JP2020096450A - Self-excitation reactive power compensation device - Google Patents

Self-excitation reactive power compensation device Download PDF

Info

Publication number
JP2020096450A
JP2020096450A JP2018233023A JP2018233023A JP2020096450A JP 2020096450 A JP2020096450 A JP 2020096450A JP 2018233023 A JP2018233023 A JP 2018233023A JP 2018233023 A JP2018233023 A JP 2018233023A JP 2020096450 A JP2020096450 A JP 2020096450A
Authority
JP
Japan
Prior art keywords
voltage
phase
phase voltage
output
reactive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018233023A
Other languages
Japanese (ja)
Other versions
JP6640317B1 (en
Inventor
晃 神部
Akira Kanbe
晃 神部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Electric Co Ltd
Original Assignee
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Electric Co Ltd filed Critical Aichi Electric Co Ltd
Priority to JP2018233023A priority Critical patent/JP6640317B1/en
Application granted granted Critical
Publication of JP6640317B1 publication Critical patent/JP6640317B1/en
Publication of JP2020096450A publication Critical patent/JP2020096450A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Abstract

To improve responsiveness of unbalanced voltage suppression control of a high-voltage distribution system by detecting negative sequence voltage at high speed.SOLUTION: When negative sequence voltage is detected using αβ conversion and reverse γδ conversion, a ripple component (second harmonic component) which is generated by conversion of positive sequence voltage is removed with an FIR type filter, and then harmonic is removed with an IIR type low pass filter, and a dc component (the negative sequence voltage is converted into the dc component) is extracted. Higher cut-off frequency of the IIR type low pass filter can be achieved by using the FIR type filter, and thus high-speed detection of the negative sequence voltage is enabled.SELECTED DRAWING: Figure 1

Description

本発明は、自励式無効電力補償装置を用いて、配電系統の三相電圧の不平衡を抑制する技術に関する。 The present invention relates to a technique for suppressing unbalance of three-phase voltage in a distribution system by using a self-excited reactive power compensator.

自励式変換器を用いて無効電力を補償する無効電力補償装置は自励式SVC、SVGあるいはSTATCOMと呼ばれている。前記自励式変換器はIGBT等の半導体デバイスで構成されており、高速な無効電力出力制御によって配電系統の急激な電圧変動を迅速に抑制することができる A reactive power compensator that compensates reactive power using a self-excited converter is called a self-excited SVC, SVG, or STATCOM. The self-excited converter is composed of a semiconductor device such as an IGBT, and can rapidly suppress a rapid voltage fluctuation in the distribution system by high-speed reactive power output control.

下記特許文献1記載のSVGは、それ自体に配電系統の三相不平衡電圧を抑制する機能を備えることで、電圧調整用機器であるSVGの他に三相不平衡電力出力変換器を設置する必要を無くし、設備費用を抑制できる効果を有する。 The SVG described in Patent Document 1 below has a function of suppressing the three-phase unbalanced voltage of the power distribution system by itself, thereby installing a three-phase unbalanced power output converter in addition to the SVG which is a voltage adjusting device. It has the effect of eliminating the need and reducing equipment costs.

三相不平衡電圧を抑制する方法としては、系統電圧から逆相分を演算・検出し、当該逆相電圧を打ち消すことができる出力を算出する。そして、算出した出力量の電力を配電系統に出力することで実現する。 As a method of suppressing the three-phase unbalanced voltage, a reverse-phase component is calculated and detected from the system voltage, and an output capable of canceling the reverse-phase voltage is calculated. Then, it is realized by outputting the calculated amount of electric power to the distribution system.

特許第3830095号Patent No. 3830095

然るに、上記特許文献1には、前述の逆相電圧の演算方法として、電流・電圧センサによって検出された各相の電圧から逆相電圧を演算するとのみ記載されており、具体的な演算方法が記載されていない。 However, in the above-mentioned Patent Document 1, as a calculation method of the above-mentioned reverse-phase voltage, only the calculation of the reverse-phase voltage from the voltage of each phase detected by the current/voltage sensor is described, and a specific calculation method is described. Not listed.

そこで、本発明では、逆相電圧の具体的な演算方法を提示するとともに、該逆相電圧の検出を高速で行うことで、配電系統の三相不平衡電圧抑制制御の応答性を高め、かつ、系統周波数の変動に対してもロバストな不平衡電圧抑制制御の実現が可能な自励式無効電力補償装置を提示する。 Therefore, in the present invention, while presenting a specific method for calculating the reverse-phase voltage, by detecting the reverse-phase voltage at high speed, the responsiveness of the three-phase unbalanced voltage suppression control of the distribution system, and In this paper, we present a self-excited reactive power compensator that can realize unbalanced voltage suppression control that is robust against system frequency fluctuations.

請求項1記載の発明は、系統電圧の逆相分を検出して、当該逆相分を0にする無効電力を該系統に出力することで系統の電圧不平衡を抑制する自励式無効電力補償装置において、系統電圧をαβ変換および逆γδ変換して逆相電圧を検出する際にリプル成分となって現れる正相電圧をFIR型のフィルタによって除去し、前記系統電圧に含まれる高調波をIIR型のローパスフィルタによって除去することで、逆相電圧を高速で検出可能に構成したことに特徴を有する。 The invention according to claim 1 is a self-excited reactive power compensator for suppressing a voltage imbalance of a system by detecting a reverse phase component of a system voltage and outputting a reactive power for reducing the negative phase component to 0 to the system. In the device, the positive phase voltage that appears as a ripple component when the system voltage is αβ-converted and the reverse γδ-converted to detect the negative-phase voltage is removed by the FIR type filter, and the harmonics contained in the system voltage are removed by IIR. It is characterized in that the negative-phase voltage can be detected at high speed by removing the negative-phase voltage by a low-pass filter of the type.

請求項2記載の発明は、請求項1記載の無効電力補償装置において、系統電圧の周波数を検出し、サンプリング周波数を該系統電圧の周波数に同期可変して、前記系統電圧をサンプリングすることにより、周波数変動に対してロバストな不平衡電圧抑制制御を可能としたことに特徴を有する。 According to a second aspect of the present invention, in the reactive power compensator according to the first aspect, the frequency of the system voltage is detected, the sampling frequency is synchronously varied with the frequency of the system voltage, and the system voltage is sampled. It is characterized by enabling unbalanced voltage suppression control that is robust against frequency fluctuations.

