JP2020096599A - Fish ectoparasite disinfestation method using low density hydrogen peroxide water - Google Patents

Fish ectoparasite disinfestation method using low density hydrogen peroxide water Download PDF

Info

Publication number
JP2020096599A
JP2020096599A JP2020009041A JP2020009041A JP2020096599A JP 2020096599 A JP2020096599 A JP 2020096599A JP 2020009041 A JP2020009041 A JP 2020009041A JP 2020009041 A JP2020009041 A JP 2020009041A JP 2020096599 A JP2020096599 A JP 2020096599A
Authority
JP
Japan
Prior art keywords
minutes
ppm
hydrogen peroxide
treatment
fish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020009041A
Other languages
Japanese (ja)
Inventor
徳高 平澤
Noritaka Hirasawa
徳高 平澤
和夫 川上
Kazuo Kawakami
和夫 川上
賢 長谷川
Masaru Hasegawa
賢 長谷川
良子 ▲高▼野
良子 ▲高▼野
Ryoko Takano
詩織 局
Shiori Tsubone
詩織 局
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoritsu Seiyaku Corp
Nissui Corp
Original Assignee
Nippon Suisan Kaisha Ltd
Kyoritsu Seiyaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Suisan Kaisha Ltd, Kyoritsu Seiyaku Corp filed Critical Nippon Suisan Kaisha Ltd
Publication of JP2020096599A publication Critical patent/JP2020096599A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/10Culture of aquatic animals of fish
    • A01K61/13Prevention or treatment of fish diseases
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catching Or Destruction (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

To provide a safe and effective disinfestation method of ectoparasites which live on body surfaces of fishes.SOLUTION: There is provided a method of disinfestation of ectoparasites living on marine fishes by using low density hydrogen peroxide water characterized in that immersion in hydrogen peroxide water of 30 ppm to 150 ppm for 15 minutes or more is executed. In the method of disinfestation of ectoparasites living on marine fishes by low density hydrogen peroxide water, a side surface of a fish live-box is covered with a sheet and sea water inside is held, and in the state, the hydrogen peroxide water is administered to the sea water in the fish live-box by an amount at which an average density of the hydrogen peroxide water in calculation is 30 ppm-150 ppm, and after passage of 15 minutes or more, the sheet is removed.SELECTED DRAWING: Figure 1

Description

本発明は、海産魚類(特に、養殖魚)の外部寄生虫の駆除剤及び寄生虫駆除方法に関する。詳細には、ハダムシ、エラムシなどの魚類の体表に寄生する単生虫の寄生を駆除する薬剤及び駆除方法に関する。 The present invention relates to an ectoparasite control agent and a parasite control method for marine fish (especially farmed fish). More specifically, the present invention relates to a drug and a method for exterminating parasites of monoparasites parasitizing the body surface of fish such as hadhid beetles and aphids.

魚類養殖において寄生虫症は安定した生産の妨げとなるために、非常に大きな問題となっている。寄生虫症の中でもとりわけ扁形動物門単生綱に属する単生虫や節足動物門甲殻綱のカリグスは多くの養殖魚で発生し最も大きな問題の一つとされる感染症である。単生虫では一般的にハダムシと呼ばれているものとエラムシと呼ばれているものがある。ハダムシと呼ばれている寄生虫は、単後吸盤類カプサラ科ネオベネデニア(Neobenedenia girellae)やベネデニア(Benedenia seriolae)等であり、カンパチ、ブリ、ヒラマサ、ヒレナガカンパチ等のブリ類や、シマアジ、スズキ、マダイ、キイロハギ、キジハタ、クエ、ヒラメ、トラフグ、スギ等多くの魚種に寄生することが知られている。現場での診断法としては、腹部の表皮発赤や鰭のスレ、眼球の白濁などの症状を伴うへい死のほかに、多量の寄生を受けた魚では、粘液の大量分泌により体表が白濁して見えることなどがあげられる。また、生簀網に体をこすりつけるような異常遊泳が頻繁に見られる場合もある。生簀網などに体をこすりつけることから症状が悪化し、寄生部位から病原菌の感染機会が増えるため、被害が拡大することもある。本虫の寄生が確認された場合は、水温に注意しながら3分間程度の淡水浴もしくは高濃度の過酸化水素水浴を行うことによって駆虫されている。 Parasitic diseases have become a very serious problem in fish farming because they interfere with stable production. Among parasitosis, monoparasites belonging to the genus Monophyllia of the genus Flatmophyta and caligus of the phylum Crustacea of the arthropod occur in many cultured fish and are one of the most serious infectious diseases. Among the monotonous insects, there are ones generally called hadem and some aphids. The parasites called Hadamushi are, for example, Neobenedenia girellae and Benedenia seriolae , which are single-sucker suckers Capsalaidae, such as amberjack , yellowtail, amberjack , yellowtail amberjack, striped horse mackerel , sea bass, red sea bream It is known to parasitize many fish species such as, yellow-bellied, pheasant grouper, queer, flounder, tiger puffer, and cedar. On-site diagnostic methods include dying with symptoms such as redness of the epidermis on the abdomen, threads on the fins, and cloudiness of the eyeball.In fish with a large amount of parasitism, the body surface becomes cloudy due to a large amount of mucus secreted. You can see things. In addition, abnormal swimming, such as rubbing the body on the cage net, may be frequently seen. Rubbing the body against the nets, etc. worsens the symptoms and increases the chances of infection by pathogenic bacteria from the parasitic site, which may spread the damage. When the parasites of the worm are confirmed, they are exterminated by taking a fresh water bath or a high-concentration hydrogen peroxide bath for about 3 minutes while paying attention to the water temperature.

エラムシと呼ばれている単生虫は、ブリ類に寄生する扁形動物門多後吸盤類ヘテラキシネ科ヘテラキシネ(Heteraxine heterocerca)、ゼウクサプタ(Zeuxapta japonica)、マダイに寄生する同ミクロコチレ科ビバギナ(Bivagina tai)、クロソイに寄生する同ミクロコチレ科ミクロコチレ(Microcotyle sebastis)、カサゴに寄生する同科ミクロコチレ(Microcotyle sebastisci)、トラフグに寄生する同ディクリドフォラ科ヘテロボツリウム(Heterobothrium okamotoi)、ヒラメに寄生する同科ネオヘテロボツリウム(Neoheterobothrium hirame)、などである。現場での診断法としては、鰓の退色、魚の貧血、肥満度の低下などが挙げられる。また、生簀網に体をこすりつけるような異常遊泳が頻繁に見られる場合もある。生簀網などに体をこすりつけることから体表のスレ部位から病原菌の感染機会が増えるため、被害が拡大することもある。本虫の寄生が確認された場合は、水温に注意しながら3分間程度の高濃度の過酸化水素水浴を行うことによって駆虫されている。
いずれの場合も、魚の移し変え等処理に要する労力及び魚に与えるストレスが大きいため、より簡便な治療方法が強く望まれている。
また、最近になって養殖マダイの鰓におびただしい数のラメロジスカス(Lamellodiscus spp.)の寄生が認められる場合があり、宿主への影響が懸念されている。本虫もエラムシと呼ばれているが、単後吸盤類ディプレクタニダ科(Diplectanidae)ラメロジスカス属に分類される。本虫に対する駆虫法は確立されていない。
The monoworms known as aphids are Heterotaxine heterocerca , which is a flatterinary phylum of the yellowtail parasitoid , Heteraxine heterocerca, Zeuxapta japonica , and Vivagina tai , which are parasitic on red sea bream. Microcotyle sebastis , which parasitizes black soy , Microcotyle sebastisci , which parasitizes scorpionfish, Heterobothrium okamotoi , which is parasitized by trufflefish, Neoheterobotulium , which parasitizes flounder ( Neoheterobothrium hirame ), and so on. On-site diagnostic methods include gill fading, fish anemia, and reduced obesity. In addition, abnormal swimming, such as rubbing the body on the cage net, may be frequently seen. Since the body is rubbed against a cage net, etc., the chances of infection with pathogenic bacteria increase from the thread surface of the body surface, and the damage may spread. When the parasite of the worm is confirmed, it is exterminated by performing a high-concentration hydrogen peroxide water bath for about 3 minutes while paying attention to the water temperature.
In either case, the labor required for processing such as transfer of fish and the stress applied to the fish are large, so that a simpler treatment method is strongly desired.
Further, recently, a large number of Lamellodiscus spp. parasites may be found in the gills of cultured red sea bream, and their influence on the host is concerned. This insect is also called aphid, but it is classified into the genus Lamelodiscus of the single post-sucker diplectanidae (Diplectanidae). Anthelmintic methods for this insect have not been established.

節足動物門甲殻綱のカリグスと呼ばれている寄生虫は、シマアジに寄生するカリグス・ロンギペディス(Caligus longipedis)、トラフグ類に寄生するシュードカリグス・フグ(Pseudocaligus fugu)、サケ科魚類やボラ、ティラピアに寄生するカリグス・オリエンタリス(Caligus orientalis)などである。現場での診断法や寄生を受けた魚への影響、駆虫法などはハダムシと同様である。但し、駆虫時の淡水浴や過酸化水素水浴の処理時間は20分程度でハダムシより長い。 Parasites known as arthropod crustacean caligus are Caligus longipedis that parasitizes striped horse mackerel, Pseudodocaligus fugu that parasitize tiger puffers, salmonids and mullets, Examples include Caligus orientalis, which is parasitic on tilapia. The on-site diagnostic method, the effect on the infested fish, and the anthelmintic method are the same as for the beetle. However, it takes about 20 minutes to treat freshwater baths and hydrogen peroxide baths for deworming, which is longer than that of beetles.

ブリ類で発生しているハダムシは、ベネデニア・セリオレとネオベネデニア・ジレレである。また、ネオベネデニア・ジレレはブリ類以外の多くの海産魚でその寄生が報告されている。現場での駆虫法は、過酸化水素水剤(株式会社 片山化学工業研究所、商品名マリンサワー及び保土谷化学工業株式会社、商品名サカナガード)による薬浴や淡水浴が主流である。日本では、過酸化水素剤はスズキ目魚類のベネデニア・セリオレとマダイのビバギナ・タイ(エラムシ)について動物用医薬品として承認されている。これら寄生虫に対する用法・用量は、過酸化水素濃度300ppmで3分である。カンパチ養殖では、ベネデニア・セリオレよりネオベネデニア・ジレレによる被害が深刻で、過酸化水素剤はカンパチのネオベネデニア・ジレレ駆虫にも使われている。しかし、この用量・用法ではネオベネデニア・ジレレに対し駆虫効果が低く、現場では300ppmで5分から6分の薬浴が採用されている。しかも、本剤は、高水温時にカンパチに対する毒性が高く、酸素欠乏が原因と考えられる死亡事故が発生する場合がある。
なお、最近になって、過酸化水素剤は、フグ目魚類のネオベネデニア・ジレレとシュードカリグス・フグについても動物用医薬品として承認され、その用量・用法は300ppmで20分である。
The beetles that occur in yellowtail are Benedenia ceriole and Neobenedenia gillere. In addition, Neovenedia gillere has been reported to be parasitic on many marine fish other than yellowtail. The on-site anthelmintic method is mainly a medicinal bath or a fresh water bath using a hydrogen peroxide solution (Katayama Chemical Industry Co., Ltd., trade name Marin Sour and Hodogaya Chemical Co., Ltd., trade name Sakura Guard). In Japan, hydrogen peroxide is approved as a veterinary drug for the perch fish Benedenia seriole and red sea bream Vivagina tai (aphid). The dosage and administration of these parasites is 3 minutes at a hydrogen peroxide concentration of 300 ppm. In amberjack aquaculture, the damage caused by Neo-Benedenia gillere is more serious than that of Benedenia ceriole, and the hydrogen peroxide is also used for the aphid Neo-benedenia gillerea. However, this dose/dosage has a low anthelmintic effect against Neobenedonia gillere, and a medicinal bath of 300 to 5 minutes at 300 ppm is used in the field. Moreover, this drug is highly toxic to amberjack at high water temperature, which may cause fatal accidents that are considered to be caused by oxygen deficiency.
Recently, the hydrogen peroxide agent has been approved as an animal drug for the puffer fishes Neobenedonia girelle and Pseudocaligus puffer, and its dosage and usage is 300 ppm for 20 minutes.

特許文献1には海水系養殖魚の外部寄生虫駆除方法として、濃度200〜3000ppmの過酸化水素水で1〜20分間薬浴する方法が記載されている。特許文献2には、淡水魚のギロダクチルスを駆除するために、濃度10〜100ppmの過酸化水素水で30〜120分間薬浴する方法が記載されている。特許文献3には、トラフグのヘテロボツリウム症の予防のために、濃度400〜2000ppmの過酸化水素水で20〜120分間薬浴する方法が記載されている。 Patent Document 1 describes, as an ectoparasite control method for seawater-cultured fish, a method in which a hydrogen peroxide solution having a concentration of 200 to 3000 ppm is used for a chemical bath for 1 to 20 minutes. Patent Document 2 describes a method of eradicating gyrodactylus of freshwater fish by subjecting a hydrogen peroxide solution having a concentration of 10 to 100 ppm to a chemical bath for 30 to 120 minutes. Patent Document 3 describes a method for preventing the heterobothurosis of troughfish by bathing with hydrogen peroxide solution having a concentration of 400 to 2000 ppm for 20 to 120 minutes.

特公平7−51028号Japanese Patent Publication No. 7-51028 特許2575240号Patent No. 2575240 特許2817753号Patent 2817753

本発明は、より安全で効果が高い魚類の体表や鰓に寄生する外部寄生虫の駆除方法を提供することを課題とする。 An object of the present invention is to provide a safer and highly effective method for exterminating ectoparasites that parasitize the body surface and gills of fish.

