JP2020094913A - pH detector - Google Patents

pH detector Download PDF

Info

Publication number
JP2020094913A
JP2020094913A JP2018233179A JP2018233179A JP2020094913A JP 2020094913 A JP2020094913 A JP 2020094913A JP 2018233179 A JP2018233179 A JP 2018233179A JP 2018233179 A JP2018233179 A JP 2018233179A JP 2020094913 A JP2020094913 A JP 2020094913A
Authority
JP
Japan
Prior art keywords
potential
detection
region
solution
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018233179A
Other languages
Japanese (ja)
Inventor
安行 木村
Yasuyuki Kimura
安行 木村
澤田 和明
Kazuaki Sawada
和明 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyohashi University of Technology NUC
Original Assignee
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyohashi University of Technology NUC filed Critical Toyohashi University of Technology NUC
Priority to JP2018233179A priority Critical patent/JP2020094913A/en
Publication of JP2020094913A publication Critical patent/JP2020094913A/en
Pending legal-status Critical Current

Links

Images

Abstract

To solve the problem that a glass reference electrode is used in a pH detector for fixing the solution potential of a test solution, but there is leakage of poisonous potassium chloride from a glass tube liquid junction, which is unsuitable for biological observation, and that a potential change in and outside of cells causes a change of local solution potential making it non-discriminable from pH change, in addition to that a large size of the glass tube presents a bottleneck to the downsizing of the pH detector.SOLUTION: Two pH detection elements having a sensitive membrane differing in pH sensitivity are arranged in a pH detector composed of a plurality of pH detection elements. In this case, the solution potential and pH of a test solution are specified assuming that the pHs of sensitive membrane surfaces which the manually adjacent pH detection elements are in contact with are almost equal and that an ionic solution is conductive and solution potential is constant.SELECTED DRAWING: Figure 1

Description

本発明は、pHセンサアレイを用いて溶液電位及びイオン濃度もしくはpHを特定する方法及びその装置に関する。 The present invention relates to a method and an apparatus for determining a solution potential and an ion concentration or pH using a pH sensor array.

測定対象のpH分布を測定し2次元イメージとして画像化するために、複数のpHセンサを2次元的に配列してなるpHセンサアレイが開示されている(特許文献1)。このようなpHセンサアレイでは、溶液に参照電極を接触させて、溶液の電位を固定させている。一般にpH測定を行うためには、参照電極にガラス参照電極が用いられる。ここで、ガラス参照電極は、銀・塩化銀(Ag/AgCl)電極をガラス管に封緘したものであり、ガラス管内にはClイオン濃度を固定した塩化カリウム飽和水溶液等の溶液で満たされ、酸化還元電位を一定とし、ガラス管内の溶液と検体の溶液を電気的に接続するために液絡部が設けられている。 A pH sensor array in which a plurality of pH sensors are two-dimensionally arranged is disclosed in order to measure the pH distribution of a measurement target and image it as a two-dimensional image (Patent Document 1). In such a pH sensor array, the potential of the solution is fixed by bringing the reference electrode into contact with the solution. Generally, a glass reference electrode is used as a reference electrode for performing pH measurement. Here, the glass reference electrode is a silver/silver chloride (Ag/AgCl) electrode sealed in a glass tube. The glass tube is filled with a solution such as a saturated aqueous solution of potassium chloride with a fixed Cl ion concentration, and then oxidized. A liquid junction is provided for keeping the reduction potential constant and electrically connecting the solution in the glass tube and the sample solution.

しかしながら、ガラス参照電極では筐体にガラス材料を使用するために、破損しやすく、破損した時は内部の塩化カリウムが漏洩するという恐れがある。また、液絡部から常に塩化カリウムが漏洩しており、生体細胞等に悪影響を与えるために、医療・生化学分野では取扱いに留意する必要があった。更には、ガラス参照電極は小型化が困難であり、pHセンサアレイを用いる計測装置の小型化を阻害していた。 However, since the glass reference electrode uses a glass material for the housing, it is easily damaged, and there is a possibility that potassium chloride inside leaks when the glass reference electrode is damaged. In addition, potassium chloride is constantly leaking from the liquid junction, which adversely affects living cells and the like, so that care must be taken in handling in the medical and biochemical fields. Further, it is difficult to downsize the glass reference electrode, which hinders downsizing of the measuring device using the pH sensor array.

他の手段として、白金(Pt)または銀・塩化銀(Ag/AgCl)等の金属材料を参照電極として用いれば、破損の恐れもなく、また金属参照電極自体を小型化することも容易である。しかしながら、金属参照電極では、電極と溶液間で発生する酸化・還元反応のために、溶液の電位に揺らぎが生じ、充分な測定精度が得られないという課題があった。 As another means, if a metal material such as platinum (Pt) or silver/silver chloride (Ag/AgCl) is used as the reference electrode, there is no fear of damage and it is easy to downsize the metal reference electrode itself. .. However, the metal reference electrode has a problem in that the potential of the solution fluctuates due to the oxidation/reduction reaction that occurs between the electrode and the solution, and sufficient measurement accuracy cannot be obtained.

更に他の手段として、pHセンサアレイ内の特性ばらつきに着目して、pHを特定する方法が提案されている(特許文献2)。しかしながら、特性ばらつきが小さければpHの特定精度が低下するという課題があった。 As yet another means, a method has been proposed in which the pH is specified by paying attention to the characteristic variation in the pH sensor array (Patent Document 2). However, there is a problem in that the accuracy of pH specification decreases if the characteristic variation is small.

特許第6074770号「化学・物理現象検出方法及びその装置」Patent No. 6074770 "Chemical/physical phenomenon detection method and device" 特許第6245612号「pHを特定する方法及びその装置並びにイオン濃度を特定する方法」Japanese Patent No. 6245612 "Method for specifying pH and its apparatus and method for specifying ion concentration" 国際公開2016/114202「化学・物理現象検出装置」International publication 2016/114202 "Chemical/Physical phenomenon detector" 国際公開2016/147798「化学・物理現象検出装置」International publication 2016/147798 "Chemical/Physical phenomenon detector"

松尾正之、中嶋秀樹、「半導体イオン電極」、医用電子と生体工学、昭和58年12月、pp. 510-516(1983).Masao Matsuo, Hideki Nakajima, "Semiconductor Ion Electrodes", Medical Electronics and Biotechnology, December 1983, pp. 510-516 (1983).

本発明では、前述の課題を鑑みて、感度の異なる感応膜を有する第1及び第2のpH検出素子を用いて、ガラス参照電極の使用を必須としないpH検出装置およびこれを用いてpHを特定する方法を実現する。 In the present invention, in view of the above problems, using the first and second pH detection elements having sensitive films having different sensitivities, a pH detection device that does not require the use of a glass reference electrode and a pH using the pH detection device Realize the method of identification.

本発明では、複数のpHセンサからなるpHセンサアレイ内にpH感度の異なる感応膜を有する2つのpHセンサを配置する。ここで、pH感度を感応膜表面でのpHが変化したときのイオンセンサの検出電位の変化として定義する。 In the present invention, two pH sensors having sensitive membranes having different pH sensitivities are arranged in a pH sensor array composed of a plurality of pH sensors. Here, the pH sensitivity is defined as the change in the detection potential of the ion sensor when the pH on the surface of the sensitive film changes.

上記手段と併せて近接するpHセンサが接する感応膜表面のpHがほぼ等しいことと、イオン性溶液は導電性であり、溶液の電位がそれぞれ一定であることを前提とすれば、溶液の電位とpHを特定できる。本発明によれば、pHセンサアレイ内のばらつきや感応膜の均質性に影響を受けることがない。 Assuming that the pH of the sensitive film surface in contact with the adjacent pH sensor together with the above means is almost equal, and that the ionic solution is conductive and the potential of the solution is constant, the potential of the solution and The pH can be specified. According to the present invention, variations in the pH sensor array and homogeneity of the sensitive film are not affected.