請求項1記載の発明によれば、逆相電圧を高速に検出することができ、結果、逆相電圧を0とする無効電力を系統に出力して、三相配電線の電圧不平衡を素早く解消することが可能となる。 According to the first aspect of the present invention, the reverse phase voltage can be detected at high speed, and as a result, the reactive power that sets the reverse phase voltage to 0 is output to the grid to quickly eliminate the voltage imbalance of the three-phase distribution line. It becomes possible to do.

請求項2記載の発明によれば、系統周波数の変動に対してロバストな逆相電圧の検出が可能となる。 According to the second aspect of the present invention, it is possible to detect the reverse phase voltage that is robust against the fluctuation of the system frequency.

本発明に係る自励式無効電力補償装置の制御ブロック図である。FIG. 3 is a control block diagram of a self-excited reactive power compensator according to the present invention. 本発明の他の実施例に係る自励式無効電力補償装置の制御ブロック図である。FIG. 6 is a control block diagram of a self-excited var compensator according to another embodiment of the present invention. 本発明に係る自励式無効電力補償装置に、系統周波数変動に対してロバストな三相配電線電圧不平衡抑制制御機能を付加する場合の制御ブロック図である。It is a control block diagram in the case of adding the three-phase distribution line voltage imbalance suppression control function robust with respect to system frequency fluctuation to the self-excited var compensator according to the present invention.

以下、本発明の実施の形態を図1乃至図3により説明する。図1は本発明に係る自励式無効電力補償装置Aの制御ブロック図である。 An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a control block diagram of a self-excited reactive power compensator A according to the present invention.

FIT制度の施行以降、家庭用太陽光発電設備が配電系統に大量に連系されていている。家庭用太陽光発電設備は単相であるため、このような分散電源が大量に連系した場合、逆潮流による電圧上昇によって三相電圧不平衡の拡大が懸念される。 Since the implementation of the FIT system, a large number of household solar power generation facilities have been connected to the distribution system. Since household solar power generation facilities are single-phase, when a large number of such distributed power sources are connected to each other, there is a concern that three-phase voltage imbalance may increase due to voltage rise due to reverse power flow.

図1に示す無効電力補償装置Aは、系統電圧検出部1により、電圧検出用トランスVTを介して配電系統の三相電圧(vofu,vofv,vofw)を検出し、αβ変換部2へ出力する。 In the reactive power compensator A shown in FIG. 1, the system voltage detection unit 1 detects the three-phase voltage (vofu, vofv, vofw) of the distribution system via the voltage detection transformer VT, and outputs it to the αβ conversion unit 2. ..

αβ変換部2は、入力した三相電圧(vofu,vofv,vofw)を、これと等価な二相電圧(α相電圧vofa,β相電圧vofb)に座標変換し、それをγδ変換部3と逆γδ変換部4へ出力する。 The αβ conversion unit 2 performs coordinate conversion of the input three-phase voltage (vofu, vofv, vofw) into a two-phase voltage (α-phase voltage vofa, β-phase voltage vofb) equivalent to the three-phase voltage, and converts it into the γδ conversion unit 3. Output to the inverse γδ conversion unit 4.

γδ変換部3では、二相電圧(α相電圧vofa,β相電圧vofb)をγδ変換することにより、正相電圧を直流成分に変換し、逆相電圧を系統周波数の2倍調波成分に変換して出力する。 In the γδ conversion unit 3, the two-phase voltage (α-phase voltage vofa, β-phase voltage vofb) is γδ-converted to convert the positive-phase voltage into a DC component and the negative-phase voltage into a double harmonic component of the system frequency. Convert and output.

γδ変換部3が出力するγ相電圧vofgとδ相電圧vofdは、それぞれFIR型フィルタ5,6に入力される。このFIR型のフィルタは、有限インパルス応答型のフィルタであり、その特長は、直流成分をそのまま出力し、第2調波成分をゼロにする。 The γ-phase voltage vofg and the δ-phase voltage vofd output from the γδ converter 3 are input to the FIR filters 5 and 6, respectively. This FIR type filter is a finite impulse response type filter, and its feature is that it outputs the DC component as it is and makes the second harmonic component zero.

そのため、FIR型フィルタ5,6は、入力されたγ相電圧vofgとδ相電圧vofdの直流成分である正相電圧をそのまま出力し、第2調波成分である逆相電圧をゼロにする。 Therefore, the FIR filters 5 and 6 output the positive phase voltage, which is the DC component of the input γ-phase voltage vofg and the δ-phase voltage vofd, as they are, and zero the negative-phase voltage that is the second harmonic component.

両FIR型フィルタ5,6の出力はそれぞれIIR型のローパスフィルタ7,8に入力される。IIR型ローパスフィルタは、無限インパルス応答型のフィルタであり、系統電圧の高調波を除去することができる。 The outputs of both FIR type filters 5 and 6 are input to IIR type low pass filters 7 and 8, respectively. The IIR low-pass filter is an infinite impulse response type filter and can remove harmonics of the system voltage.

そこで、FIR型フィルタ5の出力をIIR型のローパスフィルタ7に通過させることにより、正相電圧から高調波を除去した正相電圧のγ相成分vofpgを出力することができ、FIR型フィルタ6の出力をIIR型のローパスフィルタ8に通すことにより、正相電圧から高調波を除去した正相電圧のδ相成分vofpdを出力することができる。 Therefore, by passing the output of the FIR type filter 5 through the IIR type low-pass filter 7, it is possible to output the γ-phase component vofpg of the positive phase voltage obtained by removing harmonics from the positive phase voltage. By passing the output through the IIR type low-pass filter 8, it is possible to output the δ-phase component vofpd of the positive phase voltage obtained by removing harmonics from the positive phase voltage.

一方、逆γδ変換部4に入力されたα相電圧vofaとβ相電圧vofbは、当該変換部4によってその逆相電圧が直流成分に変換され、正相電圧が系統周波数の2倍調波成分に変換される。 On the other hand, in the α-phase voltage vofa and the β-phase voltage vofb input to the reverse γδ conversion unit 4, the conversion unit 4 converts the negative-phase voltage into a DC component, and the positive-phase voltage is a double harmonic component of the system frequency. Is converted to.

逆γδ変換部4が出力するγ相電圧vofigとδ相電圧vofidは、それぞれFIR型フィルタ9,10に入力され、当該フィルタ9,10によって、その逆相電圧はそのまま出力され、正相電圧がゼロとなる。 The γ-phase voltage vofig and the δ-phase voltage vofid output by the inverse γδ converter 4 are input to the FIR filters 9 and 10, respectively, and the reverse-phase voltage is directly output by the filters 9 and 10, and the positive-phase voltage is It becomes zero.

