JP2020097760A - Manufacturing method of zinc oxide ore - Google Patents

Manufacturing method of zinc oxide ore Download PDF

Info

Publication number
JP2020097760A
JP2020097760A JP2018235619A JP2018235619A JP2020097760A JP 2020097760 A JP2020097760 A JP 2020097760A JP 2018235619 A JP2018235619 A JP 2018235619A JP 2018235619 A JP2018235619 A JP 2018235619A JP 2020097760 A JP2020097760 A JP 2020097760A
Authority
JP
Japan
Prior art keywords
zinc
zinc oxide
iron
raw material
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018235619A
Other languages
Japanese (ja)
Other versions
JP7099299B2 (en
Inventor
悟 高谷
Satoru Takaya
悟 高谷
亨紀 鈴木
Koki Suzuki
亨紀 鈴木
武史 高橋
Takeshi Takahashi
武史 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018235619A priority Critical patent/JP7099299B2/en
Publication of JP2020097760A publication Critical patent/JP2020097760A/en
Application granted granted Critical
Publication of JP7099299B2 publication Critical patent/JP7099299B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

To provide a manufacturing method of zinc oxide ore, which can maintain a recovery rate of zinc in a reduction roasting process at a stably desirable height in a manufacturing plant of zinc oxide ore into which a plurality of kinds of steel dusts having different content ratios of zinc and iron are sequentially carried-in.SOLUTION: A manufacturing method of zinc oxide ore includes: a preparation process S10 in which a plurality of kinds of steel dusts are mixed at a predetermined mixing ratio to form a preparation raw material for the reduction roasting process; and a reduction roasting process S20 of obtaining crude zinc oxide dust by applying the reduction roasting process by adding a predetermined amount of a carbonaceous reducing agent to the preparation raw material for the reduction roasting process, in which, in the preparation process S10, a mixing ratio of the steel dusts for every unit operation period in the standard operation period is determined such that a variation in every predetermined standard operation period of content ratios of zinc and iron in the preparation raw material for reduction roasting process for every unit operation period becomes less than a predetermined variation standard value.SELECTED DRAWING: Figure 1

Description

本発明は、鉄鋼ダストを原料として酸化亜鉛鉱を製造する酸化亜鉛鉱の製造方法に関する。更に詳しくは、リサイクル品でもあり、通常、その組成にある程度のバラツキがある鉄鋼ダストを原料として用いて酸化亜鉛鉱を製造する場合において、高い亜鉛回収率を安定して保持することができる酸化亜鉛鉱の製造方法に関する。 The present invention relates to a zinc oxide ore manufacturing method for manufacturing zinc oxide ore from iron and steel dust as a raw material. More specifically, it is also a recycled product, and zinc oxide that can stably maintain a high zinc recovery rate when producing zinc oxide ore using iron or steel dust as a raw material, the composition of which is somewhat variable. The present invention relates to a method for producing ore.

従来、亜鉛製錬所における亜鉛地金の原料として、粗酸化亜鉛等の亜鉛含有鉱から、不純物を分離除去して得た酸化亜鉛鉱が広く用いられている。酸化亜鉛鉱の原料となる粗酸化亜鉛ダストは、例えば、亜鉛含有鉱であり鉄鋼業における高炉や電気炉等から発生する鉄鋼ダストに還元焙焼処理を施すことによって得ることができる。この鉄鋼ダストの還元焙焼処理は、一般に、ロータリーキルンによる還元焙焼処理によって行われる。ロータリーキルンによる還元焙焼処理を行う場合、原料とする鉄鋼ダストは、カーボン等の炭素質還元剤と、組成調整剤である石灰石とともに、ロータリーキルン内に投入される。(特許文献1参照)。 BACKGROUND ART Conventionally, zinc oxide ore obtained by separating and removing impurities from zinc-containing ores such as crude zinc oxide has been widely used as a raw material for zinc ingots in zinc smelters. The crude zinc oxide dust, which is a raw material of zinc oxide ore, is a zinc-containing ore and can be obtained, for example, by subjecting iron and steel dust generated from a blast furnace or an electric furnace in the steel industry to a reduction roasting treatment. This reduction roasting treatment of iron and steel dust is generally performed by a reduction roasting treatment using a rotary kiln. When performing reduction roasting treatment by a rotary kiln, iron and steel dust as a raw material is put into a rotary kiln together with a carbonaceous reducing agent such as carbon and limestone as a composition adjusting agent. (See Patent Document 1).

還元焙焼処理を行うロータリーキルン(本明細書において以下、「還元焙焼ロータリーキルン(RRK)」とも称する)内は燃料重油と上記の炭素質還元剤の燃焼により、最高温度が1050〜1200℃程度に制御されている。この還元焙焼ロータリーキルン(RRK)内で鉄鋼ダストは還元焙焼され、揮発した金属亜鉛はキルン内で再酸化されて固体化した後、粒子状の粗酸化亜鉛ダストとして電気集塵機等で捕集される。そして、回収された粗酸化亜鉛ダストは、その後の湿式工程や乾燥加熱工程によって更に不純物を分離して必要な程度にまでその亜鉛品位を高めた酸化亜鉛鉱とされ、亜鉛地金の原料となる。 The maximum temperature of the rotary kiln (hereinafter also referred to as “reduction roasting rotary kiln (RRK)”) for performing the reduction roasting treatment is about 1050 to 1200° C. due to combustion of the fuel heavy oil and the carbonaceous reducing agent. Controlled. Steel dust is reduced and roasted in the reduction roasting rotary kiln (RRK), and volatilized metallic zinc is reoxidized in the kiln to be solidified, and then collected as particulate coarse zinc oxide dust by an electrostatic precipitator or the like. It Then, the recovered crude zinc oxide dust is made into zinc oxide ore in which impurities are further separated by the subsequent wet process and dry heating process to improve the zinc grade to a required degree, and is used as a raw material for zinc ingots. ..

最終製品である酸化亜鉛鉱の亜鉛品位は当然に高いものであることが求められる。酸化亜鉛鉱をISP製錬法等による亜鉛製錬の原料として用いるためには、各製錬工程において許容される値にまで、酸化亜鉛鉱の亜鉛品位を高める必要がある。 The zinc quality of the final product, zinc oxide ore, is naturally required to be high. In order to use zinc oxide ore as a raw material for zinc smelting by the ISP smelting method or the like, it is necessary to increase the zinc grade of zinc oxide ore to a value allowed in each smelting process.

ここで、原料として鉄鋼ダストを用いることは、資源リサイクルの促進、コスト削減の観点からは望ましいことではあるが、産業廃棄物としての一面も有する鉄鋼ダストは、通常、銘柄毎、即ち、発生元毎に、化学組成や物理的性状が大きく異なるものとなる。又、同一発生元であっても、搬入単位毎、即ち、ロット毎にある程度の化学組成や物理的性状のバラツキがあることが不可避である。このような鉄鋼ダストを原料として用いる酸化亜鉛鉱の製造プラントにおいては、時々刻々と搬入されてくる組成の異なる複数種の鉄鋼ダストを、搬入順に単独で、或いは、それらを適宜混合して用いている。 Here, although it is desirable to use steel dust as a raw material from the viewpoint of promoting resource recycling and cost reduction, steel dust that also has one aspect as industrial waste is usually produced by each brand, that is, the source of generation. Each time, the chemical composition and physical properties differ greatly. In addition, even if they are generated from the same source, it is inevitable that there is some degree of variation in chemical composition and physical properties for each loading unit, that is, for each lot. In a zinc oxide ore production plant using such iron and steel dust as a raw material, a plurality of types of iron and steel dust having different compositions, which are introduced every moment, individually in the order of introduction, or by appropriately mixing and using them. There is.

このため、時々刻々と搬入されてくる鉄鋼ダストを原料として用いる酸化亜鉛鉱の製造プラントにおいては、還元焙焼処理に処す原料の亜鉛含有率や鉄含有率が、鉄鋼ダストの銘柄、ロットの切替え毎や混合比率の変更毎に経時的に変動することが不可避であり、この変動に対応するために、還元焙焼工程に投入する炭素質還元剤の添加量を随時調整していた。 For this reason, in a zinc oxide ore manufacturing plant that uses the iron and steel dust that is being delivered every moment as a raw material, the zinc content and iron content of the raw material to be subjected to reduction roasting treatment can be changed between steel dust brands and lots. It is unavoidable that the amount of carbonaceous reducing agent changes with time or each time the mixing ratio is changed, and in order to cope with this variation, the amount of the carbonaceous reducing agent added to the reduction roasting step was adjusted at any time.

