JP2020098002A - Bellows type air spring - Google Patents

Bellows type air spring Download PDF

Info

Publication number
JP2020098002A
JP2020098002A JP2018236902A JP2018236902A JP2020098002A JP 2020098002 A JP2020098002 A JP 2020098002A JP 2018236902 A JP2018236902 A JP 2018236902A JP 2018236902 A JP2018236902 A JP 2018236902A JP 2020098002 A JP2020098002 A JP 2020098002A
Authority
JP
Japan
Prior art keywords
air spring
spring body
pattern
bellows type
bulging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018236902A
Other languages
Japanese (ja)
Other versions
JP7192478B2 (en
Inventor
達也 大倉
Tatsuya Okura
達也 大倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2018236902A priority Critical patent/JP7192478B2/en
Publication of JP2020098002A publication Critical patent/JP2020098002A/en
Application granted granted Critical
Publication of JP7192478B2 publication Critical patent/JP7192478B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sealing Devices (AREA)
  • Diaphragms And Bellows (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

To enable an expansion portion 50 occurring on a surface of an air spring body to visually checked, identify an expansion state of the expansion portion 50, and facilitate determination of a damage degree to define standards for replacement.SOLUTION: A bellows type air spring 10 includes: an air spring body 12 formed by a rubber film and forming a hollow cylindrical shape; and surface plates respectively attached to openings at both ends of the air spring body 12. Geometric and regular patterns 40, which enable an expansion state of an expansion portion 50 to be identified when a surface of the air spring body 12 locally expands, are provided over an entire periphery of the surface of the air spring body 12 in at least a part of the air spring body 12 when viewed in an axial direction.SELECTED DRAWING: Figure 2

Description

本発明は、ベローズ型空気ばねに関する。 The present invention relates to a bellows type air spring.

ベローズ型空気ばねは、空気の弾性を利用して振動を吸収するばねであって、鉄道車両や自動車、各種産業機器、建築物等に用いられている。
ベローズ型空気ばねは、ゴム膜などの可撓性材料から形成された中空筒状をなす空気ばね本体と、その空気ばね本体の両端開口部に取り付けられた下面板および上面板と、空気ばね本体のくびれ部に取り付けられた締め付けリングとを備えている。
The bellows type air spring is a spring that absorbs vibrations by utilizing the elasticity of air, and is used in railway vehicles, automobiles, various industrial equipment, buildings and the like.
The bellows type air spring is a hollow cylindrical air spring body formed of a flexible material such as a rubber film, a bottom plate and a top plate attached to openings at both ends of the air spring body, and the air spring body. And a tightening ring attached to the waist.

ゴム膜は、内面ゴム層と、外面ゴム層と、それらゴム層の間に配置される複数の補強層とが積層されて構成されている。
ベローズ型空気ばねは、例えば、下面板を、床などの下部構造体に取り付け、上面板を、産業機器などの上部構造体に取り付け、下面板の中央部に設けられた給気口から空気ばね本体の内部に空気を供給し、内圧を調整して高さを合わせることで上部構造体の振動を吸収するばねとして利用されている(特許文献1)。
The rubber film is configured by laminating an inner rubber layer, an outer rubber layer, and a plurality of reinforcing layers arranged between the rubber layers.
The bellows-type air spring is, for example, a bottom plate attached to a lower structure such as a floor, a top plate attached to an upper structure such as industrial equipment, and an air spring is supplied from an air supply port provided at the center of the bottom plate. It is used as a spring that absorbs the vibration of the upper structure by supplying air to the inside of the main body and adjusting the internal pressure to adjust the height (Patent Document 1).

特開平8−326818号公報JP-A-8-326818

ところで振動を吸収する際、空気ばね本体は伸縮するが、長期使用により伸縮が繰り返されると、ゴム層間の接着力が低下し、それらゴム層を透過する空気により、空気ばね本体の表面が膨出し、空気ばね本体の表面に膨出部分が生じることがある。
このような空気ばね本体の表面に生じる膨出部分の大きさがベローズ型空気ばねの交換時期の目安となっているが、空気ばね本体の平滑な表面の膨出部分を視認しにくく、膨出部分を見付けにくい。
また、ベローズ型空気ばねの交換時期の目安として、空気ばね本体の表面の膨出部分を実測することで大きさの測定を行うが、空気ばねの設置場所は機械下部などの狭い部分が多く、膨出部分の大きさを直接測定することが困難な場合も生じる。
本発明は上記事情に鑑みなされたものであり、空気ばね本体の表面に生じた膨出部分を容易に視認できるとともに、膨出部分の膨出状態を識別して損傷度合い判別を容易に行なえ、交換基準を明確にする上で有利なベローズ型空気ばねを提供することを目的とする。
By the way, when absorbing vibration, the air spring body expands and contracts, but if it expands and contracts over a long period of time, the adhesive force between the rubber layers decreases, and the air that permeates the rubber layers causes the surface of the air spring body to swell. A bulge may occur on the surface of the air spring body.
Although the size of the bulging portion generated on the surface of the air spring body is a guideline for replacing the bellows type air spring, it is difficult to visually recognize the bulging portion on the smooth surface of the air spring body, and the bulging It is difficult to find the part.
Also, as a guide for replacing the bellows type air spring, the size is measured by actually measuring the bulging part of the surface of the air spring body, but the installation location of the air spring is often a narrow part such as the machine bottom, In some cases, it is difficult to directly measure the size of the bulging portion.
The present invention has been made in view of the above circumstances, and can easily visually recognize the bulging portion generated on the surface of the air spring main body, and easily perform the degree of damage determination by identifying the bulging state of the bulging portion, An object of the present invention is to provide a bellows type air spring which is advantageous in clarifying the replacement standard.

