JP2020095955A - Alkaline secondary battery - Google Patents

Alkaline secondary battery Download PDF

Info

Publication number
JP2020095955A
JP2020095955A JP2019218582A JP2019218582A JP2020095955A JP 2020095955 A JP2020095955 A JP 2020095955A JP 2019218582 A JP2019218582 A JP 2019218582A JP 2019218582 A JP2019218582 A JP 2019218582A JP 2020095955 A JP2020095955 A JP 2020095955A
Authority
JP
Japan
Prior art keywords
secondary battery
alkaline secondary
side wall
negative electrode
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019218582A
Other languages
Japanese (ja)
Other versions
JP7364445B2 (en
Inventor
淳宣 松矢
Junki Matsuya
淳宣 松矢
鬼頭 賢信
Masanobu Kito
賢信 鬼頭
毅 八木
Takeshi Yagi
毅 八木
玄太 寺澤
Genta Terasawa
玄太 寺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of JP2020095955A publication Critical patent/JP2020095955A/en
Application granted granted Critical
Publication of JP7364445B2 publication Critical patent/JP7364445B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

To provide an alkaline secondary battery that has a shape suitable for applying pressure when used as a module battery, and that can ensure excellent heat dissipation.SOLUTION: An alkaline secondary battery 10 includes a laminated battery in which a plurality of unit cell elements having a configuration of the alkaline secondary battery are laminated, and a box-shaped case 28 in which the laminated battery is housed vertically, and the box-shaped case includes a bottom portion 28a, a pair of long-side wall portions 28b parallel to the laminated battery, a pair of short-side wall portions 28c perpendicular to the laminated battery, and a lid portion 28d, and the outer surface of the pair of long-side wall portions has a flat surface and a plurality of ribs R provided so as to project in a ridge shape from the flat surface, and the plurality of ribs are spaced from each other and provided in parallel in the longitudinal direction.SELECTED DRAWING: Figure 1

Description

本発明は、アルカリ二次電池に関するものである。 The present invention relates to an alkaline secondary battery.

高電圧や大電流を得るために、複数の単電池を組み合わせて作られた積層電池が広く採用されている。積層電池は、単電池を複数直列または並列に接続した積層体が一つの電池容器内に収納された構成を有する。例えば、特許文献1(国際公開第2017/086278号)には、電極及びセパレータ(特に後述するLDHセパレータ)を備えた複数個の電極カートリッジを密閉容器内に収容した亜鉛二次電池が開示されている。 In order to obtain a high voltage and a large current, a laminated battery made by combining a plurality of single cells is widely adopted. The laminated battery has a structure in which a laminated body in which a plurality of unit cells are connected in series or in parallel is housed in one battery container. For example, Patent Document 1 (International Publication No. WO 2017/086278) discloses a zinc secondary battery in which a plurality of electrode cartridges each including an electrode and a separator (especially an LDH separator described later) are housed in a sealed container. There is.

また、更なる大容量化及び高出力化のために、積層電池を内在した電池ユニットを複数個配列させて電池モジュール化することも一般的に行われている。例えば、特許文献2(国際公開第2018/173110号)には、直方体状の複数個の電池ユニットをフレーム構造体内に収容した電池モジュールが開示されており、電池ユニット内には複数個のアルカリ二次電池(例えばニッケル亜鉛二次電池及び亜鉛空気二次電池)の単電池が組電池ないし電池モジュールの形態で収容されているのが好ましいとされている。 Further, in order to further increase the capacity and output, it is also common to arrange a plurality of battery units having a laminated battery therein to form a battery module. For example, Patent Document 2 (International Publication No. 2018/173110) discloses a battery module in which a plurality of rectangular parallelepiped battery units are housed in a frame structure, and a plurality of alkaline batteries are contained in the battery unit. It is said that the unit cells of the secondary battery (for example, nickel-zinc secondary battery and zinc-air secondary battery) are preferably accommodated in the form of an assembled battery or a battery module.

ところで、ニッケル亜鉛二次電池、空気亜鉛二次電池等の亜鉛二次電池では、充電時に負極から金属亜鉛がデンドライト状に析出し、不織布等のセパレータの空隙を貫通して正極に到達し、その結果、短絡を引き起こすことが知られている。このような亜鉛デンドライトに起因する短絡は繰り返し充放電寿命の短縮を招く。上記問題に対処すべく、水酸化物イオンを選択的に透過させながら、亜鉛デンドライトの貫通を阻止する、層状複水酸化物(LDH)セパレータを備えた電池が提案されている。例えば、特許文献3(国際公開第2013/118561号)には、ニッケル亜鉛二次電池においてLDHセパレータを正極及び負極間に設けることが開示されている。また、特許文献4(国際公開第2016/076047号)には、樹脂製外枠に嵌合又は接合されたLDHセパレータを備えたセパレータ構造体が開示されており、LDHセパレータがガス不透過性及び/又は水不透過性を有する程の高い緻密性を有することが開示されている。また、この文献にはLDHセパレータが多孔質基材と複合化されうることも開示されている。さらに、特許文献5(国際公開第2016/067884号)には多孔質基材の表面にLDH緻密膜を形成して複合材料(LDHセパレータ)を得るための様々な方法が開示されている。この方法は、多孔質基材にLDHの結晶成長の起点を与えうる起点物質を均一に付着させ、原料水溶液中で多孔質基材に水熱処理を施してLDH緻密膜を多孔質基材の表面に形成させる工程を含むものである。 By the way, in a zinc-zinc secondary battery such as a nickel-zinc secondary battery or an air-zinc secondary battery, metallic zinc is deposited in a dendrite form from the negative electrode during charging and reaches the positive electrode through the voids of a separator such as a nonwoven fabric, As a result, it is known to cause a short circuit. Such a short circuit caused by zinc dendrite causes repeated shortening of charge/discharge life. In order to deal with the above problem, a battery provided with a layered double hydroxide (LDH) separator that prevents penetration of zinc dendrite while selectively allowing hydroxide ions to pass through has been proposed. For example, Patent Document 3 (International Publication No. 2013/118561) discloses providing an LDH separator between a positive electrode and a negative electrode in a nickel-zinc secondary battery. Further, Patent Document 4 (International Publication No. 2016/076047) discloses a separator structure including an LDH separator fitted or joined to a resin outer frame, and the LDH separator has gas impermeability and It is disclosed to have a high degree of compaction such that it has water/impermeable properties. This document also discloses that the LDH separator can be composited with a porous substrate. Further, Patent Document 5 (International Publication No. WO 2016/067884) discloses various methods for forming a LDH dense film on the surface of a porous substrate to obtain a composite material (LDH separator). In this method, a starting material that can give a starting point for LDH crystal growth is uniformly attached to a porous substrate, and the porous substrate is hydrothermally treated in an aqueous solution of the raw material to form an LDH dense film on the surface of the porous substrate. It includes a step of forming.

国際公開第2017/086278号International Publication No. 2017/0886278 国際公開第2018/173110号International Publication No. 2018/173110 国際公開第2013/118561号International Publication No. 2013/118561 国際公開第2016/076047号International Publication No. 2016/076047 国際公開第2016/067884号International Publication No. 2016/067884

ところで、ニッケル亜鉛電池等の積層電池をケース内に備えた電池ユニットは、電池性能を最大限に引き出すためにケースの外から加圧することが望ましい。これは、負極とLDHセパレータとの間における亜鉛デンドライトの成長を許容する隙間を最小化し、それにより亜鉛デンドライト伸展のより効果的な防止が期待できるためである。そのためには、複数個の電池ユニットを配列してモジュール化した際に個々の電池ユニットに圧力がかかるように、ケースの側面形状はできるだけ平坦であることが望ましい。例えば、図10に示されるような直方体のケース128である。しかしながら、ケース128の側面部が平坦であると、図11に示されるようにモジュール130を構成する電池ユニット同士が密着することになるため、電池ユニットが発生する熱を上手く逃がすことができない、すなわち放熱性が悪くなるとの問題がある。 By the way, in a battery unit including a laminated battery such as a nickel-zinc battery in the case, it is desirable to apply pressure from outside the case in order to maximize the battery performance. This is because the gap that allows the growth of zinc dendrites between the negative electrode and the LDH separator can be minimized, and thereby more effective prevention of zinc dendrite extension can be expected. For that purpose, it is desirable that the side surface shape of the case be as flat as possible so that pressure is applied to each battery unit when a plurality of battery units are arranged and modularized. For example, a rectangular parallelepiped case 128 as shown in FIG. However, if the side surface of the case 128 is flat, the battery units that form the module 130 will come into close contact with each other as shown in FIG. 11, so that the heat generated by the battery units cannot be dissipated well, that is, There is a problem that heat dissipation becomes poor.

本発明者らは、今般、箱型ケースの長手側壁部の平坦な外表面に複数のリブを設けることで、モジュール電池にした際に、圧力を付与するのに適した形状でありながらも、優れた放熱性を確保可能な、アルカリ二次電池を提供できるとの知見を得た。 The present inventors have recently provided a plurality of ribs on the flat outer surface of the long side wall of the box-shaped case, so that the module battery has a shape suitable for applying pressure when formed into a module battery. We have found that it is possible to provide an alkaline secondary battery that can ensure excellent heat dissipation.

したがって、本発明の目的は、電池モジュールにした際に、圧力を付与するのに適した形状でありながらも、優れた放熱性を確保可能な、アルカリ二次電池を提供することにある。 Therefore, it is an object of the present invention to provide an alkaline secondary battery that has a shape suitable for applying pressure when it is formed into a battery module, and that can ensure excellent heat dissipation.

本発明の一態様によれば、
アルカリ二次電池の構成を有する複数の単電池要素が積層された積層電池と、
前記積層電池が縦向きに収容される箱型ケースと、
を備えた、アルカリ二次電池であって、
前記箱型ケースが、底部と、前記積層電池と平行な1対の長手側壁部と、前記積層電池と垂直な1対の短手側壁部と、蓋部とを有し、
前記1対の長手側壁部の外表面が、平坦面と、該平坦面から畝状に突出して設けられる複数のリブとを有し、前記複数のリブが互いに離間しかつ縦方向に平行に設けられている、アルカリ二次電池が提供される。
According to one aspect of the invention,
A stacked battery in which a plurality of single battery elements having a structure of an alkaline secondary battery are stacked,
A box-shaped case in which the laminated battery is accommodated in a vertical direction,
An alkaline secondary battery comprising:
The box-shaped case has a bottom portion, a pair of long side wall portions parallel to the laminated battery, a pair of short side wall portions perpendicular to the laminated battery, and a lid portion,
The outer surface of the pair of long side wall portions has a flat surface and a plurality of ribs provided in a ridge-like shape protruding from the flat surface, and the plurality of ribs are provided so as to be separated from each other and parallel to the longitudinal direction. The alkaline secondary battery is provided.