発明者らは、過酸化水素水を用いる薬浴について研究する中で、150ppm以下の低濃度の過酸化水素水を用いることにより、従来の300ppm以上の高濃度の過酸化水素を用いた場合よりも、寄生虫に大きなダメージを与えることができ、より完全に駆除することができることを見出し、本発明を完成させた。また、低濃度過酸化水素水を散布法(生け簀等に直接薬剤を撒く方法)と組み合わせることで、これまでの既存の方法である少ない量の海水で薬浴することにより起こる酸欠事故を起こさず、又、魚を寄せて取り上げるという多大な作業を大幅に軽減できるという、これまでの既存の方法と比較して簡便で安全な優れた駆虫方法を見出した。
本発明は、(1)〜(5)の海産魚類の外部寄生虫を駆除する方法を要旨とする。
(1)30ppm〜150ppmの濃度の過酸化水素水に15分間以上浸漬することを特徴とする低濃度過酸化水素水により海産魚類の外部寄生虫を駆除する方法。
(2)生け簀の網の少なくとも側面をシートで被い、内部の海水が保持される状態にして、生け簀内の海水に過酸化水素水を計算上平均濃度が30ppm〜150ppmになる量投入し、15分間以上経過後、シートを除去することを特徴とする(1)の方法。
(3) 外部寄生虫が、扁形動物門単生綱、又は節足動物甲殻綱に属する寄生虫である(1)又は(2)の方法。
(4)外部寄生虫が単生綱単後吸盤類、多後吸盤類、又は節足動物門甲殻綱カリグス科の寄生虫である(1)又は(2)の方法。
(5)外部寄生虫が単生綱単後吸盤類のカプサラ科、又はディプレクタニダ科、多後吸盤類のヘテラキシネ科、ミクロコチレ科、ディクリドフォラ科又はネオヘテロボツリウム科、あるいは、節足動物門甲殻綱カリグス科に属する寄生虫である(1)又は(2)の方法。(6)外部寄生虫がベネデニア・セリオレ、ベネデニア・エピネフェリ、ベネデニア・ホシナイ、ベネデニア・セキイ、ネオベネデニア・ジレレ、ネオベネデニア・コンゲリ、ラメロジスカス、ゼウクサプタ・ヤポニカ、ビバギナ・タイ、ヘテラキシネ・ヘテロセルカ、ミクロコチレ・セバスチス、ミクロコチレ・セバスチスキ、ヘテロボツリウム・オカモトイ、又はネオヘテロボツリウム・ヒラメ、カリグス・ロンギペディス、シュードカリグス・フグ、カリグス・オリエンタリスである(1)又は(2)の方法。
(7)魚類がスズキ目に属する魚類である(1)ないし(6)いずれかの方法。
(8)魚類がブリ類又はタイ類の魚類である(7)の方法。
(9)浸漬時間が15分間〜6時間である(1)又は(2)の方法。
(10)浸漬時間が15分間〜2時間である(1)又は(2)の方法。
The inventors have been studying a chemical bath using hydrogen peroxide solution, and by using a low concentration hydrogen peroxide solution of 150 ppm or less, compared with the conventional case of using a high concentration hydrogen peroxide of 300 ppm or more. Also, they found that the parasites can be greatly damaged and can be completely exterminated, and the present invention was completed. In addition, by combining low-concentration hydrogen peroxide solution with the spray method (method of directly spraying chemicals on cages, etc.), an oxygen deficiency accident caused by bathing with a small amount of seawater, which is the existing method so far, will occur. Moreover, the present inventors have found a superior and simpler and safer anthelmintic method as compared with the existing methods, which can significantly reduce the enormous work of collecting and picking up fish.
The gist of the present invention is the method for controlling ectoparasites of marine fish according to (1) to (5).
(1) A method for exterminating ectoparasites of marine fish with low-concentration hydrogen peroxide water, which comprises immersing in hydrogen peroxide water having a concentration of 30 ppm to 150 ppm for 15 minutes or more.
(2) At least the side surface of the cage net is covered with a sheet so that the internal seawater is retained, and hydrogen peroxide water is added to the seawater in the cage to calculate the average concentration of 30 ppm to 150 ppm, The method according to (1), wherein the sheet is removed after 15 minutes or more have elapsed.
(3) The method according to (1) or (2), wherein the ectoparasite is a parasite belonging to the genus Monophyta of the phylum Monophyta or Crustacea of arthropods.
(4) The method according to (1) or (2), wherein the ectoparasite is a monophyletic single-posterior sucker, a multi-posterior sucker, or a parasite of the arthropod Crustacea Caligaceae.
(5) The ectoparasites are Monophylla, Capsularidae, which is a single post-sucker, or Diplextanidae, Heteraxineaceae, which is a multi-poster sucker, Micrococcidiaceae, Dicridophora or Neoheterobothurium, or arthropod Crustacea. The method according to (1) or (2), which is a parasite belonging to the family Caligaceae. (6) Ectoparasites are Benedenia seriole, Benedenia epinepheri, Benedenia Hoshinai, Benedenia Sekii, Neobenedenian gillere, Neobenediania congeri, Lamerodiscus, Zeuxapta japonica, Vivagina tai, Heteraxinechiraceco, heterocerco, heterocerca, -The method of (1) or (2), which is Sebastiski, Heterobothurium okamotoi, or Neoheterobothurium flounder, Caligus longipedis, Pseudocalligues puffer, and Caligus orientalis.
(7) The method according to any one of (1) to (6), wherein the fish belongs to the order Perciformes.
(8) The method according to (7), wherein the fish is a yellowtail or Thai fish.
(9) The method of (1) or (2), wherein the immersion time is 15 minutes to 6 hours.
(10) The method according to (1) or (2), wherein the immersion time is 15 minutes to 2 hours.

本発明の駆除方法を用いることにより、外部寄生虫をより確実に、また、魚に悪影響を及ぼすことなく駆除することができる。特に養殖事業に大きな影響を及ぼすベネデニア・セリオレとネオベネデニア・ジレレ、ゼウクサプタ・ヤポニカ、ビバギナ・タイ、ラメロジスカス等の外部寄生虫を効果的に駆除することができる。 By using the extermination method of the present invention, it is possible to exterminate ectoparasites more reliably and without adversely affecting the fish. In particular, it is possible to effectively control ectoparasites such as Benedenia seriole, Neobenedonia girere, Zeuxapta japonica, Vivagina Thailand, and Lamelogiscus that have a great influence on the aquaculture business.

実施例1における、過酸化水素水の抗Neobenedenia girellae 作用を示す図である。FIG. 3 is a graph showing the anti-Neobenedenia girellae action of hydrogen peroxide solution in Example 1. 実施例1における、過酸化水素水(300ppm・3分処理)の抗Neobenedenia girellae 作用を示す写真である。A:対照区、B:処理後海水に戻した直後、C:処理後海水に戻して3分後、D:処理後海水に戻して15分後。3 is a photograph showing the anti-Neobenedenia girellae action of hydrogen peroxide solution (300 ppm, 3 minutes treatment) in Example 1. A: Control area, B: Immediately after returning to seawater after treatment, C: Returning to seawater after treatment for 3 minutes, D: Returning to seawater after treatment for 15 minutes. 実施例1における、過酸化水素水(300ppm・6分処理)の抗Neobenedenia girellae 作用を示す写真である。A:処理後海水に戻した直後、B:処理後海水に戻して30分後、C:処理後海水に戻して60分後。3 is a photograph showing the anti-Neobenedenia girellae action of hydrogen peroxide solution (300 ppm, 6 minutes treatment) in Example 1. A: Immediately after returning to seawater after treatment, B: 30 minutes after returning to seawater after treatment, C: 60 minutes after returning to seawater after treatment. 実施例1における、過酸化水素水(75ppm 30分・60分処理)の抗Neobenedenia girellae 作用を示す写真である。A:30分の処理後海水に戻した直後、B:60分の処理後海水に戻した直後、C:60分の処理後海水に戻して60分後、D:60分の処理後海水に戻して10時間後(D-1:剥離固体、D-2:定着固体)。3 is a photograph showing the anti-Neobenedenia girellae action of hydrogen peroxide solution (75 ppm, 30 minutes/60 minutes treatment) in Example 1. A: Immediately after returning to seawater after treatment for 30 minutes, B: Immediately after returning to seawater after treatment for 60 minutes, C: Returning to seawater after treatment for 60 minutes, 60 minutes later, D: After treatment to seawater for 60 minutes 10 hours after returning (D-1: peeled solid, D-2: fixed solid). 実施例2における、300ppmと75ppmの過酸化水素水の抗Neobenedenia girellae 作用を示す図である。FIG. 7 is a graph showing the anti-Neobenedenia girellae action of hydrogen peroxide water of 300 ppm and 75 ppm in Example 2. 実施例2における、各区の影響を受けたNeobenedenia girellaeを示す写真である。A:300ppm過酸化水素で60分処理後海水に戻して30分後、B:300ppm過酸化水素で60分処理後海水に戻して30分後、C:75ppm過酸化水素で60分処理後海水に戻して30分後。8 is a photograph showing Neobenedenia girellae affected by each section in Example 2. A: After treated with 300ppm hydrogen peroxide for 60 minutes, returned to seawater for 30 minutes, B: After treated with 300ppm hydrogen peroxide for 60 minutes, returned to seawater for 30 minutes, C: After treated with 75ppm hydrogen peroxide for 60 minutes, seawater 30 minutes after returning to. 実施例6における、300ppmと75ppmの過酸化水素水処理が魚のNeobenedenia girellae再感染に及ぼす影響を示す図である。It is a figure in Example 6 which shows the influence which 300 ppm and 75 ppm hydrogen peroxide water treatment gives to Neobenedenia girellae reinfection of a fish. 実施例7における、過酸化水素水の抗Benedenia seriolae 作用を示す図である。FIG. 8 is a graph showing the anti-Benedenia seriolae action of hydrogen peroxide solution in Example 7. 実施例7における、過酸化水素処理の影響を受けたBenedenia seriolaeを示す写真である。図中、矢印は固着盤の萎縮と剥離個体を示す。A:300ppm過酸化水素で3分間処理した直後、B:300ppm過酸化水素で3分間処理後海水に戻して2時間後、C:75ppm過酸化水素で30分間処理直後、D:75ppm過酸化水素で30分間処理後海水に戻して2時間後。9 is a photograph showing Benedenia seriolae affected by hydrogen peroxide treatment in Example 7. In the figure, arrows indicate atrophy of the fixation disc and detached individuals. A: Immediately after treatment with 300ppm hydrogen peroxide for 3 minutes, B: Treatment with 300ppm hydrogen peroxide for 3 minutes, then returning to seawater for 2 hours, C: Immediately after treatment with 75ppm hydrogen peroxide for 30 minutes, D: 75ppm hydrogen peroxide After treatment for 30 minutes, return to seawater for 2 hours. 実施例9における、300ppmと75ppmの過酸化水素水の抗Zeuxapta japonica 作用を示す写真である。図中、印は固着盤の萎縮を示す。A:300ppm過酸化水素で6分処理直後、B:75ppm過酸化水素処理後10分間経過後。9 is a photograph showing the anti-Zeuxapta japonica action in hydrogen peroxide solutions of 300 ppm and 75 ppm in Example 9. In the figure, marks indicate atrophy of the fixation disc. A: Immediately after 6 minutes treatment with 300ppm hydrogen peroxide, B: 10 minutes after 75ppm hydrogen peroxide treatment. 実施例9における、300ppmと75ppm、50ppmの過酸化水素水の抗Zeuxapta japonica 作用を示す図である。FIG. 9 is a graph showing the anti-Zeuxapta japonica action of hydrogen peroxide solutions of 300 ppm, 75 ppm and 50 ppm in Example 9.

本発明の対象となる寄生虫としては、魚類の扁形動物門単生綱に属する単生虫(一般的にハダムシやエラムシと呼ばれる)や節足動物門甲殻綱に属するカリグスなどが挙げられる。ハダムシと呼ばれる寄生虫は単生虫類ベネデニア亜科等の海水魚に寄生するものが挙げられる。ベネデニア亜科としては、例えばベネデニア・セリオレ(Benedenia seriolae)、ベネデニア・エピネフェリ(Benedenia epinepheli)、ベネデニア・ホシナイ(Benedenia hoshinai)、ベネデニア・セキイ(Benedenia sekii)等のベネデニア(Benedenia)及びネオベネデニア・ジレレ(Neobenedeniagirellae)、ネオベネデニア・コンゲリ(Neobenedenia congeri)等のネオベネデニア(Neobenedenia)が挙げられる。エラムシと呼ばれている単生虫は、多後吸盤類に属するヘテラキシネ科ヘテラキシネ・ヘテロセルカ(Heteraxine heterocerca)、ゼウクサプタ・ヤポニカ(Zeuxapta japonica)、ミクロコチレ科ビバギナ・タイ(Bivagina tai)、ミクロコチレ・セバスチス(Microcotyle sebastis)、ミクロコチレ・セバスチスキ(Microcotyle sebastisci)、ディクリドフォラ科ヘテロボツリウム・オカモトイ(Heterobothrium okamotoi)、ネオヘテロボツリウム・ヒラメ(Neoheterobothrium hirame)などである。また、エラムシと呼ばれる寄生虫は単後吸盤類に分類されるものもあり、ラメロジスカス属ラメロジスカス(Lamellodiscus spp.)が挙げられる。カリグスはウオジラミ科に属するカリグス・ロンギペディス(Caligus longipedis)、シュードカリグス・フグ(Pseudocaligus fugu)、カリグス・オリエンタリス(Caligus orientalis)、などが挙げられる。特にネオベネデニア、ベネデニア、ゼウクサプタ・ヤポニカ、ビバギナ・タイ及びラメロジスカス等に有効である。 Examples of the parasites to which the present invention is applied include monoparasites (generally referred to as wasps and aphids) belonging to the monophytes of the flatworms of the fishes, caligus belonging to the crustaceans of the arthropods. Examples of parasites called hadhid insects include those that parasitize marine fish such as the monophylet Benedenia subfamily. The Benedenia subfamily, e.g. Benedenia-Seriore (Benedenia seriolae), Benedenia-Epineferi (Benedenia epinepheli), Benedenia-Hoshinai (Benedenia hoshinai), Benedenia-Sekii (Benedenia sekii) such Benedenia (Benedenia) and Neobenedenia-Jirere (Neobenedeniagirellae ), and Neobenedenia-Kongeri (Neobenedenia congeri) such Neobenedenia (Neobenedenia) is. Solitary insects are called Eramushi is, Heterakishine Department Heterakishine-Heteroseruka (Heteraxine heterocerca) belonging to the multi-after sucker class, Zeukusaputa Japonica (Zeuxapta japonica), Mikurokochire family Bibagina, Thailand (Bivagina tai), Mikurokochire-Sebasuchisu (Microcotyle sebastis) , Microcotyle sebastisci ( Microcotyle sebastisci ), Diclidophoridae, Heterobothrium okamotoi ( Heterobothrium okamotoi ), Neoheterobothrium hirame ( Neoheterobothrium hirame ). In addition, some parasites called aphids are classified into single post-suckers, and include the genus Lamelodiscus ( Lamellodiscus spp.). Examples of calligraphy include Caligus longipedis , Pseudocaligus fugu , Caligus orientalis , and the like belonging to the family whitefly. In particular, it is effective for Neo-Benedenia, Benedenia, Zeuxapta japonica, Vivagina-Thailand and Lamelogiscus.