以下にpH及び溶液の電位(以下、溶液電位と称する場合がある)を特定する手順を述べる。一般に、pHセンサアレイを構成するpH検出素子iを溶液に接触させた場合、pH検出素子iの検出電位Voiは式(1)で表される。
Voi=Si×pHi+Gi×Vri+Ci (1)
ここで、pHiはpH検出素子iの感応膜表面のpH、VriはpH検出素子iが浸漬する溶液の電位、SiはpH検出素子iの感応膜表面のpHが変化した場合の感応係数、GiはpH検出素子iを浸漬させた溶液の電位が変化した場合の感応係数であり、Ciは定数である。
The procedure for specifying the pH and the potential of the solution (hereinafter sometimes referred to as the solution potential) will be described below. In general, when the pH detecting element i forming the pH sensor array is brought into contact with the solution, the detection potential Voi of the pH detecting element i is represented by the equation (1).
Voi=Si×pHi+Gi×Vri+Ci (1)
Here, pHi is the pH of the sensitive film surface of the pH detection element i, Vri is the potential of the solution in which the pH detection element i is immersed, Si is the sensitivity coefficient when the pH of the sensitive film surface of the pH detection element i changes, Gi Is the sensitivity coefficient when the potential of the solution in which the pH detecting element i is immersed changes, and Ci is a constant.

(検量ステップ)
検出電位Voiから感応膜表面のpH(pHi)と溶液電位(Vri)を特定するために、予め、感応係数Si、Gi及び定数Ciを求める。検量ステップでは、pHが確定した標準溶液及び溶液に電圧印加し、溶液電位を固定できるガラス参照電極を用いる。溶液電位は一定値Vrとなり、式(1)は式(2)に書き換えられる。
Voi=Si×pHi+Gi×Vr+Ci (2)
ここで、pHの異なる標準溶液を用いて、異なる電位をガラス参照電極に印加し、各々の検出電位Voiを測定する。未知数が3個であるので、少なくとも3条件で測定すれば、感応係数Si、Gi及び定数Ciを決定することができる。
(Calibration step)
In order to specify the pH (pHi) and the solution potential (Vri) on the surface of the sensitive film from the detected potential Voi, the sensitive coefficients Si and Gi and the constant Ci are obtained in advance. In the calibration step, a standard solution having a fixed pH and a glass reference electrode capable of fixing the solution potential by applying a voltage to the solution are used. The solution potential becomes a constant value Vr, and equation (1) can be rewritten as equation (2).
Voi=Si×pHi+Gi×Vr+Ci (2)
Here, different potentials are applied to the glass reference electrode using standard solutions having different pHs, and the respective detection potentials Voi are measured. Since there are three unknowns, the sensitivity coefficients Si, Gi and the constant Ci can be determined by measuring under at least three conditions.

引き続き行う溶液電位特定ステップではpHi及びVrが未知数となり、2つの連立方程式が必要となる。そこで、異なる感応係数を有する第1及び第2のpH検出素子を準備し、それぞれ感応係数を求めておく。更に、第1及び第2のpH検出素子を近接させることで、それぞれの感応膜表面のpHがほぼ同一と見なせることから、これをpHmとすれば、式(3)及び式(4)が成立する。
Vo1=S1×pHm+G1×Vrm+C1 (3)
Vo2=S2×pHm+G2×Vrm+C2 (4)
In the subsequent solution potential identification step, pHi and Vr are unknowns, and two simultaneous equations are required. Therefore, first and second pH detection elements having different sensitivity coefficients are prepared and the sensitivity coefficients are obtained respectively. Furthermore, by bringing the first and second pH detection elements close to each other, the pH of the sensitive film surface can be considered to be almost the same. Therefore, if this is pHm, equations (3) and (4) are established. To do.
Vo1 = S1 x pHm + G1 x Vrm + C1 (3)
Vo2 = S2 x pHm + G2 x Vrm + C2 (4)

(溶液電位・pH特定ステップ)
このステップでは、白金(Pt)または銀・塩化銀(Ag/AgCl)からなる金属参照電極を使用することができる。この場合、溶液の電位が金属参照電極から印加する電位と異なるために、検量ステップで特定した溶液電位Vrと異なっている。検量ステップにおいて第1及び第2のpH検出素子の感応係数S1、G1、S2、G2及び定数C1、C2が特定されているので、第1及び第2のpH検出素子の検出電位Vo1及びVo2から金属参照電極を用いた場合の溶液電位Vrmを式(5)により求めることができる。
Vrm={(Vo1−C1)/S1−(Vo2−C2)/S2/(G1/S1−G2/S2) (5)
更に、溶液電位Vrmから感応膜表面のpHを求めることができる。
pHm=(Vo1−G1×Vrm−C1)/S1=(Vo2−G2×Vrm−C2)/S2 (6)
(Solution potential/pH identification step)
In this step, a metal reference electrode made of platinum (Pt) or silver/silver chloride (Ag/AgCl) can be used. In this case, since the potential of the solution is different from the potential applied from the metal reference electrode, it is different from the solution potential Vr specified in the calibration step. In the calibration step, the sensitivity coefficients S1, G1, S2, G2 and constants C1, C2 of the first and second pH detection elements are specified, so that the detection potentials Vo1 and Vo2 of the first and second pH detection elements are determined. The solution potential Vrm in the case of using the metal reference electrode can be obtained by the equation (5).
Vrm = ((Vo1-C1)/S1--(Vo2-C2)/S2/(G1/S1-G2/S2) (5)
Furthermore, the pH of the sensitive membrane surface can be determined from the solution potential Vrm.
pHm=(Vo1-G1×Vrm−C1)/S1=(Vo2-G2×Vrm−C2)/S2 (6)

(特定精度)
以上のステップにより、pH感度が特定された相互に近接するpH検出素子iの検出電位から、溶液電位とpHmが求まる。ここで、特定精度について考察を加える。感応係数SiはpH変化に対する検出電位の変化として測定される。ところが、pHを変化させた場合、pH変化に相当する感応膜表面電位の変化に感応係数Giを乗じた値が検出電位として測定される。このため、感応係数Siは式(7)で再定義でき、Si*は感応係数Giを1と仮定したときのpH検出素子iのpH感度であり、pH変化による感応膜表面の電位変化を表している。
Si=Si*×Gi (7)
式(7)にしたがって、式(5)及び式(6)を書き換えると、式(8)及び式(9)となる。
Vrm={(Vo1−C1)/(S1*×G1)−(Vo2−C2)/(S2*×G2)}/(1/S1*−1/S2*) (8)
pHm=(Vo1/G1−Vrm−C1/G1)/S1*=(Vo2/G2−Vrm−C2/G2)/S2* (9)
(Specific accuracy)
Through the above steps, the solution potential and the pHm can be obtained from the detection potentials of the pH detection elements i having the pH sensitivities that are close to each other. Here, consideration will be given to the specific accuracy. The sensitivity coefficient Si is measured as the change in the detected potential with respect to the change in pH. However, when the pH is changed, the value obtained by multiplying the change in the surface potential of the sensitive membrane corresponding to the pH change by the sensitivity coefficient Gi is measured as the detected potential. Therefore, the sensitivity coefficient Si can be redefined by equation (7), and Si * is the pH sensitivity of the pH detection element i when the sensitivity coefficient Gi is assumed to be 1, and represents the potential change on the surface of the sensitive film due to pH change. ing.
Si=Si * ×Gi (7)
Rewriting equations (5) and (6) according to equation (7) gives equations (8) and (9).
Vrm={(Vo1−C1)/(S1 * ×G1)−(Vo2−C2)/(S2 * ×G2)}/(1/S1 * −1/S2 * ) (8)
pHm = (Vo1/G1-Vrm-C1/G1)/S1 * = (Vo2/G2-Vrm-C2/G2)/S2 * (9)

したがって、式(8)の分母成分を大きくし、特定精度を向上させるためには、センシング領域の感応係数Siが異なること、すなわち、感応膜の材料が異なるpH検出素子を用いることが必要である。例えば、感応係数Giが異なるpH検出素子であっても、同一の感応係数Siを有していると溶液電位は不定値となる。 Therefore, in order to increase the denominator component of the equation (8) and improve the identification accuracy, it is necessary to use different sensing coefficients Si in the sensing region, that is, to use pH sensing elements with different sensitive film materials. .. For example, even if the pH detection elements have different sensitivity coefficients Gi, if they have the same sensitivity coefficient Si, the solution potential becomes an indefinite value.