本発明の別の一態様によれば、前記アルカリ二次電池を複数備えたアルカリ二次電池モジュールであって、
前記複数のアルカリ二次電池が、前記長手側壁部同士が向かい合い、かつ、前記リブ同士が当接するように配列され、それにより隣り合う前記箱型ケースの前記リブ同士が接触してスペーサをなし、それにより縦方向の通気孔を形成する、アルカリ二次電池モジュールが提供される。
According to another aspect of the present invention, an alkaline secondary battery module comprising a plurality of the alkaline secondary battery,
The plurality of alkaline secondary batteries, the long side wall portions are opposed to each other, and are arranged so that the ribs contact each other, thereby forming a spacer by contacting the ribs of the adjacent box-shaped case, Thus, an alkaline secondary battery module having vertical ventilation holes is provided.

本発明のアルカリ二次電池の一例を示す斜視図である。It is a perspective view which shows an example of the alkaline secondary battery of this invention. 図1に示されるアルカリ二次電池の箱型ケースのA−A線断面図である。It is the sectional view on the AA line of the box type case of the alkaline secondary battery shown in FIG. 図1に示されるアルカリ二次電池の箱型ケースの蓋部を示す上面図である。It is a top view which shows the cover part of the box type case of the alkaline secondary battery shown in FIG. 図1に示されるアルカリ二次電池を複数個配列した電池モジュールを示す斜視図である。FIG. 2 is a perspective view showing a battery module in which a plurality of alkaline secondary batteries shown in FIG. 1 are arranged. 図1に示されるアルカリ二次電池の内部構造の一例を示す斜視図である。It is a perspective view which shows an example of an internal structure of the alkaline secondary battery shown by FIG. 図5に示されるアルカリ二次電池の層構成を概念的に示す模式断面図である。FIG. 6 is a schematic cross-sectional view conceptually showing the layer structure of the alkaline secondary battery shown in FIG. 5. 図5に示されるアルカリ二次電池の外観及び内部構造を示す。The external appearance and internal structure of the alkaline secondary battery shown in FIG. 5 are shown. アルカリ二次電池で用いられる、負極活物質層がLDHセパレータで覆われた負極板の一例を示す斜視図である。FIG. 3 is a perspective view showing an example of a negative electrode plate used in an alkaline secondary battery and having a negative electrode active material layer covered with an LDH separator. 図8Aに示される負極板の層構成を示す模式断面図である。It is a schematic cross section which shows the laminated constitution of the negative electrode plate shown by FIG. 8A. 図8Aに示される負極板における、LDHセパレータで覆われる領域を説明するための模式図である。It is a schematic diagram for demonstrating the area|region covered with the LDH separator in the negative electrode plate shown by FIG. 8A. 従来の直方体状電池ユニットを示す斜視図である。It is a perspective view which shows the conventional rectangular parallelepiped battery unit. 従来の直方体状電池ユニットを複数個配列した電池モジュールを示す斜視図である。It is a perspective view showing a battery module in which a plurality of conventional rectangular parallelepiped battery units are arranged. 図1に示されるアルカリ二次電池の箱型ケースの断面の一形態を示す図である。It is a figure which shows one form of the cross section of the box type case of the alkaline secondary battery shown by FIG.

アルカリ二次電池
図1に本発明のアルカリ二次電池の一例を示す。図1に示されるアルカリ二次電池10は、積層電池と、積層電池が縦向きに収容される箱型ケース28とを備える。図5及び6に示されるように、積層電池は、アルカリ二次電池の構成を有する複数の単電池要素11が積層されたものであり、高電圧や大電流が得られる点で有利である。図1〜3に示されるように、箱型ケース28は、底部28aと、積層電池と平行な1対の長手側壁部28bと、積層電池と垂直な1対の短手側壁部28cと、蓋部28dとを有する。そして、1対の長手側壁部28bの外表面が、平坦面Fと、この平坦面38fから畝状に突出して設けられる複数のリブRとを有し、複数のリブRが互いに離間しかつ縦方向に平行に設けられている。このように、箱型ケース28の長手側壁部28bの平坦な外表面に複数のリブRを設けることで、図4に示されるように電池モジュール30にした際に、圧力を付与するのに適した形状でありながらも、優れた放熱性を確保可能な、アルカリ二次電池を提供できる。
Alkaline Secondary Battery FIG. 1 shows an example of the alkaline secondary battery of the present invention. The alkaline secondary battery 10 shown in FIG. 1 includes a laminated battery and a box-shaped case 28 in which the laminated battery is housed vertically. As shown in FIGS. 5 and 6, the laminated battery is obtained by laminating a plurality of unit cell elements 11 having an alkaline secondary battery structure, and is advantageous in that a high voltage and a large current can be obtained. As shown in FIGS. 1 to 3, the box-shaped case 28 includes a bottom portion 28a, a pair of long side wall portions 28b parallel to the stacked battery, a pair of short side wall portions 28c perpendicular to the stacked battery, and a lid. And a portion 28d. The outer surface of the pair of long side wall portions 28b has a flat surface F and a plurality of ribs R projecting from the flat surface 38f in a ridge shape. It is provided parallel to the direction. As described above, by providing the plurality of ribs R on the flat outer surface of the long side wall portion 28b of the box-shaped case 28, it is suitable to apply pressure when the battery module 30 is formed as shown in FIG. It is possible to provide an alkaline secondary battery which has a good shape but can ensure excellent heat dissipation.

前述したように、ニッケル亜鉛電池等の積層電池をケース内に備えた電池ユニットは、電池性能を最大限に引き出すためにケースの外から加圧することが望ましい。そのためには、複数個の電池ユニットを配列してモジュール化した際に個々の電池ユニットに圧力がかかるように、ケースの側面形状はできるだけ平坦であることが望ましい。例えば、図10に示されるような直方体のケース128である。しかしながら、ケースの側面部が平坦であると、図11に示されるようにモジュール130を構成する電池ユニット同士が密着することになるため、電池ユニットが発生する熱を上手く逃がすことができない。この点、本発明のアルカリ二次電池10は、長手側壁部28bの平坦な外表面に複数のリブRを設けることで、図4に示されるように電池モジュール30にした際に、長手側壁部28b同士が向かい合い、かつ、リブR同士が当接するように配列されることができる。その結果、隣り合う箱型ケース28のリブR同士が接触してスペーサをなし、それにより縦方向の通気孔を形成することができ、優れた放熱性を確保することができる。とりわけ、この優れた放熱性は、図4に示されるように電池モジュール30の下から矢印方向にリブR同士の隙間に風を通過させることでより望ましく実現することができる。このように優れた放熱性を確保しながらも、電池モジュール30の外側から長手側壁部28bを厚さ方向に加圧することで、箱型ケース28が撓んで単電池要素11に圧力を付与することができる。 As described above, it is desirable that the battery unit including the laminated battery such as the nickel-zinc battery in the case be pressurized from the outside of the case in order to maximize the battery performance. For that purpose, it is desirable that the side surface shape of the case be as flat as possible so that pressure is applied to each battery unit when a plurality of battery units are arranged and modularized. For example, a rectangular parallelepiped case 128 as shown in FIG. However, if the side surface of the case is flat, the battery units forming the module 130 will come into close contact with each other as shown in FIG. 11, and the heat generated by the battery units cannot be dissipated well. In this regard, in the alkaline secondary battery 10 of the present invention, by providing a plurality of ribs R on the flat outer surface of the long side wall portion 28b, the long side wall portion is formed when the battery module 30 is formed as shown in FIG. 28b may face each other, and ribs R may be arranged to contact each other. As a result, the ribs R of the adjacent box-shaped cases 28 are in contact with each other to form a spacer, whereby vertical ventilation holes can be formed, and excellent heat dissipation can be ensured. In particular, this excellent heat dissipation property can be more desirably realized by allowing air to pass through the gap between the ribs R from below the battery module 30 in the direction of the arrow as shown in FIG. Thus, while ensuring excellent heat dissipation, by pressing the long side wall portion 28b from the outside of the battery module 30 in the thickness direction, the box-shaped case 28 bends to apply pressure to the single cell element 11. You can

したがって、本発明の好ましい態様によれば、図4に示されるように、アルカリ二次電池10を複数備えたアルカリ二次電池モジュール30が提供される。この態様においては、複数のアルカリ二次電池が、長手側壁部28b同士が向かい合い、かつ、リブR同士が当接するように配列され、それにより隣り合う箱型ケース28のリブR同士が接触してスペーサをなし、それにより縦方向の通気孔を形成する。好ましくは、アルカリ二次電池モジュール30の外側には長手側壁部28bを厚さ方向に加圧する加圧手段(図示せず)が設けられ、それにより箱型ケース28が加圧手段により加圧されて撓むことで単電池要素11が加圧される。 Therefore, according to a preferred embodiment of the present invention, as shown in FIG. 4, an alkaline secondary battery module 30 provided with a plurality of alkaline secondary batteries 10 is provided. In this aspect, the plurality of alkaline secondary batteries are arranged such that the long side wall portions 28b face each other and the ribs R contact each other, whereby the ribs R of the adjacent box-shaped cases 28 contact each other. It forms a spacer, thereby forming a longitudinal ventilation hole. Preferably, a pressurizing means (not shown) for pressurizing the longitudinal side wall portion 28b in the thickness direction is provided outside the alkaline secondary battery module 30, whereby the box-shaped case 28 is pressed by the pressurizing means. The cell element 11 is pressed by being bent.

箱型ケース28は、図1〜3に示されるように、底部28a、積層電池と平行な1対の長手側壁部28bと、積層電池と垂直な1対の短手側壁部28cと、蓋部28dとを有する。好ましくは、アルカリ二次電池10は、正極端子14c及び負極端子18cをさらに備え、正極端子14c及び負極端子18cが蓋部28dから延出される。積層電池は図1〜3には示されていないが、図5及び6に示されるように複数の単電池要素11が積層されたもの、すなわち複数の単電池要素11の集合体である。箱型ケース28の典型的な基本形状は直方体であるが、完全な直方体である必要は無く、全体としての概形が箱型であるかぎり、部分的に曲面や凹凸を部分的に有する形状であってもよい。 As shown in FIGS. 1 to 3, the box-shaped case 28 includes a bottom portion 28a, a pair of long side wall portions 28b parallel to the laminated battery, a pair of short side wall portions 28c perpendicular to the laminated battery, and a lid portion. 28d. Preferably, the alkaline secondary battery 10 further includes a positive electrode terminal 14c and a negative electrode terminal 18c, and the positive electrode terminal 14c and the negative electrode terminal 18c are extended from the lid portion 28d. Although the laminated battery is not shown in FIGS. 1 to 3, it is a stack of a plurality of unit cell elements 11 as shown in FIGS. 5 and 6, that is, an assembly of a plurality of unit cell elements 11. Although the typical basic shape of the box-shaped case 28 is a rectangular parallelepiped, it does not have to be a perfect rectangular parallelepiped, and as long as the overall shape is a box, it may be a shape that partially has a curved surface or unevenness. It may be.

