JP2020095219A - Exposure apparatus, exposure method and method for manufacturing article - Google Patents

Exposure apparatus, exposure method and method for manufacturing article Download PDF

Info

Publication number
JP2020095219A
JP2020095219A JP2018234713A JP2018234713A JP2020095219A JP 2020095219 A JP2020095219 A JP 2020095219A JP 2018234713 A JP2018234713 A JP 2018234713A JP 2018234713 A JP2018234713 A JP 2018234713A JP 2020095219 A JP2020095219 A JP 2020095219A
Authority
JP
Japan
Prior art keywords
light
intensity
wavelength
wavelength range
intensity distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018234713A
Other languages
Japanese (ja)
Other versions
JP7240162B2 (en
Inventor
学 八講
Manabu Hakko
学 八講
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018234713A priority Critical patent/JP7240162B2/en
Priority to TW111142909A priority patent/TWI818799B/en
Priority to TW108140945A priority patent/TWI785285B/en
Priority to KR1020190156246A priority patent/KR20200074000A/en
Priority to CN201911254686.6A priority patent/CN111324016B/en
Priority to CN202311196163.7A priority patent/CN116991047A/en
Publication of JP2020095219A publication Critical patent/JP2020095219A/en
Priority to JP2023032176A priority patent/JP7457849B2/en
Application granted granted Critical
Publication of JP7240162B2 publication Critical patent/JP7240162B2/en
Priority to KR1020230145457A priority patent/KR20230153976A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70466Multiple exposures, e.g. combination of fine and coarse exposures, double patterning or multiple exposures for printing a single feature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Eyeglasses (AREA)
  • Liquid Crystal (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

To provide an exposure apparatus which is advantageous for improving transfer performance to transfer a pattern onto a substrate.SOLUTION: The exposure apparatus exposes a substrate by use of light in a plurality of wavelength regions including a first wavelength region and a second wavelength region, and the apparatus includes: an illumination optical system for illuminating a mask with the above light; and a projection optical system for projecting an image of a pattern of the mask onto the substrate. The illumination optical system forms an intensity distribution described below on a pupil plane of the illumination optical system. The intensity distribution comprises: a first intensity distribution including light in at least the first wavelength region, in which the intensity ratio of the light in the first wavelength region to the light in the second wavelength region is a first intensity ratio; and a second intensity distribution including light in at least the second wavelength region, in which the intensity ratio of the light in the first wavelength region to the light in the second wavelength is a second intensity ratio different from the first intensity ratio; and the intensity distribution formed on the pupil plane has a four-time rotational symmetry.SELECTED DRAWING: Figure 7

Description

本発明は、露光装置、露光方法及び物品の製造方法に関する。 The present invention relates to an exposure apparatus, an exposure method, and an article manufacturing method.

投影露光装置は、マスク(原版)に形成されたパターンを基板(プレート)に転写する装置であって、照明光学系を介してマスクを照明し、投影光学系を介してマスクのパターンの像を基板上に投影する。照明光学系は、光源からの光でオプティカルインテグレータを照明し、照明光学系の瞳面に相当するオプティカルインテグレータの射出面において2次光源を生成する。2次光源は、所定の形状及び所定の大きさを有する発光領域で形成される。また、2次光源を形成する発光領域は、マスクの各点を照明する光の角度分布に対応する。なお、露光装置には、マスクを必要としないマスクレス露光装置もある。 The projection exposure apparatus is an apparatus that transfers a pattern formed on a mask (original plate) onto a substrate (plate), illuminates the mask through an illumination optical system, and forms an image of the pattern on the mask through the projection optical system. Project on the substrate. The illumination optical system illuminates the optical integrator with the light from the light source, and generates a secondary light source on the exit surface of the optical integrator corresponding to the pupil plane of the illumination optical system. The secondary light source is formed of a light emitting region having a predetermined shape and a predetermined size. Further, the light emitting region forming the secondary light source corresponds to the angular distribution of light that illuminates each point of the mask. Note that the exposure apparatus also includes a maskless exposure apparatus that does not require a mask.

露光装置においては、微細なパターンに対する転写性能を向上させる技術として、超解像技術(RET:Resolution Enhancement Techniques)が存在する。RETの1つとして、マスクの各点を照明する光の角度分布を最適化する変形照明が知られている。 In the exposure apparatus, there is a super resolution technology (RET) as a technology for improving the transfer performance for a fine pattern. As one of the RETs, modified illumination that optimizes the angular distribution of light that illuminates each point on the mask is known.

特許文献1には、変形照明として、内側の同心円部の発光領域を用いる第1露光工程における焦点位置と、外側の同心円部の発光領域を用いる第2露光工程における焦点位置とを異なる位置にする技術が提案されている。特許文献2には、複数の方向のパターン間の線幅差(パターンの方向差による線幅不均一性)を小さくするために、像コントラストが相対的に低い方向のパターンの結像に寄与する方向に存在する発光領域の波長を短波長側へシフトさせる技術が提案されている。 In Patent Document 1, as a modified illumination, a focus position in a first exposure process using an inner concentric circular light emitting region and a focus position in a second exposure process using an outer concentric circular light emitting region are set to different positions. Technology is proposed. In Patent Document 2, in order to reduce a line width difference between patterns in a plurality of directions (line width non-uniformity due to pattern direction differences), it contributes to image formation of a pattern having a relatively low image contrast. There has been proposed a technique for shifting the wavelength of the light emitting region existing in the direction to the short wavelength side.

特開2000−252199号公報JP-A-2000-252199 特開2018−54992号公報JP, 2018-54992, A

特許文献1に開示された技術は、RETの1つである変形照明を用いて、孤立パターンとラインアンドスペース(LS)パターンとが混在するパターンの転写性能を向上させることができる。しかしながら、特許文献1に開示された技術では、広帯域の照明光(ブロードバンド照明光)に含まれる複数の波長域に対して、それぞれ適した変形照明を行うことは考慮されていない。従って、ブロードバンド照明光を用いた場合には、微細なパターンに対する転写性能を十分に向上させる効果を得ることができない。 The technique disclosed in Patent Document 1 can improve the transfer performance of a pattern in which an isolated pattern and a line and space (LS) pattern are mixed by using modified illumination that is one of RET. However, the technique disclosed in Patent Document 1 does not consider performing modified illumination suitable for each of a plurality of wavelength bands included in broadband illumination light (broadband illumination light). Therefore, when broadband illumination light is used, the effect of sufficiently improving the transfer performance for a fine pattern cannot be obtained.

特許文献2に開示された技術は、ブロードバンド照明光を用いているが、パターンの方向差による線幅不均一性を解決する技術であり、微細なパターンに対する転写性能を向上させる技術、即ち、RETではない。微細なパターンに対する転写性能を向上させる効果を得るためには、パターンの方向差に対応した発光領域の方向差が必須となる。特許文献2に開示された技術は、RETの1つを提案する本発明とは解決する課題が異なる別の技術である。 Although the technique disclosed in Patent Document 2 uses broadband illumination light, it is a technique for solving the line width nonuniformity due to the pattern direction difference, and is a technique for improving transfer performance for a fine pattern, that is, RET. is not. In order to obtain the effect of improving the transfer performance for a fine pattern, it is essential that the direction difference of the light emitting region corresponds to the direction difference of the pattern. The technique disclosed in Patent Document 2 is another technique different in the problem to be solved from the present invention that proposes one of RET.

本発明は、このような従来技術の課題に鑑みてなされ、基板にパターンを転写する転写性能を向上させるのに有利な露光装置を提供することを例示的目的とする。 The present invention has been made in view of the above problems of the conventional art, and an exemplary object of the present invention is to provide an exposure apparatus that is advantageous for improving the transfer performance of transferring a pattern onto a substrate.

上記目的を達成するために、本発明の一側面としての露光装置は、第1波長域と第2波長域とを含む複数の波長域の光を用いて基板を露光する露光装置であって、前記光でマスクを照明する照明光学系と、前記マスクのパターンの像を前記基板に投影する投影光学系と、を有し、前記照明光学系は、少なくとも前記第1波長域の光を含み、前記第1波長域の光と前記第2波長域の光との強度比が第1強度比となる第1強度分布と、少なくとも前記第2波長域の光を含み、前記第1波長域の光と前記第2波長域の光との強度比が前記第1強度比とは異なる第2強度比となる第2強度分布と、を含む強度分布を、当該強度分布が4回回転対称となるように、前記照明光学系の瞳面に形成することを特徴とする。 In order to achieve the above object, an exposure apparatus according to one aspect of the present invention is an exposure apparatus that exposes a substrate using light in a plurality of wavelength bands including a first wavelength band and a second wavelength band, An illumination optical system that illuminates the mask with the light, and a projection optical system that projects an image of the pattern of the mask onto the substrate, the illumination optical system including at least the light in the first wavelength range, A first intensity distribution in which the intensity ratio of the light in the first wavelength range and the light in the second wavelength range is a first intensity ratio; and light in the first wavelength range including at least light in the second wavelength range And a second intensity distribution in which the intensity ratio of the light in the second wavelength range is a second intensity ratio different from the first intensity ratio, and the intensity distribution has four-fold rotational symmetry. In addition, it is formed on the pupil plane of the illumination optical system.

本発明の更なる目的又はその他の側面は、以下、添付図面を参照して説明される実施形態によって明らかにされるであろう。 Further objects and other aspects of the present invention will be made clear by the embodiments described below with reference to the accompanying drawings.

本発明によれば、例えば、基板にパターンを転写する転写性能を向上させるのに有利な露光装置を提供することができる。 According to the present invention, for example, it is possible to provide an exposure apparatus that is advantageous for improving the transfer performance of transferring a pattern onto a substrate.

本発明の一側面としての露光装置の構成を示す概略図である。It is a schematic diagram showing the composition of the exposure device as one side of the present invention. 照明光学系の構成を説明するための図である。It is a figure for demonstrating the structure of an illumination optical system. 従来の変形照明を説明するための図である。It is a figure for demonstrating the conventional modified illumination. 従来の変形照明を説明するための図である。It is a figure for demonstrating the conventional modified illumination. 第1実施形態における変形照明を説明するための図である。It is a figure for explaining the modified lighting in a 1st embodiment. 第1実施形態における変形照明を説明するための図である。It is a figure for explaining the modified lighting in a 1st embodiment. 第1実施形態における変形照明を説明するための図である。It is a figure for explaining the modified lighting in a 1st embodiment. 第1実施形態の変形照明による微細なパターンに対する転写性能を向上させる効果を説明するための図である。It is a figure for demonstrating the effect which improves the transfer performance to a fine pattern by the modified illumination of 1st Embodiment. 第1実施形態における変形照明を説明するための図である。It is a figure for explaining the modified lighting in a 1st embodiment. 第1実施形態における変形照明を説明するための図である。It is a figure for explaining the modified lighting in a 1st embodiment. 光源及び照明光学系の構成を説明するための図である。It is a figure for demonstrating the structure of a light source and an illumination optical system. 露光方法を説明するためのフローチャートである。It is a flow chart for explaining an exposure method.

