往の鋼製部材でも、深度方向において断面性能は一様である。これは、特に控え式の岸壁など断面係数Zが設計決定要因の場合、最大曲げモーメント位置において必要な断面係数により、鋼製部材の型式が深度方向によらず一義的に決定されることを意味している。
<Cross section change in depth direction>
As described above, in Patent Documents 1 and 2, there is no description about the cross-sectional change in the depth direction, and even the existing steel member has uniform cross-sectional performance in the depth direction. This means that the type of steel member is uniquely determined regardless of the depth direction by the required section modulus at the maximum bending moment position, especially when the section modulus Z is the design deciding factor such as a restraint type quay. doing.

そこで本発明では、上述したようなH形鋼7の長手方向の全長に亘って直線形鋼矢板を溶接取付けするタイプのみならず、図13に示すように、H形鋼7の長手方向の一部に直線形鋼矢板(半裁体9)を溶接取付けするもの、換言すればH形鋼7は、半裁体9よりも打設方向下方側に延出しているものも対象とした。 Therefore, in the present invention, not only the type in which the straight-shaped steel sheet pile is welded and attached over the entire length in the longitudinal direction of the H-section steel 7 as described above, but also, as shown in FIG. A straight steel sheet pile (half-cut body 9) is welded to the portion, in other words, the H-shaped steel 7 extends toward the lower side of the half-cut body 9 in the driving direction.

この場合、図13(a)に示すように、H形鋼7の長手方向の上部にのみ半裁体9を溶接するようにしてもよいし、図13(b)に示すように、長手方向の全長亘って半裁体9を溶接したH形鋼7の下端に別途H形鋼7のみを溶接もしくはボルト接合するようにしてもよい。なお、この場合は、継手嵌合を容易にできるようにするために、図13(c)に示すように、H形鋼7の下端部に半裁体9からなる飛び爪17を設けるのが好ましい。
図13に示したものであれば、深度方向の曲げモーメント分布に応じて、設計上、必要な断面性能を複数設定することが可能となる。
In this case, as shown in FIG. 13A, the half-cut body 9 may be welded only to the upper portion of the H-section steel 7 in the longitudinal direction, or as shown in FIG. Alternatively, only the H-section steel 7 may be separately welded or bolted to the lower end of the H-section steel 7 welded with the half-cut body 9 over the entire length. In this case, in order to facilitate the fitting of the joint, as shown in FIG. 13( c ), it is preferable that the lower end portion of the H-shaped steel 7 is provided with a jump claw 17 formed of a half-cut body 9. ..
In the case of the one shown in FIG. 13, it is possible to set a plurality of cross-sectional performances required in design according to the bending moment distribution in the depth direction.

<打設方法と継手嵌合性>
本発明の鋼矢板1の打設方法は、バイブロハンマ工法および油圧式圧入工法を想定しており、前者ではH形鋼7のウェブ3部分、後者ではウェブ3もしくは直線形鋼矢板部分を把持して、1枚ずつ片押しで打設する方法(シングル打設)を原則としている。なお、この場合は、継手嵌合箇所数は鋼矢板枚数分となる。
<Placing method and fitting property of joint>
The method for driving the steel sheet pile 1 of the present invention is premised on the vibro hammer method and the hydraulic press-fitting method. In the former, the web 3 portion of the H-shaped steel 7 is gripped, and in the latter, the web 3 or the straight steel sheet pile portion is gripped. , In principle, the method of placing by pushing one by one (single placing) is the principle. In this case, the number of joint fitting points is equal to the number of steel sheet piles.

一方、打設歩掛を向上させるために、本発明の鋼矢板1を2枚、あらかじめ継手嵌合させたものを打設する方法(ダブル打設)もある。この場合は、有効幅が2倍となるため、打設歩掛は1/2、打設時の継手嵌合箇所数も1/2となる。この方法では、バイブロハンマ工法では、ウェブ3部分2箇所を鋼管チャックで把持して2枚同時に打設する。また、油圧式圧入工法では、両端の直線形鋼矢板部分を把持して2枚同時に圧入する。 On the other hand, there is also a method (double casting) of placing two steel sheet piles 1 of the present invention into which joints have been fitted in advance in order to improve the placing step. In this case, since the effective width is doubled, the placing step is halved, and the number of joint fitting points during placing is also halved. In this method, in the vibro hammer method, two portions of the web 3 are gripped by steel tube chucks and two sheets are simultaneously placed. Also, in the hydraulic press-fitting method, two straight steel sheet pile parts at both ends are gripped and press-fitted simultaneously.