しかしながら、連続的に操業を行っている還元焙焼工程を行うロータリーキルン内において投入された原料等は一定の滞留時間をかけてキルン内を進行していくため、炭素質還元剤の添加量を随時調整したとしても、ロータリーキルン内の各部分毎においては、炭素質還元剤の過不足が生じてしまうことがある。これに起因して、炭素質還元剤が局部的に不足した場合には、FeOのような低融点相が形成され、半溶融物がキルン内壁に固着・成長し、ベコと称されるリング状の隆起物を生成して、キルン内滞留物の排出不良や反応性の悪化を招くことがあった(以下、ベコと称するリング状の隆起物の生成を指して「ベコ付き」と称することがある)。又、このような溶融物の固着・成長を抑制するために、ロータリーキルンの回転数を増加させると、この場合には、ロータリーキルン内での原料の滞留時間の減少によって、亜鉛の回収率が低下してしまうという問題が認識されるに至っていた。 However, the amount of carbonaceous reducing agent added is changed at any time, because the raw materials, etc. introduced in the rotary kiln that performs the reduction roasting process that is continuously operating progresses in the kiln over a certain retention time. Even if it is adjusted, excess and deficiency of the carbonaceous reducing agent may occur in each part of the rotary kiln. Due to this, when the carbonaceous reducing agent is locally deficient, a low melting point phase such as FeO is formed, and the semi-molten material adheres and grows on the inner wall of the kiln, forming a ring shape called beco. The above-mentioned ridges may be generated, resulting in poor discharge of the accumulated matter in the kiln and deterioration of reactivity (hereinafter, referred to as “beco” with the generation of ring-shaped ridges referred to as “beco”). is there). Further, if the rotation speed of the rotary kiln is increased in order to suppress such sticking and growth of the melt, in this case, the retention time of the raw material in the rotary kiln is reduced and the recovery rate of zinc decreases. The problem of being lost has come to be recognized.

リサイクル品でもあり組成にバラツキがある鉄鋼ダストを原料として用いる酸化亜鉛鉱の製造プラントにおいて、ベコ付きを防止して、還元焙焼工程における亜鉛の回収率を更に安定的に向上させることのできる酸化亜鉛鉱の製造方法が求められていた。 In a zinc oxide ore manufacturing plant that uses steel dust as a raw material, which is also a recycled product and has variations in composition, it is possible to prevent stickiness and further stabilize the recovery rate of zinc in the reduction roasting process. A method for manufacturing zinc ore has been sought.

特開2015−120948公報JP, 2005-120948, A

本発明は、鉄鋼ダストを原料として用いる酸化亜鉛鉱の製造プラントにおいて、ベコ付きを防止して、還元焙焼工程における亜鉛の回収率を、安定的に望ましい高さに保持することができる酸化亜鉛鉱の製造方法を提供することを目的とする。 INDUSTRIAL APPLICABILITY The present invention, in a zinc oxide ore manufacturing plant using steel dust as a raw material, prevents stickiness and can stably maintain the recovery rate of zinc in the reduction roasting step at a desired height. An object is to provide a method for producing ore.

酸化亜鉛鉱を製造するトータルプロセスにおいて、還元焙焼工程に投入される原料として、リサイクル促進の観点から、鉄鋼ダストが好ましく用いられている。本発明者らは、組成の異なる複数種の鉄鋼ダストを、還元焙焼工程に投入する原料として用いる場合において、それらの鉄鋼ダストの混合比を、一定の操業期間内における投入原料中の亜鉛と鉄との含有量比のバラツキが、予め規定した規準値未満に止まるように調整することにより、ベコ付きを防止して、還元焙焼工程における亜鉛の回収率を安定的に向上させることができることを見出し、本発明を完成するに至った。より、具体的には、本発明は以下のものを提供する。 In the total process for producing zinc oxide ore, steel dust is preferably used as a raw material to be added to the reduction roasting step from the viewpoint of promoting recycling. The present inventors, when using a plurality of types of steel dust of different composition, as a raw material to be fed to the reduction roasting step, the mixing ratio of those steel dust, zinc in the input raw material within a certain operating period and By adjusting so that the variation in the content ratio with iron is less than the predetermined standard value, it is possible to prevent sticking and to stably improve the recovery rate of zinc in the reduction roasting step. The present invention has been completed and the present invention has been completed. More specifically, the present invention provides the following.

(1) 亜鉛と鉄との含有量比が異なる複数種類の鉄鋼ダストが順次搬入される酸化亜鉛鉱の製造プラントにおいて、前記鉄鋼ダストのうちから複数種の鉄鋼ダストを順次選択して原料として用いる酸化亜鉛鉱の製造方法であって、複数種類の前記鉄鋼ダストを所定の混合比で混合して還元焙焼工程用調合原料とする調合工程と、前記還元焙焼工程用調合原料に所定量の炭素質還元剤を添加して還元焙焼処理を施すことにより粗酸化亜鉛ダストを得る還元焙焼工程と、を含んでなり、前記調合工程では、単位操業期間毎の前記還元焙焼工程用調合原料中の亜鉛と鉄との含有率比の、予め規定した規準操業期間毎におけるバラツキが、常に所定のバラツキ基準値未満となるように、前記規準操業期間内における前記単位操業期間毎の前記鉄鋼ダストの混合比を決定し、前記還元焙焼工程では、前記還元焙焼工程用調合原料中の亜鉛含有量と鉄含有量に応じて、該亜鉛と該鉄と、を還元するのに必要となる前記炭素質還元剤の必要量を求め、該必要量の前記炭素質還元剤を添加する、酸化亜鉛鉱の製造方法。 (1) In a zinc oxide ore manufacturing plant into which a plurality of types of iron and steel dust having different content ratios of zinc and iron are sequentially loaded, a plurality of types of iron and steel dust are sequentially selected from the iron and steel dust and used as raw materials. A method for producing zinc oxide ore, which comprises mixing a plurality of types of the iron and steel dust at a predetermined mixing ratio to obtain a reducing roasting step compounding material, and a predetermined amount of the reducing roasting step compounding material. A reducing roasting step of obtaining a crude zinc oxide dust by adding a carbonaceous reducing agent and performing a reducing roasting treatment, wherein the blending step comprises blending for the reducing roasting step for each unit operation period. The variation in content ratio of zinc and iron in the raw material, the variation in each predetermined standard operating period, so that it is always less than a predetermined variation reference value, the steel for each unit operating period in the standard operating period The mixing ratio of dust is determined, and in the reducing roasting step, it is necessary to reduce the zinc and the iron according to the zinc content and the iron content in the raw material for the reducing roasting step. The method for producing a zinc oxide ore, comprising: determining the required amount of the carbonaceous reducing agent, and adding the required amount of the carbonaceous reducing agent.

(2) 前記単位操業期間が、1日であって、前記還元焙焼工程用調合原料中の亜鉛と鉄との前記含有率比は、以下で定義される1日平均のZn/Fe比であり、前記規準操業期間が、1月であって、前記バラツキが、前記Zn/Fe比の標準偏差である、(1)に記載の酸化亜鉛鉱の製造方法。
Zn/Fe比=調合原料中の1日平均の亜鉛含有率(重量%)÷調合原料中の1日平均の鉄含有率(重量%)
(2) The unit operation period is one day, and the content ratio of zinc and iron in the blending raw material for the reduction roasting step is a daily average Zn/Fe ratio defined below. The method for producing zinc oxide ore according to (1), wherein the standard operation period is January, and the variation is a standard deviation of the Zn/Fe ratio.
Zn/Fe ratio=average daily zinc content (% by weight) in compounded raw material/average iron content (% by weight) in compounded raw material

(3) 前記バラツキ基準値が0.3である、(2)に記載の酸化亜鉛鉱の製造方法。 (3) The method for producing zinc oxide ore according to (2), wherein the variation reference value is 0.3.

(4) 前記粗酸化亜鉛ダストに湿式処理を施して、水溶性不純物を除去して粗酸化亜鉛ケーキを得る湿式工程と、前記粗酸化亜鉛ケーキに乾燥加熱処理を施す乾燥加熱工程と、を更に備える、(1)から(3)のいずれかに記載の酸化亜鉛鉱の製造方法。 (4) A wet process of subjecting the crude zinc oxide dust to a wet treatment to remove water-soluble impurities to obtain a crude zinc oxide cake, and a dry heating process of subjecting the crude zinc oxide cake to a dry heating treatment. The method for producing zinc oxide ore according to any one of (1) to (3), which comprises:

本発明によれば、鉄鋼ダストを原料として用いる酸化亜鉛鉱の製造プラントにおいて、ベコ付きを防止して、還元焙焼工程における亜鉛の回収率を、安定的に望ましい高さに保持することができる酸化亜鉛鉱の製造方法を提供することができる。 According to the present invention, in a zinc oxide ore manufacturing plant using steel dust as a raw material, stickiness can be prevented, and the recovery rate of zinc in the reduction roasting step can be stably maintained at a desired height. A method for producing zinc oxide ore can be provided.

本発明の酸化亜鉛鉱の製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the zinc oxide ore of this invention.

以下、本発明の一実施態様について図面を参照しながら説明する。 An embodiment of the present invention will be described below with reference to the drawings.