箱型ケース28は樹脂製であるのが好ましい。箱型ケース28を構成する樹脂は水酸化カリウム等のアルカリ金属水酸化物に対する耐性を有する樹脂であるのが好ましく、より好ましくはポリオレフィン樹脂、ABS樹脂、又は変性ポリフェニレンエーテルであり、さらに好ましくはABS樹脂又は変性ポリフェニレンエーテルである。また、2以上のケース28が配列されたケース群を外枠内に収容して、電池モジュールの構成としてもよい。 The box-shaped case 28 is preferably made of resin. The resin forming the box-shaped case 28 is preferably a resin having resistance to an alkali metal hydroxide such as potassium hydroxide, more preferably a polyolefin resin, an ABS resin, or a modified polyphenylene ether, further preferably ABS. It is a resin or modified polyphenylene ether. Further, a case group in which two or more cases 28 are arranged may be housed in an outer frame to form a battery module.

1対の長手側壁部28bの外表面は、平坦面Fと、平坦面Fから畝状に突出して設けられる複数のリブRとを有する。複数のリブRが互いに離間しかつ縦方向に平行に設けられる。リブRは、平坦面Fを基準として1.0〜10mmの高さを有するのが好ましく、より好ましくは1.0〜4.0mm、さらに好ましくは1.2〜3.5mm、特に好ましくは1.4〜3.0mm、最も好ましくは1.5〜2.5mmである。これらの範囲内であると電池モジュール30を構成した際の放熱性に優れるとともに、無駄な空間を最小化することで電池エネルギー密度を向上することができる。リブRの幅は、放熱性確保と圧力付与との両立の観点から、2.5〜8.0mmが好ましく、より好ましくは3.0〜7.5mm、さらに好ましくは3.5〜7.0mm、特に好ましくは4.0〜6.5mm、最も好ましくは4.5〜6.0mmである。 The outer surface of the pair of long side wall portions 28b has a flat surface F and a plurality of ribs R provided so as to project from the flat surface F in a ridge shape. A plurality of ribs R are provided so as to be separated from each other and parallel to the vertical direction. The rib R preferably has a height of 1.0 to 10 mm based on the flat surface F, more preferably 1.0 to 4.0 mm, further preferably 1.2 to 3.5 mm, and particularly preferably 1 0.4-3.0 mm, most preferably 1.5-2.5 mm. Within these ranges, the heat dissipation when the battery module 30 is constructed is excellent, and the battery energy density can be improved by minimizing the wasted space. The width of the rib R is preferably 2.5 to 8.0 mm, more preferably 3.0 to 7.5 mm, and further preferably 3.5 to 7.0 mm from the viewpoint of ensuring both heat dissipation and pressure application. , Particularly preferably 4.0 to 6.5 mm, most preferably 4.5 to 6.0 mm.

リブRは、リブRの幅が底部28aから蓋部28dに向かう方向に徐々に又は段階的に太くなるように設けられるのが、箱型ケース28の製造時に金型から離型しやすい点で好ましい。また、リブRの断面形状は、矩形状、曲面状、台形状等のいかなる形状であってもよいが、上記金型からの離型の観点から台形状であるのが好ましい。 The rib R is provided such that the width of the rib R gradually or gradually increases in the direction from the bottom portion 28a to the lid portion 28d. This is because the rib R is easily released from the mold when the box-shaped case 28 is manufactured. preferable. Further, the cross-sectional shape of the rib R may be any shape such as a rectangular shape, a curved surface shape, a trapezoidal shape, etc., but the trapezoidal shape is preferable from the viewpoint of releasing from the mold.

長手側壁部28bの1つあたりのリブRの本数は特に限定されないが、5〜11本であるのが好ましく、より好ましくは7〜10本、さらに好ましくは8〜9本である。長手側壁部28bの1つあたりのリブRの本数が5本以上の場合、長手側壁部28bの左端(短手側壁部28cとの接続部)に最も近いリブRとこの左端に2番目に近いリブRとの間隔D、及び長手側壁部28bの右端(短手側壁部28cとの接続部)に最も近いリブRとこの右端に2番目に近いリブRとの間隔Dが、長手側壁部28bの両端(すなわち左端及び右端)から離れたその他のリブR同士の間隔Dよりも狭いのが好ましい。こうすることで、箱型ケース28の長手側壁部28bの両端近傍部分(すなわち短手側壁部28cの近傍部分)を局所的に補強することができ、過充電、過放電、短絡等の異常動作時に電池内で発生するガスによる箱型ケース28の膨張(特にケース28の厚さ方向の膨張)を抑えることができる。特に、長手側壁部28bの両端近傍部分には電極が到達しない余剰空間が形成されやすく、そこに異常時に発生したガスが溜まって箱型ケース28に過度の内圧が集中的に加わることが起こりうるが、かかる内圧に耐えうる強度を箱型ケース28に付与することができる。 The number of the ribs R per one of the long side wall portions 28b is not particularly limited, but is preferably 5 to 11, more preferably 7 to 10, and further preferably 8 to 9. When the number of ribs R per one of the long side wall portions 28b is 5 or more, the rib R closest to the left end of the long side wall portion 28b (the connection portion with the short side wall portion 28c) and the second closest to this left end. distance D L between the ribs R, and the distance D R of the right edge nearest rib R in the (connection portion between the short side wall portion 28c) and the ribs R is second closest to the right end of the longitudinal side wall section 28b is, the longitudinal side walls narrow it is preferable than the distance D M other ribs R each other away from the ends (i.e. left and right) parts 28b. By doing so, the portions in the vicinity of both ends of the long side wall portion 28b of the box-shaped case 28 (that is, the portion in the vicinity of the short side wall portion 28c) can be locally reinforced, and abnormal operation such as overcharging, overdischarging, or a short circuit occurs. It is possible to suppress the expansion of the box-shaped case 28 (in particular, the expansion of the case 28 in the thickness direction) due to the gas generated in the battery. In particular, a surplus space where the electrodes do not reach is likely to be formed in the vicinity of both ends of the long side wall portion 28b, and the gas generated at the time of abnormality is accumulated in the surplus space, and excessive internal pressure may be intensively applied to the box-shaped case 28. However, it is possible to provide the box-shaped case 28 with strength that can withstand such internal pressure.

ところで、リブRの幅が底部28aから蓋部28dに向かう方向に徐々に又は段階的に太くなるように設けられる場合、図12に示されるように、1対の長手側壁部28bは、(単電池要素11を介して互いに向かい合う)1対の長手側壁部28bの内壁同士の離間距離が蓋部28dから底部28aに向かう方向に徐々に又は段階的に減少するテーパー状の断面形状を有するようにするのが好ましい。すなわち、前述のとおり、電池性能を最大限に引き出すために、電池モジュール30の外側から長手側壁部28bを厚さ方向に加圧することで、箱型ケース28が撓んで単電池要素11に圧力を付与するのが望ましい。しかし、本発明者らの知見によれば、リブRの幅が底部28aから蓋部28dに向かう方向に徐々に又は段階的に太くなるように設けられる場合、リブRの幅が太いほどその部分がより強く加圧される傾向がある。その結果、箱型ケース28が単電池要素11に付与する圧力が不均一となりうる。そこで、1対の長手側壁部28bの内壁同士の離間距離が蓋部28dから底部28aに向かう方向に減少するテーパー状の断面形状を長手側壁部28bに持たせることで、加圧が相対的に弱くなる下方部分を予め狭い内壁間距離とする一方、加圧が相対的に強くなる上方部分を予め広い内壁間距離とすることができる。こうすることで、実際に箱型ケース28を厚さ方向に(図12において矢印で示される方向に)加圧した際に、テーパー状断面により予め付与しておいた内壁間距離の分布が、加圧分布を好都合に相殺することができる。つまり、長手側壁部28b上方の広い内壁間距離が比較的強い加圧を緩和しながら単電池要素11に伝える一方、長手側壁部28b下方の狭い内壁間距離が比較的弱い加圧を単電池要素11に対してより直接的に伝えることになる。こうして、箱型ケース28(具体的には1対の長手側壁部28b)を介して単電池要素11に与える圧力を高さによらず均一にすることができる。したがって、かかる構成によれば、電池モジュール30を構成した際の放熱性に優れるというリブRによる効果に加え、電極加圧の均一化をも図ることができる。すなわち、放熱性(冷却性)と加圧性を兼ね備えた箱型ケース28を提供することができる。 By the way, when the width of the rib R is provided so as to gradually or gradually increase in the direction from the bottom portion 28a to the lid portion 28d, as shown in FIG. 12, the pair of long side wall portions 28b are The pair of long side wall portions 28b facing each other through the battery element 11 has a tapered cross-sectional shape in which the distance between the inner walls of the long side wall portions 28b gradually or gradually decreases in the direction from the lid portion 28d to the bottom portion 28a. Preferably. That is, as described above, in order to maximize the battery performance, by pressing the long side wall portion 28b from the outside of the battery module 30 in the thickness direction, the box-shaped case 28 bends and the pressure is applied to the single cell element 11. It is desirable to give it. However, according to the knowledge of the present inventors, when the width of the rib R is provided so as to gradually or gradually increase in the direction from the bottom portion 28a to the lid portion 28d, the larger the width of the rib R is, the more the portion is formed. Tend to be more strongly pressurized. As a result, the pressure applied to the single cell element 11 by the box-shaped case 28 may be non-uniform. Therefore, by providing the longitudinal side wall portions 28b with a tapered cross-sectional shape in which the distance between the inner walls of the pair of longitudinal side wall portions 28b decreases in the direction from the lid portion 28d to the bottom portion 28a, pressurization is relatively performed. The lower portion that becomes weaker can have a narrow inner wall distance in advance, while the upper portion that the pressure can be relatively strong can have a wide inner wall distance in advance. By doing so, when the box-shaped case 28 is actually pressed in the thickness direction (in the direction indicated by the arrow in FIG. 12 ), the distribution of the distances between the inner walls which is given in advance by the tapered cross section is The pressure distributions can be conveniently offset. In other words, the wide inner wall distance above the long side wall portion 28b transmits the relatively strong pressure to the single cell element 11 while relaxing the relatively strong pressure, while the narrow inner wall distance below the long side wall portion 28b applies the relatively weak pressure to the single cell element. 11 will be more directly communicated. In this way, the pressure applied to the unit cell element 11 via the box-shaped case 28 (specifically, the pair of long side wall portions 28b) can be made uniform regardless of the height. Therefore, according to such a configuration, in addition to the effect of the rib R that is excellent in heat dissipation when the battery module 30 is configured, it is also possible to achieve uniform electrode pressurization. That is, it is possible to provide the box-shaped case 28 having both heat dissipation (cooling) and pressurization.