以上の原理に基づき、本発明の第1の局面は次のように規定される。
水素イオン濃度の変化に応じた電位を検出する第1及び第2のpH検出素子を有し、当該第1及び第2のpH検出素子がそれぞれ電位を検出するpH検出装置であり、
前記第1及び第2のpH検出素子は、予め電荷が排出された電荷蓄積領域と、外部環境の変化に対応して電位が変化するセンシング領域と、電荷の転送量を制御する電荷転送制御領域と、当該センシング領域に隣接し、当該センシング領域の電位を反映した電荷量を蓄積する第1の浮遊拡散領域と、予め電荷が注入された第2の浮遊拡散領域と、
を区画した半導体基板を備え、
前記センシング領域と前記電荷転送制御領域の電位差を反映した電荷を、前記第2の浮遊拡散領域から前記電荷蓄積領域に電荷転送する手段と、当該電荷蓄積領域の電位を検出する手段を有し、
前記第1及び第2のpH検出素子のセンシング領域は水素イオン濃度の変化に対して異なる感度の感応膜を有することを特徴とする。
Based on the above principle, the first aspect of the present invention is defined as follows.
It has a first and second pH detection element to detect the potential according to the change of the hydrogen ion concentration, the first and second pH detection element is a pH detection device to detect the potential, respectively,
The first and second pH detection elements are a charge storage region in which charges have been discharged in advance, a sensing region in which the potential changes in response to changes in the external environment, and a charge transfer control region that controls the transfer amount of charges. A first floating diffusion region that is adjacent to the sensing region and stores a charge amount that reflects the potential of the sensing region, and a second floating diffusion region in which charges have been injected in advance,
Equipped with a semiconductor substrate
A charge reflecting the potential difference between the sensing region and the charge transfer control region, a means for transferring the charge from the second floating diffusion region to the charge storage region, and a means for detecting the potential of the charge storage region,
The sensing regions of the first and second pH detection elements are characterized by having sensitive films having different sensitivities to changes in hydrogen ion concentration.

本発明の第2の局面は、前記第1及び第2のpH検出素子の第1及び第2のセンシング領域は、半導体基板上に区画された第1及び第2のセンシング領域規定電極と、第1及び第2のセンシング領域規定電極と電気的に接続された第1及び第2の感応膜からなることを特徴とする。 A second aspect of the present invention, the first and second sensing regions of the first and second pH detection elements, the first and second sensing region defining electrodes partitioned on a semiconductor substrate, the second It is characterized by comprising first and second sensitive films electrically connected to the first and second sensing area defining electrodes.

本発明の第3の局面は、前記第1の感応膜は窒化シリコン膜からなり、前記第2の感応膜は酸化タンタル膜からなることを特徴とする。 A third aspect of the present invention is characterized in that the first sensitive film is made of a silicon nitride film and the second sensitive film is made of a tantalum oxide film.

本発明の第4の局面は次のように規定される。
pH検出装置を構成する異なる感度の感応膜を有する第1及び第2のpH検出素子の第1及び第2の検出電位を用いて、当該第1及び第2のpH検出素子の感応膜表面のpH及び当該第1及び第2のpH検出素子が接触する溶液電位を特定する方法であって、
前記第1及び第2のpH検出素子の前記検出電位Vo1及びVo2を次のように規定し、
Vo1=S1×pH1+G1×Vr+C1、
Vo2=S2×pH2+G2×Vr+C2。
(ここで、前記第1及び第2のpH検出素子の感応膜表面のpHをpH1、pH2、溶液電位をVrとし、S1、S2、G1、G2は感応係数、C1、C2は定数とする)
前記pH検出素子iを標準溶液に接触させて当該pH検出素子の検出電位Vo1、Vo2から、感応係数S1、S2、G1、G2、定数C1、C2を特定する検量ステップと、
前記第1及び第2のpH検出素子は第1及び第2の感応膜を有し、当該第1及び第2のpH検出素子の検出電位Vo1及びVo2を測定する測定ステップと、
前記第1及び第2のpH検出素子の感応膜表面のpHは等しいものとして、前記測定ステップで測定した当該第1及び第2のpH検出素子の検出電位Vo1及びVo2並びに前記検量ステップで特定した当該第1及び第2のpH検出素子の感応係数S1、G1、S2、G2及び定数C1、C2から前記溶液電位Vrmを特定する溶液電位特定ステップと、
前記溶液電位特定ステップで特定された溶液電位Vrmと、前記検量ステップで特定された感応係数S1、G1、S2、G2及び定数C1、C2と、前記測定ステップで測定された第1及び第2の検出電位Vo1及びVo2から前記第1及び第2のpH検出素子の感応膜表面のpHを求めるpH特定ステップと、
を含むpHを特定する方法。
The fourth aspect of the present invention is defined as follows.
By using the first and second detection potentials of the first and second pH detection elements having the sensitive films of different sensitivities that constitute the pH detection device, the sensitive film surface of the first and second pH detection elements is detected. A method for identifying a pH and a solution potential in contact with the first and second pH detection elements,
The detection potentials Vo1 and Vo2 of the first and second pH detection elements are defined as follows,
Vo1 = S1 x pH1 + G1 x Vr + C1,
Vo2 = S2 x pH2 + G2 x Vr + C2.
(Here, the pH of the surface of the sensitive film of the first and second pH detecting elements is pH1, pH2, the solution potential is Vr, S1, S2, G1, and G2 are sensitivity coefficients, and C1 and C2 are constants.)
From the detection potential Vo1, Vo2 of the pH detection element by contacting the pH detection element i with a standard solution, a calibration step for specifying the response coefficients S1, S2, G1, G2, constants C1, C2,
The first and second pH detection element has a first and second sensitive film, a measurement step of measuring the detection potential Vo1 and Vo2 of the first and second pH detection element,
As the pH of the sensitive film surface of the first and second pH detection elements is equal, the detection potentials Vo1 and Vo2 of the first and second pH detection elements measured in the measurement step and the calibration step were specified. A solution potential specifying step of specifying the solution potential Vrm from the sensitivity coefficients S1, G1, S2, G2 and constants C1, C2 of the first and second pH detection elements,
The solution potential Vrm specified in the solution potential specifying step, the response coefficients S1, G1, S2, G2 and the constants C1, C2 specified in the calibration step, and the first and second measured in the measuring step. From the detection potential Vo1 and Vo2 the pH specifying step of determining the pH of the sensitive film surface of the first and second pH detecting elements,
A method of identifying a pH containing.

本発明の第5の局面は、
前記検量ステップにおいて、前記感応係数S1及びS2を次のように規定し、
S1=S1*×G1、
S2=S2*×G2。
前記感応係数S1及びS2を前記感応係数G1及びG2でそれぞれ除して、前記第1及び第2のpH検出素子の感応膜表面のpH感応係数S1*及びS2*を求めることを特徴とする。
A fifth aspect of the present invention is
In the calibration step, the response coefficients S1 and S2 are defined as follows,
S1=S1 * ×G1,
S2=S2 * ×G2.
It is characterized in that the sensitivity coefficients S1 and S2 are divided by the sensitivity coefficients G1 and G2, respectively, to obtain pH sensitivity coefficients S1 * and S2 * of the sensitive film surfaces of the first and second pH detection elements.