以下、添付図面を参照して、本発明の好適な実施の形態について説明する。なお、各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. In each drawing, the same reference numerals are given to the same members, and duplicate description will be omitted.

図1は、本発明の一側面としての露光装置100の構成を示す概略図である。露光装置100は、複数の波長域を含む光を用いて基板を露光して、基板にパターンを転写するリソグラフィ装置である。露光装置100は、フラットパネルディスプレイ、液晶表示素子、半導体素子、MEMSなどの製造に用いられ、特に、フラットパネルディスプレイ露光装置として好適である。露光装置100は、光源からの光で被照明面であるマスク(原版)9を照明する照明光学系10と、マスク9に形成されたパターンの像をマスク9と光学的に共役な位置に配置された基板12に投影する投影光学系11と、ステージ38とを有する。 FIG. 1 is a schematic diagram showing a configuration of an exposure apparatus 100 according to one aspect of the present invention. The exposure apparatus 100 is a lithographic apparatus that exposes a substrate using light including a plurality of wavelength ranges and transfers a pattern onto the substrate. The exposure apparatus 100 is used for manufacturing a flat panel display, a liquid crystal display element, a semiconductor element, a MEMS, etc., and is particularly suitable as a flat panel display exposure apparatus. The exposure apparatus 100 arranges an illumination optical system 10 for illuminating a mask (original plate) 9 which is a surface to be illuminated with light from a light source, and an image of a pattern formed on the mask 9 at a position optically conjugate with the mask 9. It has a projection optical system 11 for projecting onto the printed substrate 12 and a stage 38.

投影光学系11は、本実施形態では、ミラー32、34及び36を含み、ミラー32、34、36、34、32の順に光を反射する反射光学系であって、マスク9のパターンの像を等倍で基板12に投影する。投影光学系11は、光源からの光の色収差が屈折光学系よりも小さくなる反射光学系であるため、複数の波長域を含む広帯域の光(ブロードバンド照明光)を用いる場合に好適である。ステージ38は、基板12を保持して移動可能なステージである。 In the present embodiment, the projection optical system 11 is a reflection optical system that includes mirrors 32, 34, and 36 and reflects light in the order of the mirrors 32, 34, 36, 34, and 32, and forms an image of the pattern of the mask 9. The image is projected on the substrate 12 at the same size. The projection optical system 11 is a reflection optical system in which the chromatic aberration of the light from the light source is smaller than that of the refractive optical system, and is therefore suitable when using broadband light (broadband illumination light) including a plurality of wavelength bands. The stage 38 is a stage that holds the substrate 12 and is movable.

<第1実施形態>
図2は、本実施形態における照明光学系10の構成を説明するための図である。但し、図2では、投影光学系11を簡略化して図示している。照明光学系10は、図2に示すように、集光ミラー2と、コンデンサレンズ5と、フライアイレンズ7と、コンデンサレンズ8と、開口絞り61とを含む。なお、コンデンサレンズ5からマスク9までの光路には、光の断面が所定の形状及び所定の大きさの光となるように、光源1からの光を整形する光学系(不図示)が配置されている。
<First Embodiment>
FIG. 2 is a diagram for explaining the configuration of the illumination optical system 10 in this embodiment. However, in FIG. 2, the projection optical system 11 is illustrated in a simplified manner. As shown in FIG. 2, the illumination optical system 10 includes a condenser mirror 2, a condenser lens 5, a fly-eye lens 7, a condenser lens 8, and an aperture stop 61. An optical system (not shown) for shaping the light from the light source 1 is arranged in the optical path from the condenser lens 5 to the mask 9 so that the cross section of the light has a predetermined shape and a predetermined size. ing.

光源1は、広帯域の光(複数の波長の光が混在する光)を射出する光源である。光源1は、本実施形態では、紫外光を射出する水銀ランプを含み、複数のピーク波長の輝線(i線(365nm)、g線(405nm)、h線(436nm))が混在する光を射出する。光源1は、集光ミラー2の第1焦点3の近傍に発光部を含み、集光ミラー2は、光源1から射出された光を第2焦点4に集光する。 The light source 1 is a light source that emits broadband light (light in which lights of a plurality of wavelengths are mixed). In this embodiment, the light source 1 includes a mercury lamp that emits ultraviolet light, and emits light in which bright lines (i-line (365 nm), g-line (405 nm), h-line (436 nm)) having a plurality of peak wavelengths are mixed. To do. The light source 1 includes a light emitting unit in the vicinity of the first focus 3 of the condenser mirror 2, and the condenser mirror 2 condenses the light emitted from the light source 1 to the second focal point 4.

コンデンサレンズ5は、第1焦点4に集光された光を平行光に整形する。コンデンサレンズ5で整形された光は、フライアイレンズ7の入射面7aに入射する。フライアイレンズ7は、複数の光学素子、具体的には、複数の微小なレンズで構成されたオプティカルインテグレータである。フライアイレンズ7は、入射面7a(光入射面)に入射した光から2次光源を射出面7b(光射出面)に形成する。フライアイレンズ7から射出された光は、複数のコンデンサレンズ8を介して、マスク9を重畳的に照明する。 The condenser lens 5 shapes the light condensed at the first focus 4 into parallel light. The light shaped by the condenser lens 5 enters the incident surface 7 a of the fly-eye lens 7. The fly-eye lens 7 is an optical integrator including a plurality of optical elements, specifically, a plurality of minute lenses. The fly-eye lens 7 forms a secondary light source on the exit surface 7b (light exit surface) from the light that has entered the entrance surface 7a (light entrance surface). The light emitted from the fly-eye lens 7 illuminates the mask 9 in a superimposed manner via the plurality of condenser lenses 8.

ステージ38には、計測部(不図示)が配置されている。かかる計測部は、フライアイレンズ7の射出面7bに形成される2次光源の形状や光強度を計測可能なセンサ、例えば、CCDセンサを含む。 A measuring unit (not shown) is arranged on the stage 38. The measuring unit includes a sensor capable of measuring the shape and light intensity of the secondary light source formed on the exit surface 7b of the fly-eye lens 7, for example, a CCD sensor.

超解像技術(RET)の1つである輪帯照明(輪帯形状の分布)や四重極照明などの変形照明(斜入射照明)は、解像度の向上に有効である。所定の発光領域(強度分布)を有する変形照明は、照明光学系10の瞳面に相当するフライアイレンズ7(オプティカルインテグレータ)の射出面7bに配置された開口絞り61によって実現可能である。 Ring illumination (ring-shaped distribution), which is one of the super-resolution techniques (RET), and modified illumination (oblique incidence illumination) such as quadrupole illumination are effective for improving resolution. The modified illumination having a predetermined light emitting region (intensity distribution) can be realized by the aperture stop 61 arranged on the exit surface 7b of the fly-eye lens 7 (optical integrator) corresponding to the pupil plane of the illumination optical system 10.

ここで、マスク9のパターンのピッチ(パターンの繰り返しの周期)をP、かかるマスク9を照明する光の波長(露光波長)をλ、投影光学系11の開口数をNAとする。この場合、以下の式(1)によって規定される照明角度σを含む発光領域Iを含む変形照明でマスク9を照明することで、デフォーカスに伴う像コントラストの低下を抑制することができる。 Here, it is assumed that the pattern pitch of the mask 9 (cycle of pattern repetition) is P, the wavelength of light illuminating the mask 9 (exposure wavelength) is λ, and the numerical aperture of the projection optical system 11 is NA. In this case, by illuminating the mask 9 with the modified illumination including the light emitting region I including the illumination angle σ c defined by the following equation (1), it is possible to suppress the decrease in image contrast due to defocus.

Figure 2020095219
Figure 2020095219

式(1)において、照明角度σは、照明光学系10の瞳面に設定される瞳座標で表した場合、原点からの距離(瞳半径)に相当する。 In Expression (1), the illumination angle σ c corresponds to the distance from the origin (pupil radius) when represented by the pupil coordinates set on the pupil plane of the illumination optical system 10.

従来の変形照明では、例えば、半導体露光装置の場合、光源から射出される光のスペクトルが狭いため、波長λは単一の値として用いられている。一方、フラットパネルディスプレイ露光装置では、光源から射出される光のスペクトルが広いブロードバンド照明を用いている。しかしながら、従来技術では、フラットパネルディスプレイ露光装置であっても、半導体露光装置と同様に、変形照明の発光領域を、単一の波長λ(例えば、強度が最も大きな波長や強度の重み付けをした重心波長)に対して定めている。 In the conventional modified illumination, for example, in the case of a semiconductor exposure apparatus, the wavelength λ is used as a single value because the spectrum of the light emitted from the light source is narrow. On the other hand, a flat panel display exposure apparatus uses broadband illumination in which the spectrum of light emitted from a light source is wide. However, in the prior art, even in a flat panel display exposure apparatus, as in the semiconductor exposure apparatus, the light emission area of the modified illumination is set to a single wavelength λ (for example, the wavelength having the largest intensity or the center of gravity obtained by weighting the intensity). Wavelength).

本実施形態では、ブロードバンド照明に含まれる異なる第1波長域λ1及び第2波長域λ2に対して、各波長域に適した異なる第1発光領域I1及び第2発光領域I2を用いることで、微細なパターンの転写性能を向上させる。換言すれば、本実施形態は、第1発光領域I1及び第2発光領域I2のそれぞれに対して、互いに異なる第1波長域λ1及び第2波長域λ2の光が照明光として用いられる点で従来技術とは異なる。 In the present embodiment, for the different first wavelength range λ1 and second wavelength range λ2 included in the broadband illumination, different first emission regions I1 and second emission regions I2 suitable for the respective wavelength ranges are used, so that Improve the transfer performance of various patterns. In other words, the present embodiment is conventional in that the light of the first wavelength region λ1 and the light of the second wavelength region λ2 which are different from each other are used as the illumination light for each of the first light emitting region I1 and the second light emitting region I2. Different from technology.

従来の変形照明の手法として知られる狭輪帯に対しては、本実施形態は、照度の低下を抑制して、生産性の低下を抑制する効果がある。また、本実施形態は、狭輪帯に比べて広い輪帯(幅)を用いるため、フライアイレンズ7で形成される照明強度の不均一性に伴う照度むらが低減される。本実施形態は、輪帯幅が狭い狭輪帯照明と比べて、特定のピッチP以外のピッチのパターンに対しても転写性能を向上させることができる。 With respect to the narrow annular zone known as a conventional modified illumination method, the present embodiment has an effect of suppressing a decrease in illuminance and a decrease in productivity. In addition, since the present embodiment uses a wider annular zone (width) than a narrow annular zone, uneven illuminance due to non-uniformity of illumination intensity formed by the fly-eye lens 7 is reduced. The present embodiment can improve the transfer performance even for a pattern having a pitch other than the specific pitch P, as compared with narrow ring illumination having a narrow ring width.

