JP2020100515A5 - - Google Patents

Download PDF

Info

Publication number
JP2020100515A5
JP2020100515A5 JP2018237641A JP2018237641A JP2020100515A5 JP 2020100515 A5 JP2020100515 A5 JP 2020100515A5 JP 2018237641 A JP2018237641 A JP 2018237641A JP 2018237641 A JP2018237641 A JP 2018237641A JP 2020100515 A5 JP2020100515 A5 JP 2020100515A5
Authority
JP
Japan
Prior art keywords
crucible
layer
single crystal
natural
transparent layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018237641A
Other languages
Japanese (ja)
Other versions
JP7024700B2 (en
JP2020100515A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2018237641A priority Critical patent/JP7024700B2/en
Priority claimed from JP2018237641A external-priority patent/JP7024700B2/en
Priority to KR1020190169722A priority patent/KR102342039B1/en
Priority to CN201911316941.5A priority patent/CN111334852B/en
Publication of JP2020100515A publication Critical patent/JP2020100515A/en
Publication of JP2020100515A5 publication Critical patent/JP2020100515A5/ja
Application granted granted Critical
Publication of JP7024700B2 publication Critical patent/JP7024700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

アーク溶融を行ったルツボの最表面にはブラウンリングが発生しやすく、結晶引き上げ中はブラウンリングの成長と融解が同時に起きており、ブラウンリングが剥離すると単結晶中に転位が発生する確率が高くなる。しかし、本発明による石英ガラスルツボは、ルツボ内面にシール層が形成されており、シール層中に気泡があることでシール層の溶損が進みやすいので、融液の湯面振動と共にブラウンリングの成長を抑制することができ、これにより転位発生率を低減することができる。
Brown rings are likely to occur on the outermost surface of the crucible that has undergone arc melting, and the growth and melting of the brown rings occur at the same time during crystal pulling, and when the brown rings are peeled off, there is a high probability that dislocations will occur in the single crystal. Become. However, in the quartz glass crucible according to the present invention, a seal layer is formed on the inner surface of the crucible, and the seal layer is likely to be melted and damaged due to air bubbles in the seal layer. Growth can be suppressed, which can reduce the rate of dislocation occurrence.

4層目の天然気泡層14は、多数の気泡を含有する天然石英溶融ガラス層である。天然気泡層14は、ルツボの外側に配置されたヒーターからの輻射熱を分散させてルツボ内のシリコン融液をできるだけ均一に加熱するために設けられている。天然気泡層14は、透明層に比べて熱容量が大きいことから、シリコン融液の温度を安定的に制御することができる。また、ルツボの断熱性を向上させることができ、ルツボの内面の温度が高くなりすぎることによるルツボ内面の垂れ、ブラウンリングの発生・成長、ルツボの溶損による単結晶の酸素濃度の増加を抑えることができる。さらに、ルツボの昇降やヒーターパワーオン、単結晶のショルダー部から直胴部へのプロセス移行などの際にヒーターから受ける熱の急激な変化を緩和してルツボ内面の劣化を抑制し、シリコン単結晶中に取り込まれる酸素の急激な変化を抑制することができる。天然気泡層14はルツボの側壁部1aから底部1bまでのルツボ全体に設けられていることが好ましい。
The fourth natural cell layer 14 is a natural quartz molten glass layer containing a large number of bubbles. The natural cell layer 14 is provided to disperse the radiant heat from the heater arranged outside the crucible and heat the silicon melt in the crucible as uniformly as possible. Since the natural cell layer 14 has a larger heat capacity than the transparent layer, the temperature of the silicon melt can be stably controlled. In addition, the heat insulating property of the crucible can be improved, and the drooping of the inner surface of the crucible due to the temperature of the inner surface of the crucible becoming too high, the generation / growth of brown rings, and the increase in the oxygen concentration of the single crystal due to the melting damage of the crucible are suppressed. be able to. Furthermore, it suppresses the deterioration of the inner surface of the crucible by mitigating the sudden change in heat received from the heater when raising and lowering the crucible, powering on the heater, and shifting the process from the shoulder part to the straight body part of the single crystal, and the silicon single crystal. It is possible to suppress abrupt changes in oxygen taken into the inside. The natural cell layer 14 is preferably provided on the entire crucible from the side wall portion 1a to the bottom portion 1b of the crucible.