なお、あらかじめ2枚を継手嵌合する方法としては、図14に示すように、現場に搬入した本発明の鋼矢板1を2枚を横置きし、一方を固定、もう一方をクレーンで吊るとともに継手嵌合しながら、横引き(押し)するとよい。また、縦穴を設けることが可能であれば、縦置きで継手嵌合しても、もちろんよい。なお、図14(a)は嵌合する2枚の鋼矢板1を軸方向端部側から見た図であり、図14(b)は嵌合する2枚の鋼矢板1を平面視した図である。 In addition, as a method of fitting the two pieces together in advance, as shown in FIG. 14, two steel sheet piles 1 of the present invention that have been brought into the field are placed horizontally, one of them is fixed and the other is hung by a crane. It is recommended to pull laterally (push) while fitting the joint. Further, if vertical holes can be provided, it is of course possible to fit the joint vertically. Note that FIG. 14A is a view of the two steel sheet piles 1 to be fitted seen from the axial end side, and FIG. 14B is a plan view of the two steel sheet piles 1 to be fitted. Is.

<打設精度>
打設法線からのずれを修正するという観点からは、継手部の回転角とアーム長がポイントとなる。これらのうち、アーム長については、特許文献1、2および本発明では、本発明が最長となり、修正の際の自由度も最も大きい(図15参照)。
例えば、先述のH-700×300サイズを例とすると、特許文献1および2では、フランジ幅300mm+直線形鋼矢板の有効幅500mm=鋼製部材の有効幅800mmのアーム長となるが、本発明では、フランジ対角となるため、√(8002+7002)=1063mmと、1.33倍となる。
さらに、図16に示すようなダブル打設では、有効幅800mmの2倍の1600mmとなる。
<Placing accuracy>
From the viewpoint of correcting the deviation from the driving normal, the rotation angle of the joint and the arm length are important points. Of these, in Patent Documents 1 and 2, and in the present invention, the present invention has the longest arm length and the greatest degree of freedom in correction (see FIG. 15).
For example, taking the above-mentioned H-700×300 size as an example, in Patent Documents 1 and 2, the flange length is 300 mm+the effective width of the linear steel sheet pile is 500 mm=the effective width of the steel member is 800 mm. Then, since it is a flange diagonal, √ (8002 + 7002) = 1063 mm, which is 1.33 times.
Further, in double casting as shown in FIG. 16, the effective width is 1600 mm, which is twice the effective width of 800 mm.

ここで、本発明の鋼矢板1同士の打設のみならず、特許文献1または2の鋼製部材23、21を打設中に打設精度を修正したい場合にも、断面性能上の支障がなければ、本発明の鋼矢板1を鋼製部材23、21に嵌合して、調整することももちろん可能である。
なお、一般に、通常のZ形鋼矢板は、打設時に回転しやすい形状と言われているが、本発明の鋼矢板1は、基本部分はH形鋼7であり、通常のZ形鋼矢板よりも直進性は良好である。
また、通常のZ形鋼矢板の両肩にフィンがついた形状と見なすこともでき、上記の回転を抑制する効果がある。
Here, not only when the steel sheet piles 1 according to the present invention are driven, but also when it is desired to correct the driving accuracy while driving the steel members 23 and 21 of Patent Document 1 or 2, there is a problem in cross-sectional performance. If not, it is of course possible to fit the steel sheet pile 1 of the present invention to the steel members 23 and 21 for adjustment.
Note that, generally, a normal Z-shaped steel sheet pile is said to have a shape that is easy to rotate during driving, but the steel sheet pile 1 of the present invention has an H-shaped steel 7 as its basic part, and a normal Z-shaped steel sheet pile. Straightness is better than that.
Further, it can be regarded as a shape in which fins are attached to both shoulders of a normal Z-shaped steel sheet pile, and it has an effect of suppressing the above rotation.

<現場搬入>
図17に本発明の鋼矢板1の積み付け例を示しているが、本発明の鋼矢板1は形状がZ形ゆえに、図17(a)(b)に示すように、詰めて積載可能であり、積載可能重量いっぱいまで積載して、物流コストを低減することができる。
<Site loading>
FIG. 17 shows a stacking example of the steel sheet pile 1 of the present invention. Since the steel sheet pile 1 of the present invention has a Z shape, it can be packed and stacked as shown in FIGS. 17(a) and (b). Yes, it is possible to reduce the physical distribution cost by loading up to the maximum loadable weight.