本実施形態では、従来の短波長化による解像力の向上に対しては、長波長の光を完全に遮光せず、特定の発光領域では長波長を用いるため、焦点深度(DOF:Depth of Focus)が維持される。更に、本実施形態では、長波長の光を完全に遮光しないため、照度の低下(生産性の低下)を抑制することができる。 In the present embodiment, in order to improve the resolution by shortening the wavelength in the related art, long-wavelength light is not completely blocked and long-wavelength is used in a specific light emitting region, so that depth of focus (DOF) is achieved. Is maintained. Furthermore, in the present embodiment, since long-wavelength light is not completely blocked, it is possible to suppress a decrease in illuminance (a decrease in productivity).

<実施例1>
図3及び図4を参照して、比較例として、従来の変形照明について説明する。図3は、式(1)に示す照明角度σをプロットしたグラフを示している。図3において、横線で示した発光領域I0は、従来の変形照明、具体的には、内σが0.45、外σが0.90の輪帯照明を示している。露光波長は、波長域λ0で示すように、335nm以上475nm以下であり、水銀ランプのi線、g線及びh線のスペクトルに対応するブロードバンド照明である。発光領域I0は、波長域λ0の照明角度σを含み、かかる変形照明は、上述したように、デフォーカスに伴う像コントラストの低下を抑制する効果がある。
<Example 1>
As a comparative example, a conventional modified illumination will be described with reference to FIGS. 3 and 4. FIG. 3 shows a graph in which the illumination angle σ c shown in Expression (1) is plotted. In FIG. 3, a light emitting region I0 indicated by a horizontal line represents conventional modified illumination, specifically, annular illumination with an inner σ of 0.45 and an outer σ of 0.90. The exposure wavelength is 335 nm or more and 475 nm or less as shown by the wavelength range λ0, and is broadband illumination corresponding to the spectrum of the i-line, g-line and h-line of the mercury lamp. The light emitting region I0 includes the illumination angle σ c in the wavelength region λ0, and such modified illumination has the effect of suppressing the decrease in image contrast due to defocus, as described above.

図4は、図3に示す従来の変形照明を照明光学系の瞳座標で表した図である。図4に示すように、従来の変形照明は、内σが0.45、外σが0.90の輪帯照明であり、露光波長は、335nm以上475nm以下である。 FIG. 4 is a diagram showing the conventional modified illumination shown in FIG. 3 in pupil coordinates of the illumination optical system. As shown in FIG. 4, the conventional modified illumination is an annular illumination with an inner σ of 0.45 and an outer σ of 0.90, and the exposure wavelength is 335 nm or more and 475 nm or less.

以下、本実施形態における変形照明について説明する。図5は、式(1)に示す照明角度σをプロットしたグラフを示している。ブロードバンド照明に含まれる互いに異なる第1波長域λ1及び第2波長域λ2に対して、それぞれ異なる第1発光領域I1及び第2発光領域I2を用いる。なお、第1発光領域I1と第2発光領域I2とは、照明光学系10の瞳面における瞳半径によって区別される。 The modified illumination in this embodiment will be described below. FIG. 5 shows a graph in which the illumination angle σ c shown in Expression (1) is plotted. Different first emission regions I1 and second emission regions I2 are used for the first wavelength region λ1 and the second wavelength region λ2 that are included in the broadband illumination and are different from each other. The first light emitting region I1 and the second light emitting region I2 are distinguished by the pupil radius on the pupil plane of the illumination optical system 10.

第1波長域λ1は、335nm以上395nm以下の波長域であり、光源1である水銀ランプのi線のスペクトルに対応する波長域である。第1波長域λ1の光を含む第1発光領域I1は、内σが0.45、外σが0.90の輪帯照明(輪帯形状の分布)である。このように、第1発光領域I1は、少なくとも第1波長域λ1の光を含み、第1波長域λ1の光と第2波長域λ2の光との強度比が第1強度比となる第1強度分布である。第1発光領域I1は、第1波長域λ1の照明角度σを含み、かかる変形照明は、上述したように、デフォーカスに伴う像コントラストの低下を抑制する効果がある。 The first wavelength range λ1 is a wavelength range of 335 nm or more and 395 nm or less, and is a wavelength range corresponding to the i-line spectrum of the mercury lamp that is the light source 1. The first light emitting region I1 including the light in the first wavelength region λ1 is an annular illumination (an annular shape distribution) having an inner σ of 0.45 and an outer σ of 0.90. As described above, the first light emitting region I1 includes at least light in the first wavelength range λ1, and the intensity ratio between the light in the first wavelength range λ1 and the light in the second wavelength range λ2 is the first intensity ratio. The intensity distribution. The first light emitting region I1 includes the illumination angle σ c in the first wavelength region λ1, and the modified illumination has the effect of suppressing the decrease in image contrast due to defocus, as described above.

第2波長域λ2は、395nm以上475nm以下の波長域であり、光源1である水銀ランプのg線及びh線のスペクトルに対応する波長域である。第2波長域λ2の光を含む第2発光領域I2は、内σが0.70、外σが0.90の輪帯照明(輪帯形状の分布)である。このように、第2発光領域I2は、少なくとも第2波長域λ2の光を含み、第1波長域λ1の光と第2波長域λ2の光との強度比が第1強度比とは異なる第2強度比となる第2強度分布である。第2発光領域I2は、第2波長域λ2の一部の波長域に対する照明角度σを含み、かかる変形照明は、上述したように、デフォーカスに伴う像コントラストの低下を抑制する効果がある。 The second wavelength range λ2 is a wavelength range from 395 nm to 475 nm and is a wavelength range corresponding to the g-line and h-line spectra of the mercury lamp that is the light source 1. The second light emitting region I2 including the light in the second wavelength region λ2 is an annular illumination (an annular shape distribution) having an inner σ of 0.70 and an outer σ of 0.90. As described above, the second light emitting region I2 includes at least light in the second wavelength region λ2, and the intensity ratio between the light in the first wavelength region λ1 and the light in the second wavelength region λ2 is different from the first intensity ratio. It is the 2nd intensity distribution used as 2 intensity ratio. The second light emitting region I2 includes an illumination angle σ c with respect to a part of the second wavelength range λ2, and the modified illumination has an effect of suppressing a decrease in image contrast due to defocus, as described above. ..

このように、本実施形態の変形照明は、第1発光領域I1及び第2発光領域I2を含み、第1発光領域I1と第2発光領域I2とは、照明光学系10の瞳面における径の大きさが異なる。また、本実施形態の変形照明は、内σが0.45、外σが0.80のi線、g線及びh線に対応する波長域の輪帯照明において、図5に非発光領域Dとして示す内σが0.45、外σが0.70のg線及びh線に対応する波長域をカットしている。非発光領域Dは、照明光として用いられない領域である。非発光領域Dは、照明角度σと異なる領域であることが好ましい。但し、非発光領域Dは、照明角度σを含んではいけないわけではなく、波長域内の一部の波長で照明角度σを含んでいてもよい。非発光領域Dにおける波長域のカットは、照明光学系10に波長フィルタを設ければよい。例えば、図2に示すように、複数の波長域のうち特定の波長域の光を透過又は遮断して第1発光領域I1及び第2発光領域I2を形成する波長ファイル63を、照明光学系10の瞳面の近傍に配置すればよい。 As described above, the modified illumination of the present embodiment includes the first light emitting region I1 and the second light emitting region I2, and the first light emitting region I1 and the second light emitting region I2 have a diameter of the pupil plane of the illumination optical system 10. The size is different. Further, the modified illumination of the present embodiment is a non-luminous region D in FIG. The wavelength range corresponding to the g-line and the h-line having an inner σ of 0.45 and an outer σ of 0.70 is cut. The non-light emitting area D is an area that is not used as illumination light. The non-light emitting area D is preferably an area different from the illumination angle σ c . However, the non-light emission area D, not must not contain an illumination angle sigma c, it may include an illumination angle sigma c at a wavelength of part of the wavelength region. To cut the wavelength range in the non-light emitting area D, a wavelength filter may be provided in the illumination optical system 10. For example, as shown in FIG. 2, the illumination optical system 10 includes a wavelength file 63 that forms a first light emitting region I1 and a second light emitting region I2 by transmitting or blocking light in a specific wavelength region among a plurality of wavelength regions. It may be arranged in the vicinity of the pupil plane.

図5に示す本実施形態の変形照明は、図6に示す変形照明のように表すことも可能である。図6に示す変形照明について説明する。第1波長域λ1は、335nm以上395nm以下の波長域であり、光源1である水銀ランプのi線のスペクトルに対応する波長域である。第1波長域λ1の光を含む第1発光領域I1は、内σが0.45、外σが0.70の輪帯照明である。第2波長域λ2は、335nm以上475nm以下の波長域であり、光源1である水銀ランプのi線、g線及びh線のスペクトルに対応する波長域である。第2波長域λ2の光を含む第2発光領域I2は、内σが0.70、外σが0.90の輪帯照明である。このように、複数の波長域の分割は、第1波長域λ1と第2波長域λ2の両方に含まれる波長が波長域内に存在してもよい。換言すれば、第1波長域λ1と第2波長域λ2とは、その一部の波長域が重複していてもよい。 The modified illumination of the present embodiment shown in FIG. 5 can also be expressed as the modified illumination shown in FIG. The modified illumination shown in FIG. 6 will be described. The first wavelength range λ1 is a wavelength range of 335 nm or more and 395 nm or less, and is a wavelength range corresponding to the i-line spectrum of the mercury lamp that is the light source 1. The first light emitting region I1 including the light in the first wavelength range λ1 is an annular illumination having an inner σ of 0.45 and an outer σ of 0.70. The second wavelength range λ2 is a wavelength range of 335 nm or more and 475 nm or less, and is a wavelength range corresponding to the i-line, g-line, and h-line spectra of the mercury lamp that is the light source 1. The second light emitting region I2 including the light in the second wavelength range λ2 is an annular illumination having an inner σ of 0.70 and an outer σ of 0.90. As described above, in the division of the plurality of wavelength ranges, the wavelengths included in both the first wavelength range λ1 and the second wavelength range λ2 may exist within the wavelength range. In other words, the first wavelength band λ1 and the second wavelength band λ2 may partially overlap each other.