上述した課題を解決し、目的を達成するために、本発明は、ゴム膜から形成された中空筒状をなす空気ばね本体と、前記空気ばね本体の両端開口部にそれぞれ取り付けられた面板とを有するベローズ型空気ばねであって、前記空気ばね本体の表面に膨出部分が生じた場合に前記膨出部分の膨出状態を識別可能とする幾何学的で規則的な模様が、前記空気ばね本体の軸心方向の少なくとも一部において前記空気ばね本体の表面の全周にわたって設けられていることを特徴とする。
また、本発明は、前記模様は、前記空気ばね本体の表面の全域に設けられていることを特徴とする。
また、本発明は、前記空気ばね本体は、その軸心方向に沿って並べられた少なくとも2つの大径部と、それら大径部の間に締め付けリングが取り付けられたくびれ部とを含んで構成され、前記大径部は、前記大径部の軸心方向の中央に位置し外径が最も大きい箇所を含む中央領域と、前記中央領域から前記軸心方向に沿って離れるにつれて外径が次第に小さくなる一対の端部領域とを有し、前記模様は、前記端部領域の表面の全周、および前記くびれ部の表面の全周に設けられていることを特徴とする。
また、本発明は、前記空気ばね本体は、大径部を含んで構成され、前記大径部は、前記大径部の軸心方向の中央に位置し外径が最も大きい箇所を含む中央領域と、前記中央領域から前記軸心方向に沿って離れるにつれて外径が次第に小さくなる一対の端部領域とを有し、前記模様は、前記中央領域の表面の全周に設けられていることを特徴とする。
また、本発明は、前記模様は、前記空気ばね本体の表面の色に対して視認性の高い色で設けられていることを特徴とする。
In order to solve the above-mentioned problems and achieve the object, the present invention provides a hollow cylindrical air spring main body formed of a rubber film, and face plates attached to both end openings of the air spring main body. In the bellows type air spring, the air spring has a geometrical and regular pattern that makes it possible to identify a bulging state of the bulging portion when a bulging portion occurs on the surface of the air spring body. It is characterized in that it is provided over the entire circumference of the surface of the air spring body in at least part of the axial direction of the body.
Further, the present invention is characterized in that the pattern is provided on the entire surface of the air spring body.
Further, according to the present invention, the air spring main body includes at least two large diameter portions arranged along the axial direction of the air spring body, and a constricted portion having a tightening ring attached between the large diameter portions. The large-diameter portion is located at the center of the large-diameter portion in the axial direction and has a central region including the largest outer diameter, and the outer diameter gradually increases with increasing distance from the central region along the axial direction. A pair of smaller end regions, and the pattern is provided on the entire circumference of the surface of the end region and the entire circumference of the surface of the constricted portion.
Further, in the present invention, the air spring main body is configured to include a large-diameter portion, and the large-diameter portion is located at a center in the axial direction of the large-diameter portion and includes a central region including a portion having the largest outer diameter. And a pair of end regions having an outer diameter that gradually decreases from the central region along the axial direction, and the pattern is provided on the entire circumference of the surface of the central region. Characterize.
Further, the present invention is characterized in that the pattern is provided in a color having high visibility with respect to the color of the surface of the air spring body.

本発明によれば、空気ばね本体の軸心方向の少なくとも一部において空気ばね本体の表面の全周にわたって模様が設けられているため、空気ばね本体の表面に生じた膨出部分を容易に視認できるとともに、膨出部分の膨出状態を識別して損傷度合いの判別を容易に行なえ、ベローズ型空気ばねの交換基準を明確にする上で有利となる。
また、模様を空気ばね本体の表面の全域に設けると、空気ばね本体の表面のいずれの箇所に膨出部分が生じても膨出部分を見つけ易い。
また、模様を膨出部分が生じ易い箇所のみに設けると、模様を設ける際のコストを削減する上で有利となる。
また、模様を大径部の中央領域の表面の全周のみに設けると、空気ばね本体の表面の膨出が模様の位置まで達した場合を交換時期の目安とすることで、ベローズ型空気ばねの交換基準を明確にする上で有利となる。
また、模様を、空気ばね本体の表面の色に対して視認性の高い色で設けると、膨出部分を見付け易く、また、膨出部分の膨出状態を識別して損傷度合いの判別を容易に行なえ、ベローズ型空気ばねの交換基準を明確にする上で有利となる。
According to the present invention, since the pattern is provided over the entire circumference of the surface of the air spring main body in at least a part of the axial direction of the air spring main body, the bulging portion generated on the surface of the air spring main body can be easily visually recognized. This is also advantageous in that the bulging state of the bulging portion can be identified to easily determine the degree of damage, and the replacement standard of the bellows type air spring can be clarified.
Further, if the pattern is provided on the entire surface of the air spring body, it is easy to find the bulged portion even if the bulged portion occurs at any place on the surface of the air spring body.
Further, providing the pattern only at the portion where the bulging portion is likely to occur is advantageous in reducing the cost for providing the pattern.
Also, if the pattern is provided only on the entire circumference of the surface of the central area of the large diameter part, the bellows type air spring can be used as a guide for replacement when the bulge on the surface of the air spring body reaches the position of the pattern. This will be advantageous in clarifying the exchange standard.
In addition, if the pattern is provided in a color that is highly visible with respect to the color of the surface of the air spring body, it is easy to find the bulging portion, and it is easy to identify the degree of damage by identifying the bulging state of the bulging portion. It is advantageous in clarifying the replacement standard of the bellows type air spring.

本実施の形態のベローズ型空気ばねの半部断面正面図である。It is a half section front view of the bellows type air spring of the present embodiment. 本実施の形態のベローズ型空気ばねの表面に膨出部分が生じた状態の半部断面正面図である。It is a half section front view in the state where the bulge part was produced on the surface of the bellows type air spring of this embodiment. (A)乃至(F)は空気ばね本体の表面に設けられる模様の変形例を示す図である。(A) thru|or (F) are figures which show the modification of the pattern provided on the surface of an air spring main body. 本実施の形態の変形例で、空気ばね本体の大径部の端部領域とくびれ部の端部領域に模様を設けたベローズ型空気ばねの正面図である。FIG. 11 is a front view of a bellows type air spring in which a pattern is provided in an end region of a large diameter portion and an end region of a constricted portion of an air spring body in a modified example of the present embodiment. 本実施の形態の変形例で、空気ばね本体の大径部の中央領域に模様を設けたベローズ型空気ばねの正面図である。FIG. 9 is a front view of a bellows type air spring in which a pattern is provided in a central region of a large diameter portion of an air spring main body in a modification of the present embodiment.

以下、本発明の実施の形態について図面を参照して説明する。
ベローズ型空気ばね10は、圧縮空気の弾力性を利用して軸心方向に振動を吸収するばね装置であって、鉄道車両や自動車、プレス機械などの各種産業機器、建築物の免震装置等に用いられている。
図1に示すように、ベローズ型空気ばね10は、ゴム膜から形成された中空筒状をなす蛇腹状の空気ばね本体12と、金属製の面板である下面板14および上面板16と、2つの締め付けリング18とを含んで構成されている。
空気ばね本体12を構成するゴム膜は、内層ゴムと、複数の補強層と、外層ゴムとを貼り合わせて接着した積層ゴムで形成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The bellows type air spring 10 is a spring device that absorbs vibration in the axial direction by utilizing the elasticity of compressed air, and is used in various industrial equipment such as railroad cars, automobiles, press machines, and seismic isolation devices for buildings. Is used for.
As shown in FIG. 1, a bellows type air spring 10 includes a hollow cylindrical bellows-shaped air spring body 12 formed of a rubber film, a lower face plate 14 and an upper face plate 16 which are metal face plates, and 2 And two tightening rings 18.
The rubber film forming the air spring body 12 is formed of a laminated rubber in which an inner rubber layer, a plurality of reinforcing layers, and an outer rubber layer are bonded together and bonded.