この出力をIIR型のローパスフィルタ11,12に入力することにより、γ相電圧vofigとδ相電圧vofidから高調波成分を除去し、逆相電圧のγ相成分vofngとδ相成分vofndを出力することができる。 By inputting this output to the IIR type low-pass filters 11 and 12, harmonic components are removed from the γ-phase voltage vofig and the δ-phase voltage vofid, and the γ-phase component vofng and the δ-phase component vofnd of the anti-phase voltage are output. be able to.

正相電圧のγ相成分vofpgとδ相成分vofpdは正相電圧演算部13に入力され、当該正相電圧演算部13によって配電系統の現在の正相電圧値が演算される。正相電圧演算部13の出力は加え合せ点14の一方の入力とされ、加え合せ点14は他方の入力である正相電圧目標値との差分を演算し、正相電圧制御系補償器15に出力する。 The γ-phase component vofpg and the δ-phase component vofpd of the positive phase voltage are input to the positive phase voltage calculation unit 13, and the current positive phase voltage value of the distribution system is calculated by the positive phase voltage calculation unit 13. The output of the positive phase voltage calculation unit 13 is one input of the addition point 14, and the addition point 14 calculates the difference from the positive phase voltage target value which is the other input, and the positive phase voltage control system compensator 15 Output to.

正相電圧制御系補償器15は、現在の正相電圧値が目標値と一致するように出力電流指令値iorpdを生成し、それを非干渉化部16に出力する。非干渉化部16には、他方の入力として、直流(コンデンサ)電圧制御部17の出力iorpgが入力される。 The positive phase voltage control system compensator 15 generates the output current command value iorpd so that the current positive phase voltage value matches the target value, and outputs it to the decoupling unit 16. The output iorpg of the direct current (capacitor) voltage control unit 17 is input to the decoupling unit 16 as the other input.

当該出力iorpgは、無効電力補償装置Aを構成する図示しない直流側のコンデンサの電圧を一定に保持する目的で出力されるものである。つまり、図1に示す無効電力補償装置Aの損失によって、図示しないコンデンサが該損失分のエネルギーを供給することにより、コンデンサ電圧は低下していく。 The output iorpg is output for the purpose of keeping the voltage of a DC-side capacitor (not shown) forming the reactive power compensator A constant. In other words, due to the loss of the reactive power compensator A shown in FIG. 1, the capacitor (not shown) supplies energy corresponding to the loss, and the capacitor voltage decreases.

そこで、系統から有効電力を取り込むことにより、損失分のエネルギーをコンデンサに充電して、コンデンサ電圧を一定に保持する必要がある。直流(コンデンサ)電圧制御部17の出力iorpgは、このために出力されるものである。 Therefore, it is necessary to charge the capacitor with energy for the loss by taking in the active power from the grid to keep the capacitor voltage constant. The output iorpg of the direct current (capacitor) voltage control unit 17 is output for this purpose.

非干渉化部16は、逆γδ変換部18が行う変換によって後述する電流出力部に干渉が発生することを防止するための処理を行うものであり、非干渉化部16の出力は逆γδ変換部18において逆γδ変換され、その出力はα相の正相補償電流指令値iorpaおよびβ相の正相補償電流指令値iorpbとして加え合せ点19に出力される。 The decoupling unit 16 performs processing to prevent interference from occurring in the current output unit, which will be described later, due to the conversion performed by the inverse γδ conversion unit 18, and the output of the decoupling unit 16 is inverse γδ conversion. The inverse γδ conversion is performed in the unit 18, and the output is output to the addition point 19 as the α-phase positive phase compensation current command value iorpa and the β-phase positive phase compensation current command value iorpb.

他方、逆相電圧のγ相成分vofngは、加え合せ点20の一方の入力となり、逆相電圧のγ相目標値である0[V]が該加え合せ点20の他方に入力される。同様に、逆相電圧のδ相成分vofndは、加え合せ点21の一方の入力となり、逆相電圧のδ相目標値である0[V]が該加え合せ点21の他方に入力される。 On the other hand, the γ-phase component vofng of the negative phase voltage is input to one of the addition points 20, and 0 [V], which is the γ-phase target value of the negative phase voltage, is input to the other of the addition points 20. Similarly, the δ-phase component vofnd of the negative phase voltage is input to one of the addition points 21, and 0 [V], which is the δ-phase target value of the negative phase voltage, is input to the other of the addition points 21.

加え合せ点20は、逆相電圧のγ相成分vofngと逆相電圧のγ相目標値である0[V]の差分を演算し、逆相電圧γ相制御系補償器22に出力する。加え合せ点21は、逆相電圧のδ相成分vofndと逆相電圧のδ相目標値である0[V]の差分を演算し、逆相電圧δ相制御系補償器23に出力する。 The addition point 20 calculates the difference between the γ-phase component vofng of the negative-phase voltage and the target value of the γ-phase of the negative-phase voltage, 0 [V], and outputs the difference to the negative-phase voltage γ-phase control system compensator 22. At the addition point 21, the difference between the δ-phase component vofnd of the negative phase voltage and 0 [V] which is the δ-phase target value of the negative phase voltage is calculated and output to the negative phase voltage δ phase control system compensator 23.

逆相電圧γ相制御系補償器22および逆相電圧δ相制御系補償器23は、現在の逆相電圧のγ相成分とδ相成分が目標値である0[V]となるように出力電流指令値iorngとiorndを生成し、それらを非干渉化部24に出力する。 The anti-phase voltage γ-phase control system compensator 22 and the anti-phase voltage δ-phase control system compensator 23 output so that the γ-phase component and the δ-phase component of the current anti-phase voltage become 0 [V] which are the target values. The current command values iorng and iornd are generated and output to the decoupling unit 24.

非干渉化部24は、γδ変換部25が行う変換によって後述する電流出力部に干渉が発生することを防止するための処理を行うものであり、非干渉化部24の出力はγδ変換部25においてγδ変換され、その出力はα相の逆相補償電流指令値iornaおよびβ相の逆相補償電流指令値iornbとして加え合せ点19に出力される。 The decoupling unit 24 performs processing for preventing interference from occurring in the current output unit, which will be described later, due to the conversion performed by the γδ conversion unit 25, and the output of the decoupling unit 24 is the γδ conversion unit 25. Is converted into γδ, and the output is output to the addition point 19 as the α-phase anti-phase compensation current command value iorna and the β-phase anti-phase compensation current command value iornb.