図7は、図5や図6に示す本実施形態の変形照明を照明光学系の瞳座標で表した図である。図7を参照するに、斜線で示す輪帯の内側(内σが0.45、外σが0.70)の波長域は、335nm以上395nm以下であり、i線に対応し、g線及びh線はカットされている。黒色で示す輪帯の外側(内σが0.45、外σが0.90)の波長域は、335nm以上475nm以下であり、i線、g線及びh線に対応する。図7に示すように、本実施形態では、第1発光領域I1(第1強度分布)と第2発光領域I2(第2強度分布)とを含む変形照明(強度分布)を、かかる変形照明が回転対称となるように、照明光学系10の瞳面に形成する。 FIG. 7 is a diagram showing the modified illumination of this embodiment shown in FIGS. 5 and 6 in the pupil coordinates of the illumination optical system. Referring to FIG. 7, the wavelength range inside the hatched zone (inner σ is 0.45, outer σ is 0.70) is 335 nm or more and 395 nm or less, which corresponds to the i-line, g-line and The h line is cut. The wavelength range outside the ring zone (inner σ is 0.45 and outer σ is 0.90) shown in black is 335 nm or more and 475 nm or less, and corresponds to the i-line, g-line, and h-line. As shown in FIG. 7, in the present embodiment, the modified illumination (intensity distribution) including the first light emitting region I1 (first intensity distribution) and the second light emitting region I2 (second intensity distribution) is generated by the modified illumination. It is formed on the pupil plane of the illumination optical system 10 so as to be rotationally symmetrical.

図8を参照して、本実施形態の変形照明による微細なパターンに対する転写性能を向上させる効果について説明する。図8は、線幅が1.5μm、ピッチ(周期)が3μmのラインアンドスペース(LS)パターンに対する従来技術(図3)と本実施形態の実施例1(図7)との転写性能の比較を示す図である。投影光学系の開口数(NA)は、0.10である。LSパターンは、7本のラインを含み、中央のラインを評価している。DOFは、中央のラインの線幅が−10%となるデフォーカスで評価している。 The effect of improving the transfer performance for a fine pattern by the modified illumination according to the present embodiment will be described with reference to FIG. FIG. 8 is a comparison of transfer performance between the conventional technique (FIG. 3) and Example 1 (FIG. 7) of the present embodiment for a line and space (LS) pattern having a line width of 1.5 μm and a pitch (cycle) of 3 μm. FIG. The numerical aperture (NA) of the projection optical system is 0.10. The LS pattern contains 7 lines and evaluates the center line. The DOF is evaluated by defocusing so that the line width of the center line is -10%.

図8に示すように、本実施形態の実施例1では、従来技術と比較して、像コントラストが0.53から0.56に向上し、且つ、レジスト像のDOFが47.5μmから70.0μmに向上している。また、本実施形態の実施例1では、従来技術と比較して、レジスト像の側壁角度(side wall angle)が69.4度から70.9度に向上している。なお、図8には示していないが、像コントラストの向上に伴いMEEF(Mask Error Enhancement Factor)も向上する。これらの結果は、本実施形態のように、発光領域ごとに異なる波長域の光を用いることで、微細なパターンに対応する転写性能を向上させることができることを示している。なお、本実施形態の実施例1では、輪帯の内側(内σが0.45、外σが0.70)において、g線及びh線を用いていないため、照度は、従来技術の照度の74%となる。 As shown in FIG. 8, in Example 1 of the present embodiment, the image contrast is improved from 0.53 to 0.56, and the DOF of the resist image is from 47.5 μm to 70. It has been improved to 0 μm. In addition, in Example 1 of the present embodiment, the side wall angle of the resist image is improved from 69.4 degrees to 70.9 degrees as compared with the related art. Although not shown in FIG. 8, MEEF (Mask Error Enhancement Factor) is also improved as the image contrast is improved. These results show that the transfer performance corresponding to a fine pattern can be improved by using light of different wavelength bands for each light emitting region as in the present embodiment. In Example 1 of the present embodiment, the g-line and the h-line are not used inside the ring zone (inner σ is 0.45 and outer σ is 0.70). 74% of the total.

詳細には、本実施形態の実施例1において、DOFが大きく向上したことは、σが0.70以上の輪帯を用いた効果が含まれる。σが0.70以上の輪帯における光は、LSパターンの中央のラインの線幅をデフォーカスに伴って減少させる効果を有する。従って、デフォーカスによるLSパターンの線幅の増大が、σが0.70以上の輪帯における光で抑制されるため、DOFを大きく向上させることができる。このように、σが大きな発光領域を用いることで、LSパターンのDOFを向上させることが可能である。 Specifically, in Example 1 of the present embodiment, the large improvement in DOF includes the effect of using the annular zone with σ of 0.70 or more. Light in the annular zone with σ of 0.70 or more has the effect of reducing the line width of the central line of the LS pattern with defocusing. Therefore, since the increase in the line width of the LS pattern due to defocus is suppressed by the light in the annular zone where σ is 0.70 or more, the DOF can be greatly improved. As described above, the DOF of the LS pattern can be improved by using the light emitting region having a large σ.

<実施例2>
図9を参照して、本実施形態の実施例2における変形照明について説明する。図9は、式(1)に示す照明角度σをプロットしたグラフを示している。図9に示すように、実施例2の変形照明には、長波長域の内σに相当する非発光領域D1に加えて、短波長域の外σに相当する非発光領域D2が存在する。非発光領域D1及びD2は、照明角度σと異なる領域である。
<Example 2>
Modified illumination in Example 2 of the exemplary embodiment will be described with reference to FIG. 9. FIG. 9 shows a graph in which the illumination angle σ c shown in Expression (1) is plotted. As shown in FIG. 9, in the modified illumination of the second embodiment, in addition to the non-luminous region D1 corresponding to the inner σ of the long wavelength region, the non-luminous region D2 corresponding to the outer σ of the short wavelength region exists. The non-light emitting areas D1 and D2 are areas different from the illumination angle σ c .

第1波長域λ1は、335nm以上420nm以下の波長域である。第1波長域λ1の光を含む第1発光領域I1は、内σが0.45、外σが0.70の輪帯照明である。第2長域λ2は、395nm以上475nm以下の波長域である。第2波長域λ2の光を含む第2発光領域I2は、内σが0.70、外σが0.90の輪帯照明である。395nm以上420nm以下の波長域の光は、第1発光領域I1と第2発光領域I2の両方に重複して含まれる。非発光領域D2に示すように、外σの短波長域をカットすることで、LSパターンのピッチ方向の端に位置するラインの転写性能を向上させる効果を得ることができる。 The first wavelength range λ1 is a wavelength range of 335 nm or more and 420 nm or less. The first light emitting region I1 including the light in the first wavelength range λ1 is an annular illumination having an inner σ of 0.45 and an outer σ of 0.70. The second long region λ2 is a wavelength region of 395 nm or more and 475 nm or less. The second light emitting region I2 including the light in the second wavelength range λ2 is an annular illumination having an inner σ of 0.70 and an outer σ of 0.90. Light in the wavelength range of 395 nm or more and 420 nm or less is included in both the first light emitting region I1 and the second light emitting region I2 in an overlapping manner. As shown in the non-light emitting region D2, by cutting the short wavelength region of the outer σ, it is possible to obtain the effect of improving the transfer performance of the line located at the end of the LS pattern in the pitch direction.

図9に示す変形照明を、図7と同様に、照明光学系の瞳座標で表した場合を考える。この場合、図7において、斜線で示す輪帯の内側(内σが0.45、外σが0.70)の波長域は、335nm以上420nm以下であり、黒色で示す輪帯の外側(内σが0.45、外σが0.90)の波長域は、395nm以上475nm以下である。 Consider the case where the modified illumination shown in FIG. 9 is represented by the pupil coordinates of the illumination optical system, as in FIG. 7. In this case, in FIG. 7, the wavelength range inside the hatched zone (inner σ is 0.45 and outer σ is 0.70) is 335 nm or more and 420 nm or less, and the outside of the zone shown in black (inner The wavelength range in which σ is 0.45 and the outer σ is 0.90) is 395 nm or more and 475 nm or less.

<実施例3>
マスク9のパターン(又は転写パターン)が明確なピッチPを有していない場合には、発光領域が含むべき領域を、式(1)から求めることはできない。このような場合には、回折光強度の大きな照明角度を含むような発光領域とするとよい。具体的には、第1波長域λ1の光を含む第1発光領域I1は、以下の式(2)に示す第1波長域λ1に対するマスクパターンの回折光強度(強度分布)Dが大きい領域を含むとよい。
<Example 3>
If the pattern (or transfer pattern) of the mask 9 does not have a clear pitch P, the area that the light emitting area should include cannot be obtained from the equation (1). In such a case, it is advisable to set the light emitting region to include an illumination angle with a high diffracted light intensity. Specifically, the first light emitting region I1 including the light in the first wavelength range λ1 is a region where the diffracted light intensity (intensity distribution) D of the mask pattern with respect to the first wavelength range λ1 shown in the following formula (2) is large. Good to include.

Figure 2020095219
Figure 2020095219

式(2)において、maskは、マスク9のパターンを表し、Fは、フーリエ変換を表している。 In Expression (2), mask represents the pattern of the mask 9, and F represents the Fourier transform.

マスク9のパターンが明確なピッチPを有する場合における式(1)は、マスク9のパターンの回折光強度Dが大きい領域に対応する。式(2)は、式(1)をより一般的に表した式である。このように、第1波長域λ1に対するマスクパターンの回折光の強度分布において基準強度よりも大きい領域に対応する照明光学系10の瞳面の領域に第1発光領域I1が形成されるようにすればよい。式(2)から、実施例4で説明するように、図10に示すような様々な変形照明が得られる。 The expression (1) in the case where the pattern of the mask 9 has a clear pitch P corresponds to a region where the diffracted light intensity D of the pattern of the mask 9 is large. Expression (2) is a more general expression of Expression (1). In this way, the first light emitting region I1 is formed in the region of the pupil plane of the illumination optical system 10 corresponding to the region of the intensity distribution of the diffracted light of the mask pattern with respect to the first wavelength region λ1 that is larger than the reference intensity. Good. From Expression (2), various modified illuminations as shown in FIG. 10 can be obtained as described in the fourth embodiment.

<実施例4>
図10(a)乃至図10(g)は、式(2)から得られる本実施形態における様々な変形照明を示す図である。図10(a)乃至図10(g)において、黒色、斜線及び横線で示す発光領域は、それぞれ異なる波長域とする。本実施形態におけるブロードバンド照明は、波長範囲を限定しない。変形照明に用いる波長域は、i線よりも短い波長を含んでもよいし、g線よりも長い波長を含んでもよい。
<Example 4>
10(a) to 10(g) are diagrams showing various modified illuminations in the present embodiment obtained from the equation (2). In FIGS. 10A to 10G, the light emitting regions indicated by black, diagonal lines, and horizontal lines have different wavelength ranges. The broadband lighting in this embodiment does not limit the wavelength range. The wavelength range used for the modified illumination may include a wavelength shorter than the i-line or a wavelength longer than the g-line.