以上をまとめると、本実施の形態の鋼矢板1は以下のような作用・効果を奏することができる。
(a)中立軸を常にH形鋼7のウェブ中心位置となるようにしたため、使用する鋼材で発揮し得る断面性能が常に最大となる。
(b)フランジ端部5Eの2箇所での溶接、かつ製造効率を向上させたため、特許文献2と同等もしくはそれ以下のコストとなる。
(c)半裁体9を溶接していないH形鋼7を深度方向に接合する(組合せる)ことで、発生する曲げモーメントに応じた断面性能を最適設計することが可能である。
(d)片押しの場合、継手嵌合は1箇所のため、特許文献2と同等だが、施工方法として2枚をあらかじめ継手嵌合させておけば、打設時の継手嵌合箇所数自体を1/2に低減することが可能な上、有効幅が2倍となるため打設歩掛も1/2となる。
(e)打設法線を修正する際の、継手部の回転角度とアーム長の関係からは、特許文献1や2と比較しても、本発明が最も自由度が高く、打ち伸び・打ち縮みの対応を含めて、打設精度の確保は容易である。
(f)Z形の鋼矢板のため、特許文献1や2のようなH形鋼矢板やT形鋼矢板に比べて、積付けの工夫により積載効率を向上させることが可能である。
Summarizing the above, the steel sheet pile 1 of the present embodiment can exhibit the following actions and effects.
(A) Since the neutral shaft is always located at the web center position of the H-shaped steel 7, the sectional performance that can be exhibited by the steel material used is always the maximum.
(B) Since the welding is performed at two points on the flange end 5E and the manufacturing efficiency is improved, the cost is equal to or less than that of Patent Document 2.
(C) By joining (combining) the H-shaped steels 7 in which the half-cut body 9 is not welded in the depth direction, it is possible to optimally design the cross-sectional performance according to the bending moment generated.
(D) In the case of one-sided pressing, the fitting is one place, so it is the same as in Patent Document 2. However, if two fittings are pre-fitted as a construction method, the number of fittings themselves at the time of placing is itself. It can be reduced to 1/2, and the effective width is doubled, so the placement step is also halved.
(E) From the relationship between the rotation angle of the joint portion and the arm length when correcting the driving normal, the present invention has the highest degree of freedom and can be stretched and shrunk even compared to Patent Documents 1 and 2. It is easy to secure the placement accuracy, including the above.
(F) Since it is a Z-shaped steel sheet pile, compared to the H-shaped steel sheet pile and the T-shaped steel sheet pile as disclosed in Patent Documents 1 and 2, it is possible to improve the loading efficiency by devising the stowage.

<特許文献と本発明の断面性能の比較>
特許文献1、2および本発明の鋼矢板1の実施例として、中幅系H形鋼(600×300、700×300、800×300および900×300の4シリーズ)を用いたものを対象に、各々の断面性能を比較した。
<Comparison of cross-sectional performance between patent document and present invention>
As examples of Patent Documents 1 and 2 and the steel sheet pile 1 of the present invention, those using medium width H-section steel (4 series of 600×300, 700×300, 800×300 and 900×300) are targeted. , And the cross-sectional performance of each was compared.

図18は、横軸に壁厚、縦軸に壁幅1m当りの断面係数Zの関係を示したグラフである。ここで、同じ壁厚であれば、断面係数Zは直線形鋼矢板を最も多数使用している特許文献1が最も大きく、いずれのシリーズでも特許文献1>本発明>特許文献2の関係となっている。
ただし、壁厚(シリーズ)をワンランクアップ可能であれば、本発明の鋼矢板でも特許文献1の断面係数クラス(900×300の一部除く)とほぼ等価とすることが可能であることが分かる。このことは、取り付ける直線鋼矢板の数を少なくしつつ、断面係数を大きくできることを示唆している。
FIG. 18 is a graph showing the relationship between the wall thickness on the horizontal axis and the sectional modulus Z per 1 m of wall width on the vertical axis. Here, if the wall thickness is the same, the cross-section coefficient Z is the largest in Patent Document 1 that uses the largest number of linear steel sheet piles, and in any series, the relationship of Patent Document 1>Invention>Patent Document 2 is satisfied. ing.
However, if the wall thickness (series) can be increased by one rank, it can be seen that the steel sheet pile of the present invention can be made substantially equivalent to the section modulus class (excluding a part of 900×300) of Patent Document 1. .. This suggests that the section modulus can be increased while reducing the number of attached straight steel sheet piles.