加え合せ点19は、入力されるα相の正相補償電流指令値iorpaおよびβ相の正相補償電流指令値iorpbとα相の逆相補償電流指令値iornaおよびβ相の逆相補償電流指令値iornbを加算して、逆αβ変換部26に出力する。 The addition point 19 is the α-phase positive-phase compensation current command value iorpa and the β-phase positive-phase compensation current command value iorpb, and the α-phase anti-phase compensation current command value iorna and the β-phase anti-phase compensation current command. The value iornb is added and output to the inverse αβ converter 26.

逆αβ変換部26は、その入力を逆αβ変換して出力電流指令値ioru,iorvを電流出力部27に出力する。電流出力部27は、出力電流制御やPWM制御インバータ、LCフィルタ、昇圧変圧器を含むものであり、前記出力電流指令値ioru,iorvにしたがって三相(U相,V相,W相)の電流iou,iov,iowを出力する。すなわち、正相電圧を目標値とし、かつ、逆相電圧がゼロとなる無効電力(出力電流iou,iov,iow)を出力する。逆相電圧をゼロとすることにより、高圧配電系統の電圧不平衡を抑制することができる。 The inverse αβ conversion unit 26 inversely αβ-converts the input and outputs the output current command values ioru, iorv to the current output unit 27. The current output unit 27 includes an output current control and PWM control inverter, an LC filter, and a step-up transformer, and has three-phase (U-phase, V-phase, W-phase) currents according to the output current command values ioru and iorv. Outputs iou, iov, iow. That is, the reactive power (output currents iou, iov, iow) at which the positive phase voltage is the target value and the negative phase voltage is zero is output. By setting the reverse-phase voltage to zero, voltage imbalance in the high-voltage distribution system can be suppressed.

上述した本発明の第1実施例においては、現在の正相電圧のγ相成分vofpgおよびδ相成分vofpdを求めるにあたり、FIR型フィルタ5,6とIIR型ローパスフィルタ7,8を組み合わせることにより、αβ変換およびγδ変換を用いて正相電圧を検出する際に逆相電圧が2倍調波成分に変換されることに鑑み、FIR型フィルタ5,6において、2倍調波成分(逆相電圧)を除去し、かつ、IIR型ローパスフィルタ7,8において、系統電圧に含まれる高調波を除去することとしている。 In the above-described first embodiment of the present invention, in obtaining the γ-phase component vofpg and the δ-phase component vofpd of the current positive phase voltage, by combining the FIR type filters 5 and 6 and the IIR type low pass filters 7 and 8, Considering that the negative phase voltage is converted into the second harmonic component when the positive phase voltage is detected by using the αβ conversion and the γδ conversion, the double harmonic component (the negative phase voltage ) Is removed, and the harmonics contained in the system voltage are removed in the IIR low-pass filters 7 and 8.

また、本発明の第1実施例では、現在の逆相電圧のγ相成分vofngおよびδ相成分vofndを求めるにあたり、FIR型フィルタ9,10とIIR型ローパスフィルタ11,12を組み合わせることによって、αβ変換および逆γδ変換を用いて逆相電圧を検出する際に正相電圧が2倍調波成分に変換されることに鑑み、FIR型フィルタ9,10において、2倍調波成分(正相電圧)を除去し、かつ、IIR型ローパスフィルタ11,12によって、系統電圧に含まれる高調波を除去することとしている。 Further, in the first embodiment of the present invention, when the γ-phase component vofng and the δ-phase component vofnd of the current negative-phase voltage are obtained, by combining the FIR filters 9 and 10 and the IIR low-pass filters 11 and 12, αβ In consideration of the fact that the positive phase voltage is converted into the double harmonic component when the negative phase voltage is detected by using the conversion and the reverse γδ conversion, the double harmonic component (the positive phase voltage ), and the IIR low-pass filters 11 and 12 remove harmonics contained in the system voltage.

この点、FIR型フィルタとIIR型ローパスフィルタの組み合わせではなく、IIR型ローパスフィルタのみによって構成することも考えられるが、通常、逆相電圧は正相電圧のせいぜい3%程度と小さいので、2倍調波成分(正相電圧)をIIR型ローパスフィルタのみによって除去しようとすると、例えば、その除去レベルの許容値を逆相電圧の1/10以下(0.3%)となるようフィルタを設計する必要がある。 In this respect, it is conceivable that the FIR type filter and the IIR low-pass filter are not combined, but only the IIR type low-pass filter is used. However, normally, the negative phase voltage is as small as about 3% of the positive phase voltage. If the harmonic component (positive phase voltage) is to be removed only by the IIR low-pass filter, the filter is designed so that the allowable value of the removal level is 1/10 or less (0.3%) of the negative phase voltage. There is a need.

よって、2倍調波成分を0.3%に低減しようとした場合、系統周波数が50[Hz]でIIR型1次ローパスフィルタを用いると、カットオフ周波数を0.3[Hz]程度とすることになり、逆相電圧の検出が遅れてしまう。その結果、高圧配電系統の不平衡抑制制御の応答が遅くなる問題が生じる。 Therefore, when it is attempted to reduce the second harmonic component to 0.3%, the cutoff frequency is about 0.3 [Hz] when the system frequency is 50 [Hz] and the IIR first-order low-pass filter is used. As a result, the detection of the reverse phase voltage is delayed. As a result, there arises a problem that the response of the unbalance suppression control of the high voltage distribution system becomes slow.

そこで、本発明ではIIR型ローパスフィルタだけでなくFIR型フィルタを用いることで、IIR型ローパスフィルタのカットオフ周波数を高く(30[Hz]程度)し、逆相電圧を高速に検出可能とした。この結果、配電系統の不平衡抑制制御の応答性を高めることができた。 Therefore, in the present invention, not only the IIR type low-pass filter but also the FIR type filter is used to increase the cut-off frequency of the IIR type low-pass filter (about 30 [Hz]) so that the anti-phase voltage can be detected at high speed. As a result, the response of the unbalance suppression control of the distribution system could be improved.