図10(a)は、第1波長域λ1の光を含む第1発光領域I1と、第2波長域λ2の光を含む第2発光領域I2とが、内側と外側に分かれていない場合を示している。第1発光領域I1は内側と外側に存在し、第2発光領域I2は第1発光領域I1に挟まれるかたちで存在している。図10(b)は、波長域を、第1波長域λ1、第2波長域λ2及び第3波長域λ3の3つに分け、各波長域に対応する3つの発光領域、即ち、第1発光領域I1、第2発光領域I2及び第3発光領域I3がある場合を示している。なお、波長域及び発光領域の分割数は、4つ以上であってもよい。これに加えて、例えば、第2発光領域I2が非発光部であってもよい(不図示)。換言すれば、発光領域の内部に非発光領域が存在してもよい。図10(c)は、主に、ホールパターンに用いられる変形照明であって、小σ照明の内側と外側で光の波長域を変えた場合を示している。例えば、外側の第2発光領域I2において、長波長域をカットすることで、位相シフトマスクを用いた場合に、サイドローブによる膜減りを抑制することができる。図10(d)は、小σ照明と輪帯照明とを組み合わせた場合を示している。図10(e)は、輪帯照明に対して、特定のパターン方向に対応する角度成分を遮光した場合を示している。図10(e)に示すように、方向差があってもよい。図10(f)は、第1発光領域I1と第2発光領域I2とが共通の内σと外σとを有し、パターン方向に対応して区分けされた場合を示している。図10(g)は、第1発光領域I1及び第2発光領域I2を含む変形照明が90度回転対称(4回回転対称)ではなく、180度回転対称(2回回転対称)である場合を示している。図10(g)に示すように、マスク9のパターンの回折光強度が大きくなる領域は、90度回転対称ではない場合もある。これらに加えて、偏光照明に対して、本実施形態を適用することも可能である。 FIG. 10A shows a case where the first light emitting region I1 including the light in the first wavelength range λ1 and the second light emitting region I2 including the light in the second wavelength range λ2 are not divided into the inner side and the outer side. ing. The first light emitting region I1 exists on the inner side and the outer side, and the second light emitting region I2 exists so as to be sandwiched by the first light emitting region I1. In FIG. 10B, the wavelength range is divided into three, that is, a first wavelength range λ1, a second wavelength range λ2, and a third wavelength range λ3, and three emission regions corresponding to the respective wavelength ranges, that is, the first emission range. The case where there is a region I1, a second light emitting region I2, and a third light emitting region I3 is shown. The number of divisions of the wavelength region and the light emitting region may be four or more. In addition to this, for example, the second light emitting region I2 may be a non-light emitting portion (not shown). In other words, the non-light emitting area may exist inside the light emitting area. FIG. 10C shows modified illumination mainly used for a hole pattern, and shows a case where the wavelength range of light is changed inside and outside the small σ illumination. For example, by cutting the long wavelength region in the outer second light emitting region I2, it is possible to suppress film loss due to side lobes when a phase shift mask is used. FIG. 10D shows a case where the small σ illumination and the annular illumination are combined. FIG. 10E shows the case where the angular component corresponding to the specific pattern direction is shielded against the annular illumination. There may be a difference in direction as shown in FIG. FIG. 10F shows a case where the first light emitting region I1 and the second light emitting region I2 have a common inner σ and outer σ, and are divided according to the pattern direction. FIG. 10(g) shows a case where the modified illumination including the first light emitting region I1 and the second light emitting region I2 has 180° rotational symmetry (2 times rotational symmetry) instead of 90° rotational symmetry (4 times rotational symmetry). Shows. As shown in FIG. 10(g), the region of the pattern of the mask 9 where the diffracted light intensity is high may not be rotationally symmetrical by 90 degrees. In addition to these, the present embodiment can be applied to polarized illumination.

<実施例5>
図11(a)及び図11(b)を参照して、上述した変形照明を実現可能な光源1及び照明光学系10の構成について説明する。図11(a)は、光源1を第1光源1A及び第2光源1Bで構成した場合を示している。第1光源1A及び第2光源1Bは、互いに波長が異なる光を射出する。また、第1光源1A及び第2光源1Bのそれぞれから射出される光は、単一波長の光や狭い波長域の光であってもよいし、ブロードバンド光であってもよい。単一波長の光や狭い波長域の光を射出する光源であっても、複数の光源を用いて、互いに異なる波長域の光を実現する場合には、ブロードバンド照明とする。本実施形態における変形照明は、第1発光領域I1及び第2発光領域I2を含み、第1発光領域I1における第1波長域λ1と第2発光領域I2における第2波長域λ2とは異なる。かかる変形照明は、第1光源1Aから射出される光と、第2光源1Bから射出される光とを合成することで形成することができる。第1光源1Aと第2光源1Bとで互いに異なる発光領域を形成した後で、それらを照明光学系10で合成してもよい。また、第1光源1Aと第2光源1Bとで同一の発光領域を形成し、波長フィルタで第1発光領域I1及び第2発光領域I2における波長域を変えてもよい。第1光源1A及び第2光源1Bは、LED光源であってもよい。また、光源1を構成する光源数は、2つに限定されるものではなく、3つ以上であってもよい。
<Example 5>
With reference to FIGS. 11A and 11B, configurations of the light source 1 and the illumination optical system 10 that can realize the modified illumination described above will be described. FIG. 11A shows a case where the light source 1 is composed of a first light source 1A and a second light source 1B. The first light source 1A and the second light source 1B emit lights having different wavelengths. The light emitted from each of the first light source 1A and the second light source 1B may be light of a single wavelength, light of a narrow wavelength range, or broadband light. Even if a light source that emits light of a single wavelength or light of a narrow wavelength range is used, if a plurality of light sources are used to realize lights of different wavelength ranges, broadband lighting is used. The modified illumination in the present embodiment includes the first light emitting region I1 and the second light emitting region I2, and the first wavelength region λ1 in the first light emitting region I1 and the second wavelength region λ2 in the second light emitting region I2 are different. Such modified illumination can be formed by combining the light emitted from the first light source 1A and the light emitted from the second light source 1B. The first light source 1A and the second light source 1B may form different light emitting regions, and then they may be combined by the illumination optical system 10. Further, the same light emitting region may be formed by the first light source 1A and the second light source 1B, and the wavelength bands in the first light emitting region I1 and the second light emitting region I2 may be changed by a wavelength filter. The first light source 1A and the second light source 1B may be LED light sources. Further, the number of light sources constituting the light source 1 is not limited to two and may be three or more.

図11(b)は、光源1を3つのブロードバンド光源1Cで構成した場合を示している。ブロードバンド光源ICは、波長域が広い光を射出する。なお、3つのブロードバンド光源1Cから射出される光の波長域は同じである。この場合、例えば、3つのブロードバンド光源1Cのそれぞれに対して、第1波長フィルタ63A、第2波長フィルタ63B及び第3波長フィルタ63Cを設けて、光源別に互いに異なる波長域を含む発光領域を形成する。また、図11(b)に示すように、第1波長フィルタ63A、第2波長フィルタ63B及び第3波長フィルタ63Cを用いずに、第4波長フィルタ65を設けてもよい。この場合、3つのブロードバンド光源1Cからの光を合成した後に、第4波長フィルタ65で互いに異なる波長域を含む発光領域を形成する。更に、第1波長フィルタ63A、第2波長フィルタ63B及び第3波長フィルタ63Cと、第4波長フィルタ65とを併用してもよい。これらの波長フィルタは、回転ターレットに設けられていてもよいし、シフト駆動するラスタータイプの機構に設けられていてもよい。これにより、波長フィルタを用いる場合と波長フィルタを用いない場合との切り替えが容易となる。図11(b)には、光源1を構成する光源数が3つである場合が示されているが、かかる光源数は限定されるものではなく、例えば、1つであってもよい。本実施形態は、波長域の分割や発光領域の形成に関する手法を限定するものではない。 FIG. 11B shows a case where the light source 1 is composed of three broadband light sources 1C. The broadband light source IC emits light having a wide wavelength range. The wavelength ranges of the light emitted from the three broadband light sources 1C are the same. In this case, for example, the first wavelength filter 63A, the second wavelength filter 63B, and the third wavelength filter 63C are provided for each of the three broadband light sources 1C to form light emitting regions including different wavelength ranges for each light source. .. Further, as shown in FIG. 11B, the fourth wavelength filter 65 may be provided without using the first wavelength filter 63A, the second wavelength filter 63B, and the third wavelength filter 63C. In this case, after combining the lights from the three broadband light sources 1C, the fourth wavelength filter 65 forms a light emitting region including different wavelength regions. Furthermore, the first wavelength filter 63A, the second wavelength filter 63B, the third wavelength filter 63C, and the fourth wavelength filter 65 may be used together. These wavelength filters may be provided on the rotary turret, or may be provided on a raster type mechanism for shift driving. This facilitates switching between using the wavelength filter and not using the wavelength filter. Although FIG. 11B shows the case where the number of light sources forming the light source 1 is three, the number of light sources is not limited and may be one, for example. The present embodiment does not limit the method regarding division of the wavelength range and formation of the light emitting area.

波長フィルタは、特定の波長に対する透過率を小さくすればよく、特定の波長に対する透過率を完全にゼロにする(遮光する)必要はない。また、発光領域の境界部で波長域が完全に分割される必要はない。更に、波長フィルタによる波長選択に限らず、ホログラム素子を用いて光量(照度)の低下を抑制してもよい。 The wavelength filter only needs to have a small transmittance for a specific wavelength, and does not need to completely set the transmittance for a specific wavelength to zero (shielding). Further, the wavelength band does not have to be completely divided at the boundary of the light emitting region. Further, not only the wavelength selection by the wavelength filter but also the hologram element may be used to suppress the decrease of the light amount (illuminance).

<第2実施形態>
上述した変形照明をマスクレス露光装置に適用する場合について説明する。マスクレス露光装置は、マスク9の代わりに、基板12に転写すべきパターンを形成するデバイス、例えば、デジタルミラーデバイス(DMD)を有する。DMDは、マスク9と同様に、投影光学系11の物体面に配置される。DMDは、2次元的に配列された複数のミラー素子(反射面)を含み、ミラー素子によって、光源1から射出された光の反射方向を変更することで、基板12に転写すべきパターンを形成する。
<Second Embodiment>
A case where the modified illumination described above is applied to a maskless exposure apparatus will be described. The maskless exposure apparatus has, instead of the mask 9, a device that forms a pattern to be transferred onto the substrate 12, for example, a digital mirror device (DMD). The DMD is arranged on the object plane of the projection optical system 11 similarly to the mask 9. The DMD includes a plurality of mirror elements (reflection surfaces) arranged two-dimensionally, and by changing the reflection direction of the light emitted from the light source 1 by the mirror elements, a pattern to be transferred to the substrate 12 is formed. To do.

