JP2020100714A - Fiber-reinforced thermoplastic resin composition and molded body obtained therefrom - Google Patents

Fiber-reinforced thermoplastic resin composition and molded body obtained therefrom Download PDF

Info

Publication number
JP2020100714A
JP2020100714A JP2018239116A JP2018239116A JP2020100714A JP 2020100714 A JP2020100714 A JP 2020100714A JP 2018239116 A JP2018239116 A JP 2018239116A JP 2018239116 A JP2018239116 A JP 2018239116A JP 2020100714 A JP2020100714 A JP 2020100714A
Authority
JP
Japan
Prior art keywords
fiber
thermoplastic resin
resin composition
resin
reinforced thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018239116A
Other languages
Japanese (ja)
Other versions
JP7122957B2 (en
Inventor
健 藤岡
Takeshi Fujioka
健 藤岡
徳子 濱田
Noriko Hamada
徳子 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yasuhara Chemical Co Ltd
Original Assignee
Yasuhara Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yasuhara Chemical Co Ltd filed Critical Yasuhara Chemical Co Ltd
Priority to JP2018239116A priority Critical patent/JP7122957B2/en
Publication of JP2020100714A publication Critical patent/JP2020100714A/en
Application granted granted Critical
Publication of JP7122957B2 publication Critical patent/JP7122957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

To provide a fiber-reinforced thermoplastic resin composition which is excellent in molding ability without deterioration of a work environment under a processing condition, and is excellent in mechanical intensity.SOLUTION: There are provided: a fiber-reinforced thermoplastic resin composition including (A) thermoplastic resin, (B) reinforced fiber, and (C) hydrogenation styrenic resin, and a molded body obtained by molding the fiber-reinforced thermoplastic resin composition.SELECTED DRAWING: None

Description

本発明は、熱可塑性樹脂、強化繊維、および水添スチレン系樹脂を含有する繊維強化熱可塑性樹脂組成物、およびそれから得られる成形体に関するものである。 TECHNICAL FIELD The present invention relates to a fiber-reinforced thermoplastic resin composition containing a thermoplastic resin, a reinforcing fiber, and a hydrogenated styrene resin, and a molded product obtained from the composition.

炭素繊維などの強化繊維を配合した繊維強化熱可塑性樹脂組成物は、自動車部材、航空機部材、一般産業用部材、スポーツ用品等の幅広い分野で用いられており、軽量性および機械強度の高さから金属に代わる素材として注目され需要が高まっている。他方、近年、強化繊維としてセルロースナノファイバーなどの天然繊維を配合した繊維強化熱可塑性樹脂組成物が種々検討されてきている。 A fiber-reinforced thermoplastic resin composition containing a reinforcing fiber such as carbon fiber is used in a wide range of fields such as automobile parts, aircraft parts, members for general industry, sports equipment, and the like, because of its lightness and high mechanical strength. It is attracting attention as an alternative material to metal and is in high demand. On the other hand, in recent years, various fiber-reinforced thermoplastic resin compositions containing natural fibers such as cellulose nanofibers as reinforcing fibers have been investigated.

このような繊維強化熱可塑性樹脂組成物は、成形サイクルが短く生産コストが安く、リサイクルが可能であるが、繊維強化熱硬化性樹脂組成物と比較して機械的強度に劣るという欠点がある。この問題を解決するための一つの手段として、樹脂組成物中の強化繊維の含有率を高める方法があるが、加工条件下での樹脂組成物の粘度が高くなるため成形性が悪化する。また、樹脂組成物中における強化繊維の分散が困難となり、強化繊維の濃度ムラが生じることにより外観の悪化や、むしろ強度が低下するといった問題が発生する。
このような成形性や強化繊維の分散性等の問題を改善するため、石油樹脂やテルペン樹脂などの分散樹脂が配合される場合がある。
Such a fiber-reinforced thermoplastic resin composition has a short molding cycle, a low production cost, and is recyclable, but has a drawback that it is inferior in mechanical strength to the fiber-reinforced thermosetting resin composition. As one means for solving this problem, there is a method of increasing the content of the reinforcing fibers in the resin composition, but the viscosity of the resin composition under the processing conditions becomes high and the moldability deteriorates. Further, it becomes difficult to disperse the reinforcing fibers in the resin composition, and uneven density of the reinforcing fibers occurs, which causes a problem that the appearance is deteriorated and the strength is rather lowered.
In order to improve such problems such as moldability and dispersibility of reinforcing fibers, a dispersed resin such as petroleum resin or terpene resin may be blended.

例えば、特許文献1ではテルペン樹脂あるいは水添テルペン樹脂、特許文献2では石油樹脂を配合した繊維強化熱可塑性樹脂組成物が開示されている。しかし、加工条件下でこれらの分散樹脂が揮発して成形体内にボイドが生じ、それに起因して成形体の機械的強度が低下する場合がある。また、揮発した樹脂が作業環境を汚染したり、設備に付着することにより、品質や生産性に悪影響を及ぼしたりするという問題があった。 For example, Patent Document 1 discloses a terpene resin or hydrogenated terpene resin, and Patent Document 2 discloses a fiber-reinforced thermoplastic resin composition containing a petroleum resin. However, under processing conditions, these dispersed resins may volatilize to generate voids in the molded body, which may reduce the mechanical strength of the molded body. Further, there is a problem that the volatilized resin pollutes the work environment or adheres to the equipment, which adversely affects quality and productivity.

一方、特許文献3では、芳香族ビニル系樹脂組成物の成形加工性、耐熱性、ならびに成形体の強度や剛性を改善するため、水添スチレン樹脂を配合することが開示されているが、強化繊維を含む樹脂組成物については触れられていない。
このように、従来、分散樹脂として使用されてきたテルペン樹脂や石油樹脂は耐熱性が充分でなく、繊維強化熱可塑性樹脂組成物やその成形体を成形加工する際に揮発して種々の問題を引き起こす。
On the other hand, Patent Document 3 discloses blending a hydrogenated styrene resin in order to improve the molding processability and heat resistance of the aromatic vinyl resin composition and the strength and rigidity of the molded body, but it is reinforced. No mention is made of resin compositions containing fibers.
As described above, the terpene resin and petroleum resin that have been conventionally used as the dispersion resin do not have sufficient heat resistance, and volatilize during the molding process of the fiber-reinforced thermoplastic resin composition or its molded product to cause various problems. cause.

特開2010−248482号公報JP, 2010-248482, A 特開2018−53117号公報JP, 2008-53117, A 特開平9−124864号公報JP, 9-124864, A

そこで本発明は、上記背景技術に鑑み、加工条件下において作業環境を悪化させることなく成形性を改善し、かつ機械的強度に優れた繊維強化熱可塑性樹脂組成物を提供することを目的とする。 Therefore, in view of the above background art, the present invention aims to provide a fiber-reinforced thermoplastic resin composition having improved moldability without deteriorating the working environment under processing conditions and having excellent mechanical strength. ..