図2は本発明の第2実施例に係る自励式無効電力補償装置Bを示す制御ブロック図である。無効電力補償装置Bで、三相電圧不平衡を解消し、かつ、系統電圧を目標値に調整する場合は、電圧検出用トランスVTを介して系統電圧検出部31によって、配電系統の三相電圧(vofu,vofv,vofw)を検出し、αβ変換部32へ出力する。 FIG. 2 is a control block diagram showing a self-excited reactive power compensator B according to a second embodiment of the present invention. When the three-phase voltage imbalance is eliminated in the reactive power compensator B and the system voltage is adjusted to the target value, the three-phase voltage of the distribution system is detected by the system voltage detection unit 31 via the voltage detection transformer VT. (Vofu, vofv, vofw) is detected and output to the αβ converter 32.

αβ変換部32は、入力した三相電圧(vofu,vofv,vofw)を、これと等価な二相電圧(α相電圧vofa,β相電圧vofb)に座標変換し、それをγδ変換部33と逆γδ変換部34へ出力する。 The αβ conversion unit 32 performs coordinate conversion of the input three-phase voltage (vofu, vofv, vofw) into a two-phase voltage (α-phase voltage vofa, β-phase voltage vofb) equivalent thereto, and the αβ conversion unit 33 and It outputs to the inverse γδ converter 34.

γδ変換部33では、二相電圧(α相電圧vofa,β相電圧vofb)をγδ変換することにより、正相電圧をγ相とδ相それぞれの直流成分に変換し、逆相電圧をそれぞれの2倍調波成分に変換して、γ相電圧vofgとδ相電圧vofdとして出力する。 In the γδ converter 33, the two-phase voltage (α-phase voltage vofa, β-phase voltage vofb) is γδ-converted, thereby converting the positive-phase voltage into DC components of the γ-phase and the δ-phase, and the negative-phase voltage of each. It is converted into a double harmonic component and output as a γ-phase voltage vofg and a δ-phase voltage vofd.

逆γδ変換部34に入力されたα相電圧vofaとβ相電圧vofbは、当該変換部34によって、逆相電圧がγ相とδ相それぞれの直流成分に変換され、正相電圧がそれぞれの2倍調波成分に変換されて、γ相電圧vofig、δ相電圧vofidとして出力される。 The α-phase voltage vofa and the β-phase voltage vofb input to the reverse γδ conversion unit 34 are converted by the conversion unit 34 into the DC components of the γ-phase and the δ-phase, respectively, and the positive-phase voltage of each of the two components is It is converted into a harmonic component and output as a γ-phase voltage vofig and a δ-phase voltage vofid.

γδ変換部33の出力するγ相電圧vofgとδ相電圧vofdは、正相電圧演算部35に出力され、当該演算部35によって配電系統の現在の正相電圧値が演算される。ただし、この演算値には逆相電圧を含んだ高調波成分が含まれている。正相電圧演算部35の出力は加え合せ点36の一方の入力とされ、加え合せ点36は他方の入力である正相電圧目標値との差分が演算され、FIR型のフィルタ37に出力される。 The γ-phase voltage vofg and the δ-phase voltage vofd output from the γδ conversion unit 33 are output to the positive-phase voltage calculation unit 35, and the calculation unit 35 calculates the current positive-phase voltage value of the distribution system. However, this calculated value contains a harmonic component including a reverse phase voltage. The output of the positive phase voltage calculation unit 35 is one input of the addition point 36, and the difference between the addition point 36 and the positive phase voltage target value which is the other input is calculated and output to the FIR type filter 37. It

FIR型フィルタ37では、入力された差分電圧のうち正相電圧がそのまま出力され、第2調波成分である逆相電圧はゼロとなる。 In the FIR filter 37, the positive phase voltage of the input differential voltage is output as it is, and the negative phase voltage which is the second harmonic component becomes zero.

また、この後段にあるIIR型のローパスフィルタ38によって、正相電圧から高調波が除去され正相電圧制御系補償器39に出力される。 Further, the IIR type low-pass filter 38 in the latter stage removes harmonics from the positive phase voltage and outputs the positive phase voltage control system compensator 39.

正相電圧制御系補償器39は、現在の正相電圧値を目標値と一致するように出力電流指令値iorpdを生成し、それを非干渉化部41に出力する。非干渉化部41には、他方の入力として、直流(コンデンサ)電圧制御部40の出力iorpgが入力される。 The positive phase voltage control system compensator 39 generates the output current command value iorpd so that the current positive phase voltage value matches the target value, and outputs it to the decoupling unit 41. The output iorpg of the direct current (capacitor) voltage control unit 40 is input to the decoupling unit 41 as the other input.

当該出力iorpgは、無効電力補償装置Bを構成する図示しない直流側のコンデンサの電圧を一定に保持する目的で出力されるものである。つまり、図2に示す無効電力補償装置Bの損失によって、図示しないコンデンサが該損失分のエネルギーを供給することにより、コンデンサ電圧は低下していく。 The output iorpg is output for the purpose of keeping the voltage of a DC-side capacitor (not shown) forming the reactive power compensator B constant. That is, due to the loss of the reactive power compensator B shown in FIG. 2, the capacitor (not shown) supplies energy corresponding to the loss, and the capacitor voltage decreases.

そこで、系統から有効電力を取り込むことにより、損失分のエネルギーをコンデンサに充電して、コンデンサ電圧を一定に保持する必要がある。直流(コンデンサ)電圧制御部40の出力iorpgは、このために出力されるものである。 Therefore, it is necessary to charge the capacitor with energy for the loss by taking in the active power from the grid to keep the capacitor voltage constant. The output iorpg of the direct current (capacitor) voltage controller 40 is output for this purpose.

非干渉化部41は、逆γδ変換部42が行う座標変換によって後述する電流出力部に干渉が発生することを防止するものであり、非干渉化部41の出力は逆γδ変換部42において逆γδ変換され、その出力(iorpa,iorpb)は加え合せ点43に入力される。 The decoupling unit 41 prevents the current output unit, which will be described later, from causing interference due to the coordinate conversion performed by the inverse γδ conversion unit 42, and the output of the decoupling unit 41 is inverted by the inverse γδ conversion unit 42. γδ conversion is performed, and the output (iorpa, iorpb) is input to the addition point 43.