<全体プロセス>
本発明の酸化亜鉛鉱の製造方法は、本発明特有の組成からなる「還元焙焼工程用調合原料」を得る調合工程S10、この「還元焙焼工程用調合原料」を還元焙焼して粗酸化亜鉛ダストを得る還元焙焼工程S20と、を少なくとも含んでなる製造方法である。
<Overall process>
The zinc oxide ore manufacturing method of the present invention comprises a compounding step S10 for obtaining a “reducing roasting step compounding material” having a composition unique to the present invention, and a reduction roasting of this “reducing roasting step compounding raw material” And a reducing roasting step S20 for obtaining zinc oxide dust.

又、図1に示すように、本発明の酸化亜鉛鉱の製造方法は、上記の調合工程S10及び還元焙焼工程S20に加えて、更に、還元焙焼工程S20で得た粗酸化亜鉛ダストから、フッ素等の水溶性不純物を処理液中に分離除去して粗酸化亜鉛ケーキを得る湿式工程S30、湿式工程S30で得た粗酸化亜鉛ケーキを乾燥加熱して酸化亜鉛鉱を得る乾燥加熱工程S40、乾燥加熱工程S40で発生した排ガスダストを洗浄して洗浄後の排ガスダストケーキを得る排ガスダスト洗浄工程S50、及び、排水処理工程S60を備える全体プロセスとしての実施を、その好ましい実施形態とする製造方法である。尚、調合工程S10においては、還元焙焼ロータリーキルン(RRK)に投入する鉄鋼ダストをペレット化し、更に、還元剤等を予め内装することによって、還元焙焼工程における亜鉛の回収率を更に安定的に向上させることもできる。 Moreover, as shown in FIG. 1, in addition to the above-described mixing step S10 and reduction roasting step S20, the method for producing zinc oxide ore of the present invention further uses crude zinc oxide dust obtained in the reduction roasting step S20. , A wet process S30 for obtaining a crude zinc oxide cake by separating and removing water-soluble impurities such as fluorine from the treatment liquid, and a drying and heating process S40 for drying and heating the crude zinc oxide cake obtained in the wet process S30 to obtain zinc oxide ore. Manufacturing as a preferred embodiment is an overall process including an exhaust gas dust cleaning step S50 for cleaning the exhaust gas dust generated in the drying and heating step S40 to obtain an exhaust gas dust cake after cleaning, and a wastewater treatment step S60. Is the way. In the blending step S10, the steel dust to be put into the reduction roasting rotary kiln (RRK) is pelletized, and further, a reducing agent or the like is preliminarily incorporated therein to further stabilize the zinc recovery rate in the reduction roasting step. It can also be improved.

本発明の酸化亜鉛鉱の製造方法は、原料として、亜鉛と鉄との含有量比が異なる複数種類の鉄鋼ダストが順次搬入されてくる状況下にある酸化亜鉛鉱の製造プラントにおける実施を想定する製造方法である。そして、本発明の酸化亜鉛鉱の製造方法は、より詳細には、上記状況下にある酸化亜鉛鉱の製造プラントにおいて、順次搬入されてくる複数種類の鉄鋼ダストのうちから、実際に各操業期間毎において用いる複数種の鉄鋼ダストを順次選択し、原料として用いる酸化亜鉛鉱の製造プラントにおいて、好適に実施することができる製造方法である。尚、「複数種類の鉄鋼ダストが順次搬入されてくる状況下」において「複数種の鉄鋼ダストを順次選択し、原料として用いる」態様の具体的な一例として、後述の実施例において開示されている試験操業での鉄鋼ダスト原料の使用態様を例示することができる。 The zinc oxide ore manufacturing method of the present invention is assumed to be carried out in a zinc oxide ore manufacturing plant under a situation where a plurality of types of steel dust having different content ratios of zinc and iron are sequentially loaded as raw materials. It is a manufacturing method. Then, the zinc oxide ore manufacturing method of the present invention, more specifically, in the zinc oxide ore manufacturing plant under the above-mentioned circumstances, from among the plurality of types of iron and steel dust that are sequentially carried in, each operating period is actually It is a manufacturing method that can be suitably carried out in a zinc oxide ore manufacturing plant used as a raw material by sequentially selecting a plurality of types of steel dust to be used for each. It should be noted that as a specific example of an aspect of “selecting a plurality of types of steel dust sequentially and using them as a raw material” under “a situation in which a plurality of types of steel dust are sequentially carried in” is disclosed in the examples described later. It is possible to exemplify the usage mode of the steel dust raw material in the test operation.

尚、上記のような鉄鋼ダストの搬入状況は、鉄鋼ダストを原料として用いる酸化亜鉛鉱の製造においては、決して特殊な状況ではなく、極めて一般的な原料の供給態様でもある。よって、その意味において、本発明の製造方法は十分な実用性と汎用性を有するものでもある。 In addition, the above-mentioned situation of carrying in the iron and steel dust is not a special situation in the production of zinc oxide ore using the steel dust as a raw material, and is a very general manner of supplying the raw material. Therefore, in that sense, the production method of the present invention has sufficient practicality and versatility.

この製造方法は、調合工程S10において、亜鉛と鉄との含有量比がそれぞれ異なる複数種類の鉄鋼ダストを、以下に詳細を説明する独自の制御規準に則って所定の混合比で混合することを第一の特徴とする。これにより、還元焙焼工程S20における亜鉛の回収率を安定的に向上させることができる。よって、この製造方法によれば、亜鉛製錬に投入する原料鉱となる酸化亜鉛鉱の亜鉛品位を望ましい高い範囲に安定的に保持することができる。 This manufacturing method comprises mixing a plurality of types of steel dust having different zinc and iron content ratios at a predetermined mixing ratio in accordance with a unique control standard described in detail below in the blending step S10. The first feature. Thereby, the recovery rate of zinc in the reduction roasting step S20 can be stably improved. Therefore, according to this manufacturing method, the zinc grade of the zinc oxide ore, which is the raw material ore to be added to the zinc smelting, can be stably maintained in a desired high range.

<調合工程>
調合工程S10は、鉄鋼ダストを所定の混合比で混合して、「還元焙焼工程用調合原料」を得る工程である。より具体的には、この工程は、例えば、図1において概念図として例示するように、亜鉛と鉄との含有率比が、それぞれ、α、β、γである、3種類の銘柄の鉄鋼ダストA〜Cを、以下に詳細を説明する独自の操業管理規準に基づいて決定した調合計画に則って混合する工程である。
<Preparation process>
The mixing step S10 is a step of mixing steel dust at a predetermined mixing ratio to obtain a "mixing raw material for reduction roasting step". More specifically, in this step, for example, as illustrated in a conceptual diagram in FIG. 1, three types of steel dusts having zinc and iron content ratios of α, β, and γ, respectively. It is a step of mixing A to C in accordance with a blending plan determined based on an original operation management standard described in detail below.

尚、この工程においては、鉄鋼ダストの他に、リサイクルカーボン等の炭素質還元剤等を更に混合することが好ましく、又、これらの各原料を造粒したペレット状の原料とすることが、より好ましい。この混合造粒の作業、いわゆるペレタイズは、一般的に用いられるペレタイジング装置を用いて行うことができ、より具体的には、回転式のパン型ペレタイザー、又は、2軸不等速ピン式造粒機を用いて、鉄鋼ダストとリサイクルカーボンとを、所定のペレット組成となるように連続的に供給し、ミスト状の水分を添加しながら上記各原材料を混合造粒することにより行うことができる。 In this step, it is preferable to further mix a carbonaceous reducing agent such as recycled carbon in addition to the iron and steel dust, and it is preferable to use each of these raw materials as a pelletized raw material. preferable. The operation of this mixed granulation, so-called pelletizing, can be performed by using a commonly used pelletizing device, and more specifically, a rotary pan pelletizer or a biaxial non-uniform speed pin granulator. Using a machine, iron and steel dust and recycled carbon are continuously supplied so as to have a predetermined pellet composition, and the above raw materials are mixed and granulated while adding mist-like water.

調合工程S10においては、単位操業期間毎の「還元焙焼工程用調合原料中の亜鉛と鉄との含有率比」について、予め規定した「規準操業期間」毎における「バラツキ」が、所定の「バラツキ基準値」未満となるように、当該「規準操業期間」内における「単位操業期間」毎の各鉄鋼ダストの混合比を決定する。 In the blending step S10, with respect to the "content ratio of zinc and iron in the blending raw material for the reducing roasting step" for each unit operation period, the "variation" in each "standard operation period" defined in advance is a predetermined "variance". The mixing ratio of each steel dust is determined for each "unit operation period" within the "standard operation period" so that it is less than the "variation standard value".