本実施の形態のベローズ型空気ばね10は、軸心方向を鉛直方向に向けて使用される。
空気ばね本体12は、下端に設けられた環板状の下取り付け板部20と、上端に設けられた環板状の上取り付け板部22と、それら下取り付け板部20と上取り付け板部22の間に空気ばね本体12の軸心方向に沿って並べられた3つの大径部24と、それら大径部24の間に設けられた2つのくびれ部26とを含んで構成されている。
また、下取り付け板部20の中心は、下開口部28Aとして形成され、上取り付け板部22の中心は上開口部28Bとして形成されている。
The bellows type air spring 10 of the present embodiment is used with its axial direction oriented vertically.
The air spring body 12 includes an annular plate-shaped lower mounting plate portion 20 provided at the lower end, an annular plate-shaped upper mounting plate portion 22 provided at the upper end, the lower mounting plate portion 20 and the upper mounting plate portion 22. It is configured to include three large-diameter portions 24 arranged along the axial direction of the air spring body 12 and two constricted portions 26 provided between the large-diameter portions 24.
Further, the center of the lower mounting plate portion 20 is formed as a lower opening portion 28A, and the center of the upper mounting plate portion 22 is formed as an upper opening portion 28B.

各大径部24は、大径部24の軸心方向の中央に位置し最も外径が大きい箇所を含む中央領域24Aと、中央領域24Aから軸心方向に沿って離れるにつれて外径が次第に小さくなる一対の端部領域24Bとを有している。
最も下位に位置する大径部24の下側の端部領域24Bの端部は、下取り付け板部20に接続され、最も上位に位置する大径部24の上側の端部領域24Bの端部は、上取り付け板部22に接続されている。
空気ばね本体12は、下開口部28Aと上開口部28Bを形成する下取り付け板部20と上取り付け板部22の内周端2002,2202の厚みが、他の箇所に比べて厚く形成されている。
Each large-diameter portion 24 has a central region 24A located at the center of the large-diameter portion 24 in the axial direction and including a portion having the largest outer diameter, and the outer diameter gradually decreases as the distance from the central region 24A increases in the axial direction. And a pair of end regions 24B.
The end of the lower end region 24B of the large diameter portion 24 located at the lowest position is connected to the lower mounting plate portion 20, and the end of the upper end region 24B of the large diameter portion 24 located at the highest position. Are connected to the upper mounting plate portion 22.
In the air spring body 12, the inner peripheral ends 2002 and 2202 of the lower mounting plate portion 20 and the upper mounting plate portion 22 which form the lower opening portion 28A and the upper opening portion 28B are formed thicker than other locations. There is.

下面板14と上面板16は同一の輪郭で、円板部30と、円板部30の内周部に設けられた環状の突出部32とを含んで構成され、下面板14の円板部30に、空気ばね本体12内部へ空気やガスを供給するための給気口(不図示)が形成されている。
下面板14は、突出部32が下取り付け板部20の下開口部28Aに挿入され、突出部32の内周面が下取り付け板部20の内周端2002の外周面に合され、突出部32の径方向外側の下面板14の上面が下取り付け板部20の上面に合されて空気ばね本体12に取り付けられている。
同様に上面板16は、突出部32が上取り付け板部22の上開口部28Bに挿入され、突出部32の内周面が上取り付け板部22の内周端2202の外周面に合され、突出部32の径方向外側の上面板16の下面が上取り付け板部22の上面に合されて空気ばね本体12に取り付けられている。
The lower surface plate 14 and the upper surface plate 16 have the same contour and are configured to include a disk portion 30 and an annular protruding portion 32 provided on the inner peripheral portion of the disk portion 30, and the disk portion of the lower surface plate 14 An air supply port (not shown) for supplying air or gas to the inside of the air spring body 12 is formed at 30.
In the lower surface plate 14, the projecting portion 32 is inserted into the lower opening 28A of the lower mounting plate portion 20, the inner peripheral surface of the projecting portion 32 is fitted to the outer peripheral surface of the inner peripheral end 2002 of the lower mounting plate portion 20, and the projecting portion The upper surface of the lower surface plate 14 on the radially outer side of 32 is fitted to the upper surface of the lower mounting plate portion 20 and is mounted on the air spring body 12.
Similarly, in the upper surface plate 16, the protruding portion 32 is inserted into the upper opening 28B of the upper mounting plate portion 22, the inner peripheral surface of the protruding portion 32 is fitted to the outer peripheral surface of the inner peripheral end 2202 of the upper mounting plate portion 22, The lower surface of the upper surface plate 16 on the radially outer side of the projecting portion 32 is fitted to the upper surface of the upper mounting plate portion 22 and attached to the air spring body 12.

くびれ部26は、くびれ部26の軸心方向の中央に位置し最も外径が小さい箇所を含む中央領域26Aと、中央領域26Aから軸心方向に沿って離れるにつれて外径が次第に大きくなる一対の端部領域26Bとを有している。
一対の端部領域26Bは、上下方向において隣り合う大径部24の端部領域24Bに接続されている。
The constricted portion 26 includes a central region 26A located at the center of the constricted portion 26 in the axial direction and including a portion having the smallest outer diameter, and a pair of outer diameters that gradually increase from the central region 26A along the axial direction. And an end region 26B.
The pair of end regions 26B are connected to the end regions 24B of the large-diameter portions 24 that are vertically adjacent to each other.

締め付けリング18は、各くびれ部26の中央領域26Aに設けられている。
締め付けリング18は、金属製で、ベローズ型空気ばね10に供給された空気の内圧による膨れを抑制して形状を保持するものであり、空気ばね本体12のくびれ部26の中央領域26Aに巻き付けられ、ベローズ型空気ばね10の加硫成形時に中央領域26Aに一体的に取着される。
The tightening ring 18 is provided in the central region 26A of each constricted portion 26.
The tightening ring 18 is made of metal and suppresses the swelling of the air supplied to the bellows type air spring 10 due to the internal pressure and retains its shape, and is wound around the central region 26A of the constricted portion 26 of the air spring body 12. During the vulcanization molding of the bellows type air spring 10, it is integrally attached to the central region 26A.