このようなマスクレス露光装置においても、基板12に転写すべきパターンが明確なピッチPを有している場合には、発光領域が含むべき領域を、式(1)から求めることができる。従って、実施例1や実施例2で説明した変形照明を、マスクレス露光装置にも用いることができる。 Even in such a maskless exposure apparatus, when the pattern to be transferred to the substrate 12 has a clear pitch P, the area that the light emitting area should include can be obtained from the equation (1). Therefore, the modified illumination described in the first and second embodiments can also be used in the maskless exposure apparatus.

一方、基板12に転写すべきパターンが明確なピッチPを有していない場合には、発光領域が含むべき領域を、式(1)から求めることはできない。このような場合には、基板12に転写すべきパターンの回折光強度が大きい照明角度を含むように発光領域を設定するとよい。具体的には、第1波長域λ1の光を含む第1発光領域I1は、以下の式(3)に示す第1波長域λ1に対する基板12に転写すべきパターンの回折光強度Dpが基準強度よりも大きい領域を含むとよい。ここで、基準強度とは、例えば、回折光強度Dpの最大値の0.6倍以上0.9倍以下の強度である。 On the other hand, if the pattern to be transferred to the substrate 12 does not have a clear pitch P, the region that the light emitting region should include cannot be obtained from the equation (1). In such a case, it is preferable to set the light emitting region so as to include the illumination angle at which the diffracted light intensity of the pattern to be transferred onto the substrate 12 is large. Specifically, in the first light emitting region I1 including the light in the first wavelength range λ1, the diffracted light intensity Dp of the pattern to be transferred to the substrate 12 with respect to the first wavelength range λ1 shown in the following formula (3) is the reference intensity. It is better to include a larger area than the above. Here, the reference intensity is, for example, an intensity of 0.6 times or more and 0.9 times or less of the maximum value of the diffracted light intensity Dp.

Figure 2020095219
Figure 2020095219

式(3)において、patternは、基板12に転写すべきパターンを表し、Fは、フーリエ変換を表している。式(3)から、実施例4で説明したように、図10に示すような様々な変形照明が得られる。このように、上述した変形照明は、マスクの有無に関わらず、露光装置に適用可能である。 In Expression (3), pattern represents a pattern to be transferred to the substrate 12, and F represents Fourier transform. From the formula (3), various modified illuminations as shown in FIG. 10 can be obtained as described in the fourth embodiment. As described above, the modified illumination described above can be applied to the exposure apparatus regardless of the presence or absence of the mask.

<第3実施形態>
図12を参照して、露光装置100における基板12を露光する処理(露光方法)について説明する。本実施形態では、露光装置100を例に説明するが、マスクレス露光装置に適用することも可能である。
<Third Embodiment>
With reference to FIG. 12, a process (exposure method) of exposing the substrate 12 in the exposure apparatus 100 will be described. In the present embodiment, the exposure apparatus 100 will be described as an example, but it can be applied to a maskless exposure apparatus.

S121では、光源1から射出される光(ブロードバンド光)を複数の波長域、本実施形態では、第1波長域λ1及び第2波長域λ2に分割する。波長域は、光源1から射出される光のスペクトル分布や式(1)、式(2)、式(3)に基づいて分割する。但し、本実施形態は、波長域を分割する手法に関して、何らかの限定を加えるものではない。 In S121, the light (broadband light) emitted from the light source 1 is divided into a plurality of wavelength bands, in the present embodiment, a first wavelength band λ1 and a second wavelength band λ2. The wavelength range is divided based on the spectral distribution of light emitted from the light source 1 and the equations (1), (2), and (3). However, the present embodiment does not place any limitation on the method of dividing the wavelength range.

S123では、S121で分割した第1波長域λ1に含まれる波長でマスク9のパターン(マスクパターン)の第1回折光強度分布D1を算出する。同様に、S125では、S121で分割した第2波長域λ2に含まれる波長でマスク9のパターン(マスクパターン)の第2回折光強度分布D2を算出する。第1波長域λ1(第2波長域λ2)に含まれる波長は、第1波長域λ1(第2波長域λ2)を代表する単一の波長であってもよいし、第1波長域λ1(第2波長域λ2)に含まれる複数の波長であってもよい。複数の波長に対して回折光強度分布を求める場合には、各波長に対する回折光強度分布に対し、光源1から射出される光のスペクトル強度分布を考慮した重み付け和を求めることで、最終的な回折光強度分布(D1、D2)とする。 In S123, the first diffracted light intensity distribution D1 of the pattern (mask pattern) of the mask 9 is calculated at the wavelengths included in the first wavelength range λ1 divided in S121. Similarly, in S125, the second diffracted light intensity distribution D2 of the pattern of the mask 9 (mask pattern) is calculated at the wavelengths included in the second wavelength range λ2 divided in S121. The wavelength included in the first wavelength range λ1 (second wavelength range λ2) may be a single wavelength representing the first wavelength range λ1 (second wavelength range λ2), or the first wavelength range λ1( It may be a plurality of wavelengths included in the second wavelength range λ2). When obtaining the diffracted light intensity distributions for a plurality of wavelengths, a final weighted sum is obtained for the diffracted light intensity distributions for the respective wavelengths in consideration of the spectral intensity distribution of the light emitted from the light source 1. The diffracted light intensity distribution (D1, D2) is used.

S127では、第1回折強度分布D1から第1発光領域I1を決定する。同様に、S129では、第2回折強度分布D2から第1発光領域I2を決定する。第1発光領域I1は、第1波長域λ1の発光領域に対応し、第2発光領域I2は、第2波長域λ2の発光領域に対応する。本実施形態は、発光領域を決定する手法に関して、何らかの限定を加えるものではない。 In S127, the first light emitting region I1 is determined from the first diffraction intensity distribution D1. Similarly, in S129, the first light emitting region I2 is determined from the second diffraction intensity distribution D2. The first light emitting region I1 corresponds to the light emitting region of the first wavelength range λ1, and the second light emitting region I2 corresponds to the light emitting region of the second wavelength range λ2. The present embodiment does not place any limitation on the method of determining the light emitting region.

S131では、S127で決定された第1波長域λ1に対応する第1発光領域I1及び第2波長域λ2に対応する第2発光領域I2を含む変形照明を照明光学系10で生成し、かかる変形照明でマスク9を照明する。 In S131, the illumination optical system 10 generates modified illumination including the first light emitting region I1 corresponding to the first wavelength range λ1 determined in S127 and the second light emitting region I2 corresponding to the second wavelength range λ2, and the modification is performed. The mask 9 is illuminated with illumination.

S133では、S131で照明されたマスク9のパターンの像を、投影光学系11を介して、基板12に投影する。これにより、マスク9のパターンが基板12に転写される。 In S133, the image of the pattern of the mask 9 illuminated in S131 is projected onto the substrate 12 via the projection optical system 11. As a result, the pattern of the mask 9 is transferred to the substrate 12.

<第4実施形態>
本発明の実施形態における物品の製造方法は、例えば、フラットパネルディスプレイ、液晶表示素子、半導体素子、MEMSなどの物品を製造するのに好適である。かかる製造方法は、上述した露光装置100を用いて感光剤が塗布された基板を露光する工程と、露光された感光剤を現像する工程とを含む。また、現像された感光剤のパターンをマスクとして基板に対してエッチング工程やイオン注入工程などを行い、基板上に回路パターンが形成される。これらの露光、現像、エッチングなどの工程を繰り返して、基板上に複数の層からなる回路パターンを形成する。後工程で、回路パターンが形成された基板に対してダイシング(加工)を行い、チップのマウンティング、ボンディング、検査工程を行う。また、かかる製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、レジスト剥離など)を含みうる。本実施形態における物品の製造方法は、従来に比べて、物品の性能、品質、生産性及び生産コストの少なくとも1つにおいて有利である。
<Fourth Embodiment>
The method of manufacturing an article according to the embodiment of the present invention is suitable for manufacturing an article such as a flat panel display, a liquid crystal display element, a semiconductor element, or a MEMS. Such a manufacturing method includes a step of exposing the substrate coated with the photosensitizer using the above-described exposure apparatus 100 and a step of developing the exposed photosensitizer. In addition, a circuit pattern is formed on the substrate by performing an etching process, an ion implantation process, or the like on the substrate using the developed photosensitive agent pattern as a mask. These steps of exposure, development, etching, etc. are repeated to form a circuit pattern composed of a plurality of layers on the substrate. In a later step, dicing (processing) is performed on the substrate on which the circuit pattern is formed, and chip mounting, bonding, and inspection steps are performed. Further, the manufacturing method may include other well-known steps (oxidation, film formation, vapor deposition, doping, planarization, resist stripping, etc.). The method of manufacturing an article according to the present embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article as compared with the conventional method.

以上、本発明の実施形態について説明したが、本発明はこれらの実施形態に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。例えば、本発明は、拡大系や縮小系の非等倍系の投影光学系や多重露光やLED光源を用いた露光装置にも適用することが可能である。 Although the embodiments of the present invention have been described above, it goes without saying that the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the gist thereof. For example, the present invention can be applied to a projection optical system of a non-magnification system such as an enlargement system or a reduction system, multiple exposure, or an exposure apparatus using an LED light source.

100:露光装置 9:マスク 10:照明光学系 11:投影光学系 12:基板 100: Exposure device 9: Mask 10: Illumination optical system 11: Projection optical system 12: Substrate

Claims (19)