本発明者らは、上記の課題を達成すべく鋭意検討を重ねた結果、分散樹脂として水添スチレン系樹脂を使用することで、熱可塑性樹脂の成形性を向上させながら、樹脂の揮発に由来する問題を解消でき、しかも機械的強度に優れた繊維強化熱可塑性樹脂組成物やその成形体を得ることができることを見出し、本発明を完成した。
すなわち、本発明は、以下の請求項1〜7から構成される。
<請求項1>
(A)熱可塑性樹脂、(B)強化繊維、および(C)水添スチレン系樹脂を含有する繊維強化熱可塑性樹脂組成物。
<請求項2>
(A)熱可塑性樹脂が、ポリオレフィン、ポリスチレン、ポリカーボネート、ポリエステル、ポリアミド、AS樹脂、ABS樹脂、ポリメチルアクリレート、およびポリメチルメタクリレートの群から選ばれた少なくとも1種である、請求項1に記載の繊維強化熱可塑性樹脂組成物。
<請求項3>
(B)強化繊維が、炭素繊維および/または天然繊維である請求項1〜2いずれかに記載の繊維強化熱可塑性樹脂組成物。
<請求項4>
(C)水添スチレン系樹脂が、スチレン、α−メチルスチレン、β−メチルスチレン、2−メチルスチレン、3−メチルスチレン、および4−メチルスチレンから選ばれた少なくとも1種を重合してなるスチレン系樹脂を水素添加したものであって、その水添率が5%以上である、請求項1〜3いずれかに記載の繊維強化熱可塑性樹脂組成物。
<請求項5>
(C)水添スチレン系樹脂の分子量がGPC(ゲルパーミエーションクロマトグラフィー)法のポリスチレン換算の重量平均分子量(Mw)で500〜10,000である請求項1〜4いずれかに記載の繊維強化熱可塑性樹脂組成物。
<請求項6>
(A)成分100重量部に対し、(B)成分を1〜200重量部、(C)成分を1〜50重量部配合した請求項1〜5いずれかに記載の繊維強化熱可塑性樹脂組成物。
<請求項7>
請求項1〜6いずれかに記載の繊維強化熱可塑性樹脂組成物から得られる成形体。
The inventors of the present invention have conducted extensive studies to achieve the above-mentioned object, and as a result, by using a hydrogenated styrene-based resin as a dispersion resin, while improving the moldability of the thermoplastic resin, it is derived from the volatilization of the resin. The present invention has been completed by finding that it is possible to solve the above problems and to obtain a fiber-reinforced thermoplastic resin composition and a molded product thereof which are excellent in mechanical strength.
That is, the present invention comprises the following claims 1 to 7.
<Claim 1>
A fiber-reinforced thermoplastic resin composition containing (A) a thermoplastic resin, (B) a reinforcing fiber, and (C) a hydrogenated styrene resin.
<Claim 2>
The thermoplastic resin (A) is at least one selected from the group consisting of polyolefin, polystyrene, polycarbonate, polyester, polyamide, AS resin, ABS resin, polymethyl acrylate, and polymethyl methacrylate. Fiber-reinforced thermoplastic resin composition.
<Claim 3>
The fiber-reinforced thermoplastic resin composition according to claim 1, wherein the reinforcing fiber (B) is a carbon fiber and/or a natural fiber.
<Claim 4>
(C) Styrene obtained by polymerizing at least one selected from styrene, α-methylstyrene, β-methylstyrene, 2-methylstyrene, 3-methylstyrene, and 4-methylstyrene, which is a hydrogenated styrene resin. The fiber-reinforced thermoplastic resin composition according to any one of claims 1 to 3, wherein the system resin is hydrogenated, and the hydrogenation rate is 5% or more.
<Claim 5>
(C) The fiber reinforced according to any one of claims 1 to 4, wherein the hydrogenated styrene-based resin has a molecular weight of 500 to 10,000 in terms of polystyrene-equivalent weight average molecular weight (Mw) by GPC (gel permeation chromatography). Thermoplastic resin composition.
<Claim 6>
The fiber-reinforced thermoplastic resin composition according to claim 1, wherein 1 to 200 parts by weight of the component (B) and 1 to 50 parts by weight of the component (C) are mixed with 100 parts by weight of the component (A). ..
<Claim 7>
A molded product obtained from the fiber-reinforced thermoplastic resin composition according to claim 1.

本発明によれば、熱可塑性樹脂および強化繊維に対し、水添スチレン樹脂を配合することにより、熱可塑性樹脂の成形性を向上させながら、樹脂の揮発に由来する問題を解消でき、しかも機械的強度に優れた繊維強化熱可塑性樹脂組成物やその成形体を提供することができる。 According to the present invention, by blending a hydrogenated styrene resin with a thermoplastic resin and a reinforcing fiber, it is possible to improve the moldability of the thermoplastic resin and eliminate the problem derived from the volatilization of the resin, and further, mechanically. It is possible to provide a fiber-reinforced thermoplastic resin composition having excellent strength and a molded product thereof.

本発明は、(A)熱可塑性樹脂、(B)強化繊維、および(C)水添スチレン系樹脂を含有する繊維強化熱可塑性樹脂組成物である。また、本発明は、上記の繊維強化熱可塑性樹脂組成物から得られる成形体である。
以下、本発明の繊維強化熱可塑性樹脂組成物を構成要件別に詳述する。
The present invention is a fiber-reinforced thermoplastic resin composition containing (A) a thermoplastic resin, (B) a reinforcing fiber, and (C) a hydrogenated styrene resin. Further, the present invention is a molded product obtained from the above fiber reinforced thermoplastic resin composition.
Hereinafter, the fiber-reinforced thermoplastic resin composition of the present invention will be described in detail for each constituent element.

(A)熱可塑性樹脂
本発明で用いられる熱可塑性樹脂の種類は特に制限されず、熱可塑性を有するものであれば使用可能である。
例えば、ポリプロピレンや高密度ポリエチレン、直鎖低密度ポリエチレン、低密度ポリエチレンなどのポリオレフィン類、ポリアミド4やポリアミド6、ポリアミド66、ポリアミド610、ポリアミド11、ポリアミド12、芳香族ポリアミドなどのポリアミド類、ポリエチレンテレフタレートやポリブチレンテレフタレート、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリブチレンアジペートテレフタレート、ポリエチレンテレフタレートサクシネート、ポリカプロラクトン、ポリ乳酸、ポリグリコール酸などのポリエステル類、ポリカーボネート、ポリスチレン、ポリメチルアクリレート、ポリメチルメタクリレート、ポリアクリロニトリル、アクリロニトリル−スチレン系樹脂(AS樹脂)、ABS樹脂、ポリ塩化ビニル、ポリエーテルスルフォン、ポリフェニレンサルファイド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリビニルアルコール、ポリアセタール(POM)、ポリエチレンオキサイド、ポリフッ化ビニリデン、熱可塑性ポリウレタン、などが挙げられ、またこれらのポリマーは単独重合ポリマーでも共重合ポリマーであってもよく、さらにはこれらの2種以上を併用したブレンドポリマーなどすべて使用可能である。これらの中で、汎用的な熱可塑性樹脂としてポリオレフィン類、ポリアミド類、ポリエステル類、ポリカーボネート、ポリスチレン、AS樹脂、ABS樹脂、ポリメチルアクリレート、ポリメチルメタクリレートが好ましく用いられる。
(A) Thermoplastic resin The kind of the thermoplastic resin used in the present invention is not particularly limited, and any thermoplastic resin can be used.
For example, polyolefins such as polypropylene, high-density polyethylene, linear low-density polyethylene, low-density polyethylene, polyamides 4, polyamide 6, polyamide 66, polyamide 610, polyamide 11, polyamide 12, polyamides such as aromatic polyamide, polyethylene terephthalate Polybutylene terephthalate, polybutylene succinate, polybutylene succinate adipate, polybutylene adipate terephthalate, polyethylene terephthalate succinate, polyesters such as polycaprolactone, polylactic acid, polyglycolic acid, polycarbonate, polystyrene, polymethyl acrylate, polymethyl Methacrylate, polyacrylonitrile, acrylonitrile-styrene resin (AS resin), ABS resin, polyvinyl chloride, polyether sulfone, polyphenylene sulfide, polyetherimide, polyether ether ketone, polyether ketone ketone, polyvinyl alcohol, polyacetal (POM) , Polyethylene oxide, polyvinylidene fluoride, thermoplastic polyurethane, etc., and these polymers may be homopolymers or copolymers. Furthermore, blended polymers in which two or more of these are used in combination are all used. It is possible. Among these, polyolefins, polyamides, polyesters, polycarbonates, polystyrenes, AS resins, ABS resins, polymethyl acrylates and polymethyl methacrylates are preferably used as general-purpose thermoplastic resins.

(B)強化繊維
本発明で用いられる(B)強化繊維としては、炭素繊維あるいは天然繊維のいずれか、または両方である。
かくて、(B)強化繊維としては、炭素繊維および/または天然繊維である。
このうち、天然繊維としては、セルロースファイバー、セルロースナノファイバー、リグノセルロールナノファイバー、キチンナノファイバー、キトサンナノファイバー、絹、蜘蛛の糸などが挙げられる。なお、(B)強化繊維としては、これらが金属で表面処理されていても良い。強化繊維は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
これらの中では軽量化の観点から、炭素繊維、セルロースファイバー、セルロースナノファイバーが好ましい。
(B) Reinforcing Fibers The (B) reinforcing fibers used in the present invention are either carbon fibers or natural fibers, or both.
Thus, the (B) reinforcing fibers are carbon fibers and/or natural fibers.
Among these, examples of natural fibers include cellulose fibers, cellulose nanofibers, lignocellulosic nanofibers, chitin nanofibers, chitosan nanofibers, silk, and spider threads. The (B) reinforcing fibers may be surface-treated with a metal. The reinforcing fibers may be used alone or in combination of two or more.
Among these, carbon fibers, cellulose fibers and cellulose nanofibers are preferable from the viewpoint of weight reduction.