本発明の第6の局面は、
前記溶液電位特定ステップにおいて、次のように溶液電位Vrmを求めることを特徴とする。
Vrm={(Vo1−C1)/(S1*×G1)−(Vo2−C2)/(S2*×G2)}/(1/S1*−1/S2*)。
A sixth aspect of the present invention is
In the solution potential specifying step, the solution potential Vrm is obtained as follows.
Vrm={(Vo1−C1)/(S1 * ×G1)−(Vo2−C2)/(S2 * ×G2)}/(1/S1 * −1/S2 * ).

本発明の第7の局面は、
前記pH特定ステップにおいて、次のようにpHを求めることを特徴とする。
pH=(Vo1/G1−Vrm−C1/G1)/S1*=(Vo2/G2−Vrm−C2/G2)/S2*
A seventh aspect of the present invention is
In the pH specifying step, the pH is calculated as follows.
pH=(Vo1/G1-Vrm-C1/G1)/S1 * =(Vo2/G2-Vrm-C2/G2)/S2 * .

以上に示されるように、ガラス参照電極を用いずとも測定対象のpHを特定できるので、生体挿入型pH検出装置において、周囲環境に充分に溶液が存在しなくとも精度良くpHを特定することができる。また、細胞活動など細胞内外の電位変動がある場合においても、逐次、溶液電位の変動を含めてpHを特定できるので細胞活動を詳細に解析できる。 As shown above, since the pH of the measurement target can be specified without using the glass reference electrode, the pH can be accurately specified even in the living body insertion-type pH detection device even if the surrounding environment does not have a sufficient solution. it can. Further, even when there is a change in the potential inside or outside the cell such as a cell activity, the pH can be sequentially specified including the change in the solution potential, so that the cell activity can be analyzed in detail.

参照電極は、pH検出素子が区画される半導体基板上に電極として形成してもよく、pH計測装置の小型化に適している。 The reference electrode may be formed as an electrode on the semiconductor substrate on which the pH detecting element is partitioned, and is suitable for downsizing the pH measuring device.

本発明の実施形態によるpH検出装置の構造図である。1 is a structural diagram of a pH detection device according to an embodiment of the present invention. 本発明の実施形態によるpH検出素子の電位分布である。3 is a potential distribution of the pH detection element according to the embodiment of the present invention.

半導体pH検出素子のセンシング領域には無機絶縁膜材料からなる感応膜が用いられる。感応膜のpH感度は理想的にはNernst応答にしたがう値となるが、水素イオンに対する選択性が異なるために、本実施形態では、五酸化タンタル(Ta2O5)膜で約55mV/pH、窒化シリコン(Si3N4)膜では約51mV/pHであった。したがって、センシング領域にTa2O5膜及びSi3N4膜をそれぞれ感応膜として用いたpH検出素子を近接して設けることで、その検出電位から溶液電位とpH値を特定することができる。 A sensitive film made of an inorganic insulating film material is used in the sensing region of the semiconductor pH detecting element. The pH sensitivity of the sensitive film is ideally a value according to the Nernst response, but since the selectivity for hydrogen ions is different, in this embodiment, the tantalum pentoxide (Ta 2 O 5 ) film has about 55 mV/pH. The silicon nitride (Si 3 N 4 ) film had a pH of about 51 mV/pH. Therefore, by providing the pH detection element using the Ta 2 O 5 film and the Si 3 N 4 film respectively as sensitive films in close proximity to the sensing region, the solution potential and the pH value can be specified from the detected potential.

(実施形態)
この発明の実施形態のpH検出装置1の原理的な構成を図1に示す。図2に半導体内での電位分布を示す。本実施形態に示すpH検出装置1は、シリコン基板2上に区画され、第1の感応膜が形成された第1のセンシング領域を有する第1のpH検出素子101と第2の感応膜が形成された第2のセンシング領域を有する第2のpH検出素子102から構成される。
(Embodiment)
FIG. 1 shows the basic configuration of the pH detection device 1 according to the embodiment of the present invention. Figure 2 shows the potential distribution in the semiconductor. The pH detecting device 1 shown in the present embodiment is formed on the silicon substrate 2 to form a first pH detecting element 101 and a second sensitive film having a first sensing region in which the first sensitive film is formed. And a second pH detection element 102 having a second sensing area.

pH検出素子100は、シリコン基板2上に、第1の電荷排出(D1)領域4から電荷を転送する方向へ順にセンシング(Sen)領域6、第1の浮遊拡散(FD1)領域7、電荷転送(TG)領域10、第2の浮遊拡散(FD2)領域8、電荷転送制御(AG)領域11、電荷蓄積(FD)領域、リセット(RG)領域12、第2の電荷排出(D2)領域5が区画される。 The pH detection element 100 includes a sensing (Sen) region 6, a first floating diffusion (FD1) region 7, and a charge transfer on the silicon substrate 2 in the order from the first charge discharging (D1) region 4 to the transfer of charges. (TG) region 10, second floating diffusion (FD2) region 8, charge transfer control (AG) region 11, charge accumulation (FD) region, reset (RG) region 12, second charge discharge (D2) region 5 Is partitioned.

各領域の区画はシリコン基板2の表面におけるシリコン半導体の伝導型の違いにより規定される。電荷として電子を用いた場合、第1の電荷排出(D1)領域4、第1の浮遊拡散(FD1)領域7、第2の浮遊拡散(FD2)領域8、電荷蓄積(FD)領域9、第2の電荷排出(D2)領域5はn+型の領域であり、センシング(Sen)領域6、電荷転送(TG)領域10、電荷転送制御(AG)領域11、リセット(RG)領域13はp型の領域である。 The division of each region is defined by the difference in the conductivity type of the silicon semiconductor on the surface of the silicon substrate 2. When electrons are used as the charges, the first charge discharging (D1) region 4, the first floating diffusion (FD1) region 7, the second floating diffusion (FD2) region 8, the charge storage (FD) region 9, The charge discharge (D2) region 5 of 2 is an n+ type region, and the sensing (Sen) region 6, charge transfer (TG) region 10, charge transfer control (AG) region 11, and reset (RG) region 13 are p-type. Area.

シリコン基板2の表面には酸化シリコン絶縁膜3が積層されている。センシング(Sen)領域6上にセンシング領域規定電極13が形成される。更に、酸化シリコン層18が積層され、酸化シリコン層18の表面に感応膜19としての窒化シリコン膜ないしは五酸化タンタル膜が積層される。これらの感応膜19表面の電位変化は酸化シリコン層18内に埋設された導電層17を介してセンシング領域規定電極13に伝達される。電荷転送(TG)領域10上に酸化シリコン絶縁膜3を介して電荷転送電極14が形成され、電荷転送制御(AG)領域11上に酸化シリコン絶縁膜3を介して電荷転送制御電極15が形成され、リセット(RG)領域12上に酸化シリコン絶縁膜3を介してリセット電極16が形成される。 A silicon oxide insulating film 3 is laminated on the surface of the silicon substrate 2. A sensing area defining electrode 13 is formed on the sensing area 6. Further, a silicon oxide layer 18 is laminated, and a silicon nitride film or a tantalum pentoxide film as a sensitive film 19 is laminated on the surface of the silicon oxide layer 18. The potential change on the surface of the sensitive film 19 is transmitted to the sensing area defining electrode 13 via the conductive layer 17 embedded in the silicon oxide layer 18. A charge transfer electrode 14 is formed on the charge transfer (TG) region 10 via the silicon oxide insulating film 3, and a charge transfer control electrode 15 is formed on the charge transfer control (AG) region 11 via the silicon oxide insulating film 3. Then, a reset electrode 16 is formed on the reset (RG) region 12 via the silicon oxide insulating film 3.