第1波長域と第2波長域とを含む複数の波長域の光を用いて基板を露光する露光装置であって、
前記光でマスクを照明する照明光学系と、
前記マスクのパターンの像を前記基板に投影する投影光学系と、を有し、
前記照明光学系は、少なくとも前記第1波長域の光を含み、前記第1波長域の光と前記第2波長域の光との強度比が第1強度比となる第1強度分布と、少なくとも前記第2波長域の光を含み、前記第1波長域の光と前記第2波長域の光との強度比が前記第1強度比とは異なる第2強度比となる第2強度分布と、を含む強度分布を、当該強度分布が4回回転対称となるように、前記照明光学系の瞳面に形成することを特徴とする露光装置。
An exposure apparatus for exposing a substrate using light in a plurality of wavelength ranges including a first wavelength range and a second wavelength range,
An illumination optical system that illuminates the mask with the light,
A projection optical system for projecting an image of the pattern of the mask onto the substrate,
The illumination optical system includes at least light in the first wavelength range, and a first intensity distribution in which an intensity ratio between the light in the first wavelength range and the light in the second wavelength range is a first intensity ratio, A second intensity distribution that includes light in the second wavelength region and has a second intensity ratio in which the intensity ratio between the light in the first wavelength region and the light in the second wavelength region is different from the first intensity ratio; An exposure apparatus, wherein an intensity distribution including the above is formed on a pupil plane of the illumination optical system so that the intensity distribution has four-fold rotational symmetry.
第1波長域と第2波長域とを含む複数の波長域の光を用いて基板を露光する露光装置であって、
前記光でマスクを照明する照明光学系と、
前記マスクのパターンの像を前記基板に投影する投影光学系と、を有し、
前記照明光学系は、少なくとも前記第1波長域の光を含み、前記第1波長域の光と前記第2波長域の光との強度比が第1強度比となる第1強度分布と、少なくとも前記第2波長域の光を含み、前記第1波長域の光と前記第2波長域の光との強度比が前記第1強度比とは異なる第2強度比となる第2強度分布と、を含む強度分布を前記照明光学系の瞳面に形成し、
前記照明光学系は、前記第1波長域の光に対する前記マスクのパターンの回折光の強度分布において基準強度よりも大きい領域に対応する前記瞳面の領域に前記第1強度分布が形成されるように、前記強度分布を形成することを特徴とする露光装置。
An exposure apparatus for exposing a substrate using light in a plurality of wavelength ranges including a first wavelength range and a second wavelength range,
An illumination optical system that illuminates the mask with the light,
A projection optical system for projecting an image of the pattern of the mask onto the substrate,
The illumination optical system includes at least the light in the first wavelength range, and a first intensity distribution in which an intensity ratio between the light in the first wavelength range and the light in the second wavelength range is a first intensity ratio, A second intensity distribution that includes light in the second wavelength region and has a second intensity ratio in which the intensity ratio between the light in the first wavelength region and the light in the second wavelength region is different from the first intensity ratio; Forming an intensity distribution including on the pupil plane of the illumination optical system,
In the illumination optical system, the first intensity distribution is formed in a region of the pupil plane corresponding to a region of the intensity distribution of the diffracted light of the mask pattern with respect to the light in the first wavelength region that is larger than the reference intensity. An exposure apparatus, which is characterized in that the intensity distribution is formed.
第1波長域と第2波長域とを含む複数の波長域の光を用いて基板を露光する露光装置であって、
前記基板に転写すべきパターンを形成するデバイスを照明する照明光学系と、
前記デバイスで形成された前記パターンの像を前記基板に投影する投影光学系と、を有し、
前記照明光学系は、少なくとも前記第1波長域の光を含み、前記第1波長域の光と前記第2波長域の光との強度比が第1強度比となる第1強度分布と、少なくとも前記第2波長域の光を含み、前記第1波長域の光と前記第2波長域の光との強度比が前記第1強度比とは異なる第2強度比となる第2強度分布と、を含む強度分布を前記照明光学系の瞳面に形成することを特徴とする露光装置。
An exposure apparatus for exposing a substrate using light in a plurality of wavelength ranges including a first wavelength range and a second wavelength range,
An illumination optical system that illuminates a device that forms a pattern to be transferred to the substrate,
A projection optical system for projecting an image of the pattern formed by the device onto the substrate,
The illumination optical system includes at least light in the first wavelength range, and a first intensity distribution in which an intensity ratio between the light in the first wavelength range and the light in the second wavelength range is a first intensity ratio, A second intensity distribution that includes light in the second wavelength region and has a second intensity ratio in which the intensity ratio between the light in the first wavelength region and the light in the second wavelength region is different from the first intensity ratio; An exposure apparatus, which forms an intensity distribution including the above on a pupil plane of the illumination optical system.
前記第1強度分布及び前記第2強度分布のそれぞれは、前記投影光学系の瞳面における瞳半径で規定される分布であり、
前記第1強度分布と前記第2強度分布とは、前記瞳半径によって区別されることを特徴とする請求項1乃至3のうちいずれか1項に記載の露光装置。
Each of the first intensity distribution and the second intensity distribution is a distribution defined by a pupil radius on the pupil plane of the projection optical system,
The exposure apparatus according to any one of claims 1 to 3, wherein the first intensity distribution and the second intensity distribution are distinguished by the pupil radius.
前記第2波長域は、前記第1波長域よりも長波長域を含み、
前記第2強度分布は、前記第1強度分布よりも大きな瞳半径となる分布を含み、
前記第1強度分布における前記第2波長域の光の強度と前記第1波長域の光の強度との比である(前記第2波長域の光の強度)/(前記第1波長域の光の強度)は、前記第2強度分布における前記第2波長域の光の強度と前記第1波長域の光の強度との比である(前記第2波長域の光の強度)/(前記第1波長域の光の強度)よりも小さいことを特徴とする請求項1乃至4のうちいずれか1項に記載の露光装置。
The second wavelength range includes a longer wavelength range than the first wavelength range,
The second intensity distribution includes a distribution having a larger pupil radius than the first intensity distribution,
It is the ratio of the intensity of the light in the second wavelength band and the intensity of the light in the first wavelength band in the first intensity distribution (the intensity of the light in the second wavelength band)/(the light in the first wavelength band). Is the ratio of the intensity of the light in the second wavelength band and the intensity of the light in the first wavelength band in the second intensity distribution (the intensity of the light in the second wavelength band)/(the second intensity band). The intensity of light in one wavelength range) is smaller than that of the exposure apparatus according to any one of claims 1 to 4.
前記第2波長域は、前記第1波長域よりも長波長域を含み、
前記第2強度分布は、前記第1強度分布よりも大きな瞳半径となる分布を含み、
前記第2強度分布における前記第1波長域の光の強度と前記第2波長域の光の強度との比である(前記第1波長域の光の強度)/(前記第2波長域の光の強度)は、前記第1強度分布における前記第1波長域の光の強度と前記第2波長域の光の強度との比である(前記第1波長域の光の強度)/(前記第2波長域の光の強度)よりも小さいことを特徴とする請求項1乃至4のうちいずれか1項に記載の露光装置。
The second wavelength range includes a longer wavelength range than the first wavelength range,
The second intensity distribution includes a distribution having a larger pupil radius than the first intensity distribution,
It is the ratio of the intensity of the light in the first wavelength range and the intensity of the light in the second wavelength range in the second intensity distribution (the intensity of the light in the first wavelength range)/(the light in the second wavelength range). Is the ratio of the intensity of the light in the first wavelength range and the intensity of the light in the second wavelength range in the first intensity distribution (the intensity of the light in the first wavelength range)/(the first intensity range). 5. The exposure apparatus according to claim 1, wherein the exposure apparatus has a light intensity of less than two wavelengths).
前記第2波長域は、前記第1波長域よりも長波長域を含み、
前記第2強度分布は、前記第1強度分布よりも大きな瞳半径となる分布を含み、
前記第2強度分布における前記第2波長域の光の強度と前記第1波長域の光の強度との比である(前記第2波長域の光の強度)/(前記第1波長域の光の強度)は、前記第1強度分布における前記第2波長域の光の強度と前記第1波長域の光の強度との比である(前記第2波長域の光の強度)/(前記第1波長域の光の強度)よりも小さいことを特徴とする請求項1乃至4のうちいずれか1項に記載の露光装置。
The second wavelength range includes a longer wavelength range than the first wavelength range,
The second intensity distribution includes a distribution having a larger pupil radius than the first intensity distribution,
It is the ratio of the intensity of the light in the second wavelength range and the intensity of the light in the first wavelength range in the second intensity distribution (the intensity of the light in the second wavelength range)/(the light in the first wavelength range). Is the ratio of the intensity of the light in the second wavelength band and the intensity of the light in the first wavelength band in the first intensity distribution (the intensity of the light in the second wavelength band)/(the second intensity band). The intensity of light in one wavelength range) is smaller than that of the exposure apparatus according to any one of claims 1 to 4.
前記第1強度分布は、前記第1波長域をλ1、前記パターンのピッチをP、前記投影光学系の開口数をNAとして、
Figure 2020095219
で規定される瞳半径の分布を含むことを特徴とする請求項1乃至4のうちいずれか1項に記載の露光装置。
The first intensity distribution has the first wavelength region of λ1, the pattern pitch of P, and the numerical aperture of the projection optical system of NA.
Figure 2020095219
The exposure apparatus according to any one of claims 1 to 4, wherein the exposure apparatus includes a pupil radius distribution defined by.
前記複数の波長域は、水銀ランプの複数の輝線に対応する波長を含むことを特徴とする請求項1乃至8のうちいずれか1項に記載の露光装置。 9. The exposure apparatus according to claim 1, wherein the plurality of wavelength ranges include wavelengths corresponding to a plurality of bright lines of a mercury lamp. 前記照明光学系は、前記複数の波長域のうち特定の波長域の光を透過又は遮断して前記第1強度分布及び前記第2強度分布を形成するための波長フィルタを含むことを特徴とする請求項1乃至9のうちいずれか1項に記載の露光装置。 The illumination optical system includes a wavelength filter for transmitting or blocking light in a specific wavelength range of the plurality of wavelength ranges to form the first intensity distribution and the second intensity distribution. The exposure apparatus according to any one of claims 1 to 9. 前記基準強度は、前記マスクのパターンの回折光の強度分布の最大値の0.6倍以上0.9倍以下の強度であることを特徴とする請求項2に記載の露光装置。 The exposure apparatus according to claim 2, wherein the reference intensity is 0.6 times or more and 0.9 times or less of a maximum value of the intensity distribution of the diffracted light of the pattern of the mask. 前記照明光学系は、前記第1強度分布と前記第2強度分布とを含む前記強度分布を、当該強度分布が4回回転対称となるように、前記照明光学系の瞳面に形成することを特徴とする請求項3に記載の露光装置。 The illumination optical system forms the intensity distribution including the first intensity distribution and the second intensity distribution on a pupil plane of the illumination optical system so that the intensity distribution has four-fold rotational symmetry. The exposure apparatus according to claim 3, which is characterized in that 前記露光装置は、マスクレス露光装置であることを特徴とする請求項3又は12に記載の露光装置。 The exposure apparatus according to claim 3, wherein the exposure apparatus is a maskless exposure apparatus. 第1波長域と第2波長域とを含む複数の波長域の光を用いて基板を露光する露光装置であって、
前記光でマスクを照明する照明光学系と、
前記マスクのパターンの像を前記基板に投影する投影光学系と、を有し、
前記照明光学系は、少なくとも前記第1波長域の光を含み、前記第1波長域の光と前記第2波長域の光との強度比が第1強度比となる輪帯形状の第1強度分布と、少なくとも前記第2波長域の光を含み、前記第1波長域の光と前記第2波長域の光との強度比が前記第1強度比とは異なる第2強度比となる輪帯形状の第2強度分布と、を含む輪帯形状の強度分布を、前記照明光学系の瞳面に形成し、
前記第1強度分布と前記第2強度分布とは、前記照明光学系の瞳面における径の大きさが異なることを特徴とする露光装置。
An exposure apparatus for exposing a substrate using light in a plurality of wavelength ranges including a first wavelength range and a second wavelength range,
An illumination optical system that illuminates the mask with the light,
A projection optical system for projecting an image of the pattern of the mask onto the substrate,
The illumination optical system includes at least light in the first wavelength range, and a first intensity of an annular shape in which an intensity ratio between the light in the first wavelength range and the light in the second wavelength range is a first intensity ratio. An annular zone including a distribution and at least a light in the second wavelength range, and an intensity ratio between the light in the first wavelength range and the light in the second wavelength range is a second intensity ratio different from the first intensity ratio. A second zone-shaped intensity distribution and a ring-shaped intensity distribution including a second intensity distribution on the pupil plane of the illumination optical system,
The exposure apparatus, wherein the first intensity distribution and the second intensity distribution have different diameters on a pupil plane of the illumination optical system.
前記第1強度分布及び前記第2強度分布のそれぞれは、前記投影光学系の瞳面における瞳半径で規定される分布であり、
前記第1強度分布は、335nm以上395nm以下の波長の光を含み、0.45から0.90の瞳半径で規定され、
前記第2強度分布は、395nm以上475nm以下の波長の光を含み、0.70から0.90の瞳半径で規定されることを特徴とする請求項14に記載の露光装置。
Each of the first intensity distribution and the second intensity distribution is a distribution defined by a pupil radius on the pupil plane of the projection optical system,
The first intensity distribution includes light having a wavelength of 335 nm or more and 395 nm or less, and is defined by a pupil radius of 0.45 to 0.90,
The exposure apparatus according to claim 14, wherein the second intensity distribution includes light having a wavelength of 395 nm or more and 475 nm or less and is defined by a pupil radius of 0.70 to 0.90.
前記第1強度分布及び前記第2強度分布のそれぞれは、前記投影光学系の瞳面における瞳半径で規定される分布であり、
前記第1強度分布は、335nm以上395nm以下の波長の光を含み、0.45から0.70の瞳半径で規定され、
前記第2強度分布は、335nm以上475nm以下の波長の光を含み、0.45から0.90の瞳半径で規定されることを特徴とする請求項14に記載の露光装置。
Each of the first intensity distribution and the second intensity distribution is a distribution defined by a pupil radius on the pupil plane of the projection optical system,
The first intensity distribution includes light having a wavelength of 335 nm or more and 395 nm or less and is defined by a pupil radius of 0.45 to 0.70,
15. The exposure apparatus according to claim 14, wherein the second intensity distribution includes light having a wavelength of 335 nm or more and 475 nm or less and is defined by a pupil radius of 0.45 to 0.90.
前記第1強度分布及び前記第2強度分布のそれぞれは、前記投影光学系の瞳面における瞳半径で規定される分布であり、
前記第1強度分布は、335nm以上420nm以下の波長の光を含み、0.45から0.70の瞳半径で規定され、
前記第2強度分布は、395nm以上475nm以下の波長の光を含み、0.70から0.90の瞳半径で規定されることを特徴とする請求項14に記載の露光装置。
Each of the first intensity distribution and the second intensity distribution is a distribution defined by a pupil radius on the pupil plane of the projection optical system,
The first intensity distribution includes light having a wavelength of 335 nm or more and 420 nm or less and is defined by a pupil radius of 0.45 to 0.70,
The exposure apparatus according to claim 14, wherein the second intensity distribution includes light having a wavelength of 395 nm or more and 475 nm or less and is defined by a pupil radius of 0.70 to 0.90.
第1波長域と第2波長域とを含む複数の波長域の光を用いて基板を露光する露光方法であって、
照明光学系を介して前記光でマスクを照明する工程と、
投影光学系を介して前記マスクのパターンの像を前記基板に投影する工程と、を有し、
前記マスクを照明する工程では、少なくとも前記第1波長域の光を含み、前記第1波長域の光と前記第2波長域の光との強度比が第1強度比となる第1強度分布と、少なくとも前記第2波長域の光を含み、前記第1波長域の光と前記第2波長域の光との強度比が前記第1強度比とは異なる第2強度比となる第2強度分布と、を含む強度分布を、当該強度分布が4回回転対称となるように、前記照明光学系の瞳面に形成することを特徴とする露光方法。
An exposure method for exposing a substrate using light in a plurality of wavelength ranges including a first wavelength range and a second wavelength range,
Illuminating the mask with the light through an illumination optics;
Projecting an image of the pattern of the mask onto the substrate through a projection optical system,
In the step of illuminating the mask, a first intensity distribution that includes at least light in the first wavelength range and has an intensity ratio of the light in the first wavelength range and the light in the second wavelength range being a first intensity ratio. A second intensity distribution that includes at least light in the second wavelength region and has a second intensity ratio in which the intensity ratio between the light in the first wavelength region and the light in the second wavelength region is different from the first intensity ratio. And an intensity distribution including the following are formed on the pupil plane of the illumination optical system so that the intensity distribution has four-fold rotational symmetry.
請求項1乃至17のうちいずれか1項に記載の露光装置を用いて基板を露光する工程と、
露光した前記基板を現像する工程と、
現像された前記基板から物品を製造する工程と、
を有することを特徴とする物品の製造方法。
Exposing a substrate using the exposure apparatus according to any one of claims 1 to 17,
Developing the exposed substrate,
Manufacturing an article from the developed substrate,
A method for manufacturing an article, comprising:
JP2018234713A 2018-12-14 2018-12-14 Exposure apparatus, exposure method, and article manufacturing method Active JP7240162B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2018234713A JP7240162B2 (en) 2018-12-14 2018-12-14 Exposure apparatus, exposure method, and article manufacturing method
TW111142909A TWI818799B (en) 2018-12-14 2019-11-12 Exposure device, exposure method and manufacturing method of article
TW108140945A TWI785285B (en) 2018-12-14 2019-11-12 Exposure device, exposure method and method of manufacturing article
KR1020190156246A KR20200074000A (en) 2018-12-14 2019-11-29 Exposure apparatus, exposure method and manufacturing method of article
CN201911254686.6A CN111324016B (en) 2018-12-14 2019-12-10 Exposure apparatus, exposure method, and method for manufacturing article
CN202311196163.7A CN116991047A (en) 2018-12-14 2019-12-10 Exposure apparatus, exposure method, and method for manufacturing article
JP2023032176A JP7457849B2 (en) 2018-12-14 2023-03-02 Exposure equipment, exposure method, and article manufacturing method
KR1020230145457A KR20230153976A (en) 2018-12-14 2023-10-27 Exposure apparatus, exposure method and manufacturing method of article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018234713A JP7240162B2 (en) 2018-12-14 2018-12-14 Exposure apparatus, exposure method, and article manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023032176A Division JP7457849B2 (en) 2018-12-14 2023-03-02 Exposure equipment, exposure method, and article manufacturing method