これらの(B)強化繊維は、従来公知の方法で表面改質されたものであってもよい。表面改質の方法としては、例えば、強化繊維の表面に存在する水酸基等の反応性基を化学的に修飾する方法等が挙げられるが、これらに限定されない。より具体的には、例えば、セルロースナノファイバーにおいて、構造中の水酸基をアシル基などで保護することにより繊維の疎水性を高めることができ、このような疎水化されたセルロースナノファイバーは、ポリプロピレン等の低極性な熱可塑性樹脂との組合せにおいて好適に使用することができる。また、炭素繊維は、エポキシ樹脂などの多官能性化合物を溶解または分散させた溶液でサイジング処理することで、繊維と熱可塑性樹脂の接着性を高めることができ好ましい。このような方法で、繊維表面の極性や反応性を制御することで、使用する熱可塑性樹脂や分散樹脂等との密着性を高め、機械的強度に優れた成形体を得ることができる。
また、(B)強化繊維は、セルロースナノファイバー等の天然繊維を水や有機溶媒に分散した分散液として提供されるものであってもよい。分散液中のセルロースナノファイバーの濃度は1〜20重量%、好ましくは3〜15重量%である。
These (B) reinforcing fibers may be surface-modified by a conventionally known method. Examples of the surface modification method include, but are not limited to, a method of chemically modifying a reactive group such as a hydroxyl group present on the surface of the reinforcing fiber. More specifically, for example, in cellulose nanofibers, the hydrophobicity of the fibers can be increased by protecting the hydroxyl group in the structure with an acyl group or the like, and such hydrophobicized cellulose nanofibers are polypropylene or the like. It can be preferably used in combination with the low polar thermoplastic resin. Further, the carbon fiber is preferably subjected to a sizing treatment with a solution in which a polyfunctional compound such as an epoxy resin is dissolved or dispersed so that the adhesiveness between the fiber and the thermoplastic resin can be enhanced. By controlling the polarity and reactivity of the fiber surface by such a method, it is possible to enhance the adhesiveness with the thermoplastic resin, dispersion resin, etc. used, and obtain a molded product having excellent mechanical strength.
Further, the reinforcing fiber (B) may be provided as a dispersion liquid in which natural fibers such as cellulose nanofibers are dispersed in water or an organic solvent. The concentration of cellulose nanofibers in the dispersion is 1 to 20% by weight, preferably 3 to 15% by weight.

なお、(B)強化繊維の平均繊維径および繊維長は、強化繊維の種類によって異なるが、例えば炭素繊維の場合、平均繊維径は1〜100μm、好ましくは3〜50μm、繊維長は1〜30mm、好ましくは2〜20mm程度である。また、セルロースナノファイバーなどの天然繊維の場合は、平均繊維径は1〜500nm、好ましくは2〜300nm、繊維長は0.1〜10μm、好ましくは0.3〜5μm程度である。 The average fiber diameter and the fiber length of the reinforcing fiber (B) vary depending on the type of the reinforcing fiber. For example, in the case of carbon fiber, the average fiber diameter is 1 to 100 μm, preferably 3 to 50 μm, and the fiber length is 1 to 30 mm. , Preferably about 2 to 20 mm. In the case of natural fibers such as cellulose nanofibers, the average fiber diameter is 1 to 500 nm, preferably 2 to 300 nm, and the fiber length is 0.1 to 10 μm, preferably 0.3 to 5 μm.

(B)強化繊維の配合量は、固形分換算で、(A)成分100重量部に対し、1〜200重量部、好ましくは1〜100重量部である。1重量部未満では強化繊維としての効果が十分に発揮できず、一方200重量部を超えると成形加工性が著しく低下するため好ましくない。 The compounding amount of the reinforcing fiber (B) is 1 to 200 parts by weight, preferably 1 to 100 parts by weight, based on 100 parts by weight of the component (A), in terms of solid content. If it is less than 1 part by weight, the effect as a reinforcing fiber cannot be sufficiently exerted, while if it exceeds 200 parts by weight, moldability is remarkably deteriorated.

(C)水添スチレン系樹脂
本発明に用いる水添スチレン系樹脂は、スチレン系樹脂を水素化して、芳香環の少なくとも一部を脂環に変化させたものである。ここでスチレン系樹脂は、スチレン系単量体の1種または2種以上を付加重合することによって得られる。付加重合反応は公知の方法に従って行うことができ、例えば、リビングアニオン重合触媒を用いて溶液重合する方法、カチオン重合触媒を用いる方法、ラジカル重合開始剤を用いる方法などで付加重合することができる。スチレン系単量体としては、スチレン、α−メチルスチレン、β−メチルスチレン、2−メチルスチレン、3−メチルスチレン、4−メチルスチレン、4−フェニルスチレンなどが挙げられる。
(C) Hydrogenated Styrene Resin The hydrogenated styrene resin used in the present invention is obtained by hydrogenating a styrene resin to change at least a part of the aromatic ring into an alicyclic ring. Here, the styrene resin is obtained by addition-polymerizing one or more styrene monomers. The addition polymerization reaction can be carried out according to a known method. For example, addition polymerization can be carried out by a solution polymerization method using a living anion polymerization catalyst, a method using a cationic polymerization catalyst, a method using a radical polymerization initiator, or the like. Examples of the styrene-based monomer include styrene, α-methylstyrene, β-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene and 4-phenylstyrene.

本発明に用いる水添スチレン系樹脂の分子量は、ゲルパーミエーションクロマトグラフ法(GPC)によるポリスチレン換算重量平均分子量(Mw)が、500〜10,000、好ましくは800〜5,000、さらに好ましくは、1,000〜4,000である。重量平均分子量が500未満では、充分な強度の成形体が得られない場合があり、一方重量平均分子量が10,000を超えると、成形加工時の流動性が乏しく、成形加工が困難となる場合があり好ましくない。 Regarding the molecular weight of the hydrogenated styrene resin used in the present invention, the polystyrene-converted weight average molecular weight (Mw) by gel permeation chromatography (GPC) is 500 to 10,000, preferably 800 to 5,000, and more preferably , 1,000 to 4,000. When the weight average molecular weight is less than 500, a molded product having sufficient strength may not be obtained, while when the weight average molecular weight exceeds 10,000, fluidity during molding is poor and molding becomes difficult. Is not preferable.

本発明に用いられる水添スチレン系樹脂は、上記スチレン系樹脂中のスチレン系単量体由来の芳香環の少なくとも一部を水素添加して得られる。水素添加の方法は従来公知のもので特に限定されない。
例えば、公知の水素化触媒の存在下でスチレン系樹脂を溶剤に溶解した溶液に、水素を吹き込むなどの方法で接触させて行う。水素化触媒としては、酢酸コバルト/トリエチルアルミニウム、ニッケルアセチルアセトナート/トリイソブチルアルミニウム、チタノセンジクロリド/n−ブチルリチウム、ジルコノセンジクロリド/sec−ブチルリチウム、テトラブトキシチタネート/ジメチルマグネシウムのごとき遷移金属化合物/アルキル金属化合物の組合せからなる均一系触媒;ニッケル、パラジウム、白金などの不均一系金属触媒;ニッケル/シリカ、ニッケル/けい藻土、ニッケル/アルミナ、パラジウム/カーボン、パラジウム/シリカ、パラジウム/けい藻土、パラジウム/アルミナのごとき金属触媒を担体に担持してなる不均一系固体担持触媒などが挙げられる。
The hydrogenated styrene resin used in the present invention is obtained by hydrogenating at least a part of the aromatic ring derived from the styrene monomer in the styrene resin. The hydrogenation method is conventionally known and is not particularly limited.
For example, it is carried out by contacting a solution of a styrene resin dissolved in a solvent in the presence of a known hydrogenation catalyst with a method such as blowing hydrogen. Hydrogenation catalysts include transition metal compounds/alkyl such as cobalt acetate/triethylaluminum, nickel acetylacetonate/triisobutylaluminum, titanocene dichloride/n-butyllithium, zirconocene dichloride/sec-butyllithium, tetrabutoxytitanate/dimethylmagnesium. Homogeneous catalyst consisting of a combination of metal compounds; Heterogeneous metal catalyst such as nickel, palladium, platinum; nickel/silica, nickel/diatomaceous earth, nickel/alumina, palladium/carbon, palladium/silica, palladium/diatomaceous earth , A heterogeneous solid supported catalyst in which a metal catalyst such as palladium/alumina is supported on a carrier.

本発明で用いられる水添スチレン系樹脂の水素添加率(水添率)は特に制限されないが、好ましくは5%以上、より好ましくは10%以上である。水添率が5%未満では、水添スチレン系樹脂の耐熱性が充分でなく、繊維強化熱可塑性樹脂組成物の成形加工時あるいは成形体の使用中に着色する場合があり好ましくない。
また、使用する熱可塑性樹脂の種類に応じて、これらの樹脂と水添スチレン系樹脂との相溶性が良好となるよう、水添スチレン系樹脂の水添率を適宜選択することができる。例えば、熱可塑性樹脂がポリプロピレンの場合の水添スチレン系樹脂の水添率は、好ましくは30%以上、より好ましくは40%以上である。また、熱可塑性樹脂がポリカーボネートの場合の水添スチレン系樹脂の水添率は、好ましくは5〜60%、より好ましくは5〜50%である。
The hydrogenation rate (hydrogenation rate) of the hydrogenated styrene resin used in the present invention is not particularly limited, but is preferably 5% or more, more preferably 10% or more. If the hydrogenation rate is less than 5%, the heat resistance of the hydrogenated styrene-based resin is not sufficient and the fiber-reinforced thermoplastic resin composition may be colored during molding or during use of the molded body, which is not preferable.
Further, depending on the type of thermoplastic resin used, the hydrogenation rate of the hydrogenated styrene-based resin can be appropriately selected so that the compatibility between these resins and the hydrogenated styrene-based resin becomes good. For example, when the thermoplastic resin is polypropylene, the hydrogenation rate of the hydrogenated styrene resin is preferably 30% or more, more preferably 40% or more. When the thermoplastic resin is polycarbonate, the hydrogenation rate of the hydrogenated styrene resin is preferably 5 to 60%, more preferably 5 to 50%.