また、図19は、横軸を単位重量Wとしたグラフである。同じ単位重量であれば、断面係数Zはいずれのシリーズでも本発明>特許文献2となっている。
一方、本発明と特許文献1では、シリーズをワンランクアップ可能であれば、同じ断面係数Zで単位重量Wが小さい、本発明の鋼矢板があることが分かる。このことは、断面係数を同じにして、鋼重を低減できることを示唆している。
Further, FIG. 19 is a graph in which the horizontal axis represents the unit weight W. If the unit weight is the same, the cross-sectional modulus Z is in the present invention>Patent Document 2 in any series.
On the other hand, in the present invention and Patent Document 1, it is understood that there is a steel sheet pile of the present invention having the same section modulus Z and a small unit weight W if the series can be upgraded one rank. This suggests that the section weight can be made the same and the steel weight can be reduced.

さらに、図20は、横軸に壁厚、縦軸に単重当りの断面係数Z/Wを示したグラフで、使用鋼材が断面性能を発揮するいわゆる効率を表したものである。
これによると、いずれのシリーズでも特許文献1>本発明>特許文献2の関係ではあるが、本発明は、特許文献1に迫る高効率(特許文献1の約95%の効率)で、断面性能を発揮していることが分かる。
Further, FIG. 20 is a graph showing the wall thickness on the horizontal axis and the section modulus Z/W per unit weight on the vertical axis, showing the so-called efficiency with which the steel material used exhibits the sectional performance.
According to this, in any of the series, there is a relation of Patent Document 1>Invention>Patent Document 2, but the present invention has high efficiency close to Patent Document 1 (about 95% efficiency of Patent Document 1) and cross-sectional performance. You can see that it is exerting.

次に、図21は、横軸に断面係数Z、縦軸に壁幅1m当りの単価指数(材料コスト)のグラフを示している。
図21に示すように、同じ断面係数Zでは、材料コストは本発明<特許文献2<特許文献1の順番であり、本発明の鋼矢板のコストパフォーマンスの高さ(特許文献1の約78%のコスト)がうかがえる。
Next, FIG. 21 shows a graph of the section modulus Z on the horizontal axis and the unit price index (material cost) per 1 m of wall width on the vertical axis.
As shown in FIG. 21, for the same section modulus Z, the material costs are in the order of the present invention <Patent Document 2 <Patent Document 1, and the cost performance of the steel sheet pile of the present invention is high (about 78% of Patent Document 1). Can be seen.

以上のように、本発明の鋼矢板1は、特許文献1および2と比較して、断面性能上およびコストパフォーマンス上で、最も有利な形態であることが明らかとなった。
なお、ここでは中幅系H形鋼の実施例を示したが、もちろん広幅系や細幅系などのH形鋼でもよい。
As described above, it was revealed that the steel sheet pile 1 of the present invention is the most advantageous form in terms of sectional performance and cost performance, as compared with Patent Documents 1 and 2.
Although the example of the medium width H-section steel is shown here, the H-section steel of wide width type or narrow width type may be used.

<既往の鋼製部材との比較>
ここでは、既往の鋼製部材としてU形鋼矢板およびハット形鋼矢板を対象とし、これらよりも断面性能上で有利となる、本発明の鋼矢板1の製品設計を実施した。
<Comparison with existing steel members>
Here, the U-shaped steel sheet pile and the hat-shaped steel sheet pile were used as the existing steel members, and the product design of the steel sheet pile 1 of the present invention, which is more advantageous in cross-sectional performance than these, was carried out.

図22は、U形鋼矢板およびハット形鋼矢板の断面性能(壁幅1m当りの断面二次モーメントI)と単位重量Wの関係を示したグラフである。なお、U形鋼矢板については、継手効率80%として断面二次モーメントIを図示している。
図中のU形鋼矢板のうち、断面性能が小さい方からIIw、IIIw、IVw(有効幅600)およびVL(同500)であるが、これら各々に対して断面二次モーメントIがほぼ等価でかつ単位重量が小さいハット形鋼矢板10H、25H、45Hおよび50H(有効幅900)が存在している。
FIG. 22 is a graph showing the relationship between the cross-sectional performance (second moment of area I per 1 m of wall width) and unit weight W of the U-shaped steel sheet pile and the hat-shaped steel sheet pile. Regarding the U-shaped steel sheet pile, the second moment of area I is shown as a joint efficiency of 80%.
Of the U-shaped steel sheet piles in the figure, IIw, IIIw, IVw (effective width 600) and VL (500) are the sections with the smallest cross-sectional performance. And there are hat-shaped steel sheet piles 10H, 25H, 45H and 50H (effective width 900) with a small unit weight.