図1に示されるように、短手側壁部28cは、短手側壁部28cの他の部分よりも厚さが局所的に低減された脆弱部Wを有するのが好ましく、この場合、脆弱部Wは短手側壁部28cの上端付近に設けられるのがより好ましい。あるいは、図3に示されるように、蓋部28dが、蓋部28dの他の部分よりも厚さが局所的に低減された脆弱部Wを有するのも好ましく、この場合、正極端子14c及び負極端子18cの間に脆弱部Wが設けられるのがより好ましい。短手側壁部28c及び蓋部28dの両方が脆弱部Wを有していてもよい。脆弱部Wを有することで、過充電、過放電、短絡等の異常動作時に電池内で発生するガスによって内圧が過度に上昇した際に、脆弱部Wが内圧で選択的に破壊されることで、電解液漏れを防止又は最小限に抑え、アルカリ二次電池10ないし電池モジュール30を収容するモジュール筐体(図示せず)の補強部位を脆弱部W近傍の特定箇所又は面に限定することができる(すなわちモジュール筐体の全体を補強しなくて済む)。脆弱部Wは、長手側壁部28bに設けられてもよいが、短手側壁部28cや蓋部28dに脆弱部Wを設ける方が、長手側壁部28bに脆弱部Wを設ける場合よりも開放圧が安定する(開放圧のばらつきが小さくなる)ため好ましい。すなわち、長手側壁部28bに脆弱部Wを設けると、電池モジュール30を構成した場合に脆弱部Wを含む長手側壁部28bに圧力が加わるため、電池内圧以外の余分なストレスを受けてしまい、開放圧が安定しない。一方、短手側壁部28cや蓋部28dにおいては電池モジュール30を構成しても電池内圧以外の力が加わらないため、脆弱部Wの開放圧を安定させることができる。 As shown in FIG. 1, the short side wall portion 28c preferably has a fragile portion W whose thickness is locally reduced as compared with other portions of the short side wall portion 28c. In this case, the fragile portion W is formed. Is more preferably provided near the upper end of the short side wall portion 28c. Alternatively, as shown in FIG. 3, it is also preferable that the lid portion 28d has a fragile portion W whose thickness is locally reduced as compared with other portions of the lid portion 28d, and in this case, the positive electrode terminal 14c and the negative electrode. More preferably, the weakened portion W is provided between the terminals 18c. Both the short side wall portion 28c and the lid portion 28d may have the fragile portion W. By having the fragile portion W, the fragile portion W is selectively destroyed by the internal pressure when the internal pressure excessively rises due to the gas generated in the battery during abnormal operation such as overcharge, overdischarge, and short circuit. It is possible to prevent or minimize leakage of the electrolytic solution and limit the reinforcing portion of the module housing (not shown) that houses the alkaline secondary battery 10 or the battery module 30 to a specific portion or surface near the weakened portion W. Yes (that is, you don't have to reinforce the entire module housing). The fragile portion W may be provided on the long side wall portion 28b. However, the fragile portion W provided on the short side wall portion 28c and the lid portion 28d has a higher opening pressure than the fragile portion W provided on the long side wall portion 28b. Is stable (variation in opening pressure is small), which is preferable. That is, when the long side wall portion 28b is provided with the fragile portion W, pressure is applied to the long side wall portion 28b including the fragile portion W when the battery module 30 is configured, and therefore, extra stress other than the battery internal pressure is applied, and the open state is achieved. Pressure is not stable. On the other hand, in the short side wall portion 28c and the lid portion 28d, even if the battery module 30 is configured, no force other than the battery internal pressure is applied, so that the opening pressure of the weak portion W can be stabilized.

箱型ケース28(特に短手側壁部28c及び蓋部28d)の脆弱部W以外の部分の好ましい厚さは1.0〜4.5mmであり、より好ましくは1.5〜3.5mm、さらに好ましくは2.0〜2.5mmである。脆弱部Wの好ましい厚さは、0.1〜1.0mmであり、より好ましくは0.2〜0.9mm、さらに好ましくは0.3〜0.8mmである。また、脆弱部Wの厚さは短手側壁部28c又は蓋部28dの脆弱部W以外の部分の厚さの0.10〜0.32倍であるのが好ましく、より好ましくは0.13〜0.26倍、さらに好ましくは0.15〜0.22倍である。 The preferable thickness of the box-shaped case 28 (particularly the short side wall portion 28c and the lid portion 28d) other than the fragile portion W is 1.0 to 4.5 mm, more preferably 1.5 to 3.5 mm, and It is preferably 2.0 to 2.5 mm. The fragile portion W has a preferable thickness of 0.1 to 1.0 mm, more preferably 0.2 to 0.9 mm, and further preferably 0.3 to 0.8 mm. The thickness of the fragile portion W is preferably 0.10 to 0.32 times the thickness of the portion other than the fragile portion W of the short side wall portion 28c or the lid portion 28d, and more preferably 0.13 to. 0.26 times, more preferably 0.15 to 0.22 times.

アルカリ二次電池10は、アルカリ電解液(典型的にはアルカリ金属水酸化物水溶液)を用いた二次電池であれば特に限定されないが、亜鉛を負極として用いた亜鉛二次電池が好ましい。したがって、ニッケル亜鉛二次電池、酸化銀亜鉛二次電池、酸化マンガン亜鉛二次電池、その他各種のアルカリ亜鉛二次電池であることができる。例えば、正極が水酸化ニッケル及び/又はオキシ水酸化ニッケルを含み、それにより亜鉛二次電池がニッケル亜鉛二次電池をなすのが好ましい。 The alkaline secondary battery 10 is not particularly limited as long as it is a secondary battery using an alkaline electrolyte (typically an aqueous solution of an alkali metal hydroxide), but a zinc secondary battery using zinc as a negative electrode is preferable. Therefore, it can be a nickel zinc secondary battery, a silver oxide zinc secondary battery, a manganese zinc zinc secondary battery, and various other alkaline zinc secondary batteries. For example, it is preferable that the positive electrode contains nickel hydroxide and/or nickel oxyhydroxide, so that the zinc secondary battery forms a nickel zinc secondary battery.

アルカリ二次電池10が亜鉛二次電池である場合について、図5〜7を参照しながら以下に説明する。図5〜7に示されるアルカリ二次電池10(すなわち亜鉛二次電池)は、単電池要素11を備えており、単電池要素11は、正極板12、負極板16、層状複水酸化物(LDH)セパレータ22、及び電解液(図示せず)を含む。正極板12は、正極活物質層13及び所望により正極集電体14を含む。負極板16は、負極活物質層17及び所望により負極集電体18を含み、負極活物質層17は、亜鉛、酸化亜鉛、亜鉛合金及び亜鉛化合物からなる群から選択される少なくとも1種を含む。正極活物質層13と負極活物質層17はLDHセパレータ22を介して互いに隔離されている。例えば、LDHセパレータ22は負極活物質層17の全体を覆う又は包み込んでいるのが好ましい。なお、本明細書において「LDHセパレータ」は、LDHを含むセパレータであって、専らLDHの水酸化物イオン伝導性を利用して水酸化物イオンを選択的に通すものとして定義される。典型的には、正極活物質層13、負極活物質層17、及びLDHセパレータ22はそれぞれ四辺形状(典型的には四角形状)である。好ましくは、正極集電体14が正極活物質層13の1辺から延出する正極集電タブ14aを有し、かつ、負極集電体18が負極活物質層17の正極集電タブ14aと反対側の1辺からLDHセパレータ22の端部を超えて延出する負極集電タブ18aを有する。その結果、単電池要素11が正極集電タブ14a及び負極集電タブ18aを介して互いに反対の側から集電可能とされているのが好ましい。その上、LDHセパレータ22の互いに隣接する少なくとも2辺Cの外縁(ただし負極集電タブと重なる1辺を除く)は閉じられているのが好ましい。このような構成とすることで、LDHセパレータ22と電池容器との煩雑な封止接合を不要として、亜鉛デンドライト伸展を防止可能な亜鉛二次電池(特にその積層電池)を、組み立てやすく且つ集電もしやすい簡素な構成で提供することができる。 A case where the alkaline secondary battery 10 is a zinc secondary battery will be described below with reference to FIGS. The alkaline secondary battery 10 (that is, a zinc secondary battery) shown in FIGS. 5 to 7 includes a single cell element 11, and the single cell element 11 includes a positive electrode plate 12, a negative electrode plate 16, and a layered double hydroxide ( LDH) separator 22 and an electrolytic solution (not shown). The positive electrode plate 12 includes a positive electrode active material layer 13 and, if desired, a positive electrode current collector 14. The negative electrode plate 16 includes a negative electrode active material layer 17 and optionally a negative electrode current collector 18, and the negative electrode active material layer 17 includes at least one selected from the group consisting of zinc, zinc oxide, a zinc alloy and a zinc compound. .. The positive electrode active material layer 13 and the negative electrode active material layer 17 are separated from each other by the LDH separator 22. For example, the LDH separator 22 preferably covers or encloses the entire negative electrode active material layer 17. In the present specification, the "LDH separator" is a separator containing LDH, and is defined as a separator that selectively utilizes hydroxide ion conductivity of LDH to selectively pass hydroxide ions. Typically, each of the positive electrode active material layer 13, the negative electrode active material layer 17, and the LDH separator 22 has a quadrilateral shape (typically, a quadrangular shape). Preferably, the positive electrode current collector 14 has a positive electrode current collector tab 14 a extending from one side of the positive electrode active material layer 13, and the negative electrode current collector 18 is the positive electrode current collector tab 14 a of the negative electrode active material layer 17. It has a negative electrode current collecting tab 18a extending from one side on the opposite side and beyond the end of the LDH separator 22. As a result, it is preferable that the unit cell element 11 can collect current from opposite sides via the positive electrode current collecting tab 14a and the negative electrode current collecting tab 18a. Furthermore, it is preferable that the outer edges of at least two sides C of the LDH separator 22 adjacent to each other (except one side overlapping with the negative electrode current collecting tab) be closed. With such a configuration, a zinc secondary battery (particularly, a laminated battery thereof) capable of preventing zinc dendrite extension can be easily assembled without collecting complicated sealing joint between the LDH separator 22 and the battery container. It can be provided with an easy and simple structure.