ここで、水添スチレン系樹脂の水添率は、IR(赤外線分光光度計)によるスチレン化合物由来の吸光度のピーク高さから、下記式により、算出される値である。
水添率(%)={(C−D)/C}×100
C:水素添加前の芳香環由来の吸光度ピーク高さ
D:水素添加後の芳香環由来の吸光度ピーク高さ
Here, the hydrogenation rate of the hydrogenated styrene-based resin is a value calculated by the following formula from the peak height of the absorbance derived from the styrene compound by IR (infrared spectrophotometer).
Hydrogenation rate (%)={(C−D)/C}×100
C: Height of absorbance peak derived from aromatic ring before hydrogenation D: Height of absorbance peak derived from aromatic ring after hydrogenation

なお、水添スチレン系樹脂は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 The hydrogenated styrenic resins may be used alone or in combination of two or more.

なお、本発明の水添スチレン系樹脂は、180℃における溶融粘度が100〜3,000mPa・sの範囲であるのが好ましい。180℃における溶融粘度が100mPa・s未満では、充分な強度の成形体が得られない場合があり、一方3,000mPa・sを超えると、成形性の改善効果が乏しくなる場合があり好ましくない。 The hydrogenated styrene resin of the present invention preferably has a melt viscosity at 180° C. of 100 to 3,000 mPa·s. If the melt viscosity at 180° C. is less than 100 mPa·s, a molded product having sufficient strength may not be obtained, while if it exceeds 3,000 mPa·s, the effect of improving moldability may be poor, which is not preferable.

水添スチレン系樹脂の配合量は、(A)成分100重量部に対し、1〜50重量部、好ましくは5〜30重量部である。1重量部未満では本発明の効果が十分に発揮できず、一方50重量部を超えると成形体の強度が著しく低下する場合があり好ましくない。 The blending amount of the hydrogenated styrene resin is 1 to 50 parts by weight, preferably 5 to 30 parts by weight, based on 100 parts by weight of the component (A). If it is less than 1 part by weight, the effect of the present invention cannot be sufficiently exhibited, while if it exceeds 50 parts by weight, the strength of the molded product may be significantly lowered, which is not preferable.

本発明の繊維強化熱可塑性樹脂組成物には、その特性を大きく損なわない限りにおいて、他の充填材や添加剤を添加しても良い。例えば、顔料、染料、着色防止剤、熱安定剤、酸化防止剤、核剤、耐候剤、可塑剤、相溶化剤、発泡剤、滑剤、離型剤、帯電防止剤、導電性付与剤、抗菌剤、防虫剤、防臭剤、難燃剤、カップリング剤、無機フィラー、有機フィラー等が挙げられるがこれに限定されない。 Other fillers and additives may be added to the fiber-reinforced thermoplastic resin composition of the present invention as long as the characteristics are not significantly impaired. For example, pigments, dyes, anti-coloring agents, heat stabilizers, antioxidants, nucleating agents, weathering agents, plasticizers, compatibilizers, foaming agents, lubricants, release agents, antistatic agents, conductivity imparting agents, antibacterial agents. Examples include, but are not limited to, agents, insect repellents, deodorants, flame retardants, coupling agents, inorganic fillers, organic fillers and the like.

本発明の繊維強化熱可塑性樹脂組成物は、(A)熱可塑性樹脂、(B)強化繊維、および(C)水添スチレン系樹脂を溶融混合することで製造することができる。溶融混合の方法は公知の方法に従って行うことができ、例えば、混合装置として羽根の付いた加熱(加圧)装置や一軸または二軸の押出成形機などを用いて混合する方法等が挙げられるが、これらに限定されるものではない。また、(A)〜(C)成分の混合の順番は、例えば、強化繊維を水添スチレン系樹脂に混合したのち熱可塑性樹脂を混合する方法、水添スチレン系樹脂を熱可塑性樹脂に混合したのち強化繊維を混合する方法、強化繊維と水添スチレン系樹脂の一部を混合したものに、熱可塑性樹脂と水添スチレン系樹脂の残りを混合したものを混合する方法などが挙げられるが、これらに限定されるものではない。 The fiber-reinforced thermoplastic resin composition of the present invention can be produced by melt-mixing (A) thermoplastic resin, (B) reinforcing fiber, and (C) hydrogenated styrene resin. The melt-mixing method can be carried out according to a known method, and examples thereof include a method of mixing using a heating (pressurizing) device with a blade as a mixing device, a uniaxial or biaxial extruder, and the like. However, the present invention is not limited to these. The order of mixing the components (A) to (C) is, for example, a method in which reinforcing fibers are mixed with hydrogenated styrene resin and then thermoplastic resin, and hydrogenated styrene resin is mixed with thermoplastic resin. After that, a method of mixing the reinforcing fibers, a method of mixing a part of the reinforcing fibers and the hydrogenated styrene-based resin, a method of mixing a mixture of the thermoplastic resin and the rest of the hydrogenated styrene-based resin, and the like can be mentioned. It is not limited to these.

このようにして製造される繊維強化熱可塑性樹脂組成物の形状は、ブロック状、ペレット状、ビーズ状等、その形状は様々で、特に限定されない。 The shape of the fiber-reinforced thermoplastic resin composition produced in this manner is block-shaped, pellet-shaped, bead-shaped, or the like, and is not particularly limited.

<成形体>
本発明の繊維強化熱可塑性樹脂組成物から得られる成形体は、特に制限されるものではなく、あらゆる成形体を含む。例えば、シート形状、フィルム形状、中空形状、筐体、部品形状等が挙げられるがこれらに限定されるものではない。
<Molded body>
The molded product obtained from the fiber-reinforced thermoplastic resin composition of the present invention is not particularly limited and includes any molded product. Examples thereof include a sheet shape, a film shape, a hollow shape, a housing, and a component shape, but are not limited to these.

本発明の繊維強化熱可塑性樹脂組成物から得られる成形体を製造する方法は、特に制限されることはなく、既存の方法が用いられる。すなわち、強化繊維と熱可塑性樹脂および水添スチレン系樹脂を混合して得られる繊維強化熱可塑性樹脂組成物を成形機で成形する方法等が挙げられる。 The method for producing a molded product obtained from the fiber-reinforced thermoplastic resin composition of the present invention is not particularly limited, and an existing method is used. That is, a method of molding a fiber-reinforced thermoplastic resin composition obtained by mixing the reinforcing fiber, the thermoplastic resin, and the hydrogenated styrene-based resin with a molding machine and the like can be mentioned.

本発明の繊維強化熱可塑性樹脂組成物の成形方法は特に制限されず、例えば射出成形、ブロー成形、押出成形、インフレーション成形、トランスファ成形、熱プレス成形、カレンダ成形、キャスト成形、コーティング成形、シート加工後の真空成形、圧空成形、真空圧空成形等の成形方法により、各種成形体とすることができる。これらの中で、特に射出成形法が好ましく実施でき、ガス射出成形、射出プレス成形等も行うことができる。 The molding method of the fiber-reinforced thermoplastic resin composition of the present invention is not particularly limited, and examples thereof include injection molding, blow molding, extrusion molding, inflation molding, transfer molding, heat press molding, calendar molding, cast molding, coating molding, and sheet processing. Various moldings can be formed by the subsequent molding method such as vacuum molding, pressure molding, and vacuum pressure molding. Among these, the injection molding method is particularly preferable, and gas injection molding, injection press molding and the like can also be performed.

射出成形などの成形温度は、使用する熱可塑性樹脂や強化繊維の種類によって適宜設定するが、通常、100〜350℃、好ましくは150〜300℃、より好ましくは170〜250℃である。成形温度が350℃を超えると、使用する熱可塑性樹脂や強化繊維の劣化あるいは分解が顕著となる場合があり好ましくなく、100℃未満では熱可塑性樹脂が流動しないため好ましくない。特に、セルロースナノファイバーなどの天然繊維を用いる場合、成形温度が200℃を超えると繊維が劣化により着色する恐れがあるため、200℃を超えない温度であることが好ましい。 The molding temperature for injection molding or the like is appropriately set depending on the type of thermoplastic resin or reinforcing fiber used, but is usually 100 to 350°C, preferably 150 to 300°C, more preferably 170 to 250°C. If the molding temperature is higher than 350°C, the thermoplastic resin or reinforcing fibers used may be significantly deteriorated or decomposed, which is not preferable, and if it is lower than 100°C, the thermoplastic resin does not flow, which is not preferable. In particular, when natural fibers such as cellulose nanofibers are used, if the molding temperature exceeds 200° C., the fibers may be colored due to deterioration, so it is preferable that the temperature does not exceed 200° C.