第1の浮遊拡散(FD1)領域7はセンシング(Sen)領域6に近接して配置され、センシング(Sen)領域6の電位を反映した電荷量を蓄積する。電荷転送(TG)領域10の電位は充分な低電圧または充分な高電圧、例えば、接地電位(GND)または電源電圧(VDD)が適宜印加され、電荷転送(TG)領域10は第1の浮遊拡散(FD1)領域7と第2の浮遊拡散(FD2)領域8間で電荷転送を行う。 The first floating diffusion (FD1) region 7 is arranged close to the sensing (Sen) region 6 and accumulates a charge amount that reflects the potential of the sensing (Sen) region 6. The charge transfer (TG) region 10 is applied with a sufficiently low voltage or a sufficiently high voltage, for example, a ground potential (GND) or a power supply voltage (VDD) as appropriate, and the charge transfer (TG) region 10 has a first floating state. Charge transfer is performed between the diffusion (FD1) region 7 and the second floating diffusion (FD2) region 8.

電荷転送制御(AG)領域11は第2の浮遊拡散(FD2)領域8と電荷蓄積(FD)領域9の間に近接して配置され、接地電位または、電源電圧とセンシング(Sen)領域6の電位との間の所定の電位が印加される。電荷転送制御(AG)領域11は第2の浮遊拡散(FD2)領域8から電荷蓄積(FD)領域9への電荷の転送量を制御する。 The charge transfer control (AG) area 11 is disposed in close proximity between the second floating diffusion (FD2) area 8 and the charge storage (FD) area 9, and is connected to the ground potential or the power supply voltage and the sensing (Sen) area 6. A predetermined potential between and the potential is applied. The charge transfer control (AG) region 11 controls the amount of charge transferred from the second floating diffusion (FD2) region 8 to the charge storage (FD) region 9.

リセット(RG)領域12は電荷蓄積(FD)領域9と第2の電荷排出(D2)領域5の間に近接して配置され、接地電位または電源電圧が印加される。リセット(RG)領域12は電荷蓄積(FD)領域9から第2の電荷排出(D2)領域5への電荷転送を制御する。 The reset (RG) region 12 is disposed in the vicinity of the charge storage (FD) region 9 and the second charge discharge (D2) region 5, and the ground potential or the power supply voltage is applied. The reset (RG) region 12 controls the charge transfer from the charge storage (FD) region 9 to the second charge drain (D2) region 5.

図2を参照しながらpH検出素子100の動作を説明する。pH検出素子100の動作ステップは図2Aから図2Dの4ステップからなっている。電位の高さを矢印で示しており、下方が高電位となっている。ここでは、電荷を電子と仮定する。以下の説明では電荷として負電荷である電子を用いる。 The operation of the pH detection element 100 will be described with reference to FIG. The operation steps of the pH detection element 100 include the four steps shown in FIGS. 2A to 2D. The height of the electric potential is indicated by an arrow, and the lower part has a high electric potential. Here, the charge is assumed to be an electron. In the following description, negative electrons are used as charges.

第1の電荷排出(D1)領域4及び第2の電荷排出(D2)領域5は全ステップにわたって充分な高電圧、例えば、電源電圧が印加されており、常に電荷を排出する。 The first charge discharging (D1) region 4 and the second charge discharging (D2) region 5 are applied with a sufficiently high voltage, for example, a power supply voltage, in all steps, and always discharge the charges.

図2Aは初期状態である。リセット(RG)領域12の電位を電源電圧とすると、第2の電荷排出(D2)領域5と電荷蓄積(FD)領域9の電位は等しくなり、電荷蓄積(FD)領域9の電荷は排出される。尚、第1の浮遊拡散(FD1)領域7及び第2の浮遊拡散(FD2)領域8には不定量の電荷が残存している。このステップの終了時点では、リセット(RG)領域12の電位を接地電位とし、電荷蓄積(FD)領域9と第2の電荷排出(D2)領域5間の電荷移動を遮断しておく必要がある。 FIG. 2A is the initial state. When the potential of the reset (RG) region 12 is the power supply voltage, the potentials of the second charge discharging (D2) region 5 and the charge storing (FD) region 9 become equal, and the charge of the charge storing (FD) region 9 is discharged. It In addition, an indeterminate amount of electric charge remains in the first floating diffusion (FD1) region 7 and the second floating diffusion (FD2) region 8. At the end of this step, it is necessary to set the potential of the reset (RG) region 12 to the ground potential to block the charge transfer between the charge storage (FD) region 9 and the second charge discharge (D2) region 5. ..

図2Bでは第2の浮遊拡散(FD2)領域8に電荷を注入する。電荷転送(TG)領域10と電荷転送制御(AG)領域11の電位を一旦接地電位とし、電荷注入回路20から電荷を注入する。第2の浮遊拡散(FD2)領域8に保持される電荷の最低電位は接地電位と等しい。本ステップの終了時には、電荷注入回路20からの電荷注入を終了する。 In FIG. 2B, charge is injected into the second floating diffusion (FD2) region 8. The potentials of the charge transfer (TG) region 10 and the charge transfer control (AG) region 11 are once set to the ground potential, and charges are injected from the charge injection circuit 20. The lowest potential of the charges held in the second floating diffusion (FD2) region 8 is equal to the ground potential. At the end of this step, the charge injection from the charge injection circuit 20 is completed.

図2Cでは電荷転送(TG)領域10の電位を電源電圧とし、第2の浮遊拡散(FD2)領域8の電荷の一部を第1の浮遊拡散(FD1)領域7を介して第1の電荷排出(D1)領域4に転送する。第2の浮遊拡散(FD2)領域8に残余する電荷の最低電位はセンシング(Sen)領域6の電位に規定される。 In FIG. 2C, the potential of the charge transfer (TG) region 10 is used as the power supply voltage, and a part of the charges of the second floating diffusion (FD2) region 8 is transferred to the first charge through the first floating diffusion (FD1) region 7. Transfer to discharge (D1) area 4. The lowest potential of the electric charge remaining in the second floating diffusion (FD2) region 8 is defined by the potential of the sensing (Sen) region 6.

図2Dでは電荷転送(TG)領域10の電位を接地電位とし、第1の浮遊拡散(FD1)領域7と第2の浮遊拡散(FD2)領域8間の電荷の移動を遮断する。このステップでは、第1の浮遊拡散(FD1)領域7に保持された電荷の最低電位はセンシング(Sen)領域6が検出する電位を保持しており、第2の浮遊拡散(FD2)領域8に保持された電荷の最低電位は電荷転送制御(AG)領域11の電位に保持される。この時、電荷転送制御(AG)領域11の電位をセンシング(Sen)領域6の電位よりも高くすることにより、その電位差に応じた電荷量が電荷蓄積(FD)領域9に転送される。 In FIG. 2D, the potential of the charge transfer (TG) region 10 is set to the ground potential, and the movement of charges between the first floating diffusion (FD1) region 7 and the second floating diffusion (FD2) region 8 is blocked. In this step, the lowest potential of the charge held in the first floating diffusion (FD1) region 7 is held at the potential detected by the sensing (Sen) region 6, and the minimum potential of the charge held in the second floating diffusion (FD2) region 8 is held. The lowest potential of the retained charges is retained at the potential of the charge transfer control (AG) region 11. At this time, by setting the potential of the charge transfer control (AG) region 11 higher than that of the sensing (Sen) region 6, the charge amount corresponding to the potential difference is transferred to the charge storage (FD) region 9.

電荷蓄積(FD)領域9に蓄積された電荷量はセンシング(Sen)領域6の電位の高さを反映しているので、高い入力インピーダンスを持つバッファ回路21などで電位を計測すればよい。 Since the amount of charges accumulated in the charge accumulation (FD) region 9 reflects the height of the potential of the sensing (Sen) region 6, the potential may be measured by the buffer circuit 21 having a high input impedance.

図2Bから図2Dに示したステップを繰り返すことで、電荷蓄積(FD)領域9に蓄積される電荷量は繰り返し回数だけ増加する。この繰り返し動作を累積動作と呼んでいる。 By repeating the steps shown in FIGS. 2B to 2D, the amount of charges accumulated in the charge accumulation (FD) region 9 increases by the number of repetitions. This repeated operation is called a cumulative operation.