この製造方法の実施について、具体的な一例としては、規準操業期間を1月、単位操業期間を1日とし、複数の組成の異なる鉄鋼ダストの混合物である「還元焙焼工程用調合原料」中の「亜鉛と鉄との含有率比のバラツキ」について、「標準偏差σ」を「バラツキ基準値」として管理し、この標準偏差σの値が0.3未満となるように、各日における鉄鋼ダストの混合比を、向こう1か月に亘って予め決定して操業を行う例を、好ましい実施態様の一例として挙げることができる。 As a concrete example of the implementation of this manufacturing method, the standard operating period is one month, the unit operating period is one day, and it is a mixture of a plurality of iron and steel dusts having different compositions. "Standard deviation σ" is managed as "variation standard value" for the "variation of content ratio of zinc and iron", and the steel on each day is controlled so that the value of this standard deviation σ is less than 0.3. An example in which the mixing ratio of dust is determined in advance for the next one month and operation is performed can be given as an example of a preferred embodiment.

「還元焙焼工程用調合原料中の亜鉛と鉄との含有率比」とは、単位操業期間を1日とする場合であれば、具体的に、以下に定義する1日平均のZn/Fe比となる。単位操業期間は操業形態に応じて変更することもできる。
Zn/Fe比=調合原料中の1日平均の亜鉛含有率(重量%)÷調合原料中の1日平均の鉄含有率(重量%)
The "content ratio of zinc and iron in the compounding raw material for the reduction roasting step" is, when the unit operation period is one day, specifically, the average daily Zn/Fe defined below. Ratio. The unit operation period can be changed according to the operation form.
Zn/Fe ratio=average daily zinc content (% by weight) in compounded raw material/average iron content (% by weight) in compounded raw material

又、規準操業期間を1月、単位操業期間を1日とする場合に、上記の「Zn/Fe比」のバラツキを示す、標準偏差σは、下記[数1]に示す式により算出することができる。この場合も、規準操業期間及び単位操業期間は、操業形態に応じて変更することができる。 In addition, when the standard operating period is one month and the unit operating period is one day, the standard deviation σ showing the variation of the above “Zn/Fe ratio” should be calculated by the formula shown in [Equation 1] below. You can Also in this case, the standard operating period and the unit operating period can be changed according to the operating mode.

Figure 2020097760
Figure 2020097760

リサイクル品でもある鉄鋼ダストを原料として操業する酸化亜鉛鉱の製造においては、順次搬入されてくる複数原料を混合して使用する全過程において、混合物たる「還元焙焼工程用調合原料」中の亜鉛と鉄との含有率比(Zn含有率/Fe含有率)の変動を完全になくすことは、コスト面も考慮するならば、実態として不可能である。しかしながら、上述のように、「還元焙焼工程用調合原料」中の亜鉛と鉄との含有率比(Zn含有率/Fe含有率)の1日平均の値の月間のバラつきを標準偏差σを用いて管理する方法によれば、亜鉛の回収率に重大な影響を与える、上記含有率比(Zn含有率/Fe含有率)の急激な変動を未然に回避しながら、ベコ付きを防止して、亜鉛の回収率を安定的に望ましい高さに保持することができる。 In the production of zinc oxide ore, which operates from steel dust, which is also a recycled product, in the entire process of mixing and using multiple raw materials that are sequentially loaded, the zinc in the “reduced roasting process blended raw material” that is a mixture It is impossible in reality to completely eliminate the fluctuation of the content ratio of Zn and iron (Zn content/Fe content) if cost is also taken into consideration. However, as described above, the monthly variation of the average daily value of the content ratio of Zn and iron (Zn content/Fe content) in the “reduced roasting process blended raw material” is calculated by standard deviation σ. According to the method of controlling by using, it is possible to prevent stickiness while avoiding the abrupt change of the above content ratio (Zn content/Fe content) that has a significant effect on the recovery rate of zinc. , The recovery rate of zinc can be stably maintained at a desired height.

<還元焙焼工程>
還元焙焼工程S20を行う具体的な方法としては、還元焙焼ロータリーキルン(RRK)による還元焙焼法が一般的に採用されている。還元焙焼工程S20では、調合工程S10において得た「還元焙焼工程用調合原料」が、還元剤及び石灰石等とともに、還元焙焼ロータリーキルン(RRK)に連続的に投入される。
<Reduction roasting process>
As a specific method of performing the reduction roasting step S20, a reduction roasting method using a reduction roasting rotary kiln (RRK) is generally adopted. In the reducing roasting step S20, the “reducing roasting step blending raw material” obtained in the blending step S10 is continuously charged into a reducing roasting rotary kiln (RRK) together with a reducing agent and limestone.

還元焙焼工程S20においては、上記の「還元焙焼工程用調合原料」中の亜鉛含有量と鉄含有量に応じて、同原料中に含まれる亜鉛及び鉄を還元するのに必要となる炭素質還元剤の必要量を求め、必要量の炭素質還元剤を添加する。本発明の製造方法においては、「還元焙焼工程用調合原料」の上記含有率比(Zn含有率/Fe含有率)の急激な変動は未然に回避されているため、鉄鋼ダストの銘柄の切替え毎や混合比率の変更毎に発生する計算上の還元剤の必要量とキルン内の還元反応の実際の進行との間の乖離がおきにくい。又、これにより、炭素質還元剤が局部的に不足する状況の発生を抑制することができる。 In the reducing roasting step S20, carbon required for reducing zinc and iron contained in the above-mentioned "reducing roasting step compounding raw material" in accordance with the zinc content and the iron content. Determine the required amount of carbonaceous reducing agent and add the required amount of carbonaceous reducing agent. In the production method of the present invention, a rapid change in the above content ratio (Zn content/Fe content) of the “mixing raw material for reduction roasting step” is avoided in advance, so that the brand of steel dust is switched. It is unlikely that there is a discrepancy between the calculated required amount of the reducing agent that occurs each time the mixing ratio is changed and the actual progress of the reduction reaction in the kiln. Further, this makes it possible to suppress the occurrence of a situation where the carbonaceous reducing agent is locally insufficient.

より詳しくは、鉄鋼ダストの主成分はZnOとFeであることから、銘柄によってZn含有率とFe含有率は反比例的に変化することが多い。即ち、Zn含有率が低下すればFe含有率が上昇し、逆にZn含有率が上昇すればFe含有率が低下する。よって、何も制御しなければ、Zn含有率/Fe含有率は二乗的に大きく変動する。ところで、亜鉛及び鉄を還元するのに必要となる炭素質還元剤の必要量は、化学量論に基いて求める。還元焙焼工程では、以下の反応が行われる。
C+O→CO
C+CO→2CO
ZnO+CO→Zn(g)+CO
Fe+CO→2FeO+CO
FeO+CO→Fe+CO
g:気体を表す。
即ち、同じモル数であれば、亜鉛を還元するのに必要となる炭素質還元剤の必要量に対して、鉄を還元するのに必要となる炭素質還元剤の必要量は1.5倍となる。よって、Zn含有率/Fe含有率が大きく変動すると、更に炭素質還元剤の必要量が大きく変動する。
More specifically, since the main components of steel dust are ZnO and Fe 2 O 3 , the Zn content and the Fe content often change in inverse proportion depending on the brand. That is, if the Zn content decreases, the Fe content increases, and conversely, if the Zn content increases, the Fe content decreases. Therefore, if nothing is controlled, the Zn content/Fe content fluctuates greatly in the square. By the way, the required amount of carbonaceous reducing agent required to reduce zinc and iron is determined based on stoichiometry. In the reduction roasting step, the following reactions are carried out.
C+O 2 →CO 2
C+CO 2 → 2CO
ZnO+CO→Zn(g)+CO 2
Fe 2 O 3 +CO→2FeO+CO 2
FeO+CO→Fe+CO 2
g: represents a gas.
That is, if the number of moles is the same, the required amount of carbonaceous reducing agent required to reduce iron is 1.5 times the required amount of carbonaceous reducing agent required to reduce zinc. Becomes Therefore, if the Zn content/Fe content varies greatly, the required amount of carbonaceous reducing agent also varies significantly.

前述の通り、連続的に操業を行っている還元焙焼工程を行うロータリーキルン内において投入された原料等は一定の滞留時間をかけてキルン内を進行していくため、炭素質還元剤の添加量を随時調整したとしても、ロータリーキルン内の各部分毎においては、炭素質還元剤の過不足が生じてしまうことがある。例えば、鉄鋼ダストの銘柄の切替えや混合比率の変更時に、原料組成に応じて炭素質還元剤の添加量を増やしたとしても、ロータリーキルン内で発生するCOガスは、しばらくは少ないままであるから、局部的に還元剤不足となる。ロータリーキルンの滞留時間が3〜4時間程度であるときは、ロータリーキルン内の原料が置き換わるまでの3〜4時間程度の間、その状態は続く。炭素質還元剤が局部的に不足した場合には、本来は金属鉄にまで還元されるべき鉄がFeOのような低融点相を形成し、半溶融物がキルン内壁に固着・成長し、ベコを生成して、キルン内滞留物の排出不良や反応性の悪化を招くことがあった。 As mentioned above, the amount of carbonaceous reducing agent added is limited because the raw materials, etc. introduced in the rotary kiln that carries out the reduction roasting process, which operates continuously, progresses in the kiln over a certain retention time. Even if it is adjusted at any time, excess or deficiency of the carbonaceous reducing agent may occur in each part of the rotary kiln. For example, when changing the brand of iron and steel dust or changing the mixing ratio, even if the amount of carbonaceous reducing agent added is increased according to the raw material composition, the CO gas generated in the rotary kiln remains low for a while. There is a local shortage of reducing agent. When the residence time of the rotary kiln is about 3 to 4 hours, that state continues for about 3 to 4 hours until the raw material in the rotary kiln is replaced. When the carbonaceous reducing agent is locally insufficient, iron, which should be reduced to metallic iron originally, forms a low melting point phase such as FeO, and the semi-molten material adheres and grows on the inner wall of the kiln. In some cases, resulting in poor discharge of the residue in the kiln and deterioration of reactivity.