以上説明したように、本実施形態による石英ガラスルツボ1は、ルツボの内面側から、シール層11、合成透明層12、天然透明層13、天然気泡層14及び結晶硬化層15が順に設けられた構造を有し、シール層11の気泡含有率が合成透明層12よりも高く且つ天然気泡層14よりも低いので、シリコン融液の湯面振動を抑制しながらルツボの内面の溶損を促進させることができる。したがって、ルツボの内面が結晶化して剥離することによる単結晶の有転位化を防止することができ、これにより単結晶の転位発生率を低減することができる。またシール層11の厚さが0.1mm以上2.0mm以下であり、シリコン単結晶の直胴部育成工程を開始する前にシール層が溶けて消滅し、合成透明層が露出してルツボの内面を構成するので、単結晶の有転位化と不純物汚染を防止することができる。
As described above, in the quartz glass crucible 1 according to the present embodiment, the seal layer 11, the synthetic transparent layer 12, the natural transparent layer 13, the natural bubble layer 14, and the crystal hardening layer 15 are provided in this order from the inner surface side of the crucible. Since it has a structure and the bubble content of the seal layer 11 is higher than that of the synthetic transparent layer 12 and lower than that of the natural cell layer 14, the melting damage of the inner surface of the crucible is promoted while suppressing the surface vibration of the silicon melt. Can be Therefore, it is possible to prevent dislocations of the single crystal due to the inner surface of the crucible crystallizing and peeling off, and thereby reducing the dislocation occurrence rate of the single crystal. Further, the thickness of the seal layer 11 is 0.1 mm or more and 2.0 mm or less, and the seal layer melts and disappears before starting the straight body portion growing step of the silicon single crystal, and the synthetic transparent layer is exposed and the crucible is exposed. Since it constitutes an inner surface, it is possible to prevent dislocation of a single crystal and contamination with impurities.

以上の結果から、コーナー部最大肉厚比率が1.1以上であり、側壁部及び底部の合成透明層の厚さがコーナー部よりも小さいサンプルE6、E8では、結晶歩留まりが80%以上となり、天然透明層の露出やルツボの変形(スウェリング)に起因する有転位化を抑制できることが分かった。
From the above results, in the samples E6 and E8 in which the maximum wall thickness ratio of the corner portion is 1.1 or more and the thickness of the synthetic transparent layer at the side wall portion and the bottom portion is smaller than that of the corner portion, the crystal yield is 80% or more. It was found that dislocation formation due to exposure of the natural transparent layer and deformation (swelling) of the crucible can be suppressed.

JP2018237641A 2018-12-19 2018-12-19 Quartz glass crucible Active JP7024700B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018237641A JP7024700B2 (en) 2018-12-19 2018-12-19 Quartz glass crucible
KR1020190169722A KR102342039B1 (en) 2018-12-19 2019-12-18 Quartz glass crucible
CN201911316941.5A CN111334852B (en) 2018-12-19 2019-12-19 Quartz glass crucible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018237641A JP7024700B2 (en) 2018-12-19 2018-12-19 Quartz glass crucible

Publications (3)

Publication Number Publication Date
JP2020100515A JP2020100515A (en) 2020-07-02
JP2020100515A5 true JP2020100515A5 (en) 2021-03-18
JP7024700B2 JP7024700B2 (en) 2022-02-24

Family

ID=71140984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018237641A Active JP7024700B2 (en) 2018-12-19 2018-12-19 Quartz glass crucible

Country Status (3)

Country Link
JP (1) JP7024700B2 (en)
KR (1) KR102342039B1 (en)
CN (1) CN111334852B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111996589A (en) * 2020-08-31 2020-11-27 宁夏富乐德石英材料有限公司 Quartz crucible for inhibiting liquid level jitter of seeding silicon and preparation method thereof
DE112021006516T5 (en) * 2020-12-18 2023-10-19 Sumco Corporation QUARTZ GLASS CRUBLE, PRODUCTION PROCESS THEREOF AND PRODUCTION PROCESS FOR SILICON SINGLE CRYSTAL
WO2023204146A1 (en) * 2022-04-18 2023-10-26 信越石英株式会社 Quartz glass crucible for pulling up monocrystalline silicon ingot