本発明において海産魚類とは、寄生虫を駆除する必要が生じる養殖魚や観賞魚として取り扱われている海産魚種である。中でも特に産業上重要なのは、養殖魚であり、例えば、フグ目フグ科のトラフグ、スズキ目ハタ科のハタ、スズキ目シクリッド科のティラピア、など、ハダムシやエラムシなどの魚類寄生虫の寄生が知られている魚種、あるいは魚類寄生虫の寄生の可能性がある魚種において本発明の薬剤を予防的あるいは治療的に用いることができる。
本発明の対象となる魚種には、海水の中で生存している全ての年齢の養殖魚、水族館や商業の鑑賞魚が含まれる。特に、養殖魚では、スズキ目、カレイ目、フグ目、ニシン目、ウナギ目の魚類であり、ブリ類、ハタ類、タイ類、ヒラメ類、フグ類、サケ類、ウナギ類の魚である。具体的には、カンパチ、ヒレナガカンパチ、ブリ(ハマチ)、ヒラマサ、マアジ、シマアジ、マサバ、スズキ、マダイ、イシダイ、イシガキダイ、ティラピア、スギ、キジハタ、クエ、マハタ、チャイロマルハタ、ヤイトハタ、サラサハタ、スジアラ、タマカイ、カサゴ、ヒラメ、マツカワ、ホシガレイ、ターボット、オヒョウ、トラフグ、カワハギ、キイロハギ、ウマヅラハギ、ニジマス、大西洋サケ、ギンザケ、ベニザケ、などが例示される。特にカンパチ、ブリ、ハタ類、コビア、スナッパー、バラマンディ、ティラピア、スズキなどで、ハダムシの被害が多く報告されている。
In the present invention, the marine fish is a marine fish species that is treated as aquaculture fish or ornamental fish that requires the control of parasites. Among them, farmed fish are of particular industrial importance, and for example, parasitoids of fish parasites such as beetles and aphids are known, such as the puffer fish of the pufferfish pufferfish, the grouper of the perciform grouper, the tilapia of the perch family Cichlid family. The agents of the present invention can be used prophylactically or therapeutically in existing fish species, or in fish species that may be infested with fish parasites.
Fish species covered by the present invention include aquaculture fish of all ages, aquarium and commercial ornamental fish that survive in seawater. Particularly, in the aquacultured fish, the fishes are Perciformes, Flatfishes, Pufferidae, Herringidae and eels, such as yellowtails, groupers, Thais, flounders, puffers, salmon and eels. Specifically, amberjack, amberjack, yellowtail, yellowtail, kingfish, horse mackerel, striped horse mackerel, chub mackerel, perch, red sea bream, stone bream, stone bream, tilapia, cedar, pheasant grouper, queer, mahata, chilomaruhata, yaitohata, sarasahata, sujiara, tamaira , Scorpionfish, flounder, matsukawa, hoshigarei, turbot, halibut, tiger pufferfish, riverfish, yellowfish, horsetail, rainbow trout, Atlantic salmon, coho salmon, sockeye salmon, and the like. In particular, aphid, yellowtail, grouper, covia, snapper, barramundi, tilapia, and Suzuki have been reported to be the major victims of beetles.

本発明で用いる過酸化水素水は特別なものではなく、普通に市販されているものでよい。35%溶液などが販売されているので、規定の濃度に希釈して薬浴剤として用いる。海産魚類においては従来300ppm以上の濃度で薬浴すべきであると考えられており、そのように実施されてきた。しかし、本発明は30ppm〜150ppm、好ましくは30〜100ppm、さらに好ましくは30〜90ppm、30〜80ppm、37.5〜75ppmの低濃度で薬浴を行う。薬浴時間は15分以上であることが好ましい。魚種にもよるが、低濃度であれば、長時間薬浴しても、魚体に悪影響は見られないので、特に上限はない。実施例5に示すように150ppmで6時間では、摂餌不良などの症状はあったが、300ppmのように死亡するようなことはなく、75ppmでは全く異常は観察されなかった。しかし、魚体に不必要な負担をかける必要はなく、作業効率の面からは、15〜120分、好ましくは15〜90分間、より好ましくは30〜60分間である。したがって、30〜150ppmで15分間〜6時間が好ましく、さらに15分間〜2時間が好ましい。あるいは、30〜100ppmで15分間〜6時間が好ましく、さらに15分間〜2時間が好ましい。
例えば、単後吸盤類およびビバギナを除く多後吸盤類の寄生虫は37.5〜75ppmが最も好ましく、ビバギナでは75〜100ppmが好ましい。
この薬浴を、寄生虫感染が疑われたら速やかに行う。薬浴は1回行えばよい。その後も飼育中に寄生虫感染が疑われた時に速やかに1回実施すればよい。本明細書中でppmは水中の過酸化水素の量を重量/容量で表している。
The hydrogen peroxide solution used in the present invention is not special, and may be a commercially available one. Since a 35% solution is sold, dilute it to the specified concentration and use it as a medicated bath agent. For marine fish, it has been conventionally considered that a medicinal bath should be carried out at a concentration of 300 ppm or more, and such practice has been carried out. However, in the present invention, the chemical bath is carried out at a low concentration of 30 ppm to 150 ppm, preferably 30 to 100 ppm, more preferably 30 to 90 ppm, 30 to 80 ppm, 37.5 to 75 ppm. The medicinal bath time is preferably 15 minutes or more. Although it depends on the fish species, if the concentration is low, no adverse effect is seen on the fish body even after long-term drug bathing, so there is no particular upper limit. As shown in Example 5, at 150 ppm for 6 hours, there were symptoms such as poor feeding, but there was no death like at 300 ppm, and no abnormality was observed at 75 ppm. However, it is not necessary to apply an unnecessary burden to the fish body, and from the viewpoint of work efficiency, it is 15 to 120 minutes, preferably 15 to 90 minutes, more preferably 30 to 60 minutes. Therefore, 30 minutes to 150 ppm is preferable for 15 minutes to 6 hours, and further 15 minutes to 2 hours is preferable. Alternatively, 30 minutes to 100 ppm is preferable for 15 minutes to 6 hours, and further 15 minutes to 2 hours is preferable.
For example, 37.5 to 75 ppm is most preferable for parasites of single-posterior suckers and multi-posterior suckers excluding vivagina, and 75 to 100 ppm is preferable for vivagina.
If you suspect a parasite infection, take this medicine bath immediately. You only have to take the medicine bath once. After that, if parasite infection is suspected during breeding, it may be carried out once once. In the present specification, ppm represents the amount of hydrogen peroxide in water by weight/volume.

従来の高濃度で行う薬浴に比べて、本発明の低濃度で行う薬浴の寄生虫駆除効果が高い理由は実施例の結果から以下のように説明することができる。
水温25℃で過酸化水素濃度300ppm・6分でネオベネデニア・ジレレを処理すると虫体は明らかに萎縮するが、宿主に定着するための吸盤(固着盤)は萎縮・変形しない。そのため、本虫はシャーレ壁面に吸着したまま留まり、処理後に虫が徐々に回復してしまう(実施例1)。宿主体表でも同様なことが起きていると考えられ、駆虫効果が不安定な原因となる。実際、過酸化水素濃度300ppm・6分の条件で、ネオベネデニア・ジレレに感染したカンパチを薬浴すると駆虫率は59.1%であり、その駆虫効果に限界があった(実施例3)。
一方、75ppmや50ppmの低濃度でネオベネデニア・ジレレを30から60分間処理した場合、虫体の萎縮度合は弱いが、吸盤も萎縮・変形しシャーレ壁面から剥離することを見出した。さらに、処理後のネオベネデニア・ジレレの萎縮も持続した(実施例1)。
高濃度の過酸化水素濃度(300ppm)で60分間ネオベネデニア・ジレレを処理しても、吸盤の萎縮・変形(固着盤)は30%に留まった。したがって、高濃度より75ppmや50ppmの低濃度の方がネオベネデニア・ジレレの吸盤を萎縮・変形させる作用が高いことが明らかになった(実施例2)。
水温25℃で過酸化水素濃度75ppm・30分の条件下でネオベネデニア・ジレレに感染したカンパチを薬浴した。その駆虫率は94.3%であった。また、50ppm・30分処理時の駆虫率は86.6%であった。したがって、ネオベネデニア・ジレレの駆虫は、固着盤を萎縮・変形させることが重要であり、それにより高い駆虫効果が安定して得られることが明らかになった(実施例3)。さらに、実施例4では、過酸化水素濃度37.5ppmで30分又は60分間の条件下でも、高い駆虫効果が得られることを確認した。低濃度だと、ネオベネデニア・ジレレの固着盤が萎縮・変形し宿主から剥離するため、処理後本虫が回復する要因がなくなり、安定的な駆虫効果を望める。
The reason why the effect of controlling the parasites of the chemical bath of the present invention at a low concentration is higher than that of the conventional chemical bath of a high concentration can be explained as follows from the results of Examples.
Treatment of Neobenediania gillere with a hydrogen peroxide concentration of 300 ppm for 6 minutes at a water temperature of 25° C. apparently causes the worms to atrophy, but the sucker (fixation disc) for fixing to the host does not atrophy or deform. Therefore, the worm remains adsorbed on the wall surface of the petri dish, and the worm gradually recovers after the treatment (Example 1). It is thought that the same thing is happening on the surface of the host body, which causes the anthelmintic effect to be unstable. In fact, when the amberjack infected with Neobenedenia gillere was subjected to a medicated bath with a hydrogen peroxide concentration of 300 ppm for 6 minutes, the anthelmintic rate was 59.1%, and the anthelmintic effect was limited (Example 3).
On the other hand, it was found that, when Neobenediania gillere was treated at a low concentration of 75 ppm or 50 ppm for 30 to 60 minutes, the atrophy of the worms was weak, but the sucker also atrophied and deformed to separate from the wall surface of the petri dish. Further, the atrophy of Neovenedia gillerea after the treatment was continued (Example 1).
Even when Neovenedian gillere was treated with a high concentration of hydrogen peroxide (300 ppm) for 60 minutes, the atrophy/deformation (sticking disc) of the suction cup remained at 30%. Therefore, it was revealed that a low concentration of 75 ppm or 50 ppm was more effective than a high concentration in atrophing and deforming the suction cup of Neobenediania gillere (Example 2).
Amberjack infected with Neobenedenia gillere was subjected to a chemical bath at a water temperature of 25° C. and a hydrogen peroxide concentration of 75 ppm for 30 minutes. The anthelmintic rate was 94.3%. The anthelmintic rate after treatment at 50 ppm for 30 minutes was 86.6%. Therefore, it was clarified that it is important for the anthelmintic worm of Neobenedenia gillere to atrophy and deform the fixation disc, so that a high anthelmintic effect can be stably obtained (Example 3). Furthermore, in Example 4, it was confirmed that a high anthelmintic effect was obtained even under the condition of hydrogen peroxide concentration of 37.5 ppm for 30 minutes or 60 minutes. When the concentration is low, the fixed disc of Neobenediania gillere atrophies/deforms and detaches from the host, so there is no factor for the main insect to recover after the treatment, and a stable anthelmintic effect can be expected.