正極板12は、正極活物質層13を含む。正極活物質層13は、亜鉛二次電池の種類に応じて公知の正極材料を適宜選択すればよく、特に限定されない。例えば、ニッケル亜鉛二次電池の場合には、水酸化ニッケル及び/又はオキシ水酸化ニッケルを含む正極を用いればよい。正極板12は正極集電体(図示せず)をさらに含み、正極集電体は正極活物質層13の1辺から延出する正極集電タブ14aを有する。正極集電体の好ましい例としては、発泡ニッケル板等のニッケル製多孔質基板が挙げられる。この場合、例えば、ニッケル製多孔質基板上に水酸化ニッケル等の電極活物質を含むペーストを均一に塗布して乾燥させることにより正極/正極集電体からなる正極板を好ましく作製することができる。その際、乾燥後の正極板(すなわち正極/正極集電体)にプレス処理を施して、電極活物質の脱落防止や電極密度の向上を図ることも好ましい。なお、図6に示される正極板12は正極集電体(例えば発泡ニッケル)を含むものであるが図示されていない。これは、正極集電体が正極活物質層13と渾然一体化しているため、正極集電体を個別に描出できないためである。アルカリ二次電池10は、正極集電タブ14aの先端に接続する正極集電板14bをさらに備えるのが好ましく、より好ましくは複数枚の正極集電タブ14aが1つの正極集電板14bに接続される。こうすることで簡素な構成でスペース効率良く集電を行えるとともに、正極端子14cへの接続もしやすくなる。また、正極集電板14b自体を負極端子として用いてもよい。 The positive electrode plate 12 includes a positive electrode active material layer 13. For the positive electrode active material layer 13, a known positive electrode material may be appropriately selected according to the type of zinc secondary battery and is not particularly limited. For example, in the case of a nickel-zinc secondary battery, a positive electrode containing nickel hydroxide and/or nickel oxyhydroxide may be used. The positive electrode plate 12 further includes a positive electrode current collector (not shown), and the positive electrode current collector has a positive electrode current collector tab 14 a extending from one side of the positive electrode active material layer 13. A preferable example of the positive electrode current collector is a nickel porous substrate such as a foamed nickel plate. In this case, for example, a positive electrode plate composed of a positive electrode/a positive electrode current collector can be preferably manufactured by uniformly applying a paste containing an electrode active material such as nickel hydroxide on a nickel porous substrate and drying the paste. .. At this time, it is also preferable to press the dried positive electrode plate (that is, the positive electrode/positive electrode current collector) to prevent the electrode active material from falling off and improve the electrode density. Although the positive electrode plate 12 shown in FIG. 6 includes a positive electrode current collector (for example, nickel foam), it is not shown. This is because the positive electrode current collector is naturally integrated with the positive electrode active material layer 13, and thus the positive electrode current collector cannot be drawn individually. The alkaline secondary battery 10 preferably further includes a positive electrode current collector plate 14b connected to the tip of the positive electrode current collector tab 14a, and more preferably a plurality of positive electrode current collector tabs 14a connected to one positive electrode current collector plate 14b. To be done. By doing so, current can be collected in a space-efficient manner with a simple structure, and connection to the positive electrode terminal 14c is facilitated. Further, the positive electrode current collector plate 14b itself may be used as the negative electrode terminal.

負極板16は負極活物質層17を含む。負極活物質層17は、亜鉛、酸化亜鉛、亜鉛合金及び亜鉛化合物からなる群から選択される少なくとも1種を含む。すなわち、亜鉛は、負極に適した電気化学的活性を有するものであれば、亜鉛金属、亜鉛化合物及び亜鉛合金のいずれの形態で含まれていてもよい。負極材料の好ましい例としては、酸化亜鉛、亜鉛金属、亜鉛酸カルシウム等が挙げられるが、亜鉛金属及び酸化亜鉛の混合物がより好ましい。負極活物質層17はゲル状に構成してもよいし、電解液と混合して負極合材としてもよい。例えば、負極活物質に電解液及び増粘剤を添加することにより容易にゲル化した負極を得ることができる。増粘剤の例としては、ポリビニルアルコール、ポリアクリル酸塩、CMC、アルギン酸等が挙げられるが、ポリアクリル酸が強アルカリに対する耐薬品性に優れているため好ましい。 The negative electrode plate 16 includes a negative electrode active material layer 17. The negative electrode active material layer 17 contains at least one selected from the group consisting of zinc, zinc oxide, a zinc alloy, and a zinc compound. That is, zinc may be contained in any form of zinc metal, zinc compound and zinc alloy as long as it has electrochemical activity suitable for the negative electrode. Preferred examples of the negative electrode material include zinc oxide, zinc metal, calcium zincate and the like, but a mixture of zinc metal and zinc oxide is more preferred. The negative electrode active material layer 17 may be formed into a gel or may be mixed with an electrolytic solution to form a negative electrode mixture. For example, a gelled negative electrode can be easily obtained by adding an electrolytic solution and a thickener to the negative electrode active material. Examples of the thickener include polyvinyl alcohol, polyacrylic acid salt, CMC, alginic acid and the like, but polyacrylic acid is preferable because it has excellent chemical resistance to strong alkali.

亜鉛合金として、無汞化亜鉛合金として知られている水銀及び鉛を含まない亜鉛合金を用いることができる。例えば、インジウムを0.01〜0.1質量%、ビスマスを0.005〜0.02質量%、アルミニウムを0.0035〜0.015質量%を含む亜鉛合金が水素ガス発生の抑制効果があるので好ましい。とりわけ、インジウムやビスマスは放電性能を向上させる点で有利である。亜鉛合金の負極への使用は、アルカリ性電解液中での自己溶解速度を遅くすることで、水素ガス発生を抑制して安全性を向上できる。 As the zinc alloy, a zinc alloy containing no mercury and lead, which is known as a smoothing-free zinc alloy, can be used. For example, a zinc alloy containing 0.01 to 0.1% by mass of indium, 0.005 to 0.02% by mass of bismuth, and 0.0035 to 0.015% by mass of aluminum has an effect of suppressing hydrogen gas generation. Therefore, it is preferable. In particular, indium and bismuth are advantageous in improving discharge performance. When the zinc alloy is used for the negative electrode, the self-dissolution rate in the alkaline electrolytic solution is slowed to suppress the generation of hydrogen gas and improve the safety.

負極材料の形状は特に限定されないが、粉末状とすることが好ましく、それにより表面積が増大して大電流放電に対応可能となる。好ましい負極材料の平均粒径は、亜鉛合金の場合、短径で3〜100μmの範囲であり、この範囲内であると表面積が大きいことから大電流放電への対応に適するとともに、電解液及びゲル化剤と均一に混合しやすく、電池組み立て時の取り扱い性も良い。 The shape of the negative electrode material is not particularly limited, but it is preferably in the form of powder, which increases the surface area and can cope with large current discharge. In the case of zinc alloy, the preferable average particle diameter of the negative electrode material is within the range of 3 to 100 μm in the short diameter, and since the surface area is large within this range, it is suitable for large current discharge, and the electrolyte and gel Easy to mix with the agent and easy to handle when assembling the battery.

負極板16は負極集電体18をさらに含むことができる。好ましくは、負極集電体18は負極活物質層17の正極集電タブ14aと反対側の1辺からLDHセパレータ22の端部を超えて延出する負極集電タブ18aを有する。その結果、単電池要素11が正極集電タブ14a及び負極集電タブ18aを介して互いに反対の側から集電可能とされている。アルカリ二次電池10は、負極集電タブ18aの先端に接続する負極集電板18bをさらに備えるのが好ましく、より好ましくは複数枚の負極集電タブ18aが1つの負極集電板18bに接続される。こうすることで簡素な構成でスペース効率良く集電を行えるとともに、負極端子18cへの接続もしやすくなる。また、負極集電板18b自体を負極端子として用いてもよい。典型的には、負極集電タブ18aの先端部分がLDHセパレータ22及び(存在する場合には)保液部材20で覆われない露出部分をなす。これにより露出部分を介して負極集電体18(特に負極集電タブ18a)を負極集電板18b及び/又は負極端子18cに望ましく接続することができる。この場合、図9に示されるように、LDHセパレータ22が負極活物質層17の負極集電タブ18a側の端部を十分に隠すように所定のマージンM(例えば1〜5mmの間隔)を伴って覆う又は包み込むのが好ましい。こうすることで、負極活物質層17の負極集電タブ18a側の端部又はその近傍からの亜鉛デンドライトの伸展をより効果的に防止することができる。 The negative electrode plate 16 may further include a negative electrode current collector 18. Preferably, the negative electrode current collector 18 has a negative electrode current collector tab 18 a extending from one side of the negative electrode active material layer 17 opposite to the positive electrode current collector tab 14 a and beyond the end of the LDH separator 22. As a result, the unit cell element 11 can collect current from opposite sides via the positive electrode current collecting tab 14a and the negative electrode current collecting tab 18a. The alkaline secondary battery 10 preferably further includes a negative electrode current collector plate 18b connected to the tip of the negative electrode current collector tab 18a, and more preferably a plurality of negative electrode current collector tabs 18a connected to one negative electrode current collector plate 18b. To be done. By doing so, current can be collected in a space-efficient manner with a simple structure, and connection to the negative electrode terminal 18c is facilitated. Alternatively, the negative electrode current collector plate 18b itself may be used as the negative electrode terminal. Typically, the tip portion of the negative electrode current collecting tab 18a forms an exposed portion that is not covered with the LDH separator 22 and the liquid retaining member 20 (if present). Thereby, the negative electrode collector 18 (particularly the negative electrode collector tab 18a) can be desirably connected to the negative electrode collector plate 18b and/or the negative electrode terminal 18c through the exposed portion. In this case, as shown in FIG. 9, the LDH separator 22 is provided with a predetermined margin M (for example, an interval of 1 to 5 mm) so as to sufficiently hide the end portion of the negative electrode active material layer 17 on the negative electrode current collector tab 18a side. Covering or wrapping is preferred. This makes it possible to more effectively prevent the zinc dendrite from extending from the end of the negative electrode active material layer 17 on the negative electrode current collector tab 18a side or in the vicinity thereof.

負極集電体18の好ましい例としては、銅箔、銅エキスパンドメタル、銅パンチングメタルが挙げられるが、より好ましくは銅エキスパンドメタルである。この場合、例えば、銅エキスパンドメタル上に、酸化亜鉛粉末及び/又は亜鉛粉末、並びに所望によりバインダー(例えばポリテトラフルオロエチレン粒子)を含んでなる混合物を塗布して負極/負極集電体からなる負極板を好ましく作製することができる。その際、乾燥後の負極板(すなわち負極/負極集電体)にプレス処理を施して、電極活物質の脱落防止や電極密度の向上を図ることも好ましい。 Preferable examples of the negative electrode current collector 18 include copper foil, copper expanded metal, and copper punching metal, and more preferably copper expanded metal. In this case, for example, a negative electrode composed of a negative electrode/negative electrode current collector by coating a mixture containing zinc oxide powder and/or zinc powder and optionally a binder (for example, polytetrafluoroethylene particles) on a copper expanded metal. The plate can be preferably manufactured. At that time, it is also preferable to press the dried negative electrode plate (that is, the negative electrode/negative electrode current collector) to prevent the electrode active material from falling off and improve the electrode density.