上述のような溶融物の固着・成長を抑制するために、ロータリーキルンの回転数を増加させると、ロータリーキルン内での原料の滞留時間の減少によって、亜鉛の回収率が低下してしまっていた。このように、炭素質還元剤の添加量の変動は、還元焙焼ロータリーキルン(RRK)の操業を不安定にし、亜鉛の回収率を低下させていた。本発明によれば、Zn含有率/Fe含有率のバラツキを基準値未満に制御することにより、炭素質還元剤の必要量、即ち、添加量の変動を抑え、これをもって、還元焙焼工程における亜鉛の回収率を安定的に向上させることができる。 When the number of rotations of the rotary kiln is increased in order to suppress the sticking and growth of the melt as described above, the retention time of the raw material in the rotary kiln is reduced and the zinc recovery rate is reduced. As described above, the fluctuation of the addition amount of the carbonaceous reducing agent made the operation of the reduction roasting rotary kiln (RRK) unstable and reduced the recovery rate of zinc. According to the present invention, by controlling the variation of Zn content/Fe content to be less than the reference value, the required amount of carbonaceous reducing agent, that is, the variation of the addition amount, is suppressed, and thus, in the reduction roasting step. It is possible to stably improve the recovery rate of zinc.

この還元焙焼ロータリーキルン(RRK)の炉内は重油の燃焼と装入した炭素質還元剤の燃焼により、被処理物の最高温度が1050℃以上1200℃以下程度の範囲に制御されている。この炉内で鉄鋼ダストを含む上記の「還元焙焼工程用調合原料」は、還元焙焼されて、揮発した金属亜鉛は炉内で再酸化されて粉状の酸化亜鉛となる。粉状の酸化亜鉛は、還元焙焼ロータリーキルン(RRK)からの排出ガスとともに集塵機に導入され、捕捉されて粗酸化亜鉛として回収される。 In the furnace of the reduction roasting rotary kiln (RRK), the maximum temperature of the object to be treated is controlled to be in the range of 1050°C or more and 1200°C or less by the combustion of heavy oil and the combustion of the carbonaceous reducing agent charged. In the furnace, the above-mentioned "compounding raw material for reduction roasting process" containing iron and steel dust is reduced and roasted, and the volatilized metallic zinc is reoxidized in the furnace to become powdery zinc oxide. The powdery zinc oxide is introduced into the dust collector together with the exhaust gas from the reduction roasting rotary kiln (RRK), and is captured and recovered as crude zinc oxide.

本発明の製造方法によれば、この還元焙焼工程S20における亜鉛の回収率を安定的に高めることにより、高品位の粗酸化亜鉛を得ることができる。具体的には、還元焙焼工程S20において用いる「還元焙焼工程用調合原料」中の亜鉛と鉄との含有率比の経時的変動が、上述した本発明特有の制御規準に基づいて特定範囲内に制御されていて、尚且つ、上述のように適切に還元剤が投入されていることにより、例えば、上記の還元焙焼工程における1ヶ月平均の亜鉛の回収率を、目安として、1.0%程度向上させることが可能である。これにより、例えば、電解製錬法による亜鉛製錬にも好ましく用いることができる高品位の酸化亜鉛鉱を、従来よりも低コストで効率よく製造することができるようになる。又、副産物である含鉄クリンカー中の亜鉛品位を低下させることが出来るので、質の良い含鉄クリンカーの安定した生産が可能となる。 According to the production method of the present invention, high-quality crude zinc oxide can be obtained by stably increasing the zinc recovery rate in the reduction roasting step S20. Specifically, the change over time of the content ratio of zinc and iron in the "reducing roasting step compounding raw material" used in the reducing roasting step S20 is within a specific range based on the above-mentioned control criteria specific to the present invention. Since the reducing agent is controlled within the above range and the reducing agent is appropriately added as described above, for example, the one month average zinc recovery rate in the above reduction roasting step is used as a guideline. It is possible to improve it by about 0%. As a result, for example, it becomes possible to efficiently produce a high-grade zinc oxide ore that can be preferably used for zinc smelting by the electrolytic smelting method at a lower cost than before. Further, since the grade of zinc in the iron-containing clinker, which is a by-product, can be reduced, stable production of high-quality iron-containing clinker becomes possible.

尚、本明細書において「還元焙焼工程における亜鉛の回収率」とは、還元焙焼工程に投入する「還元焙焼工程用調合原料」に含有される亜鉛成分量に対する、還元焙焼ロータリーキルン(RRK)内で揮発して回収された粗酸化亜鉛ダストに含まれる亜鉛成分量の割合のことを言う。又、この「還元焙焼工程における亜鉛の回収率」は、原料である鉄鋼ダスト中の亜鉛含有率と、還元焙焼ロータリーキルン(RRK)から排出された含鉄クリンカー中の亜鉛含有率とを、それぞれ蛍光X線分析装置により測定し、得られた分析値、処理量及び産出量から算出することができる。 In the present specification, the “recovery rate of zinc in the reduction roasting step” means the reduction roasting rotary kiln (with respect to the amount of zinc component contained in the “reducing roasting step compounding material” to be added to the reduction roasting step ( RRK) refers to the ratio of the amount of zinc component contained in the crude zinc oxide dust that is volatilized and recovered. Further, the "recovery rate of zinc in the reduction roasting step" is defined as the zinc content in the raw material steel dust and the zinc content in the iron-containing clinker discharged from the reduction roasting rotary kiln (RRK), respectively. It can be calculated from the analytical value, the amount of treatment, and the amount of output obtained by measuring with a fluorescent X-ray analyzer.

尚、上記還元焙焼法によって、揮発せずにキルン中に残った還元焙焼残渣は、含鉄クリンカーと称する製品としてキルン排出端より回収され、還元された鉄分が多く含有されるため、鉄鋼メーカー向けの鉄原料、又は、埋め立て向けに払い出される。 The reducing roasting residue remaining in the kiln without being volatilized by the above reducing roasting method is recovered from the kiln discharge end as a product called iron-containing clinker, and contains a large amount of reduced iron content. It is paid out for iron raw materials for land use or for landfill.

<湿式工程>
粗酸化亜鉛ダストに含有されるフッ素等の不純物を処理液中に分離抽出し、更に固液分離処理によって、粗酸化亜鉛ダストから不純物を水洗浄法により除去して粗酸化亜鉛ケーキを得る湿式処理は、以下の処理工程によって行うことができる。
<Wet process>
Wet treatment to separate and extract impurities such as fluorine contained in the crude zinc oxide dust into the treatment liquid, and further to remove the impurities from the crude zinc oxide dust by a water washing method by solid-liquid separation treatment to obtain a crude zinc oxide cake. Can be performed by the following processing steps.

還元焙焼工程S20により鉄鋼ダストから回収された粗酸化亜鉛ダストは、工業用水等でレパルプされる。粗酸化亜鉛ダストの回収は、電気集塵機等で行うことができる。スラリーとなった粗酸化亜鉛ダストはpH調整及び凝集処理を行い、その後、脱水を行う。この洗浄脱水により、粗酸化亜鉛ケーキのハロゲン含有率は、フッ素含有率について0.6質量%未満、塩素含有率については、1.0質量%未満にまで低減することが好ましい。又、中性領域でイオンとして存在するカドミウムについても、除去することができる。フッ素等の不純物が処理液中に除去された状態において、固液分離により、不純物が分配された処理液をスラリーから除去する。これにより、粗酸化亜鉛ダストのスラリーがより亜鉛含有率の高い粗酸化亜鉛ケーキとなる。 The crude zinc oxide dust recovered from the steel dust in the reduction roasting step S20 is repulped with industrial water or the like. The crude zinc oxide dust can be collected with an electrostatic precipitator or the like. The crude zinc oxide dust that has become a slurry is subjected to pH adjustment and aggregation treatment, and then dehydrated. By this washing and dehydration, the halogen content of the crude zinc oxide cake is preferably reduced to less than 0.6 mass% for the fluorine content and less than 1.0 mass% for the chlorine content. Also, cadmium existing as ions in the neutral region can be removed. When impurities such as fluorine are removed from the treatment liquid, the treatment liquid in which the impurities are distributed is removed from the slurry by solid-liquid separation. Thereby, the slurry of the crude zinc oxide dust becomes a crude zinc oxide cake having a higher zinc content.