養殖現場での過酸化水素剤による薬浴は、約200tのプール状のシートに過酸化水素濃度300ppm溶液を準備し、そこに魚を収容することで実施している。過酸化水素濃度150ppm以上でカンパチを薬浴すると、その刺激からか開始1から3分で魚が上下に激しく遊泳した(実施例5)。夏季の高水温時に酸素欠乏が原因と考えられる死亡事故が発生する場合があり、本試験で観察された激しい遊泳がその原因の一つであると考えられた。一方、カンパチを過酸化水素濃度75ppmで6時間浸漬した場合、遊泳や翌日の摂餌行動などに悪影響を及ぼさなかった(実施例5)。これらの結果から、過酸化水素濃度150ppm未満、特に75ppm以下であれば確実にカンパチに悪影響を与えず薬浴できることが明らかとなった。また、高濃度での薬浴処理はカンパチの体表に損傷を与えネオベネデニア・ジレレの再感染を受けやすくすること、低濃度での処理は体表に損傷を与えないことなども明らかとなった(実施例6)。 The chemical bath with a hydrogen peroxide agent at the aquaculture site is carried out by preparing a pool-shaped sheet of about 200 tons with a hydrogen peroxide concentration of 300 ppm and storing the fish there. When the amberjack was subjected to a medicinal bath with a hydrogen peroxide concentration of 150 ppm or more, the fish vigorously swam up and down 1 to 3 minutes after the stimulation (Example 5). A fatal accident that may be caused by oxygen deficiency may occur at high water temperature in summer, and one of the causes was considered to be the intense swimming observed in this test. On the other hand, when amberjack was soaked in a hydrogen peroxide concentration of 75 ppm for 6 hours, it did not adversely affect swimming and feeding behavior on the next day (Example 5). From these results, it was clarified that a hydrogen peroxide concentration of less than 150 ppm, particularly 75 ppm or less, can reliably perform a chemical bath without adversely affecting amberjack. It was also clarified that high-concentration drug bath treatment damages the amberjack surface and makes it susceptible to reinfection with Neobenedenia gillerii, and low-concentration treatment does not damage the body surface. (Example 6).

ノルウェーのサケ養殖での薬浴法は、生簀側面をシートで囲むスカート法が採用されている。本法は、魚を狭い薬浴槽に移す必要がないため、飼育環境中の溶存酸素を確保できる。また、酸素や空気通気により環境水中の溶存酸素を保つことも可能である。このような方法と本発明を組み合わせることで、30分から60分の比較的長い薬浴が可能である。
薬剤の投入は、筒状の管に多くの穴が開いている専用の器材が考案されており、生簀の表層から底層まで同時に薬剤を撒ける。さらに魚の遊泳により薬剤が拡散し均一にすることができる。
具体的には、生け簀の網の側面をシートで被い、内部の海水が保持される状態にして、生け簀内の海水に過酸化水素水を計算上平均濃度が30ppm〜150ppmになる量投入し、15分間以上、好ましくは15分間〜6時間、あるいは15分間〜2時間、より好ましくは30〜60分間経過後、シートを除去することにより本発明の薬浴を行うことができる。この方法により、魚類にストレスをかけることなく、薬浴することができる。
The Norwegian salmon aquaculture method uses a skirt method in which the sides of the cage are surrounded by a sheet. This method does not require the fish to be transferred to a narrow drug bath, which ensures dissolved oxygen in the breeding environment. It is also possible to maintain dissolved oxygen in the environmental water by aeration of oxygen or air. By combining the present invention with such a method, a relatively long drug bath of 30 to 60 minutes is possible.
For the drug injection, a dedicated device with many holes in a cylindrical tube has been devised, and the drug can be sprayed simultaneously from the top layer to the bottom layer of the cage. Further, the swimming of the fish allows the drug to be diffused and made uniform.
Specifically, cover the side of the net of the cage with a sheet to keep the seawater inside, and add hydrogen peroxide solution to the seawater in the cage to the average concentration of 30 ppm to 150 ppm. After 15 minutes or more, preferably 15 minutes to 6 hours, or 15 minutes to 2 hours, more preferably 30 to 60 minutes, the sheet can be removed to carry out the medicinal bath of the present invention. By this method, it is possible to take a medicinal bath without stressing the fish.

ネオベネデニア・ジレレだけでなく、ベネデニア・セリオレも同様な結果が得られることを確認した(実施例7、11、12)。さらに、in vivo試験で、ラメロジスカスに対しても明らかな駆虫効果を発揮することが明らかとなった(実施例8)。ベネデニア・セリオレは単生綱単後吸盤類のベネデニア属に、ネオベネデニア・ジレレは同類ネオベネデニア属に、ラメロジスカスは同類ラメロジスカス属に分類されている。低濃度の過酸化水素水薬浴は、これら寄生虫に共通して高い駆虫効果を発揮したことから、単生綱単後吸盤類の寄生虫に効果を有すると考えられた。
加えて、低濃度処理時の寄生虫の変形と持続は、ゼウクサプタ・ヤポニカの把握器が配列されている固着盤でも観察された(実施例9)。in vivo試験で調べたところ、本虫に対しても明らかな駆虫効果を発揮することが明らかとなった(実施例11、12)。さらに、ビバギナ・タイに対しても明らかな駆虫効果を発揮した(実施例10)。ゼウクサプタ・ヤポニカは単生綱多後吸盤類のゼウクサプタ属に、ビバギナ・タイは同類ビバギナ属に分類されている。低濃度の過酸化水素水薬浴は、これら寄生虫に共通して高い駆虫効果を発揮したことから、単生綱多後吸盤類の寄生虫にも効果を有すると考えられた。
以下に本発明の実施例を記載するが、本発明はこれらに何ら限定されるものではない。
It was confirmed that similar results were obtained not only with Neo-Benedenia gillere but also with Benedenia-seriole (Examples 7, 11, 12). Furthermore, it was revealed in an in vivo test that it exerts a clear anthelmintic effect also on Lamelogiscus (Example 8). Benedenia ceriole is classified into the genus Benedenia of the monophyletic single post-sucker, Neobenedenia gillere is classified into the same genus Neobenedonia, and Lamelogiscus is classified into the same genus Lamelogiscus. Since the low-concentration hydrogen peroxide solution baths exhibited a high anthelmintic effect in common with these parasites, it was considered to have an effect on the parasites of the monophyletic single post sucker.
In addition, the deformation and persistence of the parasites at the time of low-concentration treatment were also observed in the sticking plate where the graspers of Zeuxapta japonica were arranged (Example 9). When examined by an in vivo test, it was revealed that a clear antiparasitic effect was exerted also on the worm (Examples 11 and 12). Furthermore, a clear antiparasitic effect was exhibited against Vivagina tai (Example 10). Zeuxapta japonica is classified into the genus Zeuxapta of the monophyletic polyhedron, and Vivagina Thailand is classified into the same genus Vivagina. Since the low-concentration hydrogen peroxide solution bath exhibited a high anthelmintic effect in common with these parasites, it was considered that it also has an effect on the parasites of the monophyletic multi-sucker discs.
Examples of the present invention will be described below, but the present invention is not limited thereto.

<in vitroでのネオベネデニア・ジレレに対する低濃度過酸化水素水処理の駆虫効果−1>
試験方法:約100gのブリ4尾を100リットル水槽1基に収容し、ネオベネデニア・ジレレ孵化幼生2000個体を水槽に投入して攻撃した。攻撃して14日目に魚をサンプリングし、体表に寄生している成虫をピンセットで回収して試験に供試した。また、飼育期間中の水温は25±0.5℃であった。海水はUV殺菌した濾過海水を用い、供給量は1.2リットル/分とした。飼料は市販EP飼料を用い、給餌は1日1回とし、給餌量は魚体重の2%とした。
海水20mlを含む90mm組織培養用シャーレ7枚に成虫を各10個体収容し、定着させた。定着後、海水で3回洗浄した。海水をデカンタで除き、キムワイプで残った海水を拭き取った。そこに各試験溶液20mlを加えて25℃の室温下で培養した。処理後、海水で4回洗浄し、20mlの海水を加え10時間培養した。処理して海水に戻した直後、海水に戻してから30分毎に2時間のあいだ、および処理して10時間後に萎縮個体およびシャーレ壁面から剥離した成虫を計数し記録した。また、供試したネオベネデニア・ジレレの大きさを把握するため、30個体の本虫の体長を測定した。
試験区:試験区を表1に示した。
<In vitro anthelmintic effect of treatment with low-concentration hydrogen peroxide solution against Neobenedonia gillere in vitro-1>
Test method: About 100 g of four yellowtails were housed in one 100-liter aquarium, and 2000 neo-Benedenia gillerei hatching larvae were placed in the aquarium for attack. On the 14th day after the attack, the fish were sampled, and the adult parasites on the body surface were collected with tweezers and used for the test. The water temperature during the rearing period was 25±0.5°C. The seawater was filtered seawater that had been UV-sterilized, and the supply rate was 1.2 liters/minute. Commercially available EP feed was used as the feed, the feed was once a day, and the feed amount was 2% of the fish body weight.
Ten adult worms were housed and fixed in seven 90 mm tissue culture dishes containing 20 ml of seawater. After fixing, it was washed with seawater three times. The seawater was removed with a decanter, and the remaining seawater was wiped off with a Kimwipe. 20 ml of each test solution was added thereto and cultured at room temperature of 25°C. After the treatment, the plate was washed 4 times with seawater, 20 ml of seawater was added, and the mixture was cultured for 10 hours. Immediately after returning to seawater after treatment, every 30 minutes after returning to seawater for 2 hours, and 10 hours after treatment, the number of atrophic individuals and adults detached from the wall of the petri dish were counted and recorded. In addition, in order to understand the size of the tested Neobenedenia gillere, the body length of 30 worms was measured.
Test plots: The test plots are shown in Table 1.

結果と考察
試験に供試した本虫の体長は、4.17±0.25mmであった。
過酸化水素液剤はブリ類の体表に寄生するベネデニア・セリオレやマダイの鰓に寄生するビバギナ・タイの駆虫剤で、その用量用法は過酸化水素濃度300ppmで3分である。
試験区1のネオベネデニア・ジレレは、処理して海水に戻した直後に全ての個体が中程度の萎縮を示し(図1、図2B)、海水に移してから10分程度までに萎縮程度が増し、10個体中3個体が重度の萎縮となった(図2C)。しかし、萎縮していた個体は徐々に回復し(図2D)、海水に戻してから30分で全個体が萎縮から回復した(図1)。
試験区2のネオベネデニア・ジレレは、処理して海水に戻した直後に全個体が重度の萎縮となっていた(図3A)。処理後海水に戻してから30分後でも全個体が萎縮していたが(図1)、その萎縮は中程度まで回復していた(図3B)。海水に戻して60分後には90%の個体が萎縮から回復していた(図1、図3C)。
試験区1及び試験区2では、処理時間3分と6分ともに、ネオベネデニア・ジレレの固着盤(大型の吸盤)は萎縮しなかった(図2B & C、図3A)。以上のことから、ベネデニア駆虫条件である過酸化水素濃度300ppm・3分および処理時間が倍の6分の処理は、萎縮した本虫が回復するまでの比較的短時間の間に魚同士が接触する、生簀網に体を擦るなど物理的な作用により本虫が体表から脱落して駆虫効果を発揮すると考えられた。物理的な作用を受けなかった個体は回復することから、駆虫効果に限界があると考えられる。
試験区3及び試験区5は、30分の処理後海水に戻した直後に全個体が中程度レベルで萎縮していた(図1、図4A)。両処理区ともに処理後海水に移してから萎縮が顕著になる傾向を示した。この傾向は300ppmで3分の処理区と同様である。萎縮した本虫は、30分後に半数以上が回復したが、海水に戻して1時間30分後でも萎縮している本虫が1個体観察された(図1)。いずれも固着盤が萎縮しており、シャーレに定着できない状態であった。
試験区4及び試験区6では、処理直後は中程度の萎縮であり、試験区3及び試験区5と大きな差は認められなかった。両処理区とも処理後海水に移してから萎縮が進行する傾向であった。特に試験区4では海水に戻して60分の間にシャーレから剥離する個体が徐々に増え、60分後の剥離率は100%にまで達した。両試験区とも処理してから120分後でも半数以上の個体が萎縮していた。その萎縮箇所として固着盤が顕著であった(図4B & C)。さらに試験区4では10時間後でも回復していない本虫が7個体観察され、シャーレに定着していなかった個体はその内4個体であった。固着盤の萎縮は続いており、シャーレに定着していない個体だけでなく、定着している個体でも萎縮が観察された(図4D)。
これらの結果は、75ppmおよび50ppmの低濃度でも30〜60分間処理することでネオベネデニア・ジレレを駆虫できることを示している。特に、ネオベネデニア・ジレレの固着盤を萎縮させることから、従来生簀で実施されている高濃度で短時間の処理と比べ、高い駆虫効果を安定して発揮すると考えられた。
なお、試験区7において、試験期間中にネオベネデニア・ジレレの萎縮やシャーレからの剥離は観察されなかった。
Results and discussion The body length of the worms used in the test was 4.17 ± 0.25 mm.
Hydrogen peroxide solution is an anthelmintic agent of Venegian seriole which parasitizes the body surface of yellowtail and Vivagina Thai which parasitizes gills of red sea bream, and its dosage regimen is 3 minutes at a hydrogen peroxide concentration of 300 ppm.
Regarding Neobenedenia gillere in Test Area 1, all the individuals showed moderate atrophy immediately after being treated and returned to seawater (Fig. 1, Fig. 2B), and the atrophy increased within about 10 minutes after being transferred to seawater. , 3 out of 10 had severe atrophy (Fig. 2C). However, the atrophied individuals gradually recovered (Fig. 2D), and all the individuals recovered from atrophy within 30 minutes after returning to seawater (Fig. 1).
In Test Area 2, Neobenedenia gillere, all of the individuals were severely atrophied immediately after being treated and returned to seawater (Fig. 3A). All the individuals were atrophied 30 minutes after returning to seawater after the treatment (Fig. 1), but the atrophy was restored to a moderate degree (Fig. 3B). 90 minutes after returning to seawater, 90% of the individuals recovered from atrophy (Fig. 1, Fig. 3C).
In test section 1 and test section 2, Neobenedenia gillere sticking discs (large suction cups) did not atrophy at both treatment times of 3 minutes and 6 minutes (Figs. 2B & C, Fig. 3A). From the above, in the Benedenia anthelmintic conditions, the hydrogen peroxide concentration of 300 ppm for 3 minutes and the treatment time of 6 minutes doubled, the fish contacted each other within a relatively short time until the atrophied main insect recovered. It is considered that the insects have an anthelmintic effect by dropping from the body surface by a physical action such as rubbing their bodies against the cage net. It is considered that the anthelmintic effect is limited, because the individual that has not been physically affected recovers.
In the test plots 3 and 5, immediately after returning to seawater after treatment for 30 minutes, all the individuals were atrophied to a moderate level (Fig. 1, Fig. 4A). Both treatments tended to become more atrophy after being transferred to seawater after treatment. This tendency is similar to the treatment area at 300 ppm for 3 minutes. More than half of the atrophied worms recovered after 30 minutes, but one atrophied worm was observed 1 hour and 30 minutes after returning to seawater (Fig. 1). In both cases, the fixing plate was atrophied and could not be fixed on the petri dish.
Immediately after the treatment, the test sections 4 and 6 had moderate atrophy, and no significant difference was observed between the test sections 3 and 5. In both treatment plots, atrophy tended to progress after the treatment was transferred to seawater. Particularly in Test Zone 4, the number of individuals that peeled from the petri dish gradually increased in 60 minutes after returning to seawater, and the peeling rate after 60 minutes reached 100%. Even after 120 minutes from treatment in both test plots, more than half of the individuals were atrophied. The fixation disc was prominent as the atrophy site (Figs. 4B & C). Further, in test section 4, 7 worms that were not recovered even after 10 hours were observed, and 4 of them were not settled in the petri dish. Atrophy of the fixation discs continued, and atrophy was observed not only in the non-established petri dishes but also in the established ones (Fig. 4D).
These results show that even at low concentrations of 75 ppm and 50 ppm, it is possible to exterminate Neobenedenia gillerea by treating for 30 to 60 minutes. In particular, it is considered that the fixing disc of Neo-Benedenia gillere is atrophied, so that it can stably exert a high anthelmintic effect as compared with the high-concentration and short-time treatment conventionally performed in cages.
In test section 7, no atrophy of Neobenediania gillere or detachment from petri dish was observed during the test period.