本発明の繊維強化熱可塑性樹脂組成物から得られる成形体の具体例としては、自動車用部材、航空機用部材、船舶用部材、パソコン周辺の各種部品および筐体、携帯電話部品および筐体、家電製品の部品およびその筐体、ガラス代替樹脂部品、各種フィルムおよびシート製品、OA機器部品等の電化製品用樹脂部品、その他事務用品、文房具、雑貨、スポーツ用品、遊具、玩具、土木建材用品等が挙げられるが、これらに限定されるものではない。自動車用樹脂部品の具体例としてはバンパー、インストルメントパネル、コンソールボックス、ガーニッシュ、ドアトリム、天井、フロア、エンジン周りのパネル、ステアリングコラムカバー、ダッシュサイドフィニッシャー、クラスターリッド、グローブボックス、サイドベント、ルーフフィニッシャー、ヒューズボックスリッド、ラゲージサイドフィニッシャー、ピラーガーニッシュ、シートベルトエスカッション、パッケージトレイ、バッグドアフィニッシャー、サンバイザー、センターコンソール、ヘッドランプ、コンビランプ、フォグランプ、ルームランプ、マップランプ、ヒーターケース、クーラーケース、コンビメーター等が挙げられる。ただし、これらの部材に限定されるものではない。 Specific examples of the molded article obtained from the fiber-reinforced thermoplastic resin composition of the present invention include automobile parts, aircraft parts, marine parts, various parts and housings around personal computers, mobile phone parts and housings, home appliances. Product parts and their housings, glass alternative resin parts, various film and sheet products, resin parts for electrical appliances such as OA equipment parts, and other office supplies, stationery, miscellaneous goods, sports equipment, play equipment, toys, civil engineering building materials, etc. However, the present invention is not limited to these. Specific examples of resin parts for automobiles are bumpers, instrument panels, console boxes, garnishes, door trims, ceilings, floors, panels around the engine, steering column covers, dash side finishers, cluster lids, glove boxes, side vents, roof finishers. , Fuse box lid, luggage side finisher, pillar garnish, seat belt escutcheon, package tray, bag door finisher, sun visor, center console, headlight, combination lamp, fog lamp, room lamp, map lamp, heater case, cooler case, combination Examples include meters. However, it is not limited to these members.

以下実施例を挙げて本発明をさらに具体的に説明する。
製造例1〔水添スチレン系樹脂(a)〕
フラスコにトルエン500g、塩化アルミニウム触媒15gを仕込み、窒素気流下攪拌を行い、1時間かけてスチレン500gを滴下した。その間、フラスコ内の温度を20℃に保った。滴下終了後、水洗により脱触媒を行い、得られた反応油を減圧蒸留してトルエンを留去させ、樹脂500gを得た。重量平均分子量(Mw)は2,500、軟化点は101℃であった。得られたスチレン系樹脂を500g、シクロヘキサンを1000g、および粉末状の安定化ニッケル触媒10gをオートクレーブに仕込み、次いで、これを密閉し、雰囲気を窒素ガスで置換した後、水素ガスを導入した。そして攪拌しながら加熱し、150℃となったところで、水素の圧力を50kg/cm2とし、吸収された水素を補うことで圧力を50kg/cm2に保ちながら8時間反応させた。反応後触媒をろ過し、減圧蒸留にて溶媒を留去して、水添スチレン系樹脂を得た。芳香環の水添率は75%、Mwは2,150、軟化点は117℃であった。
Hereinafter, the present invention will be described more specifically with reference to examples.
Production Example 1 [hydrogenated styrene resin (a)]
A flask was charged with 500 g of toluene and 15 g of aluminum chloride catalyst, stirred under a nitrogen stream, and 500 g of styrene was added dropwise over 1 hour. Meanwhile, the temperature in the flask was kept at 20°C. After completion of dropping, decatalysis was performed by washing with water, and the obtained reaction oil was distilled under reduced pressure to distill off toluene to obtain 500 g of a resin. The weight average molecular weight (Mw) was 2,500 and the softening point was 101°C. 500 g of the obtained styrene resin, 1000 g of cyclohexane, and 10 g of powdered stabilized nickel catalyst were charged into an autoclave, which was then sealed and the atmosphere was replaced with nitrogen gas, and then hydrogen gas was introduced. Then, the mixture was heated with stirring, and when the temperature reached 150° C., the pressure of hydrogen was set to 50 kg/cm 2, and the reaction was performed for 8 hours while the pressure was maintained at 50 kg/cm 2 by supplementing the absorbed hydrogen. After the reaction, the catalyst was filtered and the solvent was distilled off under reduced pressure to obtain a hydrogenated styrene resin. The hydrogenation rate of the aromatic ring was 75%, Mw was 2,150, and the softening point was 117°C.

製造例2〔水添スチレン系樹脂(b)〕
製造例1と同様にしてスチレン系樹脂を得て、水素添加反応を4時間行った。芳香環の水添率は50%、Mwは2,240、軟化点は111℃であった。
Production Example 2 [hydrogenated styrene resin (b)]
A styrene resin was obtained in the same manner as in Production Example 1, and the hydrogenation reaction was carried out for 4 hours. The hydrogenation rate of the aromatic ring was 50%, Mw was 2,240, and the softening point was 111°C.

製造例3(水添スチレン系樹脂(c))
製造例1と同様にしてスチレン系樹脂を得て、水素添加反応を3時間行った。芳香環の水添率は25%、Mwは2,400、軟化点は107℃であった。
Production Example 3 (hydrogenated styrene resin (c))
A styrene resin was obtained in the same manner as in Production Example 1 and hydrogenation reaction was carried out for 3 hours. The hydrogenation rate of the aromatic ring was 25%, Mw was 2,400, and the softening point was 107°C.

製造例4〔水添スチレン系樹脂(d)〕
フラスコにトルエン500g、塩化アルミニウム触媒15gを仕込み、窒素気流下攪拌を行い、1時間かけてスチレン350g、α−メチルスチレン150gの混合溶液を滴下した。その間フラスコ内の温度を20℃に保った。滴下終了後、水洗により脱触媒を行い、得られた反応油を減圧蒸留してトルエンを留去させ、樹脂500gを得た。重量平均分子量(Mw)は1,660、軟化点は90℃であった。得られたスチレン系樹脂を500g、シクロヘキサンを1,000g、および粉末状の安定化ニッケル触媒10gをオートクレーブに仕込み、次いで、これを密閉し、雰囲気を窒素ガスで置換した後、水素ガスを導入した。そして攪拌しながら加熱し、150℃となったところで、水素の圧力を50kg/cm2とし、吸収された水素を補うことで圧力を50kg/cm2に保ちながら12時間反応させた。反応後触媒をろ過し、減圧蒸留にて溶媒を留去して、水添スチレン系樹脂を得た。芳香環の水添率は100%、Mwは1,570、軟化点は113℃であった。
Production Example 4 [hydrogenated styrene resin (d)]
A flask was charged with 500 g of toluene and 15 g of aluminum chloride catalyst, stirred under a nitrogen stream, and a mixed solution of 350 g of styrene and 150 g of α-methylstyrene was added dropwise over 1 hour. Meanwhile, the temperature in the flask was kept at 20°C. After completion of dropping, decatalysis was performed by washing with water, and the obtained reaction oil was distilled under reduced pressure to distill off toluene to obtain 500 g of a resin. The weight average molecular weight (Mw) was 1,660 and the softening point was 90°C. 500 g of the obtained styrene resin, 1,000 g of cyclohexane, and 10 g of powdered stabilized nickel catalyst were charged into an autoclave, which was then sealed and the atmosphere was replaced with nitrogen gas, and then hydrogen gas was introduced. .. Then, the mixture was heated with stirring, and when the temperature reached 150° C., the hydrogen pressure was set to 50 kg/cm 2, and the reaction was carried out for 12 hours while maintaining the pressure at 50 kg/cm 2 by supplementing the absorbed hydrogen. After the reaction, the catalyst was filtered and the solvent was distilled off under reduced pressure to obtain a hydrogenated styrene resin. The hydrogenation rate of the aromatic ring was 100%, Mw was 1,570, and the softening point was 113°C.

製造例5〔水添スチレン系樹脂(e)〕
製造例4と同様にしてスチレン系樹脂を得て、水素添加反応を4時間行った。芳香環の水添率は50%、Mwは1,610、軟化点は99℃であった。
Production Example 5 [hydrogenated styrene resin (e)]
A styrene resin was obtained in the same manner as in Production Example 4, and the hydrogenation reaction was carried out for 4 hours. The hydrogenation rate of the aromatic ring was 50%, Mw was 1,610, and the softening point was 99°C.