ここでは、本実施形態で用いたpH検出素子の構成と動作について示したが、pH検出素子はセンシング領域に誘起される電位を検出すればよく、特許文献3、特許文献4に記載されるイオンセンサ構造を用いてもよく、感応膜表面の電位に対応してチャネルコンダクタンスを変化させるイオン感応型電界効果トランジスタ(ISFET)構造のpH検出素子を用いてもよい。 Here, the configuration and operation of the pH detection element used in the present embodiment has been shown, the pH detection element may detect the potential induced in the sensing region, Patent Document 3, the ions described in Patent Document 4 A sensor structure may be used, or a pH detecting element having an ion sensitive field effect transistor (ISFET) structure that changes the channel conductance in accordance with the potential on the surface of the sensitive film may be used.

第1及び第2のpH検出素子は、それぞれ複数個あっても構わない。第1及び第2のpH検出素子群として、各々の素子群で検出電位の平均値や中央値などをpH特定に利用することで、素子特性がばらついた場合でも特定精度の低下を抑制できる。 There may be a plurality of first and second pH detection elements. As the first and second pH detection element groups, by using the average value or the median value of the detected potential in each element group for pH identification, it is possible to suppress the deterioration of the identification accuracy even when the element characteristics vary.

感応膜としては、五酸化タンタル(Ta2O5)膜が適切であり、スパッタリングで形成することが一般的である。Ta2O5膜は常温でも形成可能であるが、膜厚は100〜300nm程度とし、成長温度は100〜300℃程度で形成することが望ましい。また、窒化シリコン膜は300℃程度に昇温したプラズマCVD(Chemical Vapor Deposition)法で形成できる。 A tantalum pentoxide (Ta 2 O 5 ) film is suitable as the sensitive film, and it is generally formed by sputtering. The Ta 2 O 5 film can be formed at room temperature, but it is desirable that the film thickness is about 100 to 300 nm and the growth temperature is about 100 to 300° C. Further, the silicon nitride film can be formed by a plasma CVD (Chemical Vapor Deposition) method in which the temperature is raised to about 300°C.

酸化シリコン(SiO2)膜や酸化アルミニウム(Al2O3)膜なども感応膜として報告されているが、SiO2膜ではpHによってpH感度が異なることや、Al2O3膜では半導体pHセンサ素子上への形成方法に課題があることに留意する。Ta2O5膜は成長温度や成長速度等の形成条件を変更することで、pH感度を変化させることが可能であり、pH感度の異なる感応膜として利用しても構わない。 Silicon oxide (SiO 2 ) film and aluminum oxide (Al 2 O 3 ) film have also been reported as sensitive films, but the pH sensitivity of SiO 2 film varies depending on the pH, and the semiconductor pH sensor for Al 2 O 3 film. Note that there is a problem in the method of forming on the device. The Ta 2 O 5 film can change the pH sensitivity by changing the forming conditions such as the growth temperature and the growth rate, and may be used as a sensitive film having different pH sensitivities.

(検量ステップの手順)
検量ステップではpHの異なる標準溶液及び異なる溶液電位のもとでpH検出素子の検出電位を求め、それぞれの感応係数Si及びGi並びに定数Ciを特定する。
(Procedure of calibration step)
In the calibration step, the detection potentials of the pH detection element are obtained under standard solutions having different pH and different solution potentials, and the respective sensitivity coefficients Si and Gi and the constant Ci are specified.

pHが既知の第1の標準溶液にpHセンサアレイを浸漬させる(ステップ1)。pHセンサアレイには異なる感応膜を有する第1及び第2のpH検出素子101、102が搭載されている。また、標準溶液測定用参照電極を標準溶液に接触させ、所定の電位Vr1を印加する(ステップ2)。そして、第1及び第2のpH検出素子の検出電位Vo1及びVo2を測定する(ステップ3)。 Immerse the pH sensor array in a first standard solution of known pH (step 1). The pH sensor array is equipped with first and second pH detecting elements 101 and 102 having different sensitive films. Further, the reference electrode for standard solution measurement is brought into contact with the standard solution, and a predetermined potential Vr1 is applied (step 2). Then, the detection potentials Vo1 and Vo2 of the first and second pH detection elements are measured (step 3).

次に、標準溶液測定用参照電極に異なる電位Vr2を印加し、第1及び第2のpH検出素子101、102の検出電位Vo1及びVo2を測定する(ステップ4)。更に、pHが既知の第2の標準溶液を用いて、ステップ1〜ステップ3及びステップ4を行う(ステップ5)。 Next, different potentials Vr2 are applied to the standard solution measurement reference electrodes, and the detection potentials Vo1 and Vo2 of the first and second pH detection elements 101 and 102 are measured (step 4). Further, Step 1 to Step 3 and Step 4 are performed using a second standard solution having a known pH (Step 5).

検量ステップでは、第1の標準溶液としてpH=4.01、第2の標準溶液としてpH=9.18のリン酸系標準溶液を用いた。また、標準溶液測定用参照電極には0V〜3.3Vの範囲で掃引して電圧印加し、適当な2点を選択した。 In the calibration step, a phosphate standard solution having a pH of 4.01 was used as the first standard solution and a pH=9.18 was used as the second standard solution. In addition, the reference electrode for measuring the standard solution was swept in the range of 0 V to 3.3 V and a voltage was applied, and two appropriate points were selected.

ステップ1〜5の手順により、第1及び第2のpH検出素子について、pHが異なる標準溶液j及び異なる溶液電位kにおける検出電圧Voijkが測定される。
Vo1jk=S1×pHj+G1×Vrk+C1 (10)
Vo2jk=S2×pHj+G2×Vrk+C2 (11)
ここで、iは第1及び第2のpH検出素子101、102を表す添字、jは第1及び第2の標準溶液を表す添字、kは溶液電位の違いを表す添字である。
それぞれのpH検出素子iについて連立方程式を解いて、感応係数S1、S2、G1、G2及び定数C1、C2を決定する。
By the procedure of steps 1 to 5, the detection voltages Voijk at the standard solutions j having different pHs and the solution potentials k having different pHs are measured for the first and second pH detection elements.
Vo1jk = S1 x pHj + G1 x Vrk + C1 (10)
Vo2jk = S2 x pHj + G2 x Vrk + C2 (11)
Here, i is a subscript indicating the first and second pH detection elements 101 and 102, j is a subscript indicating the first and second standard solutions, and k is a subscript indicating a difference in solution potential.
The simultaneous equations are solved for each pH detection element i to determine the response coefficients S1, S2, G1, G2 and the constants C1, C2.

(溶液電位・pH特定ステップの手順)
本ステップでは、測定対象及び、第1及び第2のpH検出素子101、102を有するpHセンサアレイを測定用イオン性溶液に浸漬させ、測定対象をpH検出素子101、102の感応膜表面に接触させる。次に、参照電極を測定用イオン性溶液に接触させ、参照電極に所定の電圧を印加し、第1及び第2のpH検出素子101、102の検出電位を測定する(ステップ6)。
(Procedure for solution potential/pH identification step)
In this step, the measurement target and the pH sensor array having the first and second pH detection elements 101 and 102 are immersed in the measurement ionic solution, and the measurement target is brought into contact with the sensitive film surface of the pH detection elements 101 and 102. Let Next, the reference electrode is brought into contact with the measuring ionic solution, a predetermined voltage is applied to the reference electrode, and the detection potentials of the first and second pH detection elements 101, 102 are measured (step 6).