<in vitroでのネオベネデニア・ジレレに対する低濃度過酸化水素水処理の駆虫効果−2>
試験方法:試験は実施例1と同様に実施した。ネオベネデニア・ジレレは、攻撃して12日目のブリに寄生していたものを供試し、シャーレ3枚に成虫を各10個体収容し、定着させた。処理30分経過時、60分の処理が終了し海水に戻した直後、海水に戻してから30分後に萎縮個体およびシャーレ壁面から剥離した成虫を計数し記録した。
試験区:試験区を表2に示した。
<In vitro anthelmintic effect of treatment with low-concentration hydrogen peroxide solution against Neobenediania gillere-2>
Test method: The test was performed in the same manner as in Example 1. Neo-Benedenia gillere attacked and tested the parasite in yellowtail on the 12th day, and contained 10 adults each in 3 petri dishes and allowed them to settle. Immediately after the treatment for 60 minutes was completed and returned to seawater after 30 minutes of treatment, 30 minutes after the treatment was returned to seawater, the number of atrophied individuals and adults detached from the wall of the petri dish were counted and recorded.
Test section: The test section is shown in Table 2.

結果と考察
試験に供試した本虫の体長は3.86±0.29mmであった。
試験区1のネオベネデニアは、処理を開始してから2分から3分で萎縮し6分後には萎縮が顕著になった。しかし、処理30分経過時、60分処理した直後、処理が終了し海水に戻してから30分後の観察において、ネオベネデニア・ジレレ全個体が萎縮しているもののシャーレ壁面から剥離していた本虫は3個体と少なかった(図5)。処理が終了し海水に戻してから30分では、全個体の体が白濁し動かないほど影響を受けた状態であったにも関わらず、7個体の固着盤に萎縮や変形は観察されずシャーレに定着していた(図5、図6A&B)。その7個体の内2個体が処理後の培養1時間でようやくシャーレ壁面から剥離した。この2個体は、顕著だった萎縮が軽度になっており、明らかに体が白濁していたことから死亡していると判断された。
試験区2のシャーレからの剥離個体数は、60分処理した直後および処理が終了し海水に戻してから30分で9個体であった(図5)。剥離した虫は、体が萎縮しているだけでなく明らかに固着盤が萎縮・変形しており(図6C)、実施例1の試験結果が再現された。
以上の結果から、常用量の高濃度より75ppmや50ppmの低濃度の方がネオベネデニア・ジレレの吸盤を萎縮・変形させる作用が明らかに高いことが判明した。これらの結果は、過酸化水素濃度75ppmや50ppmの低濃度の処理は、萎縮したネオベネデニア・ジレレに対し魚同士が接触する、もしくは生簀網や障害物に体を擦るなどにより萎縮した本虫を体表から脱落させる常用量の物理的な作用だけではなく、ネオベネデニア・ジレレが宿主へ定着するための固着盤を萎縮・変形させ宿主体表から剥離させる作用を併せ持っており、従来生簀で実施されている高濃度で短時間の処理と比べ、高い駆虫効果を安定して発揮することが考えられた。
なお、試験区3において、試験期間中にネオベネデニア・ジレレの萎縮やシャーレからの剥離は観察されなかった。
Results and discussion The body length of the worms used in the test was 3.86±0.29 mm.
Neo-Benedenia of the test section 1 atrophied 2 to 3 minutes after the treatment was started, and the atrophy became remarkable after 6 minutes. However, 30 minutes after the treatment, immediately after the treatment for 60 minutes, and after observation for 30 minutes after the treatment was completed and returned to seawater, all the neobenedenian gilleres were atrophied but were detached from the wall of the petri dish. The number was as small as 3 individuals (Fig. 5). Thirty minutes after the treatment was completed and returned to seawater, no atrophy or deformation was observed in the sticking plate of 7 individuals, despite the fact that the bodies of all individuals were cloudy and affected so that they did not move. Was established in (Figs. 5 and 6A & B). Two of the 7 individuals finally peeled off from the wall of the petri dish 1 hour after the culture. These two individuals were judged to have died because their marked atrophy was mild and their bodies were clearly clouded.
The number of exfoliated individuals from the petri dish of test section 2 was 9 immediately after the treatment for 60 minutes and 30 minutes after the treatment was completed and returned to seawater (Fig. 5). In the detached insect, not only the body was atrophied but also the fixation disc was atrophied and deformed (FIG. 6C), and the test results of Example 1 were reproduced.
From the above results, it was revealed that the low concentration of 75 ppm or 50 ppm had a clear effect of atrophying and deforming the sucker of Neobenedenia gillere at a low concentration of 75 ppm or 50 ppm, compared with the high concentration of the usual dose. These results show that treatment with a low concentration of hydrogen peroxide of 75 ppm or 50 ppm showed that the atrophic parasites caused by the fish contacting the atrophied Neobenedenia gillere, or rubbing their bodies against cage nets or obstacles. In addition to the physical action of the usual dose to drop it from the surface, it also has the effect of atrophiing and deforming the fixation plate for Neobenedenia gillere to settle in the host and peeling it from the surface of the host body, which has been conventionally performed in cages. It was considered that a high anthelmintic effect could be stably exhibited as compared with the treatment at a high concentration for a short time.
In Test Group 3, no atrophy of Neobenedenia gillere or detachment from the petri dish was observed during the test period.

<in vivoでのネオベネデニア・ジレレに対する低濃度過酸化水素水処理の駆虫効果−1>
試験方法:平均魚体重約130gのカンパチ48尾を500リットル水槽で約7日間飼育し、25℃の水温に馴致した。その間の給餌は市販飼料を与え、給餌率を魚体重の2%とした。注水は8.3リットル/分とした。馴致後、ネオベネデニア・ジレレ孵化幼生約4500個体を500リットル水槽に投入し、1時間止水とすることで本虫の攻撃を行った。孵化幼生の攻撃7日後に、200リットル水槽7基に魚を移し試験区をセットした(表3)。残った4尾を過酸化水素処理時のネオベネデニア・ジレレ長測定用として500リットル水槽で飼育を継続し、薬浴処理時に本虫を回収し30個体の体長を測定した。飼育期間中の注水は6.7リットル/分とした。攻撃9日後に各区の薬浴処理を200リットル角型水槽で行い、処理後魚を200リットル飼育水槽に再び移し翌日まで飼育した。全ての魚をサンプリングし、魚体重の測定と寄生しているネオベネデニア・ジレレの計数を行った。駆虫効果の評価は、各区のネオベネデニア・ジレレ寄生数を比較することで行った。
試験区:試験区を表3に示した。
<In-vivo anthelmintic effect of treatment with low-concentration hydrogen peroxide solution against Neo-Venedenia gilleri-1>
Test method: 48 amberjacks with an average fish weight of about 130 g were bred in a 500-liter water tank for about 7 days and acclimated to a water temperature of 25°C. During the feeding, commercial feed was given, and the feeding rate was 2% of the fish weight. Water injection was 8.3 liters/minute. After acclimatization, about 4500 Neovenedian gillere hatching larvae were placed in a 500-liter aquarium, and the insects were attacked by stopping the water for 1 hour. Seven days after the attack of hatching larvae, the fish were transferred to seven 200-liter aquariums and the test plots were set (Table 3). The remaining 4 fish were continuously bred in a 500-liter water tank for measuring the length of Neobenediania gillere during hydrogen peroxide treatment, and during treatment with the medicinal bath, the worms were collected and the body lengths of 30 individuals were measured. Water injection was 6.7 liters/minute during the breeding period. Nine days after the attack, the chemical bath treatment of each ward was performed in a 200-liter square aquarium, and after the treatment, the fish was transferred again to the 200-liter rearing aquarium and bred until the next day. All the fish were sampled, the fish weight was measured, and the parasitic Neobenedenia gillere was counted. The evaluation of the anthelmintic effect was carried out by comparing the numbers of parasites of Neovenedia gillerii in the respective plots.
Test plots: Table 3 shows the test plots.

結果と考察
薬剤処理時のネオベネデニア・ジレレの体長は3.01±0.43mmであり、成虫であった。
カンパチに寄生した本虫に対する駆虫効果を表3に示した。
試験区1(過酸化水素水剤のベネデニア・セリオレ駆虫時の用量・用法)のネオベネデニア・ジレレ駆虫率は33.5%であった。また、浸漬時間を倍の6分とした試験区2の駆虫率は59.1%であった。実施例1の試験結果から、過酸化水素濃度300ppm・6分の処理はネオベネデニア・ジレレの体を強烈に萎縮させるが、本虫の固着盤(大型の吸盤)の萎縮・変形を惹起しない、萎縮もしくは萎縮・剥離した本虫は1時間程度で回復する、などのことが判明している。本試験の結果から、本条件下での駆虫効果は、萎縮した本虫が回復するまでの比較的短時間の間に魚同士が接触すること、生簀網に体を擦るなど物理的な作用により発揮されていること、虫の体を萎縮させるだけでは駆虫効果に限界があること、などが明らかになった。
試験区3の駆虫率は94.3%、試験区4の駆虫率は99.2%と高い駆虫効果を示した。さらに、試験区5の駆虫率は86.6%、試験区6の駆虫率は97.5%と同様に高い駆虫効果であった。実施例1および2では、これら低濃度の処理はネオベネデニア・ジレレの体だけでなく固着盤も萎縮させた。実施例1、2および本試験結果から、ネオベネデニア・ジレレの駆虫は、固着盤を萎縮・変形させることが重要であり、それにより高い駆虫効果が安定して得られることが明らかになった。
Results and discussion The body length of Neovenedia gillere at the time of drug treatment was 3.01±0.43 mm, and it was an adult.
Table 3 shows the anthelmintic effect against the main insect parasitizing Amberjack.
The test area 1 (dosage/use of hydrogen peroxide solution for Benedenia/seriole deworming) had a neobenedenia gilleri repellent rate of 33.5%. In addition, the anthelmintic rate of test section 2 in which the immersion time was doubled to 6 minutes was 59.1%. From the test results of Example 1, treatment with hydrogen peroxide concentration of 300 ppm for 6 minutes causes the body of Neobenediania gillere to atrophy severely, but does not cause atrophy/deformation of the sticking disc (large sucker) of this insect. Alternatively, it has been found that the atrophied and detached main insect recovers in about 1 hour. From the results of this test, the anthelmintic effect under these conditions is that the fish contact each other in a relatively short time until the atrophied main worm recovers, and the physical action such as rubbing the body on the cage net It has been clarified that it is exerted and that the anthelmintic effect is limited only by atrophy of the insect body.
The anthelmintic rate of test section 3 was 94.3%, and the anthelmintic rate of test section 4 was 99.2%, showing a high anthelmintic effect. Furthermore, the anthelmintic rate of test section 5 was 86.6%, and the anthelmintic rate of test section 6 was 97.5%, which was a high anthelmintic effect. In Examples 1 and 2, these low-concentration treatments atrophied not only the body of Neobenedenia gillere but also the fixation discs. From the results of Examples 1 and 2 and this test, it was revealed that it is important for Neobenedenia gillere's anthelmintic to atrophy and deform the fixation disc, and thereby a high anthelmintic effect can be stably obtained.