<乾燥加熱工程>
湿式工程S30で得た粗酸化亜鉛ケーキを、乾燥加熱ロータリーキルン(DRK)等の加熱炉に装入して焼成・造粒する乾燥加熱工程S40により、フッ素等の残留不純物の含有率を更に低減させつつ、高品位の酸化亜鉛鉱を得ることができる。
<Dry heating process>
The crude zinc oxide cake obtained in the wet process S30 is charged into a heating furnace such as a dry heating rotary kiln (DRK) and fired/granulated. The dry heating process S40 further reduces the content of residual impurities such as fluorine. At the same time, a high-quality zinc oxide ore can be obtained.

乾燥加熱処理の焼成温度については、乾燥加熱ロータリーキルン(DRK)等から排出される際の被焼成物の温度が1100℃以上1150℃以下の範囲の温度となるように、炉内温度を保持管理することが好ましい。 Regarding the firing temperature of the dry heating treatment, the temperature inside the furnace is maintained and controlled so that the temperature of the fired product when discharged from the dry heating rotary kiln (DRK) or the like is in the range of 1100°C or higher and 1150°C or lower. It is preferable.

<排ガスダスト洗浄工程>
乾燥加熱工程S40で発生した排ガスダストを洗浄して洗浄後の排ガスダストケーキを得るための排ガスダスト洗浄工程S50を行うための洗浄設備としては、洗浄塔、湿式電気集塵機の組み合わせが一般的である。又、これらの設備で回収された洗浄後の排ガスダストケーキを、上流工程である乾燥加熱工程S40を行う乾燥加熱ロータリーキルン(DRK)等に繰り返して循環投入することにより、金属資源の有効利用を図る処理が行われている。
<Exhaust gas dust cleaning process>
As the cleaning equipment for performing the exhaust gas dust cleaning step S50 for cleaning the exhaust gas dust generated in the drying and heating step S40 to obtain the cleaned exhaust gas dust cake, a combination of a cleaning tower and a wet electrostatic precipitator is generally used. .. In addition, the exhaust gas dust cake collected by these facilities after cleaning is repeatedly circulated into the dry heating rotary kiln (DRK) for performing the dry heating step S40, which is an upstream step, so as to effectively utilize metal resources. Processing is taking place.

<排水処理工程>
排水処理工程S60は、湿式工程S30において粗酸化亜鉛ダストから分離されたフッ素やカドミウムを高濃度で含有する廃液から、フッ素及びカドミウムを除去し、更に、廃液中に微量に含まれる重金属を中和処理により沈殿除去し、最終的にpHを調整して無害の排水とする工程である。
<Wastewater treatment process>
The wastewater treatment step S60 removes fluorine and cadmium from the waste liquid containing a high concentration of fluorine and cadmium separated from the crude zinc oxide dust in the wet step S30, and further neutralizes a trace amount of heavy metals contained in the waste liquid. In this process, the precipitate is removed by treatment, and the pH is finally adjusted to produce harmless wastewater.

<亜鉛回収率測定工程>
本発明においては、還元焙焼工程S20における亜鉛の回収率を、例えば上述した方法によって測定可能な設備によって行う工程である亜鉛回収率測定工程S70を、還元焙焼工程S20の下流工程として設けることが好ましい。この亜鉛回収率測定工程S70によって、上記の亜鉛の回収率を、常時、或いは、随時適当な間隔で測定確認することによって、上記の亜鉛の回収率を、より高い精度で制御することができる。
<Zinc recovery rate measurement process>
In the present invention, the zinc recovery rate measurement step S70, which is a step of performing the zinc recovery rate in the reduction roasting step S20 by, for example, a facility that can be measured by the method described above, is provided as a downstream step of the reduction roasting step S20. Is preferred. By this zinc recovery rate measuring step S70, the above zinc recovery rate can be controlled with higher accuracy by measuring and confirming the above zinc recovery rate at all times or at appropriate intervals at any time.

以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限るものではない。又、本発明の実施形態に記載された効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、本発明の実施例に記載されたものに限定されるものではない。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments. In addition, the effects described in the embodiments of the present invention are merely listed as the most preferable effects resulting from the present invention, and the effects according to the present invention are limited to those described in the examples of the present invention. is not.

以下、実施例により本発明を更に具体的に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.

調合工程において、「還元焙焼工程用調合原料中の亜鉛と鉄との含有率比」について、予め規定した「規準操業期間」毎における「バラツキ」が、所定の「バラツキ基準値」未満となるように、当該「規準操業期間」内における「単位操業期間」毎の各鉄鋼ダストの混合比を決定する本発明の製造方法の実施により、還元焙焼工程における亜鉛の回収率が有意に向上することを確認するために以下の試験を行った。 In the blending process, the "variation" for each "standard operating period" of the "content ratio of zinc and iron in the blending raw material for the reduction roasting process" becomes less than the predetermined "variance reference value". Thus, the implementation of the manufacturing method of the present invention that determines the mixing ratio of each steel dust for each "unit operation period" within the "standard operation period" significantly improves the zinc recovery rate in the reduction roasting step. The following tests were conducted to confirm this.

「還元焙焼工程用調合原料」を調合するための原料として、下記の範囲で組成にバラツキがある12種類の銘柄の鉄鋼ダスト(鉄鋼ダストA〜L)を用いた。
Zn:20〜40質量%、Pb:0.5〜3.0質量%、Fe:10〜30質量%、Cr:0.1〜1.0質量%、F:0.0〜1.0質量%、Cd:0.0〜0.1質量%。
As raw materials for preparing the "reduced roasting step preparation raw material", 12 types of steel dusts (steel dusts A to L) having different compositions in the following ranges were used.
Zn: 20-40 mass%, Pb: 0.5-3.0 mass%, Fe: 10-30 mass%, Cr: 0.1-1.0 mass%, F: 0.0-1.0 mass%. %, Cd: 0.0 to 0.1 mass %.

先ず、試験操業1として、1ヶ月の間に、1回の受入れ当たり約500tの物量で時々刻々と搬入されて来る8種類の銘柄の鉄鋼ダストのうち、3種類を選定し、調合を行った。調合に当たっては、1ヶ月の間で、調合原料の1日平均のZn/Fe比の標準偏差が0.16となるように、鉄鋼ダストの組合せと混合比を調整した。尚、鉄鋼ダストの選定に当たっては、搬入から約1ヶ月以内に処理が完了するように、原則、搬入されて来る順番に3種類を選定した。3種類の鉄鋼ダストの合計量は、1日当たり240〜310tである。鉄鋼ダストの組合せと混合比を調整する「調合変更」は、1ヶ月の間に11回行った。 First, as the test operation 1, three kinds were selected from eight kinds of steel dust of 8 kinds of brands which are carried in momentarily at a quantity of about 500 tons per acceptance during one month, and blended. .. In the blending, the combination of the steel dust and the mixing ratio were adjusted so that the standard deviation of the Zn/Fe ratio of the daily average of the blended raw materials was 0.16 in one month. When selecting the iron and steel dust, three types were selected in the order in which they were delivered in principle so that the treatment would be completed within about one month after the delivery. The total amount of the three types of steel dust is 240 to 310 t per day. The “mixing change” for adjusting the combination of the steel dust and the mixing ratio was performed 11 times in one month.

試験操業1では、3種類の鉄鋼ダストの他に、炭素質還元剤としてリサイクルカーボンを混合して、新日南株式会社製のダウ・ペレタイザー(登録商標)によって混合造粒し、粒径が5.0〜10.0mmの炭素質還元剤内装ペレットを作製した。各調合原料における、鉄鋼ダストの総量に対するリサイクルカーボンの添加量は、炭素含有量が8.0質量%となるように調整した。なお、調合原料中の亜鉛含有量と鉄含有量に応じて、亜鉛と鉄とを還元するのに必要となる炭素質還元剤の必要量が求まるが、炭素質還元剤の必要量に対して、炭素含有量が8.0質量%の炭素質還元剤内装ペレットに含まれる炭素質還元剤量が少なくなるように調整しているので、残りの不足する炭素質還元剤として粉コークスを、炭素質還元剤内装ペレットとともに、直接、還元焙焼ロータリーキルン(RRK)に投入した。上記、炭素質還元剤内装ペレット、粉コークス、組成調整剤としての石灰石、繰返し物を、内径3m、長さ50mの還元焙焼ロータリーキルン(RRK)に投入して還元焙焼工程を実施した。還元焙焼ロータリーキルン(RRK)の焙焼温度については、全ての試験操業において、被処理物の最高温度が1050〜1200℃となる範囲とした。 In the test operation 1, in addition to three types of steel dust, recycled carbon was mixed as a carbonaceous reducing agent, and mixed granulation was carried out by Dow Pelletizer (registered trademark) manufactured by Shin-Nichinan Co., Ltd. A carbonaceous reducing agent-containing pellet having a size of 0 to 10.0 mm was produced. The amount of recycled carbon added to each of the mixed raw materials was adjusted so that the carbon content was 8.0% by mass. The required amount of the carbonaceous reducing agent required to reduce zinc and iron is determined according to the zinc content and the iron content in the prepared raw material. Since the amount of carbonaceous reducing agent contained in the carbonaceous reducing agent-containing pellets having a carbon content of 8.0% by mass is adjusted to be small, powder coke is used as the remaining insufficient carbonaceous reducing agent. It was directly put into a reducing roasting rotary kiln (RRK) together with the reducing agent-containing pellets. The above-mentioned pellet containing carbonaceous reducing agent, powder coke, limestone as a composition adjusting agent, and a repeated product were put into a reducing roasting rotary kiln (RRK) having an inner diameter of 3 m and a length of 50 m to carry out a reducing roasting step. Regarding the roasting temperature of the reduction roasting rotary kiln (RRK), the maximum temperature of the object to be treated was in the range of 1050 to 1200° C. in all test operations.