Publications (2)

Publication Number Publication Date
JP2020095219A true JP2020095219A (en) 2020-06-18
JP7240162B2 JP7240162B2 (en) 2023-03-15

Family

ID=71084889

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018234713A Active JP7240162B2 (en) 2018-12-14 2018-12-14 Exposure apparatus, exposure method, and article manufacturing method
JP2023032176A Active JP7457849B2 (en) 2018-12-14 2023-03-02 Exposure equipment, exposure method, and article manufacturing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023032176A Active JP7457849B2 (en) 2018-12-14 2023-03-02 Exposure equipment, exposure method, and article manufacturing method

Country Status (4)

Country Link
JP (2) JP7240162B2 (en)
KR (2) KR20200074000A (en)
CN (2) CN111324016B (en)
TW (2) TWI785285B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252021A (en) * 1993-02-25 1994-09-09 Nec Corp Projection exposure method and device therefor
JPH06325994A (en) * 1993-05-11 1994-11-25 Hitachi Ltd Pattern forming method, pattern forming device and mask
JP2011022529A (en) * 2009-07-21 2011-02-03 Mejiro Precision:Kk Light source device and exposure device
JP2014042073A (en) * 2007-11-06 2014-03-06 Nikon Corp Exposure method, device, and device manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI457712B (en) * 2003-10-28 2014-10-21 尼康股份有限公司 Optical illumination device, projection exposure device, exposure method and device manufacturing method
JP5908297B2 (en) 2012-02-09 2016-04-26 株式会社トプコン Exposure equipment
DE102013201133A1 (en) * 2013-01-24 2014-07-24 Carl Zeiss Smt Gmbh Optical system of a microlithographic projection exposure apparatus
JP2018054992A (en) * 2016-09-30 2018-04-05 キヤノン株式会社 Illumination optical system, exposure equipment and production method of article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252021A (en) * 1993-02-25 1994-09-09 Nec Corp Projection exposure method and device therefor
JPH06325994A (en) * 1993-05-11 1994-11-25 Hitachi Ltd Pattern forming method, pattern forming device and mask
JP2014042073A (en) * 2007-11-06 2014-03-06 Nikon Corp Exposure method, device, and device manufacturing method
JP2011022529A (en) * 2009-07-21 2011-02-03 Mejiro Precision:Kk Light source device and exposure device

Also Published As

Publication number Publication date
JP2023065598A (en) 2023-05-12
TWI818799B (en) 2023-10-11
CN116991047A (en) 2023-11-03
CN111324016A (en) 2020-06-23
TW202309682A (en) 2023-03-01
JP7240162B2 (en) 2023-03-15
TW202038015A (en) 2020-10-16
KR20230153976A (en) 2023-11-07
TWI785285B (en) 2022-12-01
KR20200074000A (en) 2020-06-24
JP7457849B2 (en) 2024-03-28
CN111324016B (en) 2023-09-29

Similar Documents

Publication Publication Date Title
JP2003318086A (en) Illumination optical system, exposure apparatus having the same, and device manufacturing method
JP2002324743A (en) Exposing method and equipment thereof
KR20200108068A (en) Exposure apparatus and exposure method
TW200839460A (en) Exposure apparatus and semiconductor device fabrication method
JP2004071776A (en) Illuminating optical system, exposure method, and aligner
JP2009130091A (en) Illumination optical device, aligner, and device manufacturing method
JP2785757B2 (en) Photo mask
JP2018054992A (en) Illumination optical system, exposure equipment and production method of article
JP2004207709A (en) Exposure method and device
JP7390804B2 (en) Exposure device, exposure method, determination method, and article manufacturing method
JP7457849B2 (en) Exposure equipment, exposure method, and article manufacturing method
JP3262074B2 (en) Exposure method and exposure apparatus
US20030227684A1 (en) Diffractive optical element, refractive optical element, illuminating optical apparatus, exposure apparatus and exposure method
CN113721427B (en) Exposure apparatus, exposure method, and method for manufacturing article
JP2021128285A (en) Determination method, exposure device, exposure method, article manufacturing method and program
KR101999553B1 (en) Illumination optical device, exposure apparatus, and method of manufacturing article
JP2003173956A (en) Method and device for exposure
JP2021018358A (en) Generating method, information processor, exposure method, exposure apparatus, manufacturing method of article, and program
JP2002110502A (en) Lighting device and aligner
JP2002353098A (en) Method and aligner for exposure

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230303

R151 Written notification of patent or utility model registration

Ref document number: 7240162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151