<in vivoでのネオベネデニア・ジレレに対する低濃度過酸化水素水処理の駆虫効果−2>
試験方法:試験は水温30℃とし、操作は実施例3と同様に実施した。平均魚体重約130gのカンパチ42尾を500リットル水槽で約7日間飼育し、30℃の水温に馴致した。攻撃に用いたネオベネデニア・ジレレ孵化幼生数は約5500個体とした。孵化幼生の攻撃3日後に、200リットル水槽6基に魚を移し試験区をセットした(表4)。攻撃7日後に各区の薬浴処理を実施し、攻撃8日後に駆虫効果を評価した。
試験区:試験区を表4に示した。
<Anthelmintic effect of treatment with low-concentration hydrogen peroxide solution against Neovenedia gillere in vivo-2>
Test method: The test was performed at a water temperature of 30° C., and the operation was performed in the same manner as in Example 3. 42 amberjacks with an average fish weight of about 130 g were bred in a 500-liter water tank for about 7 days and acclimated to a water temperature of 30°C. The number of hatching larvae of Neo-Venedenia gillere used for the attack was about 5,500. Three days after the attack of hatching larvae, the fish were transferred to six 200-liter aquariums and the test plots were set (Table 4). Seven days after the challenge, each group was treated with a chemical bath, and eight days after the challenge, the anthelmintic effect was evaluated.
Test section: The test section is shown in Table 4.

結果と考察
薬剤処理時のネオベネデニア・ジレレの体長は3.01±0.18mmであり、成虫であった。
カンパチに寄生した本虫に対する駆虫効果を表4に示した。実施例3の結果が再現された。さらに、過酸化水素濃度37.5ppmの低濃度においても30分から60分処理することで、高い駆虫効果を発揮することが判明した。
Results and Discussion The body length of Neovenedia gillere at the time of drug treatment was 3.01±0.18 mm, and it was an adult.
Table 4 shows the anthelmintic effect against the main insect parasitizing Amberjack. The results of Example 3 were reproduced. Furthermore, it was found that a high anthelmintic effect can be exhibited by treating for 30 to 60 minutes even at a low hydrogen peroxide concentration of 37.5 ppm.

<過酸化水素水のカンパチに対する影響−1>
試験方法:平均魚体重約208gのカンパチを200リットル水槽6基に各6尾を収容した。25℃で7日間飼育し魚を馴致した。その間の給餌は市販飼料を与え、給餌率を魚体重の2%とした。注水は6.7リットル/分とした。
規定量の過酸化水素水を予め海水で希釈後、飼育水を止水にし、それぞれの水槽中に投入した。その後、最長6時間観察を行った。6時間の処理後に再度流水とした。
試験区:試験区を表5に示した。
<Effect of hydrogen peroxide on amberjack-1>
Test method: Six amberjacks having an average fish weight of about 208 g were accommodated in six 200-liter aquariums each. The fish was acclimated for 7 days at 25°C. During the feeding, commercial feed was given, and the feeding rate was 2% of the fish weight. Water injection was 6.7 liters/minute.
A predetermined amount of hydrogen peroxide water was previously diluted with seawater, and then the breeding water was stopped and put into each water tank. After that, observation was performed for up to 6 hours. After the treatment for 6 hours, it was flushed again.
Test section: The test section is shown in Table 5.

結果と考察
観察結果を表6に示した。過酸化水素濃度300ppm以上の処理区では、浸漬処理開始1から3分後に魚が激しく上下に遊泳した。その後、遊泳異常は治まるものの浸漬開始15分頃には開口や鰓蓋を大きく開閉する状態が繰り返し観察された。魚は死亡前に狂奔遊泳、横転及び緩慢遊泳を繰り返し、体表に斑を伴い死亡した。300ppm処理区の生残魚2尾も摂餌行動が緩慢であった。150ppm処理区において、死亡魚の発生は認められなかったが、処理中に異常遊泳や開口、処理翌日には摂餌行動に異常が確認された。したがって、スズキ目魚類のベネデニア・セリオレ駆虫時の常用量である300ppm濃度は、魚に短時間で毒性をもたらすことが判明した。一方、常用量の1/4倍である75ppm処理区では、浸漬中に異常が観察されず、さらに浸漬終了後や翌日の給餌時においても異常が認められなかった。したがって、150ppm未満の濃度、特に75ppm以下の濃度であれば確実に、魚に悪影響を与えず長時間の薬浴処理が可能であることが判明した。さらに、本濃度や50ppmなどの低濃度の処理は、ネオベネデニア・ジレレの固着盤を萎縮・変形させ、高い駆虫効果を安定して発揮する条件である。
養殖現場において、夏季高水温時の過酸化水素水薬浴で酸素欠乏が原因と考えられる死亡事故が発生する場合がある。本薬浴は、水温が高ければ高いほど魚の鰓に障害を与えることが一般的に知られている。本試験では150ppm以上の区で処理開始1分から3分で激しい遊泳行動が観察された。したがって、死亡事故の原因は、過酸化水素の鰓に及ぼす影響だけでなく、この激しい遊泳もその一つであり、酸素欠乏を引き起こす要因と考えられた。
Results and Discussion Table 6 shows the observation results. In the treatment area with a hydrogen peroxide concentration of 300 ppm or more, the fish vigorously swim up and down 1 to 3 minutes after the start of the immersion treatment. After that, although swimming abnormalities subsided, it was observed repeatedly that the opening and gill lid were opened and closed approximately 15 minutes after the start of immersion. Before death, the fish repeated mad swimming, rollover, and slow swimming, and died with spots on the body surface. The feeding behavior of the two surviving fish in the 300 ppm treatment group was also slow. In the 150 ppm treatment area, no dead fish were observed, but abnormal swimming or opening during treatment and abnormal feeding behavior were confirmed the day after treatment. Therefore, it was clarified that 300 ppm concentration, which is the usual dose for Venedenia seriole extermination of Perciformes, causes toxicity to fish in a short time. On the other hand, in the 75 ppm treatment group, which was 1/4 times the normal dose, no abnormalities were observed during immersion, and no abnormalities were observed after the completion of immersion or during feeding on the next day. Therefore, it was proved that a concentration of less than 150 ppm, particularly 75 ppm or less, can reliably treat the chemical bath for a long time without adversely affecting the fish. Furthermore, the treatment at this concentration or at a low concentration such as 50 ppm is a condition for atrophying and deforming the fixing disc of Neobenediania gillere and stably exerting a high anthelmintic effect.
At the aquaculture site, there may be a fatal accident due to lack of oxygen in the hydrogen peroxide solution chemical bath at high water temperature in summer. It is generally known that the higher the water temperature, the higher the temperature of this drug is to the gills of fish. In this test, intense swimming behavior was observed 1 to 3 minutes after the start of treatment in the area of 150 ppm or more. Therefore, it is considered that the cause of the fatal accident is not only the effect of hydrogen peroxide on the gills, but also this vigorous swimming, which causes oxygen deficiency.

<過酸化水素水のカンパチに対する影響−2>
試験方法:平均魚体重約195gのカンパチ33尾を電子タグで標識し個体識別して、500リットル水槽で7日間飼育することで馴致した。給水や給餌量、水温などの飼育条件は、実施例3に従った。馴致後に、200リットル水槽3基に各水槽11尾になるように魚を移し、各水槽に収容して魚のタグ番号を記録した。試験区は、過酸化水素濃度300ppmで3分処理する区、過酸化水素濃度75ppmで30分処理する区、無処理の対照区とした。処理を実施後に、再び全ての魚を500リットル水槽1基に収容し、ネオベネデニア・ジレレ孵化幼生約7200個体を投入して、1時間止水とした。攻撃6日後に全ての魚をサンプリングし、寄生しているネオベネデニア・ジレレの計数を行った。処理後の安全性の評価は、各区のネオベネデニア・ジレレ寄生数を比較することで行った。
<Influence of hydrogen peroxide on amberjack-2>
Test method: 33 amberjacks with an average fish weight of about 195 g were labeled with an electronic tag to identify individuals, and were acclimated by breeding in a 500-liter aquarium for 7 days. Rearing conditions such as water supply, feed amount, and water temperature were in accordance with Example 3. After acclimatization, the fish were transferred to three 200-liter water tanks so that each fish tank had 11 fish, and the fish were stored in each water tank and the tag number of the fish was recorded. The test group was a group treated with a hydrogen peroxide concentration of 300 ppm for 3 minutes, a group treated with a hydrogen peroxide concentration of 75 ppm for 30 minutes, and an untreated control group. After the treatment, all the fish were again stored in one 500-liter aquarium, and about 7200 Neovenedenia gillerei hatching larvae were added to the fish to stop the water for 1 hour. Six days after the attack, all fish were sampled and the number of parasitic Neobenedenia gillere was counted. The post-treatment safety evaluation was carried out by comparing the number of Neobenediania gilleris parasites in each ward.

結果と考察
観察結果を図7に示した。過酸化水素濃度300ppm・3分区の寄生数は、無処理の対照区と比べ有意に多かった。一方、75ppm・30分区の寄生数は、対照区と同等な値であった。以上の結果から、常用量などの高濃度の過酸化水素薬浴は、数分間の短い処理であっても魚の体表に粘液の剥離などの何らかの障害を与えており、寄生虫が再感染しやすい状態になっていると考えられた。一方、低濃度で長時間の処理は、魚の体表に寄生虫が再感染しやすくなるほどの損傷を与えていないことが判明した。従って、本発明の魚への安全性は、処理中だけでなく処理後についても従来法より高いことが明らかとなった。
Results and Discussion Observation results are shown in FIG. 7. The number of parasites in the hydrogen peroxide concentration of 300 ppm and 3 minutes was significantly higher than that in the untreated control. On the other hand, the number of parasites in the 75 ppm/30-minute group was similar to that in the control group. From the above results, a high-concentration hydrogen peroxide drug bath such as a regular dose causes some damage such as exfoliation of mucus on the body surface of fish even after a short treatment for several minutes, and parasites are re-infected. It was thought to be in an easy state. On the other hand, it was found that the treatment at a low concentration for a long time did not damage the body surface of the fish to the extent that parasites were easily reinfected. Therefore, it was revealed that the safety of the present invention for fish is higher than that of the conventional method not only during the treatment but also after the treatment.

<in vitroでのベネデニア・セリオレに対する低濃度過酸化水素水処理の駆虫効果>
試験方法:約150gのブリ4尾を100リットル水槽1基に収容し、ベネデニア・セリオレ孵化幼生1300個体を水槽に投入して攻撃した。攻撃して19日目に魚をサンプリングし、体表に寄生している成虫をピンセットで回収して試験に供試した。また、飼育期間中の水温は20.5±0.5℃であった。ブリの飼育と in vitroの試験は、実施例1と同様な方法で行った。また、萎縮個体およびシャーレ壁面から剥離した成虫の計数は、処理して海水に戻した直後、海水に戻してから30分毎に2時間のあいだ実施し、記録した。
試験区:試験区を表7に示した。
<In vitro anthelmintic effect of low-concentration hydrogen peroxide solution treatment on Benedenia ceriole>
Test method: About 150 g of four yellowtails were stored in one 100-liter water tank, and 1300 Benedenia seriole hatching larvae were placed in the water tank and attacked. On the 19th day after the attack, the fish were sampled, and the adult parasites on the body surface were collected with tweezers and used for the test. The water temperature during the breeding period was 20.5 ± 0.5°C. Breeding and in vitro tests were performed in the same manner as in Example 1. In addition, the numbers of the atrophied individuals and the adults detached from the wall surface of the petri dish were counted and recorded every 30 minutes for 2 hours immediately after the treatment and returning to seawater.
Test section: The test section is shown in Table 7.

結果と考察
試験に供試した本虫の体長は、5.30±0.31mmであった。
試験区1のベネデニア・セリオレは、処理直後に全個体が重度に萎縮し(図9A)、10個体中3個体がシャーレ壁面から剥離していた(図8)。処理してから海水に戻して30分後にさらに4個体がシャーレ壁面から剥離していた。剥離個体の固着盤は萎縮・変形していた(図9B)。しかし、処理してから海水に戻してからの90分間に3個体が萎縮から回復した。実施例1のネオベネデニア・ジレレの試験では、本条件下では剥離した虫は観察されず、処理後海水に戻してからの30分間で全個体が萎縮から回復していた。これらの結果は、ベネデニア・セリオレはネオベネデニア・ジレレより過酸化水素水に対する感受性が高く、影響を受けやすいことを示している。
試験区2では処理直後に5個体の剥離が観察され、さらに処理後海水に戻してから90分間でさらに4個体が剥離した。本区では1個体が萎縮から回復した。両試験区とも萎縮から回復する個体が観察されることから、駆虫効果には限界があり、駆虫結果が安定しないことが考えられた。
試験区3では、処理開始13分で全個体が萎縮し、シャーレ壁面から剥離した。試験区4でも、処理開始13分で10個体中10個体が萎縮し、9個体が剥離し、30分以内に残り1個体も剥離した。両区において、処理後海水に戻してから2時間の観察で、剥離10個体に萎縮や剥離からの回復は観察されなかった。さらに、剥離した個体の固着盤は萎縮・変形していた(図9C&D)。
試験区4では処理後海水に戻して30分程度から体が白濁し運動が停止したため、本虫は死亡したものと考えられた。
以上のことから、75ppm・30分の処理は、ベネデニア・セリオレの固着盤を萎縮・変形させる、処理後2時間程度でも回復しないなどから、300ppm・3分や300ppm・6分処理より、駆虫効果を安定的に発揮することが判明した。
なお、無処理対照区において、試験期間中にベネデニア・セリオレの萎縮やシャーレからの剥離は観察されなかった。
Results and discussion The body length of the worms used in the test was 5.30 ± 0.31 mm.
Immediately after the treatment, all the individuals of Benedenia ceriole in the test section 1 were severely atrophied (Fig. 9A), and 3 out of 10 individuals were detached from the wall of the petri dish (Fig. 8). Thirty minutes after returning to seawater after treatment, four more individuals had peeled from the wall of the petri dish. The fixation disc of the exfoliated individual was atrophied and deformed (Fig. 9B). However, in 90 minutes after treatment and returning to seawater, 3 individuals recovered from atrophy. In the test of Neobenedenia gillere of Example 1, no detached insect was observed under these conditions, and all the individuals recovered from atrophy within 30 minutes after returning to seawater after the treatment. These results indicate that Benedenia ceriole is more sensitive and more susceptible to aqueous hydrogen peroxide than Neobenedenia gillere.
In test section 2, peeling of 5 individuals was observed immediately after the treatment, and further 4 individuals were peeled off within 90 minutes after returning to seawater after the treatment. In this area, 1 individual recovered from atrophy. It was considered that the anthelmintic effect is limited and the anthelmintic results are not stable because some individuals recover from atrophy in both test plots.
In test section 3, all the individual shrunk at 13 minutes after the treatment and peeled off from the wall surface of the petri dish. Also in the test section 4, 10 minutes out of 10 individuals atrophied 13 minutes after the treatment started, 9 individuals exfoliated, and the remaining 1 individual exfoliated within 30 minutes. In both plots, atrophy and recovery from exfoliation were not observed in 10 exfoliated individuals after 2 hours of observation after returning to seawater after treatment. Furthermore, the sticking discs of the exfoliated individuals were atrophied and deformed (Fig. 9C & D).
In test plot 4, the body was clouded and the movement stopped about 30 minutes after returning to seawater after the treatment, so it was considered that the worm died.
From the above, treatment of 75 ppm for 30 minutes causes atrophy and deformation of the fixed disc of Benedenia and Ceriole, and does not recover even within about 2 hours after treatment, so it is more effective than 300 ppm for 3 minutes or 300 ppm for 6 minutes. It has been found that it can stably exert.
In the untreated control group, neither atrophy of Benedenia seriole nor detachment from the petri dish was observed during the test period.