第1及び第2のpH検出素子101、102の検出電位Vo1及びVo2から、式(12)及び式(13)を用いて、測定用イオン性溶液の溶液電位Vrm及び測定対象がpH検出素子の感応膜表面で示すpHmを特定する(ステップ7)。
Vo1=S1×pHm+G1×Vrm+C1 (12)
Vo2=S2×pHm+G2×Vrm+C2 (13)
ここで、感応係数S1、S2、G1、G2及び定数C1、C2は検量ステップで求めた値を用いることができる。なお、第1及び第2のpH検出素子101、102は相互に近接しており、それぞれの感応膜表面のpHmが等しいと仮定している。
From the detection potentials Vo1 and Vo2 of the first and second pH detection elements 101, 102, using the equations (12) and (13), the solution potential Vrm of the measurement ionic solution and the measurement target are pH detection elements. The pHm indicated on the surface of the sensitive film is specified (step 7).
Vo1 = S1 x pHm + G1 x Vrm + C1 (12)
Vo2 = S2 x pHm + G2 x Vrm + C2 (13)
Here, as the sensitivity coefficients S1, S2, G1, G2 and the constants C1, C2, the values obtained in the calibration step can be used. It is assumed that the first and second pH detection elements 101 and 102 are close to each other and that the pHm of the surface of each sensitive film is equal.

本発明は前記発明の実施の形態の説明に何ら限定されるものではない。特許請求の範囲に記載の趣旨を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。 The present invention is not limited to the description of the embodiments of the invention. Various modifications are also included in the present invention without departing from the spirit of the claims and within the scope that can be easily conceived by those skilled in the art.

1 pH検出装置
2 シリコン基板
3 酸化シリコン絶縁膜
4 第1の電荷排出(D1)領域
5 第2の電荷排出(D2)領域
6 センシング(Sen)領域
7 第1の浮遊拡散(FD1)領域
8 第2の浮遊拡散(FD2)領域
9 電荷蓄積(FD)領域
10 電荷転送(TG)領域
11 電荷転送制御(AG)領域
12 リセット(RG)領域
13 センシング領域規定電極
14 電荷転送電極
15 電荷転送制御電極
16 リセット電極
17 導電層
18 酸化シリコン膜
19 感応膜(五酸化タンタル膜、窒化シリコン膜)
20 電荷注入回路
21 出力電圧検出回路(バッファ回路)
100、101、102 pH検出素子

1 pH detector
2 Silicon substrate
3 Silicon oxide insulation film
4 First charge drain (D1) area
5 Second charge drain (D2) area
6 Sensing area
7 First Floating Diffusion (FD1) Region
8 Second floating diffusion (FD2) region
9 Charge storage (FD) area
10 Charge transfer (TG) area
11 Charge transfer control (AG) area
12 Reset (RG) area
13 Sensing area regulation electrode
14 Charge transfer electrode
15 Charge transfer control electrode
16 Reset electrode
17 Conductive layer
18 Silicon oxide film
19 Sensitive film (tantalum pentoxide film, silicon nitride film)
20 Charge injection circuit
21 Output voltage detection circuit (buffer circuit)
100, 101, 102 pH sensor

Claims (7)

水素イオン濃度の変化に応じた電位を検出する第1及び第2のpH検出素子を有し、当該第1及び第2のpH検出素子がそれぞれ電位を検出するpH検出装置であって
前記第1及び第2のpH検出素子は、
予め電荷が排出された電荷蓄積領域と、水素イオン濃度の変化に対応して電位が変化するセンシング領域と、電荷の転送量を制御する電荷転送制御領域と、当該センシング領域に隣接し、当該センシング領域の電位を反映した電荷量を蓄積する第1の浮遊拡散領域と、予め電荷が注入された第2の浮遊拡散領域と、
を区画した半導体基板を備え、
前記センシング領域と前記電荷転送制御領域の電位差を反映した電荷を、前記第2の浮遊拡散領域から前記電荷蓄積領域に電荷転送する手段と、当該電荷蓄積領域の電位を検出する手段を有し、
前記第1及び第2のpH検出素子のセンシング領域はpHの変化に対して異なる感度の感応膜を有するものである、
ことを特徴とするpH検出装置。
The first and second pH detection element for detecting the potential according to the change of the hydrogen ion concentration, the first and second pH detection element is a pH detection device for detecting the potential respectively the first And the second pH detection element,
A charge storage region in which charges have been discharged in advance, a sensing region in which the potential changes in response to changes in hydrogen ion concentration, a charge transfer control region for controlling the transfer amount of charges, and the sensing region adjacent to the sensing region. A first floating diffusion region that accumulates the amount of charge that reflects the potential of the region, and a second floating diffusion region in which charges have been injected in advance,
Equipped with a semiconductor substrate
A charge reflecting the potential difference between the sensing region and the charge transfer control region, a means for transferring the charge from the second floating diffusion region to the charge storage region, and a means for detecting the potential of the charge storage region,
The sensing regions of the first and second pH detecting elements have sensitive films having different sensitivities to changes in pH,
A pH detection device characterized in that
前記第1及び第2のpH検出素子の第1及び第2のセンシング(Sen)領域は、半導体基板上に区画された第1及び第2のセンシング領域規定電極と、第1及び第2のセンシング領域規定電極と電気的に接続された第1及び第2の感応膜からなる請求項1に記載のpH検出装置。 The first and second sensing (Sen) regions of the first and second pH detection elements are the first and second sensing region defining electrodes partitioned on the semiconductor substrate, and the first and second sensing regions. 2. The pH detection device according to claim 1, comprising first and second sensitive films electrically connected to the region defining electrode. 前記第1の感応膜は窒化シリコン膜からなり、前記第2の感応膜は酸化タンタル膜からなる請求項2に記載のpH検出装置。 3. The pH detecting device according to claim 2, wherein the first sensitive film is made of a silicon nitride film, and the second sensitive film is made of a tantalum oxide film. pH検出装置を構成する異なる感度の感応膜を有する第1及び第2のpH検出素子の第1及び第2の検出電位を用いて、当該第1及び第2のpH検出素子の感応膜表面のpH及び当該第1及び第2のpH検出素子が接触する溶液電位を特定する方法であって、
前記第1及び第2のpH検出素子の前記検出電位Vo1及びVo2を次のように規定し、
Vo1=S1×pH1+G1×Vr+C1、
Vo2=S2×pH2+G2×Vr+C2。
(ここで、前記第1及び第2のpH検出素子の感応膜表面のpHをpH1、pH2、溶液電位をVrとし、S1、S2、G1、G2は感応係数、C1、C2は定数とする)
前記pH検出素子を標準液に接触させて当該pH検出素子の検出電位Vo1、Vo2から、感応係数S1、S2、G1、G2、定数C1、C2を特定する検量ステップと、
前記第1及び第2のpH検出素子は第1及び第2の感応膜を有し、当該第1及び第2のpH検出素子の検出電位Vo1及びVo2を測定する測定ステップと、
前記第1及び第2のpH検出素子の感応膜表面のpHは等しいものとして、前記測定ステップで測定した当該第1及び第2のpH検出素子の検出電位Vo1及びVo2並びに前記検量ステップで特定した当該第1及び第2のpH検出素子の感応係数S1、G1、S2、G2及び定数C1、C2から前記溶液電位Vrmを特定する溶液電位特定ステップと、
前記溶液電位特定ステップで特定された溶液電位Vrmと、前記検量ステップで特定された感応係数S1、G1、S2、G2及び定数C1、C2と、前記測定ステップで測定された第1及び第2の検出電位Vo1及びVo2から前記第1及び第2のpH検出素子の感応膜表面のpHを求めるpH特定ステップと、
を含むpHを特定する方法。
Using the first and second detection potentials of the first and second pH detection elements having sensitive films of different sensitivities that constitute the pH detection device, the sensitive film surface of the first and second pH detection elements is detected. A method for identifying a pH and a solution potential in contact with the first and second pH detection elements,
The detection potentials Vo1 and Vo2 of the first and second pH detection elements are defined as follows,
Vo1 = S1 x pH1 + G1 x Vr + C1,
Vo2 = S2 x pH2 + G2 x Vr + C2.
(Here, the pH of the sensitive film surface of the first and second pH detection elements is pH1, pH2, the solution potential is Vr, S1, S2, G1, G2 are the sensitivity coefficients, and C1, C2 are constants.)
From the detection potential Vo1, Vo2 of the pH detection element by contacting the pH detection element with a standard solution, a calibration step to specify the response coefficients S1, S2, G1, G2, constants C1, C2,
The first and second pH detection element has a first and second sensitive film, a measurement step of measuring the detection potential Vo1 and Vo2 of the first and second pH detection element,
The pH of the sensitive film surface of the first and second pH detection elements are equal, and the detection potentials Vo1 and Vo2 of the first and second pH detection elements measured in the measurement step and the calibration step are specified. A solution potential specifying step of specifying the solution potential Vrm from the sensitivity coefficients S1, G1, S2, G2 and constants C1, C2 of the first and second pH detection elements,
The solution potential Vrm specified in the solution potential specifying step, the response coefficients S1, G1, S2, G2 and constants C1, C2 specified in the calibration step, and the first and second measured in the measuring step. From the detection potential Vo1 and Vo2 the pH specifying step of determining the pH of the sensitive film surface of the first and second pH detecting elements,
A method of identifying a pH containing.
前記検量ステップにおいて、前記感応係数S1及びS2を次式で規定し、
S1=S1*×G1、
S2=S2*×G2。
前記感応係数S1及びS2を前記感応係数G1及びG2でそれぞれ除して、前記第1及び第2のpH検出素子の感応膜表面のpH感応係数S1*及びS2*を求める請求項4に記載の方法、
In the calibration step, the sensitivity coefficients S1 and S2 are defined by the following equations,
S1=S1 * ×G1,
S2=S2 * ×G2.
The sensitivity coefficients S1 and S2 are divided by the sensitivity coefficients G1 and G2, respectively, to obtain pH sensitivity coefficients S1 * and S2 * of the sensitive film surfaces of the first and second pH detection elements. Method,
前記溶液電位特定ステップにおいて、次式で溶液電位Vrmを求める請求項5に記載の方法、
Vrm={(Vo1−C1)/(S1*×G1)−(Vo2−C2)/(S2*×G2)}/(1/S1*−1/S2*)。
In the solution potential specifying step, the method according to claim 5, wherein the solution potential Vrm is calculated by the following equation:
Vrm={(Vo1−C1)/(S1 * ×G1)−(Vo2−C2)/(S2 * ×G2)}/(1/S1 * −1/S2 * ).
前記pH特定ステップにおいて、次式でpHを求める請求項5、6に記載の方法、
pH=(Vo1/G1−Vrm−C1/G1)/S1*=(Vo2/G2−Vrm−C2/G2)/S2*