ベローズ型空気ばね10は、下面部14を下部構造体Dに取り付け、上面部16を上部構造体Uに取り付けた後に、下面板14の給気口から空気を供給し、内圧を調整し上部構造体Uの高さを合わせることで上部構造体Uの振動を吸収するばねとして使用される。
ベローズ型空気ばね10は、内部の空気の弾性により空気ばね本体14が伸縮することでばねとして機能するが、この伸縮の際に空気ばね本体12が繰り返し屈曲することで、内層ゴムと補強層との間、各補強層の間、補強層と外層ゴムとの間の接着力が低下していく。
この接着力の低下により、空気ばね本体12の内部から透過してきた空気により空気ばね本体12の表面が局所的に膨出してしまうことがある。
In the bellows type air spring 10, the lower surface portion 14 is attached to the lower structure D and the upper surface portion 16 is attached to the upper structure U, and then air is supplied from the air supply port of the lower surface plate 14 to adjust the internal pressure to adjust the upper structure. It is used as a spring that absorbs the vibration of the upper structure U by adjusting the height of the body U.
The bellows type air spring 10 functions as a spring when the air spring main body 14 expands and contracts due to the elasticity of the air inside, but the air spring main body 12 is repeatedly bent during this expansion and contraction, so that the inner rubber layer and the reinforcing layer are separated. In the meantime, the adhesive force between the reinforcing layers and between the reinforcing layer and the outer rubber layer decreases.
Due to the decrease in the adhesive force, the surface of the air spring body 12 may locally bulge due to the air that has permeated from the inside of the air spring body 12.

そこで、本実施の形態では、図1に示すように、空気ばね本体12の表面が局所的に膨出した場合に、その膨出部分50の膨出状態を識別可能とする幾何学的で規則的な模様40が、空気ばね本体12の軸心方向の少なくとも一部において空気ばね本体12の表面の全周にわたって設けられている。
本実施の形態では、膨出部分50の膨出状態を識別可能とする幾何学的で規則的な模様40が、水平方向に延在する横線が等間隔で並べられることで構成され、模様40は空気ばね本体12の表面の全域に設けられている。
Therefore, in the present embodiment, as shown in FIG. 1, when the surface of the air spring body 12 locally bulges, the bulging state of the bulging portion 50 can be identified by a geometrical rule. Pattern 40 is provided on the entire circumference of the surface of the air spring body 12 in at least a part of the air spring body 12 in the axial direction.
In the present embodiment, the geometrical and regular pattern 40 that makes it possible to identify the bulging state of the bulging portion 50 is configured by arranging horizontal lines extending in the horizontal direction at equal intervals. Are provided on the entire surface of the air spring body 12.

なお、くびれ部26の中央領域26Aには締め付けリング18が取り付けられ、中央領域26Aは締め付けリング18で覆われるので、くびれ部26の中央領域26Aには模様40を設ける必要がなく、この場合にも模様40は空気ばね本体12の表面の全域に設けられていることになる。
これにより、図2に示すように、空気ばね本体12の任意の箇所が膨出した場合に、膨出部分50において横線が歪んだり、横線間の隙間が広がることで、空気ばね本体12の表面の膨出を容易に視認することができる。
さらに、横線の歪みの状態や横線間の隙間の大きさにより、膨出部分50の膨出状態を識別して損傷度合いを判別することができ、ベローズ型空気ばね10の交換時期を簡単に明確に判断できる。
Since the tightening ring 18 is attached to the central region 26A of the constricted portion 26 and the central region 26A is covered with the tightening ring 18, it is not necessary to provide the pattern 40 in the central region 26A of the constricted portion 26. The pattern 40 is provided all over the surface of the air spring body 12.
As a result, as shown in FIG. 2, when any portion of the air spring body 12 bulges, the horizontal lines are distorted or the gap between the horizontal lines widens in the bulging portion 50, so that the surface of the air spring main body 12 is expanded. The bulge can be easily visually recognized.
Further, the degree of damage can be determined by identifying the bulging state of the bulging portion 50 based on the state of distortion of the horizontal lines and the size of the gap between the horizontal lines, and the replacement timing of the bellows type air spring 10 can be easily specified. Can judge.

図3にはこのような模様40の例を列挙している。
図3(A)では、膨出部分50の膨出状態を識別可能とする幾何学的で規則的な模様40が、上下の向きを交互に替えた三角形を並べることで構成され、模様40は空気ばね本体12の表面の全域に連続的に設ける。
これにより、空気ばね本体12の任意の箇所が膨出した場合、膨出部分50において三角形が変形することで、空気ばね本体12の表面の膨出部分50を容易に視認することができる。
さらに、三角形の変形の状態により、膨出部分50の膨出状態を識別して損傷度合いを判別することができ、空気ばね本体12の交換時期を簡単に明確に判断できる。
また、図3(B)では、膨出部分50の膨出状態を識別可能とする幾何学的で規則的な模様40が、ドットを縦横に規則正しく並べることで構成されている。
この模様40によれば、空気ばね本体12の任意の箇所が膨出した場合、膨出部分50においてドットが均等に並んでいない、すなわちドット間の隙間が不規則となることで、空気ばね本体12の表面の膨出部分50を容易に視認することができる。
さらに、ドットの隙間の大きさにより、膨出部分50の膨出状態を識別して損傷度合いを判別することができ、空気ばね本体12の交換時期を簡単に明確に判断できる。
FIG. 3 enumerates examples of such patterns 40.
In FIG. 3(A), a geometrical and regular pattern 40 that makes it possible to identify the bulging state of the bulging portion 50 is formed by arranging triangles whose upper and lower directions are alternated. The air spring body 12 is continuously provided on the entire surface of the body.
As a result, when any portion of the air spring body 12 bulges, the bulging portion 50 deforms the triangle so that the bulging portion 50 on the surface of the air spring body 12 can be easily visually recognized.
Furthermore, the degree of damage can be determined by identifying the bulging state of the bulging portion 50 based on the deformed state of the triangle, and the replacement timing of the air spring body 12 can be easily and clearly determined.
Further, in FIG. 3B, a geometrical and regular pattern 40 that makes it possible to identify the bulging state of the bulging portion 50 is formed by regularly arranging dots vertically and horizontally.
According to this pattern 40, when an arbitrary portion of the air spring main body 12 bulges, the dots are not evenly arranged in the bulging portion 50, that is, the gaps between the dots are irregular, and thus the air spring main body The bulging portion 50 on the surface of 12 can be easily visually recognized.
Further, the degree of damage can be determined by identifying the bulging state of the bulging portion 50 based on the size of the gap between the dots, and the replacement timing of the air spring body 12 can be easily and clearly determined.