亜鉛二次電池としてのアルカリ二次電池10は、負極活物質層17とLDHセパレータ22の間に介在し、かつ、負極活物質層17の全体を覆う又は包み込む保液部材20をさらに備えるのが好ましい。こうすることで、負極活物質層17とLDHセパレータ22との間に電解液を万遍なく存在させることができ、負極活物質層17とLDHセパレータ22との間における水酸化物イオンの授受を効率良く行うことができる。保液部材20は電解液を保持可能な部材であれば特に限定されないが、シート状の部材であるのが好ましい。保液部材の好ましい例としては不織布、吸水性樹脂、保液性樹脂、多孔シート、各種スペーサが挙げられるが、特に好ましくは、低コストで性能の良い負極構造体を作製できる点で不織布である。保液部材20は0.01〜0.20mmの厚さを有するのが好ましく、より好ましくは0.02〜0.20mmであり、さらに好ましくは0.02〜0.15mmであり、特に好ましくは0.02〜0.10mmであり、最も好ましくは0.02〜0.06mmである。上記範囲内の厚さであると、負極構造体の全体サイズを無駄無くコンパクトに抑えながら、保液部材20内に十分な量の電解液を保持させることができる。 The alkaline secondary battery 10 as a zinc secondary battery further includes a liquid retaining member 20 that is interposed between the negative electrode active material layer 17 and the LDH separator 22 and covers or wraps the entire negative electrode active material layer 17. preferable. By doing so, the electrolytic solution can be made to exist evenly between the negative electrode active material layer 17 and the LDH separator 22, and the exchange of hydroxide ions between the negative electrode active material layer 17 and the LDH separator 22 can be performed. It can be done efficiently. The liquid retaining member 20 is not particularly limited as long as it is a member that can retain the electrolytic solution, but a sheet-shaped member is preferable. Preferred examples of the liquid retaining member include a nonwoven fabric, a water absorbent resin, a liquid retaining resin, a porous sheet, and various spacers, but a nonwoven fabric is particularly preferable in that a negative electrode structure having good performance can be produced at low cost. .. The liquid retaining member 20 preferably has a thickness of 0.01 to 0.20 mm, more preferably 0.02 to 0.20 mm, further preferably 0.02 to 0.15 mm, and particularly preferably It is 0.02-0.10 mm, and most preferably 0.02-0.06 mm. When the thickness is within the above range, it is possible to hold a sufficient amount of the electrolytic solution in the liquid retaining member 20 while keeping the overall size of the negative electrode structure compact without waste.

負極活物質層17の全体はLDHセパレータ22で覆う又は包み込まれているのが好ましい。図8A及び8Bに負極活物質層17がLDHセパレータ22で覆われた又は包み込まれた負極板16の好ましい態様が示される。図8A及び8Bに示される負極構造体は、負極活物質層17、負極集電体18、及び所望により保液部材20を備えており、負極活物質層17の全体が(必要に応じて保液部材20を介して)LDHセパレータ22で覆う又は包み込まれている。このように、負極活物質層17の全体を(必要に応じて保液部材20を介して)LDHセパレータ22で覆う又は包み込むことにより、前述したように、LDHセパレータ22と電池容器との煩雑な封止接合を不要にして、亜鉛デンドライト伸展を防止可能な亜鉛二次電池(特にその積層電池)を極めて簡便にかつ高い生産性で作製することが可能となる。 The entire negative electrode active material layer 17 is preferably covered or wrapped with the LDH separator 22. 8A and 8B show a preferred embodiment of the negative electrode plate 16 in which the negative electrode active material layer 17 is covered or wrapped with the LDH separator 22. The negative electrode structure shown in FIGS. 8A and 8B includes a negative electrode active material layer 17, a negative electrode current collector 18, and, if desired, a liquid retaining member 20, and the entire negative electrode active material layer 17 (if necessary, It is covered or encapsulated by an LDH separator 22 (via the liquid member 20). In this manner, by covering or wrapping the entire negative electrode active material layer 17 with the LDH separator 22 (via the liquid retaining member 20 as necessary), as described above, the LDH separator 22 and the battery container are complicated. It is possible to manufacture a zinc secondary battery (particularly, a laminated battery thereof) capable of preventing zinc dendrite extension without using sealing and bonding, with extremely high productivity.

図8A及び8Bにおいて保液部材20はLDHセパレータ22よりも小さいサイズとして描かれているが、保液部材20はLDHセパレータ22(又は折り曲げられたLDHセパレータ22)と同じサイズであってもよく、保液部材20の外縁はLDHセパレータ22の外縁に到達しうる。すなわち、外周部分を構成するLDHセパレータ22の間に、保液部材20の外周部分が挟み込まれる構成としてもよい。こうすることで、後述するLDHセパレータ22の外縁封止を熱溶着又は超音波溶着により、効果的に行うことができる。すなわち、LDHセパレータ22同士を直接的に熱溶着又は超音波溶着するよりも、LDHセパレータ22同士をそれらの間に熱溶着性の保液部材20を介在させて間接的に熱溶着又は超音波溶着する方が、保液部材20自体の熱溶着性を利用できる結果、より効果的な封止を行うことができる。例えば、保液部材20の封止されるべき端部をあたかもホットメルト接着剤かのごとく利用することができる。この場合における保液部材20の好ましい例としては不織布、特に熱可塑性樹脂(例えばポリエチレン、ポリプロピレン)製の不織布が挙げられる。 8A and 8B, the liquid retaining member 20 is drawn as a smaller size than the LDH separator 22, but the liquid retaining member 20 may be the same size as the LDH separator 22 (or the folded LDH separator 22), The outer edge of the liquid retaining member 20 can reach the outer edge of the LDH separator 22. That is, the outer peripheral portion of the liquid retaining member 20 may be sandwiched between the LDH separators 22 forming the outer peripheral portion. By doing so, the outer edge sealing of the LDH separator 22 described later can be effectively performed by thermal welding or ultrasonic welding. That is, rather than directly heat-welding or ultrasonically welding the LDH separators 22 to each other, the LDH separators 22 are indirectly heat-welded or ultrasonically welded by interposing the heat-welding liquid retaining member 20 therebetween. By doing so, as a result of being able to utilize the heat-welding property of the liquid retaining member 20 itself, more effective sealing can be performed. For example, the end to be sealed of the liquid retaining member 20 can be used as if it is a hot melt adhesive. A preferred example of the liquid retaining member 20 in this case is a non-woven fabric, particularly a non-woven fabric made of a thermoplastic resin (for example, polyethylene or polypropylene).

LDHセパレータ22は、LDHと多孔質基材とを含む。前述のとおり、LDHセパレータ22が水酸化物イオン伝導性及びガス不透過性を呈するように(それ故水酸化物イオン伝導性を呈するLDHセパレータとして機能するように)LDHが多孔質基材の孔を塞いでいる。多孔質基材は高分子材料製であるのが好ましく、LDHは高分子材料製多孔質基材の厚さ方向の全域にわたって組み込まれているのが特に好ましい。例えば、特許文献3〜5に開示されるような公知のLDHセパレータが使用可能である。 The LDH separator 22 includes LDH and a porous base material. As mentioned above, the LDH separator 22 is such that it exhibits hydroxide ion conductivity and gas impermeability (and thus functions as an LDH separator exhibiting hydroxide ion conductivity). Is blocking. The porous substrate is preferably made of a polymeric material, and LDH is particularly preferably incorporated throughout the thickness of the polymeric porous substrate. For example, known LDH separators disclosed in Patent Documents 3 to 5 can be used.

1つの負極活物質層17に対するLDHセパレータ22の枚数は、片面につき、典型的には1(両面では向かい合う2枚又は折り曲げられた1枚)であるが、2以上であってもよい。例えば、数枚重ねのLDHセパレータ22で負極活物質層17(保液部材20で覆う又は包み込まれていてよい)の全体を覆う又は包み込む構成としてもよい。 The number of LDH separators 22 for one negative electrode active material layer 17 is typically 1 (two facing each other on both sides or one bent) on one side, but it may be two or more. For example, the entire negative electrode active material layer 17 (which may be covered or wrapped with the liquid retaining member 20) may be covered or wrapped with a plurality of stacked LDH separators 22.

前述のとおり、LDHセパレータ22は四辺形(典型的には四角形)の形状を有する。そして、LDHセパレータ22の互いに隣接する少なくとも2辺Cの外縁(ただし負極集電タブ18aと重なる1辺を除く)が閉じられている。こうすることで、負極活物質層17を正極板12から確実に隔離することができ、亜鉛デンドライトの伸展をより効果的に防止することができる。なお、閉じられるべき辺Cから負極集電タブ18aと重なる1辺が除かれているのは、負極集電タブ18aの延出を可能とするためである。 As described above, the LDH separator 22 has a quadrilateral (typically quadrangular) shape. Then, the outer edges of at least two sides C of the LDH separator 22 that are adjacent to each other (except one side overlapping with the negative electrode current collector tab 18a) are closed. By doing so, the negative electrode active material layer 17 can be reliably separated from the positive electrode plate 12, and extension of the zinc dendrite can be prevented more effectively. One side overlapping with the negative electrode current collecting tab 18a is removed from the side C to be closed in order to allow the negative electrode current collecting tab 18a to extend.

本発明の好ましい態様によれば、正極板12、負極板16、及びLDHセパレータ22がそれぞれ縦向きとなり、かつ、LDHセパレータ22の閉じられた外縁の1辺Cが下端となるように、単電池要素11が配置されており、その結果、正極集電タブ14a及び負極集電タブ18aが単電池要素11の互いに反対の側端部から横に延出している。こうすることで、より一層集電しやすくなるとともに、LDHセパレータ22の外縁の上端1辺を開放させる場合(これについては後述する)に、上部開放部に障害物が無くなるため、正極板12と負極板16との間でのガスの流出入がより一層しやすくなる。 According to a preferred aspect of the present invention, the positive electrode plate 12, the negative electrode plate 16, and the LDH separator 22 are oriented vertically, and one side C of the closed outer edge of the LDH separator 22 is the lower end. The elements 11 are arranged so that the positive electrode current collecting tabs 14a and the negative electrode current collecting tabs 18a extend laterally from opposite side ends of the unit cell elements 11. By doing so, it becomes easier to collect current, and when one side of the upper edge of the outer edge of the LDH separator 22 is opened (this will be described later), there is no obstacle in the upper open portion, so that the positive electrode plate 12 and It becomes easier for gas to flow into and out of the negative electrode plate 16.

ところで、LDHセパレータ22の外縁の1辺又は2辺は開放されていてもよい。例えば、LDHセパレータ22の外縁の上端1辺を開放させておいても、亜鉛二次電池作製時にその上端1辺に電解液が達しないように液を注入すれば、当該上端1辺には電解液が無いことになるため、液漏れや亜鉛デンドライト伸展の問題を回避することができる。これに関連して、単電池要素11は密閉容器でありうるケース28内に正極板12とともに収容され、蓋部28dで塞がれることにより、密閉型亜鉛二次電池の主要構成部品として機能しうる。このため、密閉性は最終的に収容されることになるケース28において確保すれば足りるので、単電池要素11自体は上部開放型の簡素な構成であることができる。また、LDHセパレータ22の外縁の1辺を開放させておくことで、そこから負極集電タブ18aを延出させることもできる。 By the way, one side or two sides of the outer edge of the LDH separator 22 may be opened. For example, even if the upper edge of the outer edge of the LDH separator 22 is left open, if the electrolyte is injected so as not to reach the upper edge of the zinc secondary battery during the fabrication of the zinc secondary battery, the electrolytic charge will be applied to the upper edge of the LDH separator 22. Since there is no liquid, problems such as liquid leakage and zinc dendrite extension can be avoided. In this regard, the unit cell element 11 is housed together with the positive electrode plate 12 in the case 28 which may be a closed container, and is closed by the lid portion 28d to function as a main component of the closed zinc secondary battery. sell. For this reason, it is sufficient to ensure the airtightness in the case 28 that will be finally accommodated, and therefore the unit cell element 11 itself can have a simple structure of an upper open type. Further, by leaving one side of the outer edge of the LDH separator 22 open, the negative electrode current collecting tab 18a can be extended therefrom.