製造例6〔水添スチレン系樹脂(f)〕
製造例4と同様にしてスチレン系樹脂を得て、水素添加反応を2時間行った。芳香環の水添率は25%、Mwは1,630、軟化点は94℃であった。
Production Example 6 [hydrogenated styrene resin (f)]
A styrene resin was obtained in the same manner as in Production Example 4, and the hydrogenation reaction was carried out for 2 hours. The hydrogenation rate of the aromatic ring was 25%, Mw was 1,630, and the softening point was 94°C.

製造例1〜6で得られた水添スチレン系樹脂について、それぞれ以下の評価に供した。評価結果を表1に示す。 The hydrogenated styrene resins obtained in Production Examples 1 to 6 were each subjected to the following evaluations. The evaluation results are shown in Table 1.

なお、加熱減量、溶融粘度、PP・PC相溶性は、それぞれ下記のようにして測定した。
(加熱減量)
熱重量測定装置(ティー・エイ・インスツルメント社製)を使用して、水添スチレン系樹脂を250℃の温度条件で窒素環境下で30分乾燥させ、加熱前後の樹脂の重量変化率を測定した。
(溶融粘度)
ブルックフィールド粘度計を使用して、180℃での粘度を測定した。
(PP・PC相溶性)
水添スチレン系樹脂10重量部と以下に示す熱可塑性樹脂100重量部を、2軸押出機((株)東洋精機製作所製 ラボプラストミル)を用いて溶融混合しペレットとした。得られたペレットをプレス成形し、得られた成形体について目視かつ手で引っ張り、○(透明かつ破壊なし)、×(濁りがあるおよび/または破壊する)の二段階で相溶性を評価した。
ポリプロピレン(PP):(株)プライムポリマー製 プライムポリプロJ106MG
ポリカーボネート(PC):三菱エンジニアリングプラスチックス(株)製 S3000
The weight loss on heating, melt viscosity, and PP/PC compatibility were measured as follows.
(Heating loss)
Using a thermogravimetric measuring device (manufactured by TA Instruments Co., Ltd.), the hydrogenated styrene-based resin was dried under a nitrogen environment at a temperature condition of 250° C. for 30 minutes, and the weight change rate of the resin before and after heating was measured. It was measured.
(Melt viscosity)
The viscosity at 180° C. was measured using a Brookfield viscometer.
(PP/PC compatibility)
10 parts by weight of hydrogenated styrene-based resin and 100 parts by weight of the thermoplastic resin shown below were melt-mixed using a twin-screw extruder (Labo Plastomill manufactured by Toyo Seiki Seisaku-sho, Ltd.) to form pellets. The obtained pellets were press-molded, and the obtained molded body was visually and manually pulled, and the compatibility was evaluated in two stages of ◯ (transparent and no breakage) and X (has cloudiness and/or breakage).
Polypropylene (PP): Prime Polymer Co., Ltd. Prime Polypro J106MG
Polycarbonate (PC): Mitsubishi Engineering Plastics Co., Ltd. S3000

比較として以下に示す樹脂についても、製造例1〜6と同様の評価を行った。評価結果を表1に示す。
スチレン樹脂:ヤスハラケミカル(株)製 YSレジンSX100(重量平均分子量:2,590)
水添テルペン樹脂:ヤスハラケミカル(株)製 クリアロンP125(重量平均分子量:1,165)
テルペン樹脂:ヤスハラケミカル(株)製 YSレジンPX1250(重量平均分子量:1,495)
水添C9石油樹脂:荒川化学工業(株)製 アルコンP125(重量平均分子量:1,370)
For comparison, the resins shown below were also evaluated in the same manner as in Production Examples 1 to 6. The evaluation results are shown in Table 1.
Styrene resin: YS resin SX100 (weight average molecular weight: 2,590) manufactured by Yasuhara Chemical Co., Ltd.
Hydrogenated terpene resin: Yasuhara Chemical Co., Ltd. Clearon P125 (weight average molecular weight: 1,165)
Terpene resin: YS Hara Chemical Co., Ltd. YS resin PX1250 (weight average molecular weight: 1,495)
Hydrogenated C9 petroleum resin: Arakawa Chemical Industry Co., Ltd. Alcon P125 (weight average molecular weight: 1,370)

以下に実施例および比較例において用いた各種薬品を示す。
ポリプロピレン(PP):(株)プライムポリマー製 プライムポリプロJ106MG
ポリカーボネート(PC):三菱エンジニアリングプラスチックス(株)製 S3000
セルロースナノファイバー(CNF):(株)スギノマシン製 BiNFi−s WFo−10005(5重量%セルロースナノファイバー水分散液)
炭素繊維:東レ(株)製 トレカカットファイバーT008A−006
スチレン樹脂:ヤスハラケミカル(株)製 YSレジンSX100
水添テルペン樹脂:ヤスハラケミカル(株)製 クリアロンP125
テルペン樹脂:ヤスハラケミカル(株)製 YSレジンPX1250
水添C9石油樹脂:荒川化学工業(株)製 アルコンP125
Various chemicals used in Examples and Comparative Examples are shown below.
Polypropylene (PP): Prime Polymer Co., Ltd. Prime Polypro J106MG
Polycarbonate (PC): Mitsubishi Engineering Plastics Co., Ltd. S3000
Cellulose nanofiber (CNF): BiNFi-s WFO-10005 (5% by weight cellulose nanofiber aqueous dispersion) manufactured by Sugino Machine Limited
Carbon fiber: Toray Industries, Inc. trading card cut fiber T008A-006
Styrene resin: YS Resin SX100 made by Yasuhara Chemical Co., Ltd.
Hydrogenated terpene resin: Yasuhara Chemical Co., Ltd. Clearon P125
Terpene resin: YS resin PX1250 manufactured by Yasuhara Chemical Co., Ltd.
Hydrogenated C9 petroleum resin: Arakawa Chemical Co., Ltd. Alcon P125

実施例1〜8、比較例1〜6(炭素繊維強化熱可塑性樹脂組成物とその成形体)
表2および3に示す配合処方(重量部)に従いドライブレンド(170〜240℃×80rpm)した後、2軸押出機を用いて溶融混合してペレットとした。
Examples 1 to 8 and Comparative Examples 1 to 6 (carbon fiber reinforced thermoplastic resin composition and molded article thereof)
After dry blending (170 to 240° C.×80 rpm) according to the formulation (parts by weight) shown in Tables 2 and 3, melt mixing was performed using a twin-screw extruder to obtain pellets.

得られたペレットを用いて射出成形機(日精樹脂工業(株)製 FE80S12ASE)による流動性(スパイラルフローによる成形性)の評価を行った。また、ASTMに準じた試験片を射出成形し、各種機械物性試験(引張強さ、曲げ強さ、および曲げ弾性率)、ならびに目視による強化繊維の分散状態を観察した。結果を表2に示した。 The obtained pellets were evaluated for fluidity (moldability by spiral flow) by an injection molding machine (FE80S12ASE manufactured by Nissei Plastic Co., Ltd.). Further, a test piece conforming to ASTM was injection-molded, various mechanical properties tests (tensile strength, bending strength, and bending elastic modulus) were observed, and the dispersed state of the reinforcing fiber was visually observed. The results are shown in Table 2.

ここで、射出成型機による流動性評価および試験片作成時の条件は、使用する熱可塑性樹脂毎に下記のとおりとした。
(1)ポリプロピレン
<流動性評価>
1)シリンダー温度(℃):H1/H2/H3/H4=200/200/200/200
2)金型:2mmスパイラルフロー金型
3)金型温度:40℃
4)評価射出圧力:800kg/cm2
5)射出時間:10sec、冷却時間:70sec
6)計量位置:50mm、シリンダー余裕:5〜10mm
<試験片の作成>
1)シリンダー温度(℃):H1/H2/H3/H4=200/200/200/200
2)金型温度:40℃
3)射出圧力:650kg/cm2
4)射出時間:10sec、冷却時間:70sec
5)計量位置:50mm、シリンダー余裕:5〜10mm
6)成形試験片:引張り、曲げ、分散性評価用試験片
Here, the conditions at the time of fluidity evaluation by an injection molding machine and preparation of test pieces were as follows for each thermoplastic resin used.
(1) Polypropylene <Flowability evaluation>
1) Cylinder temperature (°C): H1/H2/H3/H4=200/200/200/200
2) Mold: 2mm spiral flow mold 3) Mold temperature: 40°C
4) Evaluation injection pressure: 800 kg/cm2
5) Injection time: 10 sec, cooling time: 70 sec
6) Weighing position: 50 mm, cylinder margin: 5-10 mm
<Creation of test pieces>
1) Cylinder temperature (°C): H1/H2/H3/H4=200/200/200/200
2) Mold temperature: 40°C
3) Injection pressure: 650kg/cm2
4) Injection time: 10 sec, cooling time: 70 sec
5) Weighing position: 50 mm, cylinder margin: 5-10 mm
6) Molding test piece: Test piece for tensile, bending and dispersibility evaluation