また、U形鋼矢板とハット形鋼矢板で材料単価は実質同じため、鋼重削減の分、ハット形鋼矢板がコスト面で有利となり、有効幅の違いによる打設歩掛の向上と相まって、近年、特に自立式の河川護岸など断面二次モーメントIが設計決定要因の場合、U形鋼矢板に代わってハット形鋼矢板が採用されてきている。
上記のことから、ここではハット形鋼矢板45H、50HおよびU形鋼矢板VILを対象とし、本発明の鋼矢板1の設計思想により、これら断面二次モーメントIと等価でかつ単位重量が小さくなり得るか否かを検討した結果、下表の通りとなった。なお、図22にも、本発明として示した。
In addition, since the material unit price is substantially the same for the U-shaped steel sheet pile and the hat-shaped steel sheet pile, the reduction in steel weight makes the hat-shaped steel sheet pile advantageous in terms of cost, and in combination with the improvement of the placing step due to the difference in effective width, In recent years, especially when the moment of inertia of area I is a design deciding factor such as a self-supporting river bank, hat-shaped steel sheet piles have been adopted instead of U-shaped steel sheet piles.
From the above, the hat-shaped steel sheet piles 45H and 50H and the U-shaped steel sheet pile VIL are targeted here, and due to the design concept of the steel sheet pile 1 of the present invention, they are equivalent to these second moments of area I and the unit weight becomes small. As a result of examining whether or not to obtain it, the results are shown in the table below. Note that FIG. 22 also shows the present invention.

このように、本発明の鋼矢板1によれば、既往の鋼製部材であるハット形鋼矢板45H、50HおよびU形鋼矢板VILの断面二次モーメントIと等価かつ単位重量の削減を実現可能であることが明らかとなった。 As described above, according to the steel sheet pile 1 of the present invention, it is possible to reduce the unit weight equivalent to the second moment of area I of the hat-shaped steel sheet piles 45H and 50H and the U-shaped steel sheet pile VIL which are the existing steel members. It became clear that

1 鋼矢板
3 ウェブ
5 フランジ
5E フランジ端部
7 H形鋼
9 半裁体
11 継手
13 主爪
15 副爪
17 飛び爪
21 鋼製部材(特許文献2)
23 鋼製部材(特許文献1)
1 Steel Sheet Pile 3 Web 5 Flange 5E Flange End 7 H-Shaped Steel 9 Half-Cut Body 11 Joint 13 Main Claw 15 Secondary Claw 17 Flying Claw 21 Steel Member (Patent Document 2)
23 Steel member (Patent Document 1)

Claims (4)

H形鋼におけるウェブを挟んで点対称となる2対のフランジ端部におけるいずれか一方の対をなすフランジ端部のそれぞれに、半裁した直線形鋼矢板を溶接によって取り付けてZ形の形状にしたことを特徴とする鋼矢板。 A half-cut straight steel sheet pile was attached by welding to each of the pair of flange ends of the two pairs of flange ends which are point-symmetrical with respect to the web in the H-section steel to form a Z-shape. A steel sheet pile characterized by that. 前記H形鋼は、平行なフランジの間にウェブが前記フランジに対して傾斜して取り付けられていることにより、平行なフランジ間にウェブが直交して取り付けられている場合に比較して、有効幅が大きく又は小さくなるように設定されていることを特徴とする請求項1に記載の鋼矢板。 The H-section steel is effective compared to the case where the webs are mounted orthogonally between the parallel flanges because the webs are mounted obliquely with respect to the flanges between the parallel flanges. The steel sheet pile according to claim 1, wherein the width is set to be large or small. 前記H形鋼は、前記半裁した直線形鋼矢板よりも打設方向下方側に延出していることを特徴とする請求項1又は2に記載の鋼矢板。 The steel sheet pile according to claim 1 or 2, wherein the H-section steel extends downward from the half-cut straight steel sheet pile in the driving direction. 請求項1乃至3のいずれか一項に記載の鋼矢板2枚を、π形になるように予め継手嵌合させる工程と、π形に継手嵌合された2枚の鋼矢板を同時に打設する工程とを備えたことを特徴とする鋼矢板の施工方法。 A step of fitting the two steel sheet piles according to any one of claims 1 to 3 in advance so as to form a π shape, and the two steel sheet piles that have been fitted in the π shape at the same time. The method for constructing a steel sheet pile, comprising:
JP2020057074A 2020-03-27 2020-03-27 Steel sheet pile and its construction method Active JP7037130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020057074A JP7037130B2 (en) 2020-03-27 2020-03-27 Steel sheet pile and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020057074A JP7037130B2 (en) 2020-03-27 2020-03-27 Steel sheet pile and its construction method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017132407A Division JP6702279B2 (en) 2017-07-06 2017-07-06 Steel sheet pile and its construction method