In the pH specifying step, the method according to claim 5, wherein the pH is determined by the following formula:
pH=(Vo1/G1-Vrm-C1/G1)/S1 * =(Vo2/G2-Vrm-C2/G2)/S2 * .


JP2018233179A 2018-12-13 2018-12-13 pH detector Pending JP2020094913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018233179A JP2020094913A (en) 2018-12-13 2018-12-13 pH detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018233179A JP2020094913A (en) 2018-12-13 2018-12-13 pH detector

Publications (1)

Publication Number Publication Date
JP2020094913A true JP2020094913A (en) 2020-06-18

Family

ID=71086181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018233179A Pending JP2020094913A (en) 2018-12-13 2018-12-13 pH detector

Country Status (1)

Country Link
JP (1) JP2020094913A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580026A (en) * 1991-09-24 1993-03-30 Fuji Electric Co Ltd Semiconductor ion sensor
JP2006189416A (en) * 2004-12-10 2006-07-20 Horiba Ltd Method and apparatus for measuring physical or chemical phenomenon
JP2009236687A (en) * 2008-03-27 2009-10-15 Horiba Ltd Ion sensor
WO2010106800A1 (en) * 2009-03-18 2010-09-23 国立大学法人豊橋技術科学大学 Spectral device and method for controlling same
JP2013015379A (en) * 2011-07-01 2013-01-24 Toyohashi Univ Of Technology Device and method for detecting chemical/physical phenomenon
WO2014109314A1 (en) * 2013-01-11 2014-07-17 国立大学法人豊橋技術科学大学 METHOD FOR IDENTIFYING pH, DEVICE FOR SAME, AND METHOD FOR IDENTIFYING ION CONCENTRATION
JP2016048253A (en) * 2008-10-22 2016-04-07 ライフ テクノロジーズ コーポレーション Integrated sensor array for biological and chemical analysis
WO2016147798A1 (en) * 2015-03-19 2016-09-22 国立大学法人豊橋技術科学大学 Device for detecting chemical/physical phenomenon

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580026A (en) * 1991-09-24 1993-03-30 Fuji Electric Co Ltd Semiconductor ion sensor
JP2006189416A (en) * 2004-12-10 2006-07-20 Horiba Ltd Method and apparatus for measuring physical or chemical phenomenon
JP2009236687A (en) * 2008-03-27 2009-10-15 Horiba Ltd Ion sensor
JP2016048253A (en) * 2008-10-22 2016-04-07 ライフ テクノロジーズ コーポレーション Integrated sensor array for biological and chemical analysis
WO2010106800A1 (en) * 2009-03-18 2010-09-23 国立大学法人豊橋技術科学大学 Spectral device and method for controlling same
JP2013015379A (en) * 2011-07-01 2013-01-24 Toyohashi Univ Of Technology Device and method for detecting chemical/physical phenomenon
WO2014109314A1 (en) * 2013-01-11 2014-07-17 国立大学法人豊橋技術科学大学 METHOD FOR IDENTIFYING pH, DEVICE FOR SAME, AND METHOD FOR IDENTIFYING ION CONCENTRATION
WO2016147798A1 (en) * 2015-03-19 2016-09-22 国立大学法人豊橋技術科学大学 Device for detecting chemical/physical phenomenon

Similar Documents

Publication Publication Date Title
US9006738B2 (en) Reducing capacitive charging in electronic devices
US7582500B2 (en) Reference pH sensor, preparation and application thereof
JP2018109654A (en) Ion-sensing charge-accumulation circuits and methods
TWI279538B (en) Drift calibration method and device for the potentiometric sensor
CN104422720B (en) Measuring device
RU2650087C2 (en) Integrated circuit with sensing transistor array, sensing apparatus and measuring method
US9279781B2 (en) Measuring arrangement and method for registering an analyte concentration in a measured medium
US8877036B2 (en) Smart sensor system using an electroactive polymer
US20200025710A1 (en) Ion sensor based on differential measurement, and production method
US20200268292A1 (en) pH SENSOR AND CALIBRATION METHOD FOR THE pH SENSOR
CN109477811B (en) Chlorine, Oxidation Reduction Potential (ORP) and pH measurement probe
US10288582B2 (en) Integrated ion sensing apparatus and methods
JP2020094913A (en) pH detector
US9588075B2 (en) Sensor for detecting hydrogen ions in an aqueous solution
JP2021105564A (en) Ion sensor device
WO2009064166A2 (en) An integrated ion sensitive field effect transistor sensor
US8715473B2 (en) Method for determining ion concentration or concentration of a substance in a solution
US9625557B2 (en) Work function calibration of a non-contact voltage sensor
JP2011133234A (en) Sensor, and measuring method using the same
Ayele et al. Development of ultrasensitive extended-gate Ion-sensitive-field-effect-transistor based on industrial UTBB FDSOI transistor
CN111175367A (en) Biosensor, biomolecule detection circuit and biochip
KR102557583B1 (en) Oxide film etch rate monitoring apparatus and monitoring method thereof
JP2022119240A (en) Ion concentration sensor and method for measuring ion concentration
JP2019002727A (en) Transistor for sensors
Yusoff et al. Design and characterization of cmos readout circuit for isfet and ise based sensors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230131