逆γδ変換部34が出力するγ相電圧vofigとδ相電圧vofidは、それぞれ加え合せ点44,45の一方の入力として出力される。加え合せ点44,45の他方の入力には、逆相電圧のγ相目標値とδ相目標値である0[V]が入力され、両加え合せ点44,45が各々その入力の差分を演算し、FIR型フィルタ46,47に出力する。 The γ-phase voltage vofig and the δ-phase voltage vofid output by the inverse γδ conversion unit 34 are output as one input of the addition points 44 and 45, respectively. To the other input of the addition points 44 and 45, 0 [V], which is the γ-phase target value and the δ-phase target value of the negative phase voltage, is input, and both addition points 44 and 45 show the difference between the inputs. The calculated value is output to the FIR filters 46 and 47.

FIR型フィルタ46,47では、前記差分電圧のうち、逆相電圧はそのまま出力され、第2調波成分である正相電圧はゼロとなる。 In the FIR filters 46 and 47, the negative phase voltage of the differential voltage is output as it is, and the positive phase voltage that is the second harmonic component becomes zero.

FIR型フィルタ46,47の出力はそれぞれIIR型のローパスフィルタ48,49に入力され、当該ローパスフィルタ48,49によって、高調波成分が除去される。 The outputs of the FIR filters 46 and 47 are input to the IIR low-pass filters 48 and 49, respectively, and the low-pass filters 48 and 49 remove harmonic components.

ローパスフィルタ48,49の出力は各々逆相電圧γ相制御系補償器50と逆相電圧δ相制御系補償器51に入力され、補償器50,51によって、現在の逆相電圧のγ相成分とδ相成分が目標値である0[V]となるように出力電流指令値iorng,iorndを生成し、それらを非干渉化部52に出力する。 The outputs of the low-pass filters 48 and 49 are input to the anti-phase voltage γ-phase control system compensator 50 and the anti-phase voltage δ-phase control system compensator 51, respectively, and the compensators 50 and 51 cause the γ-phase component of the current anti-phase voltage. And output current command values iorng and iornd are generated such that the δ-phase component becomes 0 [V], which is the target value, and they are output to the decoupling unit 52.

非干渉化部52では、後段のγδ変換部53の変換処理によって後述する電流出力部に干渉が発生することを防止する処理を行う。γδ変換部53によるγδ変換後の出力は加え合せ点43の他方の入力となる。 The decoupling unit 52 performs a process of preventing interference from occurring in the current output unit, which will be described later, due to the conversion process of the γδ conversion unit 53 in the subsequent stage. The output after the γδ conversion by the γδ conversion unit 53 becomes the other input of the addition point 43.

加え合せ点43は、入力されるα相の正相補償電流指令値iorpaおよびβ相の正相補償電流指令値iorpbとα相の逆相補償電流指令値iornaおよびβ相の逆相補償電流指令値iornbを加算して、逆αβ変換部54に出力する。 The addition point 43 is the input α phase positive phase compensation current command value iorpa and β phase positive phase compensation current command value iorpb and α phase anti-phase compensation current command value iorna and β phase anti-phase compensation current command. The value iornb is added and output to the inverse αβ converter 54.

逆αβ変換部54では、その入力を逆αβ変換して出力電流指令値ioru,iorvを電流出力部55に出力する。電流出力部55では、前記出力電流指令値ioru,iorvにしたがって三相(U相,V相,W相)の電流iou,iov,iowを出力する。 The inverse αβ conversion unit 54 inversely αβ-converts the input and outputs the output current command values ioru, iorv to the current output unit 55. The current output unit 55 outputs currents iou, iov, iow of three phases (U phase, V phase, W phase) according to the output current command values ioru, iorv.

この結果、正相電圧を目標値とし、かつ、逆相電圧がゼロとなる無効電力(出力電流iou,iov,iow)が出力され、高圧配電系統の電圧を目標値に調整するとともに、電圧不平衡を抑制する。 As a result, reactive power (output currents iou, iov, iow) with the positive-phase voltage as the target value and the negative-phase voltage as zero is output, and the voltage of the high-voltage distribution system is adjusted to the target value and Suppress equilibrium.

図2に示す第2実施例に係る無効電力補償装置Bにおいても、図1に示す無効電力補償装置A同様、FIR型フィルタとIIR型ローパスフィルタを組み合わせることにより、逆相電圧を高速に検出可能とし、配電系統の不平衡電圧抑制制御の応答性を高めることができる。 Also in the reactive power compensating apparatus B according to the second embodiment shown in FIG. 2, as in the reactive power compensating apparatus A shown in FIG. 1, a reverse phase voltage can be detected at high speed by combining the FIR type filter and the IIR type low pass filter. Therefore, the response of the unbalanced voltage suppression control of the distribution system can be improved.

図3は図1および図2に示す自励式無効電力補償装置A,Bに、周波数変動に対してロバストな不平衡電圧抑制制御を実現するための機能を付加する場合の制御ブロック図である。 FIG. 3 is a control block diagram in the case where a function for realizing unbalanced voltage suppression control that is robust against frequency fluctuation is added to the self-excited reactive power compensators A and B shown in FIGS. 1 and 2.

図3において、60は系統周波数検出部(PLL)であり、61はA/D変換開始信号生成部である。A/D変換開始信号生成部61は、系統電圧をA/D変換器を用いて三相同時サンプリングする際のタイミング信号をA/D変換器に与える。 In FIG. 3, 60 is a system frequency detection unit (PLL), and 61 is an A/D conversion start signal generation unit. The A/D conversion start signal generation unit 61 gives the A/D converter a timing signal when three-phase simultaneous sampling is performed on the system voltage using the A/D converter.

図3に示す構成において、系統周波数検出部60は、常時、系統周波数foを検出することにより、系統周波数foの変動を検出し、A/D変換開始信号生成部61に出力する。 In the configuration shown in FIG. 3, the system frequency detection unit 60 always detects the system frequency fo to detect the fluctuation of the system frequency fo, and outputs it to the A/D conversion start signal generation unit 61.

A/D変換開始信号生成部61では、検出した系統周波数foに追随して、A/D変換器のサンプリング周波数fsをN・foとなるように可変制御する。例えば、3°間隔で系統電圧をサンプリングする場合、サンプリング周波数fsを系統周波数foに追随させて、1/fs=1/(120・fo)となる時間間隔でA/D変換開始信号を系統電圧検出部1,31に出力する。 The A/D conversion start signal generation unit 61 variably controls the sampling frequency fs of the A/D converter so as to be N·fo, following the detected system frequency fo. For example, when the system voltage is sampled at 3° intervals, the sampling frequency fs is made to follow the system frequency fo, and the A/D conversion start signal is supplied to the system voltage at time intervals of 1/fs=1/(120·fo). Output to the detection units 1 and 31.