(2)ポリカーボネート
<流動性評価>
1)シリンダー温度(℃):H1/H2/H3/H4=260/260/260/260
2)金型:2mmスパイラルフロー金型
3)金型温度:80℃
4)評価射出圧力:800kg/cm2
5)射出時間:10sec、冷却時間:70sec
6)計量位置:50mm、シリンダー余裕:5〜10mm
<試験片の作成>
1)シリンダー温度(℃):H1/H2/H3/H4=260/260/260/260
2)金型温度:80℃
3)射出圧力:650kg/cm2
4)射出時間:10sec、冷却時間:70sec
5)計量位置:50mm、シリンダー余裕:5〜10mm
6)成形試験片:引張り、曲げ、分散性評価用試験片
(2) Polycarbonate <fluidity evaluation>
1) Cylinder temperature (°C): H1/H2/H3/H4=260/260/260/260
2) Mold: 2mm spiral flow mold 3) Mold temperature: 80°C
4) Evaluation injection pressure: 800 kg/cm2
5) Injection time: 10 sec, cooling time: 70 sec
6) Weighing position: 50 mm, cylinder margin: 5-10 mm
<Creation of test pieces>
1) Cylinder temperature (°C): H1/H2/H3/H4=260/260/260/260
2) Mold temperature: 80℃
3) Injection pressure: 650kg/cm2
4) Injection time: 10 sec, cooling time: 70 sec
5) Weighing position: 50 mm, cylinder margin: 5-10 mm
6) Molding test piece: Test piece for tensile, bending and dispersibility evaluation

なお、引張強さ、曲げ強さ、曲げ弾性率、および強化繊維の分散性は、それぞれ下記のようにして測定した。
(引張強さ)
ASTM D638に準拠し、測定温度23℃、湿度50%の条件下で万能試験機((株)島津製作所製 オートグラフAGS−10kND)を用いて引張り速度50mm/minの試験条件にて引張り強度を測定した。
(曲げ強さおよび曲げ弾性率)
ASTM D790に準拠し、測定温度23℃、湿度50%の条件下で万能試験機((株)島津製作所製 オートグラフAGS−10kND)を用いて曲げ速度3mm/minの試験条件にて曲げ強さおよび曲げ弾性率を測定した。
(強化繊維の分散性)
射出成型機にて作成した試験片の強化繊維の分散状態を目視により、◎(良好)、○(やや良好)、△(やや悪い)、×(悪い)、の4段階で評価した。
The tensile strength, bending strength, bending elastic modulus, and dispersibility of the reinforcing fibers were measured as follows.
(Tensile strength)
According to ASTM D638, the tensile strength was measured under the conditions of a measuring temperature of 23° C. and a humidity of 50% using a universal testing machine (manufactured by Shimadzu Corporation Autograph AGS-10kND) at a tensile speed of 50 mm/min. It was measured.
(Bending strength and flexural modulus)
According to ASTM D790, under a condition of a measurement temperature of 23° C. and a humidity of 50%, a universal testing machine (manufactured by Shimadzu Corporation Autograph AGS-10kND) is used to bend at a bending speed of 3 mm/min. And the flexural modulus was measured.
(Dispersion of reinforcing fiber)
The dispersion state of the reinforcing fibers of the test piece prepared by the injection molding machine was visually evaluated in four grades of ⊚ (good), ◯ (somewhat good), Δ (somewhat bad), and × (bad).


実施例9〜12、比較例6〜8(セルロースナノファイバー強化熱可塑性樹脂組成物とその成形体)
表4に示す配合処方に従い、ニーダーを用いて120〜150℃×80rpmの条件で水添スチレン系樹脂を溶融させたものにCNFを加え、10分間混練させ水分を除去しマスターバッチとした。
得られたマスターバッチとPPをドライブレンド(180〜200℃×80rpm)した後、2軸押出機を用いて溶融混合してペレットとした。
得られたペレットを用いて射出成形機(日精樹脂工業(株)製 FE80S12ASE)による流動性(スパイラルフローによる成形性)の評価を行った。また、ASTMに準じた試験片を射出成形し、各種機械物性試験(引張強さ、曲げ強さ、および曲げ弾性率)および目視による強化繊維の分散状態を観察した。結果を表4に示した。
射出成型機による流動性評価および試験片作成時の条件を下記に示した。
Examples 9 to 12 and Comparative Examples 6 to 8 (cellulose nanofiber-reinforced thermoplastic resin composition and molded article thereof)
According to the formulation shown in Table 4, CNF was added to the melted hydrogenated styrene resin under the conditions of 120 to 150° C.×80 rpm using a kneader, and the mixture was kneaded for 10 minutes to remove water, thereby preparing a master batch.
The obtained masterbatch and PP were dry blended (180 to 200° C.×80 rpm), and then melt-mixed using a twin-screw extruder to form pellets.
The obtained pellets were evaluated for fluidity (moldability by spiral flow) by an injection molding machine (FE80S12ASE manufactured by Nissei Plastic Co., Ltd.). In addition, a test piece conforming to ASTM was injection-molded, various mechanical properties tests (tensile strength, bending strength, and bending elastic modulus) and the dispersed state of the reinforcing fiber were visually observed. The results are shown in Table 4.
The conditions for fluidity evaluation by an injection molding machine and preparation of test pieces are shown below.

<流動性評価>
1)シリンダー温度(℃):H1/H2/H3/H4=200/200/200/200
2)金型:2mmスパイラルフロー金型
3)金型温度:40℃
4)評価射出圧力:800kg/cm2
5)射出時間:10sec、冷却時間:70sec
6)計量位置:50mm、シリンダー余裕:5〜10mm
<試験片の作成>
1)シリンダー温度(℃):H1/H2/H3/H4=200/200/200/200
2)金型温度:40℃
3)射出圧力:650kg/cm2
4)射出時間:10sec、冷却時間:70sec
5)計量位置:50mm、シリンダー余裕:5〜10mm
6)成形試験片:引張り、曲げ、分散性評価用試験片
<Liquidity evaluation>
1) Cylinder temperature (°C): H1/H2/H3/H4=200/200/200/200
2) Mold: 2mm spiral flow mold 3) Mold temperature: 40°C
4) Evaluation injection pressure: 800 kg/cm2
5) Injection time: 10 sec, cooling time: 70 sec
6) Weighing position: 50 mm, cylinder margin: 5-10 mm
<Creation of test pieces>
1) Cylinder temperature (°C): H1/H2/H3/H4=200/200/200/200
2) Mold temperature: 40°C
3) Injection pressure: 650kg/cm2
4) Injection time: 10 sec, cooling time: 70 sec
5) Weighing position: 50 mm, cylinder margin: 5-10 mm
6) Molding test piece: Test piece for tensile, bending and dispersibility evaluation

表1〜4に示すように、本発明の繊維強化熱可塑性樹脂組成物は、熱可塑性樹脂と相溶性が良く、従来の樹脂組成物に比較して成形性に優れ、加熱減量が低いことから作業環境に与える悪影響を大幅に軽減することができる。また、強化繊維の分散性も良好であり、機械的強度に優れた成形体とすることができる。 As shown in Tables 1 to 4, the fiber-reinforced thermoplastic resin composition of the present invention has good compatibility with the thermoplastic resin, excellent moldability as compared with the conventional resin composition, and low heat loss. The adverse effect on the work environment can be significantly reduced. Moreover, the dispersibility of the reinforcing fibers is also good, and a molded product having excellent mechanical strength can be obtained.

本発明の繊維強化熱可塑性樹脂組成物は、自動車用部材、航空機用部材、パソコン周辺の各種部品および筐体、携帯電話部品および筐体、家電製品の部品およびその筐体、OA機器部品等の電化製品用樹脂部品、その他事務用品、文房具、雑貨、遊具、玩具、土木建材用品等の分野に利用可能であり、産業上の波及効果は極めて大きい。

INDUSTRIAL APPLICABILITY The fiber-reinforced thermoplastic resin composition of the present invention is used for automobile members, aircraft members, various parts and housings around personal computers, mobile phone parts and housings, home appliance parts and housings, OA equipment parts and the like. It can be used in the fields of electrical appliance resin parts, other office supplies, stationery, miscellaneous goods, playground equipment, toys, civil engineering and construction materials, etc., and has a great industrial ripple effect.