Publications (3)

Publication Number Publication Date
JP2020101085A true JP2020101085A (en) 2020-07-02
JP2020101085A5 JP2020101085A5 (en) 2020-09-03
JP7037130B2 JP7037130B2 (en) 2022-03-16

Family

ID=71141169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020057074A Active JP7037130B2 (en) 2020-03-27 2020-03-27 Steel sheet pile and its construction method

Country Status (1)

Country Link
JP (1) JP7037130B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266215A (en) * 1988-08-30 1990-03-06 Nippon Steel Corp H-steel sheet pile
JP2002070045A (en) * 2000-09-01 2002-03-08 Nippon Steel Corp Outer peripheral wall of underground structure and its construction method
JP2017096066A (en) * 2015-11-27 2017-06-01 大成建設株式会社 Connecting structure of soil mixing wall and steel sheet pile, and dissimilar steel material unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266215A (en) * 1988-08-30 1990-03-06 Nippon Steel Corp H-steel sheet pile
JP2002070045A (en) * 2000-09-01 2002-03-08 Nippon Steel Corp Outer peripheral wall of underground structure and its construction method
JP2017096066A (en) * 2015-11-27 2017-06-01 大成建設株式会社 Connecting structure of soil mixing wall and steel sheet pile, and dissimilar steel material unit

Also Published As

Publication number Publication date
JP7037130B2 (en) 2022-03-16

Similar Documents

Publication Publication Date Title
JP4943218B2 (en) Steel material for underground continuous wall, underground continuous wall, and method for constructing underground continuous wall
JP2005299202A (en) Steel sheet pile, earth retaining structure using the same, and construction method of earth retaining structure
US9512590B2 (en) Combined steel sheet pile, diaphragm wall, and method of disassembling combined steel sheet pile
JP6676341B2 (en) Sandome support structure and construction method
JP4498172B2 (en) Underground continuous wall
JP6702279B2 (en) Steel sheet pile and its construction method
JP2020101085A (en) Steel sheet pile and construction method of the same
JP6070118B2 (en) Retaining wall structure, method for constructing retaining wall structure
JP2008175029A (en) Steel-made member for diaphragm wall and diaphragm wall
JP2008063765A (en) Steel member for continuous underground wall
JP7219529B2 (en) Combination structure of steel materials, shoring structure and construction method
JP2017061780A (en) Steel cell
JPH06280251A (en) Steel member for underground continuous wall
JP2022078398A (en) Corrugated steel plate, and wall structure
JP2006057253A (en) Construction method for steel sheet pile-combined spread foundation, and steel sheet pile-combined spread foundation
JP6799425B2 (en) Adapter member and Yamadome support structure
JP4709793B2 (en) Steel sheet pile, wall body, and steel sheet pile construction method
JP7249895B2 (en) Corrugated structure and construction method of the corrugated structure
JP7490510B2 (en) How to build a double retaining wall
JP2022127916A (en) Corrugated steel plate and earth retaining structure using the corrugated steel plate
JP7481208B2 (en) Earth retaining structure
JP7005171B2 (en) Yamadome support structure
JP2023151577A (en) Steel frame, civil engineering structure, and civil engineering structure construction method
JP2024075832A (en) Earth retaining panel, earth retaining structure using earth retaining panel, and method for manufacturing earth retaining panel
JP2022129843A (en) Steel earth retaining panel and earth retaining structure using steel earth retaining panel

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200625

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220215

R150 Certificate of patent or registration of utility model

Ref document number: 7037130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150