次に、試験操業2〜5として、1ヶ月の間で、調合原料の1日平均のZn/Fe比の標準偏差を変えて、鉄鋼ダストの組合せと混合比を調整する試験を行った。結果として、全12種類の中で使用した鉄鋼ダストの銘柄、1日当たりの3種類の鉄鋼ダストの合計量、1ヶ月の間に行った「調合変更」の回数については若干異なるが、方法、及び条件は、試験操業1と同様にして、試験操業2〜5を実施した。 Next, as test operations 2 to 5, a test was carried out in which the standard deviation of the daily average Zn/Fe ratio of the prepared raw materials was changed to adjust the combination of iron and steel dust and the mixing ratio during one month. As a result, the brand of iron and steel dust used among all 12 types, the total amount of 3 types of iron and steel dust per day, and the number of "mixing changes" performed in one month were slightly different, but the method and The conditions were the same as in the test operation 1 and the test operations 2 to 5 were performed.

各々の試験操業において、それぞれ、還元焙焼工程用調合原料中の下記定義による「1日平均のZn/Fe比」の1月間のバラツキを標準偏差σで管理し、その値の許容範囲の上限値でもある「バラツキ基準値」を、試験操業毎に、0.1〜0.6の範囲においてそれぞれ異なる値に設定した。その上で、各操業における「1日平均のZn/Fe比」の1ヶ月間のバラツキが「バラツキ基準値」を超えることがないように、試験操業毎に1ヶ月間の鉄鋼ダストの調合計画を決定した。
Zn/Fe比=調合原料中の1日平均の亜鉛含有率(重量%)÷調合原料中の1日平均の鉄含有率(重量%)
In each test operation, the monthly deviation of the "daily average Zn/Fe ratio" in the raw materials for reduction roasting process defined below was controlled by the standard deviation σ, and the upper limit of the allowable range of the value was controlled. The "variation standard value", which is also a value, was set to a different value in the range of 0.1 to 0.6 for each test operation. Moreover, in order to prevent the monthly variation of the "average daily Zn/Fe ratio" in each operation from exceeding the "variation standard value", a mixing plan of steel dust for one month for each test operation. It was determined.
Zn/Fe ratio=average daily zinc content (% by weight) in compounded raw material/average iron content (% by weight) in compounded raw material

試験操業毎の「1日平均のZn/Fe比」の1ヶ月間の標準偏差σ(以下、単に「Zn/Fe比の標準偏差σ」とも言う)は、各鉄鋼ダスト(A〜L)のZn含有率及びFe含有率と調合原料量毎の3種類の鉄鋼ダストの混合比、及び、「調合変更」のスケジュールから算出し、この値が、試験操業毎に予め規定した「バラツキ基準値」未満になるように調合を計画し、調合工程を実施した。各試験操業における実際の「Zn/Fe比の標準偏差σ」は、表1に示す通り(表1においては、単に「σ」と示す)であった。 The standard deviation σ of the “daily average Zn/Fe ratio” for each test operation during one month (hereinafter, also simply referred to as “standard deviation σ of Zn/Fe ratio”) is calculated for each steel dust (A to L). Calculated from the Zn content rate, the Fe content rate, the mixing ratio of three types of iron and steel dust for each blending raw material amount, and the schedule of "blending change", and this value is the "variation standard value" specified in advance for each test operation. The formulation was planned to be less than, and the formulation process was performed. The actual “standard deviation σ of Zn/Fe ratio” in each test operation was as shown in Table 1 (in Table 1, simply referred to as “σ”).

尚、上記の「試験操業毎の「1日平均のZn/Fe比」の1ヶ月間の標準偏差σ」等を算出するために用いる各鉄鋼ダストのZn含有率とFe含有率の値については、搬入時に分析した各鉄鋼ダストの分析値のうち、直近の値を用いた。又、「調合変更」を実施した日については、変更前と変更後の調合原料中のZn含有率を、更に、調合時間で加重平均した値を、調合原料中の1日平均の亜鉛含有率とした。Fe含有率についても同様である。 The values of the Zn content and the Fe content of each iron and steel dust used to calculate the above-mentioned "standard deviation σ for one month of "daily average Zn/Fe ratio" for each test operation" and the like are as follows. Among the analysis values of each steel dust analyzed at the time of delivery, the latest value was used. In addition, regarding the day when "modification change" was carried out, the Zn content ratio in the preparation raw material before and after the change was further weighted averaged by the preparation time, and the value of the daily average zinc content in the preparation raw material was calculated. And The same applies to the Fe content.

そして、試験操業毎に、還元焙焼工程での亜鉛の回収率を測定比較した。結果は表1に示す通りであった。亜鉛の回収率は、上記の鉄鋼ダスト中の亜鉛含有率と、RRKから排出された含鉄クリンカー中の亜鉛含有率とを、それぞれ蛍光X線分析装置により測定し、得られた分析値と処理量及び産出量から算出した。 Then, the recovery rate of zinc in the reduction roasting step was measured and compared for each test operation. The results are as shown in Table 1. The recovery rate of zinc was determined by measuring the zinc content in the above-mentioned steel dust and the zinc content in the iron-containing clinker discharged from RRK by a fluorescent X-ray analyzer, and the obtained analysis value and treatment amount. And calculated from the output.

Figure 2020097760
Figure 2020097760

尚、キルンの回転数を低下させるほどキルン内の滞留時間が増加し、亜鉛の回収率が向上するが、「Zn/Fe比の標準偏差σ」が増加すると、調合変更時の炉況悪化でキルン炉内への滞留物の固着が進行する。これを抑制するために、試験操業においは、キルン回転数を増加させる操作を行った。この結果キルン内滞留時間が減少し、亜鉛の回収率は低下した。又、「Zn/Fe比の標準偏差σ」を、0.57まで増加させて操業を行った試験操業5においては、キルン回転数の増加にかかわらず、キルン内壁に滞留物が固着・成長してリング状のダムが形成されたため、キルン内残留物の排出不良により操業停止にまで至った。 As the rotation speed of the kiln decreases, the residence time in the kiln increases and the recovery rate of zinc improves. However, if the “standard deviation σ of the Zn/Fe ratio” increases, the furnace conditions deteriorate when the composition is changed. Accumulation of accumulated substances in the kiln furnace progresses. In order to suppress this, in the test operation, an operation of increasing the kiln rotation speed was performed. As a result, the residence time in the kiln decreased and the zinc recovery rate decreased. Further, in the test operation 5 in which the “standard deviation σ of Zn/Fe ratio” was increased to 0.57, the accumulated matter adhered and grew on the inner wall of the kiln regardless of the increase of the kiln rotation speed. As a ring-shaped dam was formed, the operation was stopped due to defective discharge of residue in the kiln.

表1より、本発明の製造方法においては、「Zn/Fe比の標準偏差σ」を、所定値以下に管理することにより、実操業における亜鉛の回収率を、有意に向上させることができることが分かる。又、「Zn/Fe比の標準偏差σ」を、0.3未満と規定して操業を管理することにより、亜鉛の回収率を95%以上とすることが可能であることも分かる。 From Table 1, in the production method of the present invention, by controlling the “standard deviation σ of the Zn/Fe ratio” to be a predetermined value or less, it is possible to significantly improve the zinc recovery rate in actual operation. I understand. It is also understood that the zinc recovery rate can be 95% or more by controlling the operation by defining the “standard deviation σ of Zn/Fe ratio” to be less than 0.3.