<in vivoでのラメロジスカスに対する低濃度過酸化水素水処理の駆虫効果>
試験方法:野外生簀で養殖されているマダイ50尾を試験に供試した。本群の平均魚体重は約74gであった。マダイを生簀から陸上の1t水槽に移し、海水15Lを含む30L水槽5基にマダイを各10尾となるように収容した。酸欠を防ぐため小型エアーポンプで通気した。各区所定量の過酸化水素水剤を50mL海水に溶解し、魚を含む容器に投入・撹拌して所定時間魚を浸漬処理した。処理後、容器を傾け袋状のネットで魚を受け、その上から約3Lの海水を注ぎ洗浄した。魚を18Lの海水を含む容器に戻し通気しながら1時間飼育し、その後、魚をサンプリングして鰓に寄生しているラメロジスカスを計数した。駆虫効果の評価は、各区のラメロジスカスの寄生数を比較することで行った。試験で使用した海水の水温は22.0℃であった。
試験区:試験区を表8に示した。
<Anthelmintic effect of low-concentration hydrogen peroxide treatment on in vivo lamelogiscus>
Test method: 50 red sea breams cultivated in field cages were tested. The average fish weight of this group was about 74 g. The red sea bream was transferred from the cage to a 1t water tank on land, and 10 red sea breams were stored in 5 30L water tanks containing 15L seawater. Aeration was performed with a small air pump to prevent oxygen deficiency. A predetermined amount of hydrogen peroxide solution in each section was dissolved in 50 mL of seawater, and the solution was placed in a container containing fish and stirred to dip the fish for a predetermined time. After the treatment, the container was tilted to receive the fish with a bag-shaped net, and about 3 L of seawater was poured and washed from above. The fish were returned to a container containing 18 L of seawater and bred for 1 hour while aerating, and then the fish were sampled to count the lamelogiscus parasitic on the gills. The anthelmintic effect was evaluated by comparing the number of parasites of Lamelogiscus in each plot. The water temperature of the seawater used in the test was 22.0°C.
Test section: The test section is shown in Table 8.

結果と考察
300ppm・3分処理区のラメロジスカス駆虫率は0%であった。ビバギナ・タイ駆虫時の用量・用法では駆虫効果を発揮しなかった。さらに、300ppm・15分処理区においても本虫の寄生数は対照区と同等であり駆虫効果を示さなかった。300ppm・15分区のマダイは、処理終了間際には本処理の影響を受けて横転しており、これ以上の処理は不可能と考えられた。一方、75ppm・30分処理区および100ppm・30分処理区においては、明らかな駆虫効果が認められ(表8)、魚の遊泳なども異常は観察されなかった。
これらの結果は、低濃度・長時間処理の方が高濃度・短時間処理よりラメロジスカスの把握器に脱落するほどの影響を与えることを示している。本虫に対しても過酸化水素剤の低濃度で長時間の処理の有効性が確認された。
ベネデニア・セリオレ、ネオベネデニア・ジレレおよびラメロジスカスは単生綱単後吸盤類に分類されている。低濃度の過酸化水素水薬浴は、これら寄生虫に共通して高い駆虫効果を発揮したことから、単生綱単後吸盤類の寄生虫に効果を有すると考えられた。
Results and discussion
The rate of lamellosicus extermination in the treatment area of 300 ppm for 3 minutes was 0%. The anthelmintic effect was not exhibited with the dose and usage of Vivagina and Thailand. Furthermore, the number of parasites of the parasite was similar to that of the control group even in the 300 ppm/15-minute treatment group, and showed no anthelmintic effect. The red sea bream of 300 ppm in 15 minutes was overturned due to the influence of this treatment just before the end of treatment, and it was thought that further treatment could not be performed. On the other hand, a clear anthelmintic effect was observed in the 75 ppm/30 min treatment group and the 100 ppm/30 min treatment group (Table 8), and no abnormalities were observed in swimming of the fish.
These results show that low-concentration/long-time treatment has a greater effect than the high-concentration/short-time treatment on the grasping device of lamellidiacus. It was confirmed that the long-term treatment of the present insects with a low concentration of hydrogen peroxide was effective.
Benedenia ceriole, Neobenedonia girelle and Lamelogiscus are classified as monosomatic post-suckers. Since the low-concentration hydrogen peroxide solution baths exhibited a high anthelmintic effect in common with these parasites, it was considered to have an effect on the parasites of the monophyletic single post sucker.

<in vitroでのゼウクサプタ・ヤポニカに対する低濃度過酸化水素水処理の駆虫効果>
試験方法:約1.4kgの養殖カンパチ5尾の鰓を取り出し、鰓弁に寄生しているゼウクサプタ・ヤポニカを鰓弁に寄生している状態で採取した。in vitroの試験は、各区本虫5個体を供し、実施例1と同様な方法で行った。観察は、処理の中間時間、処理して海水に戻した直後、海水に戻してから10分毎に30分のあいだ行い、萎縮個体を計数し記録した。
試験区:試験区を表9に示した。
<In vitro anthelmintic effect of low-concentration hydrogen peroxide treatment on Zeuxapta japonica>
Test method: About 1.4 kg of five gills of cultured amberjack were taken out, and Zexapta japonica parasitizing the gills valve was collected while parasitizing the gills valve. The in vitro test was carried out in the same manner as in Example 1, using 5 individuals of each ward. The observation was performed in the middle of the treatment, immediately after the treatment and returning to seawater, and every 10 minutes for 30 minutes after returning to seawater, and the atrophic individuals were counted and recorded.
Test plots: The test plots are shown in Table 9.

結果と考察
300ppm・3分および6分の本虫は処理直後でも体の萎縮は軽度であり(図10A)、処理後約10分以内に萎縮から回復した(図11)。一方、75ppm・60分処理区の本虫は処理6から10分で明らかに萎縮した(図10B)。さらに、75ppm・60分処理区の本虫は処理後30分でも全個体が萎縮、50ppm・60分処理区でも処理後30分で回復したのは僅かに1個体であった。低濃度処理区の本虫の萎縮は、体だけでなく把握器が配列されている固着盤でも観察された(図10B)。
低濃度で長時間の処理は、ゼウクサプタ・ヤポニカを長時間萎縮させ、その萎縮は重度であり把握器が配列されている固着盤にも及ぶことから、300ppm・3分や300ppm・6分処理より、駆虫効果を安定的に発揮することが判明した。
なお、無処理対照区において、試験期間中にゼウクサプタ・ヤポニカの萎縮は観察されなかった。
Results and discussion
The body atrophy of 300 ppm, 3 minutes, and 6 minutes of the insects was mild even immediately after the treatment (Fig. 10A), and the atrophy was recovered within about 10 minutes after the treatment (Fig. 11). On the other hand, the worms treated with 75 ppm for 60 minutes were obviously atrophied in 6 to 10 minutes of treatment (Fig. 10B). Furthermore, all the worms in the 75 ppm/60-minute treatment group atrophied even 30 minutes after the treatment, and even in the 50 ppm/60-minute treatment group, only 1 individual recovered within 30 minutes after the treatment. The atrophy of the worms in the low-concentration treatment group was observed not only in the body but also in the fixation disc where the graspers were arranged (Fig. 10B).
Treatment with low concentration for a long time causes Zeuxapta japonica to atrophy for a long time, and the atrophy is severe and extends to the sticking board where the grasping device is arranged, so it is better than 300 ppm・3 minutes or 300 ppm・6 minutes treatment. It was found that the anthelmintic effect was stably exhibited.
In the untreated control group, no atrophy of Zeuxapta japonica was observed during the test period.

<in vivoでのビバギナ・タイに対する低濃度過酸化水素水処理の駆虫効果>
試験方法:野外生簀で養殖されているマダイ50尾を試験に供試した。本群の平均魚体重は約61gであった。マダイを生簀から陸上の1t水槽に移し、海水15Lを含む30L水槽5基にマダイを各10尾となるように収容した。酸欠を防ぐため小型エアーポンプで通気した。各区所定量の過酸化水素水剤を50mL海水に溶解し、魚を含む容器に投入・撹拌して所定時間魚を浸漬処理した。処理後、容器を傾け袋状のネットで魚を受け、その上から約3Lの海水を注ぎ洗浄した。魚を18Lの海水を含む容器に戻し通気しながら1時間飼育し、その後、魚をサンプリングして鰓に寄生しているビバギナ・タイを計数した。駆虫効果の評価は、各区のビバギナ・タイの寄生数を比較することで行った。尚、試験で使用した海水の水温は23.2℃であった。
試験区:試験区を表10に示した。
<Anthelmintic effect of low-concentration hydrogen peroxide solution treatment on Vivagina and Thailand in vivo>
Test method: 50 red sea breams cultivated in field cages were tested. The average fish weight of this group was about 61 g. The red sea bream was transferred from the cage to a 1t water tank on land, and 10 red sea breams were stored in 5 30L water tanks containing 15L seawater. Aeration was performed with a small air pump to prevent oxygen deficiency. A predetermined amount of hydrogen peroxide solution in each section was dissolved in 50 mL of seawater, and the solution was placed in a container containing fish and stirred to dip the fish for a predetermined time. After the treatment, the container was tilted to receive the fish with a bag-shaped net, and about 3 L of seawater was poured and washed from above. The fish were returned to a container containing 18 L of seawater and bred for 1 hour with aeration, and then the fish were sampled to count the vivagina tie infesting the gills. The anthelmintic effect was evaluated by comparing the number of parasites in Vivagina and Thailand in each ward. The temperature of seawater used in the test was 23.2°C.
Test plots: The test plots are shown in Table 10.

結果と考察
300ppm・3分処理区(過酸化水素水剤のビバギナ・タイ駆虫時の用量・用法)のビバギナ・タイ駆虫率は64%であった。本区において、開始直後の魚は水面を跳ねるように激しく遊泳した。本行動から、高濃度処理がマダイに対して毒性や刺激を与えていることが考えられた。100ppm・30分処理区の本虫駆虫率は89%、同濃度で60分処理した区では100%であった。さらに75ppm・60分処理区の駆虫率は99%であった。これら低濃度処理区の魚の遊泳は、処理開始から終了まで変化はなく、魚に異常は観察されなかった。
これらの結果から、過酸化水素剤の低濃度で長時間の処理は、マダイに明らかな毒性や刺激を与えることなく、エラムシであるビバギナ・タイに対して高い駆虫効果を発揮することが判明した。
Results and discussion
The Vivagina-Thai deworming rate in the 300ppm/3-minute treatment group (the dose and usage of the hydrogen peroxide solution for Vivagina-Thai deworming) was 64%. In the main ward, the fish just after the start swim violently like jumping on the water surface. From this behavior, it was considered that high-concentration treatment caused toxicity and irritation to red sea bream. The insect repellent rate in the 100 ppm/30-minute treatment group was 89%, and that in the 60-minute treatment group was 100%. Further, the anthelmintic rate in the 75 ppm/60-minute treatment group was 99%. Swimming of the fish in these low-concentration treatment areas did not change from the beginning to the end of the treatment, and no abnormalities were observed in the fish.
From these results, it was found that long-term treatment with a low concentration of a hydrogen peroxide agent exerts a high anthelmintic effect on the aphid Vivagina tie without causing obvious toxicity or irritation to red sea bream. ..

a:寄生数は平均±SDで示した。
b:対照区の寄生数と比較し有意差あり(P<0.01)。
a: The number of parasites is shown as the average ± SD.
b: Significantly different from the number of parasites in the control plot (P<0.01).