また、図3(C)では、膨出部分50の膨出状態を識別可能とする幾何学的で規則的な模様40が、斜線が等間隔で並べられることで構成されている。
これにより、空気ばね本体12の任意の箇所が膨出した場合、膨出部分50において斜線が歪んだり、斜線間の隙間が広がることで、空気ばね本体12の表面の膨出部分50を容易に視認することができる。
さらに、斜線の歪みの状態や斜線間の隙間の大きさにより、膨出部分50の膨出状態を識別して損傷度合いを判別することができ、空気ばね本体12の交換時期を簡単に明確に判断できる。
また、図3(D)では、膨出部分50の膨出状態を識別可能とする幾何学的で規則的な模様40が、長方形を馬目地のように並べることで構成されている。
これにより、空気ばね本体12の任意の箇所が膨出した場合、膨出部分50において長方形が変形することで、空気ばね本体12の表面の膨出部分50を容易に視認することができる。
さらに、長方形の変形の状態により、膨出部分50の膨出状態を識別して損傷度合いを判別することができ、空気ばね本体12の交換時期を簡単に明確に判断できる。
Further, in FIG. 3C, a geometrical and regular pattern 40 that makes it possible to identify the bulging state of the bulging portion 50 is formed by arranging diagonal lines at equal intervals.
As a result, when any portion of the air spring body 12 swells, the swelled portion 50 is distorted or the gap between the splayed portions widens, so that the bulged portion 50 on the surface of the air spring body 12 can be easily formed. Can be seen.
Further, the degree of damage can be determined by identifying the bulging state of the bulging portion 50 based on the distortion state of the diagonal lines and the size of the gap between the diagonal lines, and the replacement timing of the air spring body 12 can be easily and clearly defined. I can judge.
Further, in FIG. 3D, a geometrical and regular pattern 40 that makes it possible to identify the bulging state of the bulging portion 50 is formed by arranging rectangles like horse joints.
As a result, when an arbitrary portion of the air spring body 12 bulges, the bulging portion 50 deforms the rectangle, so that the bulging portion 50 on the surface of the air spring body 12 can be easily visually recognized.
Furthermore, the degree of damage can be determined by identifying the bulging state of the bulging portion 50 based on the rectangular deformation state, and the time to replace the air spring body 12 can be easily and clearly determined.

また、図3(E)では、膨出部分50の膨出状態を識別可能とする幾何学的で規則的な模様40が、正方形が縦横に並べられることで構成されている。
これにより、空気ばね本体12の任意の箇所が膨出した場合、膨出部分50において正方形が変形することで、空気ばね本体12の表面の膨出部分50を容易に視認することができる。
さらに、正方形の変形の状態により、膨出部分50の膨出状態を識別して損傷度合いを判別することができ、空気ばね本体12の交換時期を簡単に明確に判断できる。
また、図3(F)では、膨出部分50の膨出状態を識別可能とする幾何学的で規則的な模様40が、斜めに傾けた正方形が縦横に並べられることで構成されている。
これにより、空気ばね本体12の任意の箇所が膨出した場合、膨出部分50において正方形が変形することで、空気ばね本体12の表面の膨出部分50を容易に視認することができる。
さらに、正方形の変形の状態により、膨出部分50の膨出状態を識別して損傷度合いを判別することができ、空気ばね本体12の交換時期を簡単に明確に判断できる。
Further, in FIG. 3(E), a geometrical and regular pattern 40 that makes it possible to identify the bulging state of the bulging portion 50 is formed by arranging squares vertically and horizontally.
As a result, when any portion of the air spring body 12 bulges, the bulging portion 50 deforms the square so that the bulging portion 50 on the surface of the air spring body 12 can be easily visually recognized.
Furthermore, the degree of damage can be determined by identifying the bulging state of the bulging portion 50 based on the state of deformation of the square, and the replacement timing of the air spring body 12 can be easily and clearly determined.
Further, in FIG. 3(F), a geometrical and regular pattern 40 that makes it possible to identify the bulging state of the bulging portion 50 is configured by arranging diagonally inclined squares vertically and horizontally.
As a result, when any portion of the air spring body 12 bulges, the bulging portion 50 deforms the square so that the bulging portion 50 on the surface of the air spring body 12 can be easily visually recognized.
Furthermore, the degree of damage can be determined by identifying the bulging state of the bulging portion 50 based on the state of deformation of the square, and the replacement timing of the air spring body 12 can be easily and clearly determined.

このように、幾何学的で規則的な模様40を空気ばね本体12の表面の全域に周方向に連続的に設けることで、空気ばね本体12の任意の箇所が膨出した場合に、膨出部分50において模様40が変形して模様の規則性が変化するため、空気ばね本体12の表面の膨出部分50を見付けやすい。
そして、膨出部分50の膨出状態と損傷度合いとを予め対応付けて定めておくことにより、模様40の変形状態から識別した膨出状態に対する損傷度合いを判別することができる。
さらに、どのくらいの損傷度合いが交換時期であるかを予め定めておくことで、交換するべきか否かを容易に判断できるため、交換基準を明確化できる。
すなわち、目視による空気ばね本体12の表面の膨出部分50の進行状況の確認が可能となるため、ベローズ型空気ばね10の点検の簡易化、明確化を図ることができる。
また、ベローズ型空気ばね10が故障する前に空気ばね本体12を交換できるため、ベローズ型空気ばね10の故障による上部構造体Uをなす機械のダウンタイムを削減する上で有利となる。
In this way, by providing the geometrical and regular pattern 40 continuously in the circumferential direction over the entire surface of the air spring body 12, when any portion of the air spring body 12 bulges, Since the pattern 40 is deformed in the portion 50 and the regularity of the pattern is changed, it is easy to find the bulging portion 50 on the surface of the air spring body 12.
Then, the bulging state of the bulging portion 50 and the degree of damage are determined in advance so that the degree of damage to the bulging state identified from the deformed state of the pattern 40 can be determined.
Furthermore, by predetermining how much damage is the replacement time, it is possible to easily determine whether or not the replacement should be performed, so that the replacement standard can be clarified.
That is, since it is possible to visually confirm the progress of the bulging portion 50 on the surface of the air spring main body 12, it is possible to simplify and clarify the inspection of the bellows type air spring 10.
Further, the air spring body 12 can be replaced before the bellows type air spring 10 fails, which is advantageous in reducing downtime of the machine forming the upper structure U due to the failure of the bellows type air spring 10.