Claims (7)

(A)熱可塑性樹脂、(B)強化繊維、および(C)水添スチレン系樹脂を含有する繊維強化熱可塑性樹脂組成物。 A fiber-reinforced thermoplastic resin composition containing (A) a thermoplastic resin, (B) a reinforcing fiber, and (C) a hydrogenated styrene resin. (A)熱可塑性樹脂が、ポリオレフィン、ポリスチレン、ポリカーボネート、ポリエステル、ポリアミド、AS樹脂、ABS樹脂、ポリメチルアクリレート、およびポリメチルメタクリレートの群から選ばれた少なくとも1種である、請求項1に記載の繊維強化熱可塑性樹脂組成物。 The thermoplastic resin (A) is at least one selected from the group consisting of polyolefin, polystyrene, polycarbonate, polyester, polyamide, AS resin, ABS resin, polymethyl acrylate, and polymethyl methacrylate. Fiber-reinforced thermoplastic resin composition. (B)強化繊維が、炭素繊維および/または天然繊維である請求項1〜2いずれかに記載の繊維強化熱可塑性樹脂組成物。 The fiber-reinforced thermoplastic resin composition according to claim 1, wherein the reinforcing fiber (B) is a carbon fiber and/or a natural fiber. (C)水添スチレン系樹脂が、スチレン、α−メチルスチレン、β−メチルスチレン、2−メチルスチレン、3−メチルスチレン、および4−メチルスチレンから選ばれた少なくとも1種を重合してなるスチレン系樹脂を水素添加したものであって、その水添率が5%以上である、請求項1〜3いずれかに記載の繊維強化熱可塑性樹脂組成物。 (C) Styrene obtained by polymerizing at least one selected from styrene, α-methylstyrene, β-methylstyrene, 2-methylstyrene, 3-methylstyrene, and 4-methylstyrene, which is a hydrogenated styrene resin. The fiber-reinforced thermoplastic resin composition according to any one of claims 1 to 3, wherein the system resin is hydrogenated, and the hydrogenation rate is 5% or more. (C)水添スチレン系樹脂の分子量がGPC(ゲルパーミエーションクロマトグラフィー)法のポリスチレン換算の重量平均分子量(Mw)で500〜10,000である請求項1〜4いずれかに記載の繊維強化熱可塑性樹脂組成物。 (C) The fiber reinforced according to any one of claims 1 to 4, wherein the hydrogenated styrene-based resin has a molecular weight of 500 to 10,000 in terms of polystyrene-equivalent weight average molecular weight (Mw) by GPC (gel permeation chromatography). Thermoplastic resin composition. (A)成分100重量部に対し、(B)成分を1〜200重量部、(C)成分を1〜50重量部配合した請求項1〜5いずれかに記載の繊維強化熱可塑性樹脂組成物。 The fiber-reinforced thermoplastic resin composition according to claim 1, wherein 1 to 200 parts by weight of the component (B) and 1 to 50 parts by weight of the component (C) are mixed with 100 parts by weight of the component (A). .. 請求項1〜6いずれかに記載の繊維強化熱可塑性樹脂組成物から得られる成形体。

A molded product obtained from the fiber-reinforced thermoplastic resin composition according to claim 1.

JP2018239116A 2018-12-21 2018-12-21 Fiber-reinforced thermoplastic resin composition and molded article obtained therefrom Active JP7122957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018239116A JP7122957B2 (en) 2018-12-21 2018-12-21 Fiber-reinforced thermoplastic resin composition and molded article obtained therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018239116A JP7122957B2 (en) 2018-12-21 2018-12-21 Fiber-reinforced thermoplastic resin composition and molded article obtained therefrom

Publications (2)

Publication Number Publication Date
JP2020100714A true JP2020100714A (en) 2020-07-02
JP7122957B2 JP7122957B2 (en) 2022-08-22

Family

ID=71138954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018239116A Active JP7122957B2 (en) 2018-12-21 2018-12-21 Fiber-reinforced thermoplastic resin composition and molded article obtained therefrom

Country Status (1)

Country Link
JP (1) JP7122957B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241644A1 (en) * 2019-05-27 2020-12-03 中越パルプ工業株式会社 Melt mixture, melt mixture production method, composition, composition production method, and molded article
WO2024014546A1 (en) * 2022-07-15 2024-01-18 旭化成株式会社 Resin composition and method for producing same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4975660A (en) * 1972-08-10 1974-07-22
JPH03137161A (en) * 1989-10-21 1991-06-11 Mitsubishi Petrochem Co Ltd Thermoplastic resin composition
JPH03273062A (en) * 1990-03-22 1991-12-04 Nippon Steel Chem Co Ltd Thermoplastic resin composition
JPH0959508A (en) * 1995-08-22 1997-03-04 Arakawa Chem Ind Co Ltd Polyphenylene ether resin composition
JPH09124864A (en) * 1995-10-27 1997-05-13 Arakawa Chem Ind Co Ltd Aromatic vinyl-based resin composition
JPH10130486A (en) * 1996-10-30 1998-05-19 Arakawa Chem Ind Co Ltd Modifier for polycarbonate resin, and polycarbonate resin composition
JP2014024936A (en) * 2012-07-26 2014-02-06 Nippon Zeon Co Ltd Fibrous inorganic filler-containing resin composition
WO2017169494A1 (en) * 2016-03-30 2017-10-05 出光ライオンコンポジット株式会社 Flame-retardant thermoplastic resin composition
JP2019131795A (en) * 2018-01-30 2019-08-08 ヤスハラケミカル株式会社 High molecular weight polymer composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4975660A (en) * 1972-08-10 1974-07-22
JPH03137161A (en) * 1989-10-21 1991-06-11 Mitsubishi Petrochem Co Ltd Thermoplastic resin composition
JPH03273062A (en) * 1990-03-22 1991-12-04 Nippon Steel Chem Co Ltd Thermoplastic resin composition
JPH0959508A (en) * 1995-08-22 1997-03-04 Arakawa Chem Ind Co Ltd Polyphenylene ether resin composition
JPH09124864A (en) * 1995-10-27 1997-05-13 Arakawa Chem Ind Co Ltd Aromatic vinyl-based resin composition
JPH10130486A (en) * 1996-10-30 1998-05-19 Arakawa Chem Ind Co Ltd Modifier for polycarbonate resin, and polycarbonate resin composition
JP2014024936A (en) * 2012-07-26 2014-02-06 Nippon Zeon Co Ltd Fibrous inorganic filler-containing resin composition
WO2017169494A1 (en) * 2016-03-30 2017-10-05 出光ライオンコンポジット株式会社 Flame-retardant thermoplastic resin composition
JP2019131795A (en) * 2018-01-30 2019-08-08 ヤスハラケミカル株式会社 High molecular weight polymer composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241644A1 (en) * 2019-05-27 2020-12-03 中越パルプ工業株式会社 Melt mixture, melt mixture production method, composition, composition production method, and molded article
JPWO2020241644A1 (en) * 2019-05-27 2021-09-13 中越パルプ工業株式会社 Melt mixture, method of manufacturing melt mixture, composition, method of manufacturing composition and molded article
JP7109813B2 (en) 2019-05-27 2022-08-01 中越パルプ工業株式会社 Molten mixture, method for producing molten mixture, composition, method for producing composition, and molded article
WO2024014546A1 (en) * 2022-07-15 2024-01-18 旭化成株式会社 Resin composition and method for producing same

Also Published As

Publication number Publication date
JP7122957B2 (en) 2022-08-22

Similar Documents

Publication Publication Date Title
Pracella et al. Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc
Subramanian Polymer blends and composites: chemistry and technology
JP5797710B2 (en) Resin composition and molded body thereof
CN103408887B (en) ABS/PBT alloy material and preparation method thereof
CN105254999B (en) A kind of damage resistant, high impact resistance polypropylene resin material and preparation method
CN113583402A (en) Full-biodegradable composite material and preparation method and application thereof
Subramanian Plastics additives and testing
JP2017522442A (en) Modification of engineering plastics using olefin-maleic anhydride copolymers
EP3170869A1 (en) Sizing agent, composition, and molded object
JP7122957B2 (en) Fiber-reinforced thermoplastic resin composition and molded article obtained therefrom
JPH02158643A (en) Hydrogenated diene-based copolymer resin composition and production thereof
JP6171535B2 (en) Polyolefin resin composition and molded body containing the same
Singh et al. Impact of compatibilization on polypropylene (PP) and acrylonitrile butadiene styrene (ABS) blend: A review
JP2017533984A (en) Concentrate composition for polymer chain extension
JPH086010B2 (en) Instrument panel manufacturing method
JPH02150444A (en) Fiber-reinforced polypropylene resin composition
CN112375332A (en) Environment-friendly flame-retardant laser etching material and preparation method thereof
WO2009054548A1 (en) Propylene resin composition and molded article produced from the same
JP2007119609A (en) Polyalkylene carbonate resin composition and molded form thereof
JP2001172501A (en) Thermoplastic resin composition
JP2017532427A (en) Composition for polymer chain extension
CN113302237A (en) Propylene polymer composition
JPH02138349A (en) Fiber-reinforced polypropylene resin composition
Dey et al. Does the Varying Reactivity in the Transient Polymer Network through Dynamic Exchange Regulate the Closed-Loop Circularity in Polyolefin Vitrimers?
CN117567815B (en) High-impact polypropylene resin composition, preparation method and application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220809

R150 Certificate of patent or registration of utility model

Ref document number: 7122957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150