<in vivoでのベネデニア・セリオレ、ネオベネデニア・ジレレおよびゼウクサプタ・ヤポニカに対する低濃度過酸化水素水処理の駆虫効果>
試験方法:野外生簀で養殖されていた約430gのカンパチ400尾を試験に供した。薬浴用シートに15tの海水を入れ、過酸化水素濃度75ppmになるように過酸化水素水剤を投入し撹拌した。390尾の魚を収容し、30分間浸漬処理した。処理後、魚を生簀に移した。サンプリングは、処理前と処理した次の日に各10尾を取り上げることで行った。体表に寄生しているベネデニア・セリオレとネオベネデニア・ジレレを、鰓に寄生しているゼウクサプタ・ヤポニカを計数した。駆虫効果の評価は、各区の寄生虫数を比較することで行った。なお、処理時の海水の水温は28.5℃であった。
<Anthelmintic effect of low-concentration aqueous hydrogen peroxide treatment on Benedenia ceriole, Neobenedenia gillere and Zeuxapta japonica in vivo>
Test method: About 400 amberjack of about 430 g that had been cultivated in an outdoor cage were used for the test. 15 t of seawater was put in the chemical bath sheet, and a hydrogen peroxide solution was added and stirred so that the hydrogen peroxide concentration became 75 ppm. 390 fish were housed and soaked for 30 minutes. After treatment, the fish were transferred to cages. Sampling was done by picking 10 fish each before and the day after treatment. Benedenia seriole and neo-benedenia gillere, which are parasitic on the body surface, and Zeuxapta japonica, which is parasitic on the gills, were counted. The anthelmintic effect was evaluated by comparing the number of parasites in each plot. The water temperature of the seawater during the treatment was 28.5°C.

結果と考察
結果を表11に示した。処理後の魚にベネデニア・セリオレ、ネオベネデニア・ジレレおよびゼウクサプタ・ヤポニカの寄生は観察されず、いずれの寄生虫に対しても駆虫率は100%であった。
従って、このような大規模の条件下であっても本発明の有効性が証明された。
Results and discussion Table 11 shows the results. No parasitism of Benedenia ceriole, Neobenedenia gillere or Zeuxapta japonica was observed in the treated fish, and the anthelmintic rate was 100% for all the parasites.
Therefore, the effectiveness of the present invention was proved even under such a large-scale condition.

<カンパチのスカート法による低濃度過酸化水素水処理の有効性試験>
試験方法:約2kgのカンパチ1万尾を収容した11.5m×11.5m×10m生簀の周りに、長さ48mで幅10mのシートを巻き、シートの両端に装着されたチャックを閉めることで筒状にして生簀を囲んだ。シート内の海水に過酸化水素濃水を平均濃度が35ppmになる量を5分間で投入し、 60分経過後に生簀の周りのシートを除去した。サンプリングは、処理前と処理した次の日に各10尾を取り上げることで行った。体表に寄生しているベネデニア・セリオレとネオベネデニア・ジレレ(n=10)を、鰓に寄生しているゼウクサプタ・ヤポニカ(n=5)を計数した。駆虫効果の評価は、各区の寄生虫数を比較することで行った。なお、処理時の海水の水温は 26℃であった。
<Effectiveness test of low-concentration hydrogen peroxide solution treatment by amberjack skirt method>
Test method: A 11.5 mx 11.5 mx 10 m cage containing about 2 kg of amberjack, a 48 m long and 10 m wide sheet is wrapped around the cage, and the chucks attached to both ends of the sheet are closed to form a cylinder. Then I surrounded the cage. An amount of concentrated hydrogen peroxide solution having an average concentration of 35 ppm was added to the seawater in the sheet in 5 minutes, and after 60 minutes, the sheet around the cage was removed. Sampling was done by picking 10 fish each before and the day after treatment. Benedenia seriole and neo-benedenia gillere (n=10), which are parasitic on the body surface, and Zeuxapta japonica (n=5), which are parasitic on the gills, were counted. The anthelmintic effect was evaluated by comparing the number of parasites in each plot. The temperature of seawater during treatment was 26°C.

結果と考察
過酸化水素水濃度は、開始時が35ppm、30分後が15ppm、60分後が3ppmとなり、徐々に希釈された。ハダムシ(ネオベネデニアとベネデニア)寄生数は、処理前が110±48.3個体/尾、処理後が28.9±24.3個体/尾であった。ゼウクサプタの寄生数は、処理前が110.8±49.0個体/尾、処理後が54.0±41.6個体/尾であった。従って、本剤が徐々に希釈される条件下でのスカート法においても低濃度過酸化水素水処理の有効性が検証された。
Results and Discussion The hydrogen peroxide concentration was 35 ppm at the start, 15 ppm after 30 minutes, and 3 ppm after 60 minutes, and the concentration was gradually diluted. The number of parasitic beetles (Neo Benedenia and Benedenia) was 110±48.3 individuals/tail before the treatment and 28.9±24.3 individuals/tail after the treatment. The number of parasites of zekusapta was 110.8±49.0 individuals/tail before the treatment and 54.0±41.6 individuals/tail after the treatment. Therefore, the effectiveness of low-concentration hydrogen peroxide solution treatment was verified even in the skirt method under conditions in which this agent was gradually diluted.

本発明の方法により、現在養殖現場で用いられている過酸化水素水を用いて、より安全にかつ効率よく、魚類に寄生する外部寄生虫を駆除することができる。

By the method of the present invention, ectoparasites that parasitize fishes can be exterminated more safely and efficiently using the hydrogen peroxide solution currently used in aquaculture.

Claims (8)

海産魚類を30ppm〜150ppmの濃度の過酸化水素水に15分間以上浸漬させて外部寄生虫の吸盤又は固着盤を萎縮又は変形させることを特徴とする、低濃度過酸化水素水により海産魚類の吸盤又は固着盤を有する外部寄生虫を駆除する方法。 A marine fish sucker with a low-concentration hydrogen peroxide solution, which is characterized by immersing marine fish in a hydrogen peroxide solution having a concentration of 30 ppm to 150 ppm for 15 minutes or more to atrophy or deform the sucker or sticker of ectoparasites. Alternatively, a method for exterminating ectoparasites having a sticking disc. 生け簀の網の少なくとも側面をシートで被い、内部の海水が保持される状態にして、生け簀内の海水に過酸化水素水を計算上平均濃度が30ppm〜150ppmになる量投入し、15分間以上経過後、シートを除去することを特徴とする請求項1の方法。 Cover at least the side surface of the cage net with a sheet to keep the seawater inside, and add hydrogen peroxide solution to the seawater in the cage to calculate the average concentration of 30 ppm to 150 ppm, and keep it for 15 minutes or more. The method of claim 1 wherein the sheet is removed after the passage. 浸漬時間が15分間〜2時間である、請求項1または2の方法。 The method according to claim 1 or 2, wherein the immersion time is 15 minutes to 2 hours. 浸漬時間が15〜60分間である、請求項3の方法。 The method of claim 3, wherein the soaking time is 15-60 minutes. 海産魚類が、スズキ目に属する海産魚類である、請求項1〜4のいずれかの方法。 The method according to claim 1, wherein the marine fish is a marine fish belonging to the order Perciformes. 海産魚類が、ブリ類又はタイ類の魚類である、請求項5の方法。 The method according to claim 5, wherein the marine fish is a yellowtail or Thai fish. 外部寄生虫が、扁形動物門単生綱単後吸盤類のカプサラ科若しくはディプレクタニダ科又は多後吸盤類のヘテラキシネ科若しくはミクロコチレ科に属する外部寄生虫である、請求項1〜6のいずれかの方法。 The method according to any one of claims 1 to 6, wherein the ectoparasite is an ectoparasite belonging to the genus Capsula or Diplectinidae of the phylum Monophylla .. 外部寄生虫が、ベネデニア・セリオレ、ベネデニア・エピネフェリ、ベネデニア・ホシナイ、ベネデニア・セキイ、ネオベネデニア・ジレレ、ネオベネデニア・コンゲリ、ラメロジスカス、ゼウクサプタ・ヤポニカ、ビバギナ・タイ、ヘテラキシネ・ヘテロセルカ、ミクロコチレ・セバスチス、又はミクロコチレ・セバスチスキである、請求項7の方法。 Ectoparasites are Benedenia ceriole, Benedenia epinepheri, Benedenia Hoshinai, Benedenia Sekii, Neobenedenia gillere, Neobenedenia congheri, Lamelogiscus, Zeuxapta japonica or Vivagina tai, Heteraxine heterocerchiaceta, micrococcilece, micrococcus 8. The method of claim 7, which is Sebastiski.
JP2020009041A 2013-10-18 2020-01-23 Fish ectoparasite disinfestation method using low density hydrogen peroxide water Pending JP2020096599A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013217648 2013-10-18
JP2013217648 2013-10-18

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018001082A Division JP6791889B2 (en) 2013-10-18 2018-01-09 How to exterminate fish ectoparasites with low-concentration hydrogen peroxide solution

Publications (1)

Publication Number Publication Date
JP2020096599A true JP2020096599A (en) 2020-06-25

Family

ID=52828208

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2015542675A Active JP6313777B2 (en) 2013-10-18 2014-10-17 Method of controlling fish ectoparasites with low-concentration hydrogen peroxide solution
JP2018001082A Active JP6791889B2 (en) 2013-10-18 2018-01-09 How to exterminate fish ectoparasites with low-concentration hydrogen peroxide solution
JP2020009041A Pending JP2020096599A (en) 2013-10-18 2020-01-23 Fish ectoparasite disinfestation method using low density hydrogen peroxide water

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2015542675A Active JP6313777B2 (en) 2013-10-18 2014-10-17 Method of controlling fish ectoparasites with low-concentration hydrogen peroxide solution
JP2018001082A Active JP6791889B2 (en) 2013-10-18 2018-01-09 How to exterminate fish ectoparasites with low-concentration hydrogen peroxide solution

Country Status (5)

Country Link
JP (3) JP6313777B2 (en)
KR (3) KR20210113437A (en)
CN (1) CN105636433A (en)
MY (1) MY170903A (en)
WO (1) WO2015056769A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CL2016002937A1 (en) * 2016-11-17 2017-03-03 Raul Hernan Alvarez Gatica System for the elimination of parasites attached to fish by means of the direct application of electricity to the fish, which causes the removal of parasites without damaging the fish.
CA3083984A1 (en) * 2017-12-20 2019-06-27 Intervet International B.V. Method and system for external fish parasite monitoring in aquaculture
CN115299386A (en) * 2022-06-15 2022-11-08 中国水产科学研究院东海水产研究所 Method for improving breeding survival rate of larval and juvenile pseudosciaena crocea

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS449502Y1 (en) * 1968-11-12 1969-04-17
JPH0751028B2 (en) * 1988-03-10 1995-06-05 全国漁業協同組合連合会 Ectoparasite control method for seawater-cultured fish
JP2575240B2 (en) 1991-07-12 1997-01-22 株式会社片山化学工業研究所 How to treat freshwater fish
JP2575240Y2 (en) 1992-07-23 1998-06-25 日信工業株式会社 Electromagnetic actuator
JP2817753B2 (en) 1992-07-27 1998-10-30 株式会社片山化学工業研究所 Prevention of Heterobothrosis in Trafugu in a Sea Farm
JPH0751028A (en) 1993-08-09 1995-02-28 Kansai Paint Co Ltd Fine powder of agar-agar and gelidium jelly using the powder
JP2000128702A (en) * 1998-10-28 2000-05-09 Daiichi Seimou Co Ltd Parasiticide in hatchery fish
JP4888782B2 (en) * 2007-08-28 2012-02-29 株式会社片山化学工業研究所 How to kill parasite eggs in cultured fish
JP5221591B2 (en) * 2010-04-23 2013-06-26 ペルメレック電極株式会社 How to control ectoparasites that infest cultured fish

Also Published As

Publication number Publication date
MY170903A (en) 2019-09-13
WO2015056769A1 (en) 2015-04-23
JP6313777B2 (en) 2018-04-18
KR20240068798A (en) 2024-05-17
JP6791889B2 (en) 2020-11-25
CN105636433A (en) 2016-06-01
KR20160075580A (en) 2016-06-29
JP2018057406A (en) 2018-04-12
JPWO2015056769A1 (en) 2017-03-09
KR20210113437A (en) 2021-09-15

Similar Documents

Publication Publication Date Title
JP2020096599A (en) Fish ectoparasite disinfestation method using low density hydrogen peroxide water
JP3882939B1 (en) Method for treating and preventing fish succichiosis
JP7105776B2 (en) Treatment to remove ectoparasites from fish
JP6489727B2 (en) Therapeutic agents for diseases caused by microsporidia and myxospores parasitic on marine fish
KR101817817B1 (en) Fish parasite extermination agent and extermination method
Jithendran et al. Crustacean parasites and their management in brackishwater finfish culture
JP4225385B2 (en) Disinfectant for fish pathogenic bacteria and method for the disinfection
NO312056B1 (en) Use of preparations for the prevention and treatment of parasites in fish
CN112243346A (en) Treatment for removing ectoparasites from fish
EP3422856B1 (en) Preparation containing sea water and an added potassium compound
Liao et al. The use of chemicals in aquaculture in Taiwan, Province of China
JP2023078111A (en) Pisces parasite eliminator including glutaraldehyde
JPH0646708A (en) Method for preventing heterobothriasis of takifugu rubripes in sea water culture farm
RU2788121C2 (en) Treatment for removal of ectoparasites in fish
ISSHIKI et al. Treatments of Neoheterobothrium infection in Japanese flounder by 8% NaCl-supplemented seawater bathing
WO2002060258A1 (en) Fish anthelmintics and anthelmintic method
GB2500381A (en) The combination of pyrethroid and hydrogen peroxide for control of ectoparasite infestation in fish
Bright Singh et al. Ornamental fish diseases and their management measures
SUNYATSENI Effect of Formalin Treatment on the Monogenean Pseudorhabdosynochus epinepheli (Monogenea) and the Fish Epinephelus coioides
Bright Singh et al. Ornamental fish diseases and their management measures-Winter School on Recent Advances in Breeding and Larviculture of Marine Finfish and Shellfish
WO2016184507A1 (en) Treatment for chitin-containing micoorganisms

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20210323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211001