次に、模様40を空気ばね本体12の表面に設ける方法としては、例えば、空気ばね本体12の製造工程において、レーザー光により模様40を焼き付ける方法が挙げられる。
また、モールドにベント溝として模様40を削り、空気ばね本体12を加硫することで空気ばね本体12の表面に模様40を転写させる方法を用いてもよい。
また、銀インクの塗布具である所謂銀ペンやその他の塗料により、空気ばね本体12の表面に模様40を印字する方法を用いてもよい。
また、模様40を有する薄膜のシートを空気ばね本体12の表面に接着させる方法を用いてもよい。
塗料による印字や、シートの接着により空気ばね本体12の表面に模様40を設ける場合、その幾何学的で規則的な模様40は、空気ばね本体12の表面の色に対して視認性の高い色で設けると、空気ばね本体12の表面の膨出部分50を見付け易く、膨出部分50の膨出状態を識別して損傷度合いを簡単に明確に判別する上で有利となる。
例えば、空気ばね本体12の表面が黒色である場合、黒色に対して視認性の高い白色、黄色、橙色などで模様40を設けると、空気ばね本体12の表面の膨出部分50を見付け易く、膨出部分50の膨出状態を識別して損傷度合いを簡単に明確に判別する上で有利となる。
Next, as a method of providing the pattern 40 on the surface of the air spring main body 12, for example, a method of baking the pattern 40 with a laser beam in the manufacturing process of the air spring main body 12 can be mentioned.
Alternatively, a method may be used in which the pattern 40 is shaved as a vent groove in the mold and the air spring body 12 is vulcanized to transfer the pattern 40 to the surface of the air spring body 12.
Further, a method of printing the pattern 40 on the surface of the air spring main body 12 by using a so-called silver pen which is a silver ink applicator or other paint may be used.
Alternatively, a method of adhering a thin film sheet having the pattern 40 to the surface of the air spring body 12 may be used.
When the pattern 40 is provided on the surface of the air spring body 12 by printing with a paint or adhering a sheet, the geometrical and regular pattern 40 is a color having high visibility with respect to the color of the surface of the air spring body 12. If it is provided, it is easy to find the bulging portion 50 on the surface of the air spring main body 12, and it is advantageous in identifying the bulging state of the bulging portion 50 and easily and clearly determining the degree of damage.
For example, in the case where the surface of the air spring body 12 is black, if the pattern 40 is provided in a highly visible white, yellow, or orange color with respect to black, it is easy to find the bulging portion 50 on the surface of the air spring body 12, This is advantageous in easily and clearly determining the degree of damage by identifying the bulging state of the bulging portion 50.

次に、ベローズ型空気ばね10の変形例1について図4を参照して説明する。
空気ばね本体12において、空気ばね本体14の伸縮時、下面板14および上面板16の取り付け位置の近傍である大径部24の端部領域24Bや、締め付けリング18の取り付け位置の近傍である大径部24の端部領域24Bとくびれ部26の端部領域26Bが大きく屈曲するため膨出しやすくなっている。
そこで変形例1では、それら大径部24の端部領域24Bとくびれ部26の端部領域26Bに模様40を設けたものであり、大径部24の中央領域24Aには模様40を設けていない。
変形例1によれば、表面の膨出が生じやすい空気ばね本体12の箇所のみの表面の全周に模様40が設けられているので、表面に膨出部分50が生じた場合、膨出部分50において模様40の規則性が変化するため、空気ばね本体12に生じた膨出分50を見付けやく、また、膨出部分50の膨出状態に対する損傷度合いを判別でき、交換基準を明確化でき、ベローズ型空気ばね10の点検の簡易化、明確化を図る上で有利となる。
また、膨出部分50が生じやすい空気ばね本体12の箇所の表面に模様40が設けられ、表面の膨出が生じにくい大径部24の中央領域24Aには模様40が設けられていないので、模様40を設ける際のコストを削減する上で有利となる。
Next, a first modification of the bellows type air spring 10 will be described with reference to FIG.
In the air spring main body 12, when the air spring main body 14 expands and contracts, it is close to the end region 24B of the large-diameter portion 24 which is in the vicinity of the attachment position of the lower plate 14 and the upper plate 16 and in the vicinity of the attachment position of the tightening ring 18. Since the end region 24B of the diameter portion 24 and the end region 26B of the constricted portion 26 are largely bent, they easily swell.
Therefore, in Modification 1, the pattern 40 is provided in the end region 24B of the large diameter portion 24 and the end region 26B of the constricted portion 26, and the pattern 40 is provided in the central region 24A of the large diameter portion 24. Absent.
According to the modified example 1, since the pattern 40 is provided on the entire circumference of the surface only at the location of the air spring body 12 where the bulging of the surface is likely to occur, when the bulging portion 50 is generated on the surface, the bulging portion is generated. Since the regularity of the pattern 40 changes at 50, it is possible to easily find the bulging portion 50 generated in the air spring main body 12, and it is possible to determine the degree of damage to the bulging state of the bulging portion 50 and clarify the replacement standard. This is advantageous in simplifying and clarifying the inspection of the bellows type air spring 10.
Further, since the pattern 40 is provided on the surface of the air spring body 12 where the bulging portion 50 is likely to occur, and the pattern 40 is not provided in the central region 24A of the large diameter portion 24 where the bulging of the surface is less likely to occur, This is advantageous in reducing the cost for providing the pattern 40.

次に、ベローズ型空気ばね10の変形例2について図5を参照して説明する。
変形例2では、変形例1とは逆に、模様40が大径部24の中央領域24Aの表面の全周に設けられ、大径部24の端部領域24Bとくびれ部26の端部領域26Bには模様40が設けられていない。
変形例2では、大径部24の端部領域24Bやくびれ部26の端部領域26Bの表面に膨出部分50が生じ、この膨出部分50が大径部24の中央領域24Aに達した場合、膨出部分50において模様40の規則性が変化するため、空気ばね本体12の表面の膨出部分50を視認することができる。
そして、空気ばね本体12の表面の膨出部分50が模様40の位置まで達した場合を交換時期の目安とすることで、空気ばね本体12の交換基準を明確にする上で有利となる。
Next, a modified example 2 of the bellows type air spring 10 will be described with reference to FIG.
In Modification 2, contrary to Modification 1, the pattern 40 is provided on the entire circumference of the surface of the central area 24A of the large diameter portion 24, and the end area 24B of the large diameter portion 24 and the end area of the constricted portion 26 are provided. 26B does not have the pattern 40.
In Modification 2, a bulging portion 50 is generated on the surface of the end region 24B of the large diameter portion 24 and the end region 26B of the constricted portion 26, and the bulging portion 50 reaches the central region 24A of the large diameter portion 24. In this case, since the regularity of the pattern 40 changes in the bulging portion 50, the bulging portion 50 on the surface of the air spring body 12 can be visually recognized.
The case where the bulging portion 50 on the surface of the air spring body 12 reaches the position of the pattern 40 is used as a guide for the replacement time, which is advantageous in clarifying the replacement standard of the air spring body 12.