LDHセパレータ22の上端となる1辺の外縁は開放されているのが好ましい。この上部開放型の構成はニッケル亜鉛電池等における過充電時の問題への対処を可能とするものである。すなわち、ニッケル亜鉛電池等において過充電されると正極板12で酸素(O)が発生しうるが、LDHセパレータ22は水酸化物イオンしか実質的に通さないといった高度な緻密性を有するが故に、Oを通さない。この点、上部開放型の構成によれば、ケース28内において、Oを正極板12の上方に逃がして上部開放部を介して負極板16側へと送り込むことができ、それによってOで負極活物質層17のZnを酸化してZnOへと戻すことができる。このような酸素反応サイクルを経ることで、上部開放型の単電池要素11を密閉型亜鉛二次電池に用いることで過充電耐性を向上させることができる。なお、LDHセパレータ22の上端となる1辺の外縁が閉じられている場合であっても、閉じられた外縁の一部に通気孔を設けることで上記開放型の構成と同様の効果が期待できる。例えば、LDHセパレータ22の上端となる1辺の外縁を封止した後に通気孔を開けてもよいし、封止の際、通気孔が形成されるように上記外縁の一部を非封止としてもよい。 The outer edge of one side, which is the upper end of the LDH separator 22, is preferably opened. This open-top configuration makes it possible to address the problem of overcharging in nickel-zinc batteries and the like. That is, when overcharged in a nickel-zinc battery or the like, oxygen (O 2 ) may be generated in the positive electrode plate 12, but the LDH separator 22 has a high degree of denseness that substantially only allows hydroxide ions to pass therethrough. , O 2 is not passed. In this respect, according to the open-top configuration, O 2 can escape to the upper side of the positive electrode plate 12 in the case 28 and be sent to the negative electrode plate 16 side through the upper open portion, whereby O 2 Zn in the negative electrode active material layer 17 can be oxidized and returned to ZnO. Through such an oxygen reaction cycle, it is possible to improve the overcharge resistance by using the open-top type single cell element 11 in the sealed zinc secondary battery. Even when the outer edge of one side that is the upper end of the LDH separator 22 is closed, the same effect as that of the open-type configuration can be expected by providing a ventilation hole in a part of the closed outer edge. .. For example, the vent hole may be opened after sealing the outer edge of one side which is the upper end of the LDH separator 22, or at the time of sealing, a part of the outer edge is not sealed so that the vent hole is formed. Good.

いずれにしても、LDHセパレータ22の外縁の閉じられた辺Cが、LDHセパレータ22の折り曲げ及び/又はLDHセパレータ22同士の封止により実現されているのが好ましい。封止手法の好ましい例としては、接着剤、熱溶着、超音波溶着、接着テープ、封止テープ、及びそれらの組合せが挙げられる。特に、高分子材料製の多孔質基材を含むLDHセパレータ22はフレキシブル性を有するが故に折り曲げやすいとの利点を有するため、LDHセパレータ22を長尺状に形成してそれを折り曲げることで、外縁の1辺Cが閉じた状態を形成するのが好ましい。熱溶着及び超音波溶着は市販のヒートシーラー等を用いて行えばよいが、LDHセパレータ22同士の封止の場合、外周部分を構成するLDHセパレータ22の間に保液部材20の外周部分を挟み込むようにして熱溶着及び超音波溶着を行うのが、より効果的な封止を行える点で好ましい。一方、接着剤、接着テープ及び封止テープは市販品を用いればよいが、アルカリ電解液中での劣化を防ぐため、耐アルカリ性を有する樹脂を含むものが好ましい。かかる観点から、好ましい接着剤の例としては、エポキシ樹脂系接着剤、天然樹脂系接着剤、変性オレフィン樹脂系接着剤、及び変成シリコーン樹脂系接着剤が挙げられ、中でもエポキシ樹脂系接着剤が耐アルカリ性に特に優れる点でより好ましい。エポキシ樹脂系接着剤の製品例としては、エポキシ接着剤Hysol(登録商標)(Henkel製)が挙げられる。 In any case, it is preferable that the closed side C of the outer edge of the LDH separator 22 is realized by bending the LDH separator 22 and/or sealing the LDH separators 22. Preferred examples of sealing techniques include adhesives, heat welding, ultrasonic welding, adhesive tapes, sealing tapes, and combinations thereof. In particular, the LDH separator 22 including a porous base material made of a polymer material has an advantage that it is easy to bend because it has flexibility, and therefore, by forming the LDH separator 22 in a long shape and bending it, It is preferable to form a closed state at one side C. The heat welding and the ultrasonic welding may be performed using a commercially available heat sealer or the like, but in the case of sealing the LDH separators 22 with each other, the outer peripheral portion of the liquid retaining member 20 is sandwiched between the LDH separators 22 forming the outer peripheral portion. It is preferable to perform the heat welding and the ultrasonic welding in this way in terms of more effective sealing. On the other hand, as the adhesive, the adhesive tape, and the sealing tape, commercially available products may be used, but those containing a resin having alkali resistance are preferable in order to prevent deterioration in an alkaline electrolyte. From this viewpoint, examples of preferred adhesives include epoxy resin adhesives, natural resin adhesives, modified olefin resin adhesives, and modified silicone resin adhesives, among which epoxy resin adhesives are resistant. It is more preferable because it is particularly excellent in alkalinity. Examples of epoxy resin adhesive products include epoxy adhesive Hysol (registered trademark) (manufactured by Henkel).

電解液はアルカリ金属水酸化物水溶液を含むのが好ましい。電解液は図示していないが、これは正極板12(特に正極活物質層13)及び負極板16(特に負極活物質層17)の全体に行き渡っているためである。アルカリ金属水酸化物の例としては、水酸化カリウム、水酸化ナトリウム、水酸化リチウム、水酸化アンモニウム等が挙げられるが、水酸化カリウムがより好ましい。亜鉛及び/又は酸化亜鉛の自己溶解を抑制するために、電解液中に酸化亜鉛、水酸化亜鉛等の亜鉛化合物を添加してもよい。前述のとおり、電解液は正極活物質及び/又は負極活物質と混合させて正極合材及び/又は負極合材の形態で存在させてもよい。また、電解液の漏洩を防止するために電解液をゲル化してもよい。ゲル化剤としては電解液の溶媒を吸収して膨潤するようなポリマーを用いるのが望ましく、ポリエチレンオキサイド、ポリビニルアルコール、ポリアクリルアミドなどのポリマーやデンプンが用いられる。 The electrolytic solution preferably contains an aqueous alkali metal hydroxide solution. The electrolytic solution is not shown in the figure, but this is because it is spread over the whole of the positive electrode plate 12 (in particular, the positive electrode active material layer 13) and the negative electrode plate 16 (in particular, the negative electrode active material layer 17). Examples of the alkali metal hydroxide include potassium hydroxide, sodium hydroxide, lithium hydroxide, ammonium hydroxide and the like, and potassium hydroxide is more preferable. In order to suppress self-dissolution of zinc and/or zinc oxide, a zinc compound such as zinc oxide or zinc hydroxide may be added to the electrolytic solution. As described above, the electrolytic solution may be mixed with the positive electrode active material and/or the negative electrode active material and may be present in the form of the positive electrode composite material and/or the negative electrode composite material. Further, the electrolytic solution may be gelled in order to prevent leakage of the electrolytic solution. As the gelling agent, it is desirable to use a polymer that absorbs the solvent of the electrolytic solution and swells, and polymers such as polyethylene oxide, polyvinyl alcohol, polyacrylamide and starch are used.

10 アルカリ二次電池
11 単電池要素
12 正極板
13 正極活物質層
14a 正極集電タブ
14b 正極集電板
14c 正極端子
16 負極板
17 負極活物質層
18 負極集電体
18a 負極集電タブ
18b 負極集電板
18c 負極端子
20 保液部材
22 LDHセパレータ
28 箱型ケース
28a 底部
28b 長手側壁部
28c 短手側壁部
28d 蓋部
R リブ
F 平坦部
W 脆弱部
C 閉じられた辺

DESCRIPTION OF SYMBOLS 10 Alkaline secondary battery 11 Single cell element 12 Positive electrode plate 13 Positive electrode active material layer 14a Positive electrode current collector tab 14b Positive electrode current collector plate 14c Positive electrode terminal 16 Negative electrode plate 17 Negative electrode active material layer 18 Negative electrode current collector 18a Negative electrode current collector tab 18b Negative electrode Current collector 18c Negative electrode terminal 20 Liquid retaining member 22 LDH separator 28 Box case 28a Bottom 28b Long side wall 28c Short side wall 28d Lid R rib F Flat part W Weak part C Closed side

Claims (16)