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3026088B2 (en) * 1989-08-30 2000-03-27 三菱マテリアル株式会社 Quartz crucible for pulling silicon single crystal
JPH05252157A (en) 1992-03-06 1993-09-28 Matsushita Electric Ind Co Ltd Call controller
JP3136533B2 (en) 1995-04-28 2001-02-19 三菱マテリアルクォーツ株式会社 Quartz crucible for pulling silicon single crystal
JP4447738B2 (en) 2000-05-31 2010-04-07 信越石英株式会社 Method for producing a quartz glass crucible having a multilayer structure
EP1632592B1 (en) * 2003-05-01 2012-06-20 Shin-Etsu Quartz Products Co., Ltd. Quartz glass crucible for pulling up silicon single crystal and method for manufacture thereof
JP4678667B2 (en) 2004-06-07 2011-04-27 信越石英株式会社 Silica glass crucible for pulling silicon single crystal and method for producing the same
JP4789437B2 (en) * 2004-07-16 2011-10-12 信越石英株式会社 Silica glass crucible for pulling silicon single crystal and method for producing the same
KR100847500B1 (en) 2006-03-30 2008-07-22 코바렌트 마테리얼 가부시키가이샤 Silica glass crucible
JP4798714B2 (en) 2007-03-28 2011-10-19 コバレントマテリアル株式会社 Silica glass crucible for pulling silicon single crystals
US8272234B2 (en) 2008-12-19 2012-09-25 Heraeus Shin-Etsu America, Inc. Silica crucible with pure and bubble free inner crucible layer and method of making the same
KR101357740B1 (en) 2009-07-31 2014-02-03 쟈판 스파 쿼츠 가부시키가이샤 Silica glass crucible for pulling of silicon single crystal
JP5685894B2 (en) * 2010-11-05 2015-03-18 信越半導体株式会社 Quartz glass crucible, method for producing the same, and method for producing silicon single crystal
JP5500689B2 (en) * 2010-12-03 2014-05-21 株式会社Sumco Silica glass crucible
KR101293526B1 (en) * 2011-01-28 2013-08-06 쟈판 스파 쿼츠 가부시키가이샤 Vitreous silica crucible for pulling silicon single crystal, and method for manufacturing the same
JP6351534B2 (en) 2015-04-01 2018-07-04 クアーズテック株式会社 Silica glass crucible for pulling silicon single crystals
CN204918839U (en) * 2015-09-11 2015-12-30 江西中昱新材料科技有限公司 Quartz crucible
CN108531978B (en) * 2018-04-09 2021-01-01 江阴龙源石英制品有限公司 5-layer composite quartz crucible for large-scale integrated circuit and preparation method and surface treatment method thereof

Similar Documents

Publication Publication Date Title
US11851784B2 (en) Apparatus and method for growing high-purity semi-insulating silicon carbide crystal
JP2020100515A5 (en)
JP4166241B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
US7299658B2 (en) Quartz glass crucible for the pulling up of silicon single crystal
JP2009091233A (en) Method for growing silicon ingot
CN111334852B (en) Quartz glass crucible
JP4678667B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
EP2993259B1 (en) Silicon single crystal fabrication method
JPH059097A (en) Method for pulling up silicon single crystal
JP5169455B2 (en) Single crystal growth method and single crystal pulling apparatus
JP2008254949A (en) Growing method and pulling apparatus for single crystal
KR102038960B1 (en) Silicon single crystal manufacturing method
JP4931106B2 (en) Silica glass crucible
JP2010280567A (en) Method for producing silica glass crucible
WO2004101868A1 (en) Method for producing single crystal and single crystal
JP2016033093A (en) Quartz glass crucible for lifting single crystal silicon, and method of manufacturing the same
KR101129112B1 (en) Manufacturing apparatus for silicon crystal ingot
JP4788445B2 (en) Pulling method of silicon single crystal
TWI707992B (en) Method and device for pulling single crystal and silicon semiconductor wafer
JP7082550B2 (en) Method for manufacturing silicon single crystal
JP2013173646A (en) Single crystal manufacturing apparatus and single crystal manufacturing method
TWI567253B (en) Crystal growth apparatus
KR101665793B1 (en) Crucible for ingot growing apparatus
RU2560402C1 (en) Method for monocrystal growing from molten metal
JP5077280B2 (en) Method of pulling silicon single crystal