なお、本発明において、膨出部分50の膨出状態を識別可能とする幾何学的で規則的な模様40とは、言い換えると、膨出部分50において模様40が変形して模様40の規則性が変化し空気ばね本体12の表面の膨出部分50を見付けやすい模様40とは、具体的には、例えば、図1、図2の場合、水平方向に延在する横線の間隔が10cmや20cmのような大きい寸法では、膨出部分50において模様40が変形しにくく模様40の規則性の変化を見付けにくい。また、横線の間隔が1mmや2mmのような小さい寸法でも模様40の規則性の変化を見付けにくい。
したがって、このような事情から水平方向に延在する横線の間隔は、5mm≦20mmであることが好ましく、さらに、5mm≦10mmであることがより好ましい。この間隔は図3(B)のドットや図3(C)の斜線の場合も同様である。
また、図3(E)の模様40のように、線により区画された複数の正方形の領域で模様40が構成される場合には、図1、図2の模様40と同様な理由から、正方形の互いに対向する辺の間隔が5mm≦20mmであることが好ましく、さらに、5mm≦10mmであることがより好ましく、正方形の領域の面積は、25mm≦400mmであることが好ましく、さらに、25mm≦100mmであることがより好ましい。
同様な理由から図3(A)、(D)、(F)の模様40の場合も、線で区画された領域の面積が25mm≦400mmであることが好ましく、さらに、25mm≦100mmであることがより好ましい。
In the present invention, the geometrical and regular pattern 40 that makes it possible to identify the bulging state of the bulging portion 50 is, in other words, the pattern 40 is deformed in the bulging portion 50 and thus the regularity of the pattern 40. The pattern 40 in which the bulging portion 50 on the surface of the air spring body 12 is easy to find is specifically, for example, in the case of FIGS. 1 and 2, the horizontal lines extending in the horizontal direction have an interval of 10 cm or 20 cm. With such a large size, it is difficult for the pattern 40 to be deformed in the bulging portion 50, and it is difficult to find a change in regularity of the pattern 40. Further, even if the horizontal line interval is as small as 1 mm or 2 mm, it is difficult to find a change in the regularity of the pattern 40.
Therefore, under such circumstances, the distance between the horizontal lines extending in the horizontal direction is preferably 5 mm≦20 mm, and more preferably 5 mm≦10 mm. This interval is the same for the dots in FIG. 3(B) and the diagonal lines in FIG. 3(C).
When the pattern 40 is composed of a plurality of square regions divided by lines, like the pattern 40 of FIG. 3E, the square is formed for the same reason as the pattern 40 of FIGS. 1 and 2. Is preferably 5 mm≦20 mm, more preferably 5 mm≦10 mm, and the area of the square region is preferably 25 mm 2 ≦400 mm 2 , and further 25 mm It is more preferable that 2 ≦100 mm 2 .
For the same reason, in the case of the pattern 40 of FIGS. 3A, 3D, and 3F, the area of the area divided by the line is preferably 25 mm 2 ≦400 mm 2 , and further 25 mm 2 ≦100 mm. More preferably, it is 2 .

本実施の形態のベローズ型空気ばね10は、空気ばね本体12に3つの大径部24が設けられ、2つのくびれ部26にそれぞれ締め付けリング18を取り付けた例を示したが、大径部24を1つ、または4つ以上設ける構成としてもよく、大径部24が1つの場合には締め付けリング18は省略される。
また、本実施の形態のベローズ型空気ばね10の空気ばね本体12に設けられる幾何学的で規則的な模様40として、図1、図3に例に挙げて説明したが、これに限定されることはなく、空気ばね本体に設ける幾何学的で規則的な模様40は、規則性を有しており膨出部50の膨出状態が識別可能な模様40であれば他の模様であってもよい。
また、本実施の形態では、模様40を設ける方法の例を上述のように説明したが、公知の他の方法によって規則的な模様40を設けるなど任意である。
In the bellows type air spring 10 of the present embodiment, the air spring main body 12 is provided with the three large diameter portions 24, and the tightening rings 18 are attached to the two constricted portions 26, respectively. One or four or more may be provided, and the tightening ring 18 is omitted when the large diameter portion 24 is one.
Further, although the geometrical and regular pattern 40 provided on the air spring body 12 of the bellows type air spring 10 of the present embodiment has been described with reference to FIGS. 1 and 3 as an example, it is not limited thereto. However, the geometrical and regular pattern 40 provided on the air spring main body is another pattern as long as the pattern 40 has regularity and the bulging state of the bulging portion 50 can be identified. Good.
Further, in the present embodiment, the example of the method of providing the pattern 40 has been described above, but the method of providing the regular pattern 40 by any other known method is arbitrary.

10 ベローズ型空気ばね
12 空気ばね本体
14 下面板
16 上面板
18 締め付けリング
20 下取り付け板部
22 上取り付け板部
24 大径部
24A 中央領域
24B 端部領域
26 くびれ部
26A 中央領域
26B 端部領域
28A 下開口部
28B 上開口部
40 模様
50 膨出部分
10 Bellows Type Air Spring 12 Air Spring Main Body 14 Lower Plate 16 Upper Plate 18 Tightening Ring 20 Lower Mounting Plate 22 Upper Mounting Plate 24 Large Diameter Part 24A Central Region 24B End Region 26 Constriction 26A Central Region 26B End Region 28A Lower opening 28B Upper opening 40 Pattern 50 Bulging portion

Claims (5)