FIR型フィルタは、系統周波数変動の影響により、その周波数特性が変化する。第2調波成分を除去するFIR型フィルタの一例として、入出力関係が下式で表わされるフィルタで簡単に説明する。
y(n)=(x(n)+x(n−m))/2
y(n):n時点(現時点)のフィルタ出力値
x(n):n時点(現時点)のフィルタ入力値
x(n−m):n−m時点(現時点よりm時点前)のフィルタ入力値(これを90°前
のフィルタ入力値とする。3°間隔でサンプリングする場合、m=30
The frequency characteristic of the FIR filter changes due to the influence of system frequency fluctuations. As an example of the FIR filter for removing the second harmonic component, a filter whose input/output relationship is expressed by the following equation will be briefly described.
y(n)=(x(n)+x(n-m))/2
y(n): Filter output value at n time (current time) x(n): Filter input value at n time (current time) x(n-m): Filter input value at nm time (m time before current time) (This is 90 degrees ago
Set as the filter input value of. When sampling at 3° intervals, m=30
)

このフィルタに下式で表わされる第2調波が入力されたとすると、
x(n)=sin(2ωo・nTs+φ)
ωo=2πfo,Ts:サンプリング間隔
If the second harmonic expressed by the following equation is input to this filter,
x(n)=sin(2ωo·nTs+φ)
ωo=2πfo, Ts: sampling interval

90°(=π/2[rad])前の入力値は、
x(n−m)=sin(2(ωo・nTs−π/2)+φ)
=−sin(2ωo・nTs+φ)
となる。このときフィルタの出力は、
y(n)=0
となり、第2調波成分が完全に除去される。
The input value 90° (=π/2 [rad]) before is
x(n−m)=sin(2(ωo·nTs−π/2)+φ)
=-sin(2ωo·nTs+φ)
Becomes At this time, the output of the filter is
y(n)=0
And the second harmonic component is completely removed.

系統周波数foが変動した場合、サンプリング間隔Tsが固定だとx(n−m)は90°前の入力値でなくなるため、x(n−m)≠−sin(2ωo・nTs+φ)となり、y(n)≠0となる。つまり、第2調波成分が完全に除去されずに残ってしまう。 When the system frequency fo changes, if the sampling interval Ts is fixed, x(n−m) is not the input value 90° before, so x(n−m)≠−sin(2ωo·nTs+φ), and y( n) ≠ 0. That is, the second harmonic component remains without being completely removed.

然るに、サンプリング間隔Tsを系統周波数foに追随させて変化させれば、x(n−m)は90°前の入力値となるので、系統周波数foが変動しても第2調波成分が除去可能となる。 However, if the sampling interval Ts is changed so as to follow the system frequency fo, x(n−m) becomes the input value 90° before, so the second harmonic component is removed even if the system frequency fo changes. It will be possible.

以上、第2調波成分についてのみ説明したが、他の周波数成分に対しても同様であり、FIR型フィルタは、系統周波数変動の影響により、その周波数特性が変化する。 Although only the second harmonic component has been described above, the same applies to other frequency components, and the frequency characteristics of the FIR filter change due to the influence of system frequency fluctuations.

A/D変換器のサンプリング周波数fsを系統周波数foに同期して可変することにより、系統電圧検出部1,31は、正確に位相同期して系統電圧をサンプリングすることができ、結果、FIR型フィルタ5,6,9,10,37,46,47の周波数特性が系統周波数変動に対してロバストなものとなる。 By varying the sampling frequency fs of the A/D converter in synchronization with the system frequency fo, the system voltage detection units 1 and 31 can accurately perform phase synchronization and sample the system voltage. As a result, the FIR type The frequency characteristics of the filters 5, 6, 9, 10, 37, 46, 47 are robust against system frequency fluctuations.

すなわち、系統周波数が変動しても前記FIR型フィルタのゲイン特性は影響を受けず、第2調波成分に対するゲインを常にゼロとすることができる。したがって、系統周波数が変動しても、γδ変換部3,33によるγδ変換後、または、逆γδ変換部4,34による逆γδ変換後の第2調波成分を完全に除去することができる。 That is, even if the system frequency fluctuates, the gain characteristic of the FIR filter is not affected, and the gain for the second harmonic component can always be zero. Therefore, even if the system frequency fluctuates, it is possible to completely remove the second harmonic component after γδ conversion by the γδ conversion units 3 and 33 or after inverse γδ conversion by the inverse γδ conversion units 4 and 34.

この結果、図1,2に示す自励式無効電力補償装置は、系統周波数foが変動した場合でも、確実に三相電圧の不平衡を抑制することができる。 As a result, the self-excited reactive power compensator shown in FIGS. 1 and 2 can reliably suppress the imbalance of the three-phase voltage even when the system frequency fo changes.

以上説明したように、本発明の自励式無効電力補償装置によれば、逆相電圧を高速に検出することができるので、高圧配電系統の不平衡電圧抑制制御の応答を速くすることができる。 As described above, according to the self-excited reactive power compensator of the present invention, the reverse-phase voltage can be detected at high speed, so that the response of the unbalanced voltage suppression control of the high-voltage distribution system can be speeded up.

また、系統周波数の変動に対してロバストな不平衡電圧抑制制御が可能となる。 In addition, unbalanced voltage suppression control that is robust against fluctuations in the system frequency becomes possible.

本発明は、配電系統に設置される無効電力補償装置に利用可能である。 INDUSTRIAL APPLICABILITY The present invention can be used for a reactive power compensator installed in a power distribution system.