このような本発明の製造方法によれば、銘柄毎に化学組成のバラツキが大きい鉄鋼ダストを用いた酸化亜鉛鉱の製造において、亜鉛の回収率を95%以上とすることで、最終製品である酸化亜鉛鉱の亜鉛品位を高めて、ISP製錬法等による亜鉛製錬の材料として好適に用いることができる。又、副産物である含鉄クリンカー中の亜鉛含有率を2.0%以下にすることができ、高品質なリサイクル製品として鉄鋼メーカーに販売することができる。以上より、資源リサイクル促進の観点からも、本発明は、産業の発展に大きく寄与する。 According to such a production method of the present invention, in the production of zinc oxide ore using iron and steel dust having a large variation in chemical composition for each brand, the final product is obtained by setting the zinc recovery rate to 95% or more. It can be preferably used as a material for zinc smelting by the ISP smelting method or the like by improving the zinc grade of zinc oxide ore. Further, the zinc content in the iron-containing clinker, which is a by-product, can be 2.0% or less, and the product can be sold to a steel manufacturer as a high-quality recycled product. From the above, the present invention greatly contributes to the development of industry from the viewpoint of promoting resource recycling.

S10 調合工程
S20 還元焙焼工程
S30 湿式工程
S40 乾燥加熱工程
S50 排ガスダスト洗浄工程
S60 排水処理工程
S70 亜鉛回収率測定工程
S10 Mixing process S20 Reduction roasting process S30 Wet process S40 Drying and heating process S50 Exhaust gas dust cleaning process S60 Waste water treatment process S70 Zinc recovery rate measuring process

Claims (4)

亜鉛と鉄との含有量比が異なる複数種類の鉄鋼ダストが順次搬入される酸化亜鉛鉱の製造プラントにおいて、前記鉄鋼ダストのうちから複数種の鉄鋼ダストを順次選択して原料として用いる酸化亜鉛鉱の製造方法であって、
複数種類の前記鉄鋼ダストを所定の混合比で混合して還元焙焼工程用調合原料とする調合工程と、
前記還元焙焼工程用調合原料に所定量の炭素質還元剤を添加して還元焙焼処理を施すことにより粗酸化亜鉛ダストを得る還元焙焼工程と、を含んでなり、
前記調合工程では、単位操業期間毎の前記還元焙焼工程用調合原料中の亜鉛と鉄との含有率比の、予め規定した規準操業期間毎におけるバラツキが、常に所定のバラツキ基準値未満となるように、前記規準操業期間内における前記単位操業期間毎の前記鉄鋼ダストの混合比を決定し、
前記還元焙焼工程では、前記還元焙焼工程用調合原料中の亜鉛含有量と鉄含有量に応じて、該亜鉛と該鉄と、を還元するのに必要となる前記炭素質還元剤の必要量を求め、該必要量の前記炭素質還元剤を添加する、酸化亜鉛鉱の製造方法。
In a zinc oxide ore manufacturing plant in which a plurality of types of iron and steel dust having different content ratios of zinc and iron are sequentially loaded, a plurality of types of iron and steel dust are sequentially selected from the iron and steel dust and used as a raw material. The manufacturing method of
A mixing step of mixing a plurality of kinds of the steel dust at a predetermined mixing ratio to prepare a reducing raw material for the roasting step,
A reducing roasting step of obtaining a crude zinc oxide dust by adding a predetermined amount of carbonaceous reducing agent to the raw material for the reducing roasting step and performing a reducing roasting treatment,
In the blending step, the variation in the content ratio of zinc and iron in the blending raw material for the reducing roasting step for each unit operation period, in each predetermined standard operation period, is always less than a predetermined variation reference value. So as to determine the mixing ratio of the steel dust for each unit operation period within the standard operation period,
In the reduction roasting step, the carbonaceous reducing agent necessary for reducing the zinc and the iron is required according to the zinc content and the iron content in the raw material for the reduction roasting step. A method for producing a zinc oxide ore, the amount of which is determined, and the required amount of the carbonaceous reducing agent is added.
前記単位操業期間が、1日であって、前記還元焙焼工程用調合原料中の亜鉛と鉄との前記含有率比は、以下で定義される1日平均のZn/Fe比であり、
前記規準操業期間が、1月であって、前記バラツキが、前記Zn/Fe比の標準偏差である、
請求項1に記載の酸化亜鉛鉱の製造方法。
Zn/Fe比=調合原料中の1日平均の亜鉛含有率(重量%)÷調合原料中の1日平均の鉄含有率(重量%)
The unit operation period is one day, the content ratio of zinc and iron in the reducing roasting step preparation raw material is a daily average Zn/Fe ratio defined below,
The standard operating period is one month, and the variation is a standard deviation of the Zn/Fe ratio,
The method for producing the zinc oxide ore according to claim 1.
Zn/Fe ratio=average daily zinc content (% by weight) in compounded raw material/average iron content (% by weight) in compounded raw material
前記バラツキ基準値が0.3である、請求項2に記載の酸化亜鉛鉱の製造方法。 The method for producing zinc oxide ore according to claim 2, wherein the variation reference value is 0.3. 前記粗酸化亜鉛ダストに湿式処理を施して、水溶性不純物を除去して粗酸化亜鉛ケーキを得る湿式工程と、
前記粗酸化亜鉛ケーキに乾燥加熱処理を施す乾燥加熱工程と、を更に備える、請求項1から3のいずれかに記載の酸化亜鉛鉱の製造方法。
A wet process of subjecting the crude zinc oxide dust to a wet treatment to remove water-soluble impurities to obtain a crude zinc oxide cake;
The method for producing zinc oxide ore according to any one of claims 1 to 3, further comprising a dry heating step of performing a dry heat treatment on the crude zinc oxide cake.
JP2018235619A 2018-12-17 2018-12-17 Manufacturing method of zinc oxide ore Active JP7099299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018235619A JP7099299B2 (en) 2018-12-17 2018-12-17 Manufacturing method of zinc oxide ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018235619A JP7099299B2 (en) 2018-12-17 2018-12-17 Manufacturing method of zinc oxide ore

Publications (2)

Publication Number Publication Date
JP2020097760A true JP2020097760A (en) 2020-06-25
JP7099299B2 JP7099299B2 (en) 2022-07-12

Family

ID=71105758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018235619A Active JP7099299B2 (en) 2018-12-17 2018-12-17 Manufacturing method of zinc oxide ore

Country Status (1)

Country Link
JP (1) JP7099299B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342648A (en) * 2002-05-30 2003-12-03 Sumitomo Metal Mining Co Ltd Process for operating rotary kiln used for reduction roasting of iron and steel dust
JP2015120948A (en) * 2013-12-20 2015-07-02 住友金属鉱山株式会社 Method for manufacturing zinc oxide ore
JP2018197383A (en) * 2017-05-24 2018-12-13 住友金属鉱山株式会社 Method for smelting oxide ore

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342648A (en) * 2002-05-30 2003-12-03 Sumitomo Metal Mining Co Ltd Process for operating rotary kiln used for reduction roasting of iron and steel dust
JP2015120948A (en) * 2013-12-20 2015-07-02 住友金属鉱山株式会社 Method for manufacturing zinc oxide ore
JP2018197383A (en) * 2017-05-24 2018-12-13 住友金属鉱山株式会社 Method for smelting oxide ore

Also Published As

Publication number Publication date
JP7099299B2 (en) 2022-07-12

Similar Documents

Publication Publication Date Title
JP6094467B2 (en) Method for producing zinc oxide ore
DE60117269T2 (en) METHOD FOR PRODUCING METALLIC IRON
CN101787434A (en) Method for recovering iron and tin-lead-zinc from magnetic separation waste residue by rotary kiln through deoxygenation, chloridization and oxidation
JP6098499B2 (en) Method for producing zinc oxide ore
CN101341265A (en) Separation of metal values in zinc leaching residues
JP2014062304A (en) Method for producing zinc oxide ore
US9011573B2 (en) Process for recycling of steel industry iron bearing by-products, pellet obtained in that process and use thereof
RU2675883C2 (en) Method and device for producing granulates
TWI426133B (en) Production method of pig iron
JP7151404B2 (en) Method for producing zinc oxide ore
JP6094468B2 (en) Method for producing zinc oxide ore
JP7099299B2 (en) Manufacturing method of zinc oxide ore
CN105506295A (en) Combined As removing and purifying method
JP6387868B2 (en) Method for producing zinc oxide ore
JP6123930B2 (en) Method for producing zinc oxide ore
JP7110830B2 (en) Granulation method of mixed raw materials
JP5770118B2 (en) Method for producing reduced iron
JP6090080B2 (en) Operation method of reduction roasting furnace
JP2023055525A (en) Method for producing iron-containing clinker
CN107760882B (en) The method for refining zinc in Electric Cooker comminuted steel shot dirt using industrial dust containing calcium oxide
JP7183502B2 (en) Method for producing zinc oxide ore
JP7172713B2 (en) Method for producing zinc oxide ore
JP2022110915A (en) Method for manufacturing zinc oxide ore
JP2022103730A (en) Method for producing zinc oxide ore
JP2022172512A (en) Method for producing zinc oxide ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210708

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220613

R150 Certificate of patent or registration of utility model

Ref document number: 7099299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150