ゴム膜から形成された中空筒状をなす空気ばね本体と、前記空気ばね本体の両端開口部にそれぞれ取り付けられた面板とを有するベローズ型空気ばねであって、
前記空気ばね本体の表面に膨出部分が生じた場合に前記膨出部分の膨出状態を識別可能とする幾何学的で規則的な模様が、前記空気ばね本体の軸心方向の少なくとも一部において前記空気ばね本体の表面の全周にわたって設けられている、
ことを特徴とするベローズ型空気ばね。
A bellows type air spring having a hollow cylindrical air spring body formed of a rubber film and face plates attached to opening portions at both ends of the air spring body,
At least a part of the air spring main body in the axial direction has a geometrical and regular pattern that makes it possible to identify the bulging state of the bulging portion when the bulging portion occurs on the surface of the air spring main body. At the entire circumference of the surface of the air spring body at
Bellows type air spring characterized by the following.
前記模様は、前記空気ばね本体の表面の全域に設けられている、
ことを特徴とする請求項1記載のベローズ型空気ばね。
The pattern is provided all over the surface of the air spring body,
The bellows type air spring according to claim 1, wherein
前記空気ばね本体は、その軸心方向に沿って並べられた少なくとも2つの大径部と、それら大径部の間に締め付けリングが取り付けられたくびれ部とを含んで構成され、
前記大径部は、前記大径部の軸心方向の中央に位置し外径が最も大きい箇所を含む中央領域と、前記中央領域から前記軸心方向に沿って離れるにつれて外径が次第に小さくなる一対の端部領域とを有し、
前記模様は、前記端部領域の表面の全周、および前記くびれ部の表面の全周に設けられている、
ことを特徴とする請求項1記載のベローズ型空気ばね。
The air spring body is configured to include at least two large-diameter portions arranged along the axial direction of the air-spring body, and a constricted portion having a tightening ring attached between the large-diameter portions,
The large-diameter portion is located at the center of the large-diameter portion in the axial direction and includes a central region including the largest outer diameter, and the outer diameter gradually decreases as the distance from the central region increases along the axial direction. Having a pair of end regions,
The pattern is provided all around the surface of the end region, and all around the surface of the constricted portion,
The bellows type air spring according to claim 1, wherein
前記空気ばね本体は、大径部を含んで構成され、
前記大径部は、前記大径部の軸心方向の中央に位置し外径が最も大きい箇所を含む中央領域と、前記中央領域から前記軸心方向に沿って離れるにつれて外径が次第に小さくなる一対の端部領域とを有し、
前記模様は、前記中央領域の表面の全周に設けられている、
ことを特徴とする請求項1に記載のベローズ型空気ばね。
The air spring body is configured to include a large diameter portion,
The large-diameter portion is located at the center of the large-diameter portion in the axial direction and includes a central region including the largest outer diameter, and the outer diameter gradually decreases as the distance from the central region increases along the axial direction. Having a pair of end regions,
The pattern is provided all around the surface of the central region,
The bellows type air spring according to claim 1, wherein
前記模様は、前記空気ばね本体の表面の色に対して視認性の高い色で設けられている、
ことを特徴とする請求項1〜4のいずれか一つに記載のベローズ型空気ばね。
The pattern is provided in a color having high visibility with respect to the color of the surface of the air spring body,
The bellows type air spring according to any one of claims 1 to 4, wherein
JP2018236902A 2018-12-19 2018-12-19 bellows air spring Active JP7192478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018236902A JP7192478B2 (en) 2018-12-19 2018-12-19 bellows air spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018236902A JP7192478B2 (en) 2018-12-19 2018-12-19 bellows air spring

Publications (2)

Publication Number Publication Date
JP2020098002A true JP2020098002A (en) 2020-06-25
JP7192478B2 JP7192478B2 (en) 2022-12-20

Family

ID=71106895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018236902A Active JP7192478B2 (en) 2018-12-19 2018-12-19 bellows air spring

Country Status (1)

Country Link
JP (1) JP7192478B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499527B1 (en) * 1968-11-29 1974-03-05
JPS59226724A (en) * 1983-05-18 1984-12-19 コンテイネンタル・グミ−ウエルケ・アクチエンゲゼルシヤフト Roll bellows for car air spring
JPS61256033A (en) * 1985-05-03 1986-11-13 コンテイネンタル・グミ−ウエルケ・アクチエンゲゼルシヤフト Roll bellows for car air spring
JPH05196079A (en) * 1991-08-28 1993-08-06 Bridgestone Corp Air spring
JP2007519868A (en) * 2004-01-29 2007-07-19 コンティテヒ・ルフトフェーダージステーメ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Spring elements for rail vehicles
US20150000589A1 (en) * 2012-02-29 2015-01-01 Firestone Industrial Products Company, Llc Replacement indicator, elastomeric articles and methods
JP2018105454A (en) * 2016-12-27 2018-07-05 東洋ゴム工業株式会社 Air spring for railroad vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499527B1 (en) * 1968-11-29 1974-03-05
JPS59226724A (en) * 1983-05-18 1984-12-19 コンテイネンタル・グミ−ウエルケ・アクチエンゲゼルシヤフト Roll bellows for car air spring
JPS61256033A (en) * 1985-05-03 1986-11-13 コンテイネンタル・グミ−ウエルケ・アクチエンゲゼルシヤフト Roll bellows for car air spring
JPH05196079A (en) * 1991-08-28 1993-08-06 Bridgestone Corp Air spring
JP2007519868A (en) * 2004-01-29 2007-07-19 コンティテヒ・ルフトフェーダージステーメ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Spring elements for rail vehicles
US20150000589A1 (en) * 2012-02-29 2015-01-01 Firestone Industrial Products Company, Llc Replacement indicator, elastomeric articles and methods
JP2018105454A (en) * 2016-12-27 2018-07-05 東洋ゴム工業株式会社 Air spring for railroad vehicle

Also Published As

Publication number Publication date
JP7192478B2 (en) 2022-12-20

Similar Documents

Publication Publication Date Title
KR101177337B1 (en) Axial spring rubber of axial box supporting device for railway vehicle and method of manufacturing therefor
KR101866223B1 (en) Printing blanket
JP2009061861A (en) Non-pneumatic tire
EP1694094A1 (en) Membrane for a dynamic converter
JP2020098002A (en) Bellows type air spring
JP4725464B2 (en) Pneumatic tire
JP6637380B2 (en) Air spring device
JPS59226724A (en) Roll bellows for car air spring
JP2012159146A (en) Air spring device
JP2007527813A (en) Printing blanket with convex external printing surface
KR20160008737A (en) A substitute structure of hull outer plate for ship
US20180134060A1 (en) Ink transfer medium
JP6130761B2 (en) Tire molding die and tire molding method
JP2006501102A (en) Low pressure / no pressure use indicator for tires
JP2020200896A (en) Pneumatic spring
TW201927591A (en) Tire with warning indicator structure capable of being used as an indicator of and a warning function for tire change under normal use
JP6442365B2 (en) Manufacturing method of unvulcanized tire
CN217653231U (en) A gasbag formula sealing device for gas tightness detects
JP2013095096A (en) Method for designing tire-vulcanizing mold
CN214661986U (en) Sealing washer and tool of breathing in
JP2019069650A (en) Pneumatic tire and method for manufacturing the same
CN215413486U (en) Spring end ring conformance testing fixture
JP2020023091A (en) Tire manufacturing apparatus and tire manufacturing method
JP2011083944A (en) Molding mold for cylindrical rubber
JP2009127714A (en) Cylindrical flexible membrane for air spring and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221121

R150 Certificate of patent or registration of utility model

Ref document number: 7192478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350