1,31 系統電圧検出部
2,32 αβ変換部
3,33 γδ変換部
4,34 逆γδ変換部
5,6,9,10,37,46,47 FIR型フィルタ
7,8,11,12,38,48,49 IIR型ローパスフィルタ
13,35 正相電圧演算部
14,19,20,21,36,43,44,45 加え合せ点
15,39 正相電圧制御系補償器
16,24,41,52 非干渉化部
17,40 直流(コンデンサ)電圧制御部
18,42 逆γδ変換部
22,50 逆相電圧γ相制御系補償器
23,51 逆相電圧δ相制御系補償器
25,53 γδ変換部
26,54 逆αβ変換部
27,55 電流出力部
60 系統周波数検出部(PLL)
61 A/D変換開始信号生成部
A,B 自励式無効電力補償装置
1,31 System voltage detection unit 2,32 αβ conversion unit 3,33 γδ conversion unit 4,34 Inverse γδ conversion unit 5,6,9,10,37,46,47 FIR type filter 7,8,11,12, 38,48,49 IIR type low-pass filter 13,35 Positive phase voltage calculation unit 14,19,20,21,36,43,44,45 Addition point 15,39 Positive phase voltage control system compensator 16,24,41 , 52 Decoupling unit 17,40 Direct current (capacitor) voltage control unit 18,42 Reverse γδ conversion unit 22,50 Reverse phase voltage γ phase control system compensator 23,51 Reverse phase voltage δ phase control system compensator 25,53 γδ conversion unit 26,54 Inverse αβ conversion unit 27,55 Current output unit 60 System frequency detection unit (PLL)
61 A/D conversion start signal generator A, B Self-excited reactive power compensator

Claims (2)

系統電圧の逆相分を検出して、当該逆相分を0にする無効電力を該系統に出力することで系統の電圧不平衡を抑制するに際し、系統電圧をαβ変換および逆γδ変換して逆相電圧を検出する際にリプル成分となって現れる正相電圧をFIR型のフィルタによって除去し、前記系統電圧に含まれる高調波をIIR型のローパスフィルタによって除去することで、逆相電圧を高速で検出可能に構成したことを特徴とする自励式無効電力補償装置。 When suppressing the voltage imbalance of the system by detecting the opposite phase component of the system voltage and outputting the reactive power that makes the opposite phase component 0 to the system, the system voltage is converted to αβ and reverse γδ. The positive phase voltage that appears as a ripple component when the negative phase voltage is detected is removed by the FIR type filter, and the harmonics contained in the system voltage are removed by the IIR type low pass filter, thereby reducing the negative phase voltage. A self-excited reactive power compensator characterized by being configured to detect at high speed. 系統電圧の周波数を検出し、サンプリング周波数を系統電圧の周波数に同期可変して、前記系統電圧をサンプリングすることにより、周波数変動に対してロバストな不平衡電圧抑制制御を可能としたことを特徴とする請求項1記載の自励式無効電力補償装置。 By detecting the frequency of the system voltage, changing the sampling frequency in synchronization with the frequency of the system voltage, and sampling the system voltage, it is possible to perform unbalanced voltage suppression control that is robust against frequency fluctuations. The self-excited reactive power compensator according to claim 1.
JP2018233023A 2018-12-13 2018-12-13 Self-excited reactive power compensator Active JP6640317B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018233023A JP6640317B1 (en) 2018-12-13 2018-12-13 Self-excited reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018233023A JP6640317B1 (en) 2018-12-13 2018-12-13 Self-excited reactive power compensator

Publications (2)

Publication Number Publication Date
JP6640317B1 JP6640317B1 (en) 2020-02-05
JP2020096450A true JP2020096450A (en) 2020-06-18

Family

ID=69320917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018233023A Active JP6640317B1 (en) 2018-12-13 2018-12-13 Self-excited reactive power compensator

Country Status (1)

Country Link
JP (1) JP6640317B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06245383A (en) * 1993-02-12 1994-09-02 Fuji Electric Co Ltd Positive phase/negative phase component detector for three-phase electric amounts
JP2006271075A (en) * 2005-03-23 2006-10-05 Fuji Electric Systems Co Ltd Control system for reactive power compensation device
JP2016154429A (en) * 2015-02-21 2016-08-25 有限会社シー・アンド・エス国際研究所 Digital type rotor phase velocity estimation device of ac motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06245383A (en) * 1993-02-12 1994-09-02 Fuji Electric Co Ltd Positive phase/negative phase component detector for three-phase electric amounts
JP2006271075A (en) * 2005-03-23 2006-10-05 Fuji Electric Systems Co Ltd Control system for reactive power compensation device
JP2016154429A (en) * 2015-02-21 2016-08-25 有限会社シー・アンド・エス国際研究所 Digital type rotor phase velocity estimation device of ac motor

Also Published As

Publication number Publication date
JP6640317B1 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
JP6319501B2 (en) Resonance suppression device
Wu et al. Influence of plugging DC offset estimation integrator in single-phase EPLL and alternative scheme to eliminate effect of input DC offset and harmonics
JP5051127B2 (en) Power converter and control method thereof
JP6544170B2 (en) Control device for 3-level inverter
CN111769588A (en) VSG low-voltage ride-through control method and system based on power grid unbalance fault
JP2009044897A (en) Signal extraction circuit, and system interconnection inverter system including the same
Gong et al. Design and analysis of vector proportional–integral current controller for LC-coupling hybrid active power filter with minimum dc-link voltage
CN109256789B (en) Three-phase unbalance adjusting device and current limiting method thereof
Terriche et al. Multiple-complex coefficient-filter-based PLL for improving the performance of shunt active power filter under adverse grid conditions
Kim et al. Improvement of grid-connected inverter systems with PR controllers under the unbalanced and distorted grid voltage
Lee et al. Performance improvement of grid-connected inverter systems under unbalanced and distorted grid voltage by using a PR controller
JP5567365B2 (en) Inverter control circuit and grid-connected inverter system provided with this inverter control circuit
Tang et al. A novel low computational burden dual-observer phase-locked loop with strong disturbance rejection capability for more electric aircraft
JP2010288437A (en) Control method for power converting device, uninterruptible power supply device, and parallel instantaneous-voltage-drop compensation device
Xavier et al. Adaptive saturation scheme for a multifunctional single-phase photovoltaic inverter
JP2013150459A (en) Control circuit of power conversion circuit, interconnection inverter system using the same, and single-phase pwm converter system
Kato et al. Fast current-tracking control for grid-connected inverter with an LCL filter by sinusoidal compensation
Hoepfner et al. Symmetrical components detection with FFDSOGI-PLL under distorted grid conditions
JP6640317B1 (en) Self-excited reactive power compensator
JP6776695B2 (en) Power converter
KR20130021134A (en) Apparatus for controlling current of inverter
Jones et al. Correcting current imbalances in three-phase four-wire distribution systems
Hao et al. Fast extraction of symmetrical components from distorted three-phase signals based on asynchronous-rotational reference frame
WO2014050759A1 (en) Single-phase voltage type ac-dc converter
CN107069725B (en) Power quality comprehensive control method and system for power distribution network based on chain-type converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191225

R150 Certificate of patent or registration of utility model

Ref document number: 6640317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150