アルカリ二次電池の構成を有する複数の単電池要素が積層された積層電池と、
前記積層電池が縦向きに収容される箱型ケースと、
を備えた、アルカリ二次電池であって、
前記箱型ケースが、底部と、前記積層電池と平行な1対の長手側壁部と、前記積層電池と垂直な1対の短手側壁部と、蓋部とを有し、
前記1対の長手側壁部の外表面が、平坦面と、該平坦面から畝状に突出して設けられる複数のリブとを有し、前記複数のリブが互いに離間しかつ縦方向に平行に設けられている、アルカリ二次電池。
A stacked battery in which a plurality of single battery elements having a structure of an alkaline secondary battery are stacked,
A box-shaped case in which the laminated battery is accommodated in a vertical direction,
An alkaline secondary battery comprising:
The box-shaped case has a bottom portion, a pair of long side wall portions parallel to the laminated battery, a pair of short side wall portions perpendicular to the laminated battery, and a lid portion,
The outer surface of the pair of long side wall portions has a flat surface and a plurality of ribs provided in a ridge-like shape protruding from the flat surface, and the plurality of ribs are provided so as to be separated from each other and parallel to the longitudinal direction. Alkaline secondary battery.
前記箱型ケースが樹脂製である、請求項1に記載のアルカリ二次電池。 The alkaline secondary battery according to claim 1, wherein the box-shaped case is made of resin. 前記リブは、前記リブの幅が前記底部から前記蓋部に向かう方向に徐々に又は段階的に太くなるように設けられる、請求項1又は2に記載のアルカリ二次電池。 The alkaline secondary battery according to claim 1 or 2, wherein the rib is provided such that a width of the rib gradually or gradually increases in a direction from the bottom portion toward the lid portion. 前記1対の長手側壁部は、前記1対の長手側壁部の内壁同士の離間距離が前記蓋部から前記底部に向かう方向に徐々に又は段階的に減少するテーパー状の断面形状を有する、請求項3に記載のアルカリ二次電池。 The pair of long side wall portions has a tapered cross-sectional shape in which a distance between inner walls of the pair of long side wall portions gradually or gradually decreases in a direction from the lid portion to the bottom portion. Item 4. The alkaline secondary battery according to Item 3. 前記リブが、台形状の断面形状を有する、請求項1〜4のいずれか一項に記載のアルカリ二次電池。 The alkaline secondary battery according to claim 1, wherein the rib has a trapezoidal cross-sectional shape. 前記アルカリ二次電池が、正極端子及び負極端子をさらに備え、前記正極端子及び前記負極端子が前記蓋部から延出される、請求項1〜5のいずれか一項に記載のアルカリ二次電池。 The alkaline secondary battery according to any one of claims 1 to 5, wherein the alkaline secondary battery further includes a positive electrode terminal and a negative electrode terminal, and the positive electrode terminal and the negative electrode terminal are extended from the lid portion. 前記短手側壁部が、前記短手側壁部の他の部分よりも厚さが局所的に低減された脆弱部を有する、及び/又は前記蓋部が、前記蓋部の他の部分よりも厚さが局所的に低減された脆弱部を有する、請求項1〜6のいずれか一項に記載のアルカリ二次電池。 The short side wall portion has a weakened portion whose thickness is locally reduced as compared with other portions of the short side wall portion, and/or the lid portion is thicker than other portions of the lid portion. The alkaline secondary battery according to claim 1, wherein the alkaline secondary battery has a locally reduced fragile portion. 前記リブが、前記平坦部を基準として1.0〜10mmの高さを有する、請求項1〜7のいずれか一項に記載のアルカリ二次電池。 The alkaline secondary battery according to claim 1, wherein the rib has a height of 1.0 to 10 mm with respect to the flat portion. 前記長手側壁部1つあたりの前記リブの本数が5〜11本である、請求項1〜8のいずれか一項に記載のアルカリ二次電池。 The alkaline secondary battery according to any one of claims 1 to 8, wherein the number of the ribs per one longitudinal side wall portion is 5 to 11. 前記長手側壁部の左端に最も近いリブと前記左端に2番目に近いリブとの間隔、及び前記長手側壁部の右端に最も近いリブと前記右端に2番目に近いリブとの間隔が、前記長手側壁部の両端から離れたその他のリブ同士の間隔よりも狭い、請求項9に記載のアルカリ二次電池。 The distance between the rib closest to the left end of the long side wall portion and the rib closest to the left end of the long side wall portion, and the distance between the rib closest to the right end of the long side wall portion and the rib closest to the right end of the long side wall portion are the long sides. The alkaline secondary battery according to claim 9, which is narrower than an interval between other ribs that are separated from both ends of the side wall portion. 前記アルカリ二次電池が亜鉛二次電池である、請求項1〜10のいずれか一項に記載のアルカリ二次電池。 The alkaline secondary battery according to claim 1, wherein the alkaline secondary battery is a zinc secondary battery. 前記単電池要素が、
正極活物質層を含む正極板と、
亜鉛、酸化亜鉛、亜鉛合金及び亜鉛化合物からなる群から選択される少なくとも1種を含む負極活物質層を含む負極板と、
層状複水酸化物(LDH)を含むLDHセパレータと、
電解液と、
を含み、前記LDHセパレータを介して前記正極活物質層と前記負極活物質層が互いに隔離される、請求項11に記載のアルカリ二次電池。
The unit cell element is
A positive electrode plate including a positive electrode active material layer,
A negative electrode plate including a negative electrode active material layer containing at least one selected from the group consisting of zinc, zinc oxide, a zinc alloy, and a zinc compound;
LDH separator containing layered double hydroxide (LDH),
Electrolyte and
The alkaline secondary battery according to claim 11, further comprising: a separator, and the positive electrode active material layer and the negative electrode active material layer are isolated from each other via the LDH separator.
前記LDHセパレータがLDHと多孔質基材とを含み、前記LDHセパレータが水酸化物イオン伝導性及びガス不透過性を呈するように前記LDHが前記多孔質基材の孔を塞いでいる、請求項12に記載のアルカリ二次電池。 The LDH separator comprises LDH and a porous substrate, and the LDH closes the pores of the porous substrate so that the LDH separator exhibits hydroxide ion conductivity and gas impermeability. 12. The alkaline secondary battery according to 12. 前記正極活物質層が水酸化ニッケル及び/又はオキシ水酸化ニッケルを含み、それにより前記亜鉛二次電池がニッケル亜鉛二次電池をなす、請求項13に記載のアルカリ二次電池。 The alkaline secondary battery according to claim 13, wherein the positive electrode active material layer contains nickel hydroxide and/or nickel oxyhydroxide, whereby the zinc secondary battery forms a nickel-zinc secondary battery. 請求項1〜14のいずれか一項に記載のアルカリ二次電池を複数備えたアルカリ二次電池モジュールであって、
前記複数のアルカリ二次電池が、前記長手側壁部同士が向かい合い、かつ、前記リブ同士が当接するように配列され、それにより隣り合う前記箱型ケースの前記リブ同士が接触してスペーサをなし、それにより縦方向の通気孔を形成する、アルカリ二次電池モジュール。
An alkaline secondary battery module comprising a plurality of alkaline secondary batteries according to claim 1.
The plurality of alkaline secondary batteries, the long side wall portions are opposed to each other, and are arranged so that the ribs contact each other, thereby forming a spacer by contacting the ribs of the adjacent box-shaped case, As a result, an alkaline secondary battery module that forms vertical ventilation holes.
前記電池モジュールの外側に前記長手側壁部を厚さ方向に加圧する加圧手段が設けられ、それにより前記箱型ケースが前記加圧手段により加圧されて撓むことで前記単電池要素が加圧される、請求項15に記載のアルカリ二次電池モジュール。

Pressurizing means for pressurizing the longitudinal side wall portion in the thickness direction is provided on the outside of the battery module, whereby the box-shaped case is pressed by the pressing means and bends to apply the single cell element. The alkaline secondary battery module according to claim 15, which is pressed.

JP2019218582A 2018-12-07 2019-12-03 alkaline secondary battery Active JP7364445B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018230192 2018-12-07
JP2018230192 2018-12-07

Publications (2)

Publication Number Publication Date
JP2020095955A true JP2020095955A (en) 2020-06-18
JP7364445B2 JP7364445B2 (en) 2023-10-18

Family

ID=71085643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019218582A Active JP7364445B2 (en) 2018-12-07 2019-12-03 alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP7364445B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021024681A1 (en) * 2019-08-06 2021-02-11
CN115020706A (en) * 2022-05-30 2022-09-06 西南科技大学 Water-based zinc ion battery, rolled hectorite @ zinc negative electrode material and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320775A (en) * 1994-05-27 1995-12-08 Matsushita Electric Ind Co Ltd Cell and unit cell of sealed nickel-hydrogen storage battery
JP2006093144A (en) * 2004-09-21 2006-04-06 Samsung Sdi Co Ltd Secondary battery and secondary battery module
JP4359857B1 (en) * 2008-05-13 2009-11-11 トヨタ自動車株式会社 Square battery
JP2010040328A (en) * 2008-08-05 2010-02-18 Sanyo Electric Co Ltd Sealed battery
JP2013089369A (en) * 2011-10-14 2013-05-13 Furukawa Battery Co Ltd:The Control valve type lead storage battery
JP2013149459A (en) * 2012-01-19 2013-08-01 Gs Yuasa Corp Power storage module
JP2017091949A (en) * 2015-11-16 2017-05-25 日本碍子株式会社 Zinc secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320775A (en) * 1994-05-27 1995-12-08 Matsushita Electric Ind Co Ltd Cell and unit cell of sealed nickel-hydrogen storage battery
JP2006093144A (en) * 2004-09-21 2006-04-06 Samsung Sdi Co Ltd Secondary battery and secondary battery module
JP4359857B1 (en) * 2008-05-13 2009-11-11 トヨタ自動車株式会社 Square battery
JP2010040328A (en) * 2008-08-05 2010-02-18 Sanyo Electric Co Ltd Sealed battery
JP2013089369A (en) * 2011-10-14 2013-05-13 Furukawa Battery Co Ltd:The Control valve type lead storage battery
JP2013149459A (en) * 2012-01-19 2013-08-01 Gs Yuasa Corp Power storage module
JP2017091949A (en) * 2015-11-16 2017-05-25 日本碍子株式会社 Zinc secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021024681A1 (en) * 2019-08-06 2021-02-11
JP7227381B2 (en) 2019-08-06 2023-02-21 日本碍子株式会社 Alkaline secondary battery and alkaline secondary battery module
CN115020706A (en) * 2022-05-30 2022-09-06 西南科技大学 Water-based zinc ion battery, rolled hectorite @ zinc negative electrode material and preparation method thereof
CN115020706B (en) * 2022-05-30 2023-06-09 西南科技大学 Water-based zinc ion battery, rolled hectorite@zinc anode material and preparation method thereof

Also Published As

Publication number Publication date
JP7364445B2 (en) 2023-10-18

Similar Documents

Publication Publication Date Title
RU2298264C2 (en) Bipolar electrochemical battery of stacked flat galvanic cells
JP7227381B2 (en) Alkaline secondary battery and alkaline secondary battery module
CA1039805A (en) Flat alkaline cell construction and method for assembling the same
KR101357319B1 (en) Pouch for secondary battery and pouch-type secondary battery comprising the same
CN101002346A (en) Wafer alkaline cell
CN113169316B (en) Positive electrode structure for secondary battery
JP2009187889A (en) Battery case and battery pack
KR101108447B1 (en) Process for Preparation of Pouch-typed Secondary Battery Having Excellent Sealing Property
US11942650B2 (en) Battery module with multiple secondary batteries
JP7364445B2 (en) alkaline secondary battery
JP7441092B2 (en) nickel zinc secondary battery
CN113169315B (en) Positive electrode structure for secondary battery
WO2023188490A1 (en) Zinc secondary battery
WO2022190460A1 (en) Zinc secondary battery
JP5224336B2 (en) Film exterior electrochemical device
KR20070025687A (en) Lithium rechargeable battery
WO2023162333A1 (en) Secondary battery and secondary battery module
JPH09115552A (en) Lithium ion secondary battery
WO2024189972A1 (en) Zinc secondary battery
WO2024176531A1 (en) Zinc secondary battery
JP2023124426A (en) Manufacturing method of secondary battery
WO2024195225A1 (en) Negative electrode for zinc secondary battery, and nickel zinc secondary battery and method of using same
CN114616706B (en) Laminated battery and method for manufacturing same
WO2024029364A1 (en) Negative electrode plate and zinc secondary battery comprising same
CN117063324A (en) Zinc secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231005

R150 Certificate of patent or registration of utility model

Ref document number: 7364445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150