JP2020094805A - Factor estimation system for vibration noise problem - Google Patents

Factor estimation system for vibration noise problem Download PDF

Info

Publication number
JP2020094805A
JP2020094805A JP2017043388A JP2017043388A JP2020094805A JP 2020094805 A JP2020094805 A JP 2020094805A JP 2017043388 A JP2017043388 A JP 2017043388A JP 2017043388 A JP2017043388 A JP 2017043388A JP 2020094805 A JP2020094805 A JP 2020094805A
Authority
JP
Japan
Prior art keywords
vibration
noise
sound source
data
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017043388A
Other languages
Japanese (ja)
Inventor
武藤 大輔
Daisuke Muto
大輔 武藤
吉澤 尚志
Hisashi Yoshizawa
尚志 吉澤
康之 上甲
Yasuyuki Joko
康之 上甲
洋祐 田部
Yosuke Tabe
洋祐 田部
源太 山内
Genta Yamauchi
源太 山内
一朗 片岡
Ichiro Kataoka
一朗 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017043388A priority Critical patent/JP2020094805A/en
Priority to PCT/JP2018/002218 priority patent/WO2018163640A1/en
Publication of JP2020094805A publication Critical patent/JP2020094805A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

To solve the problem of suppressing vibration and noise generated by a product that it is necessary to grasp a sound source, a vibration source, and a transmission path because data having large variations are often obtained in the vibration/noise phenomenon, and it is desired to probabilistically treat estimation results for grasping, and to determine an examination of structural changes made according to the results based on the probability and the degree of influence, and a probabilistic rationale for cost-effectiveness of the structural changes is required as a criterion for the structural changes toward the suppression of vibration and noise.SOLUTION: This can be solved by expressing the relationship between measured signals with a Bayesian network.SELECTED DRAWING: Figure 4

Description

本発明は,振動・騒音問題の発生原因となる音源または加振源,更にはそれらを起点とした振動・騒音の伝達に関する加振源・音源と伝達経路の推定手法と,推定結果を元にした構造変更の効果判定に関する。 The present invention is based on a sound source or a vibration source that causes a vibration/noise problem, an estimation method of a vibration source/sound source and a transmission path for transmission of vibration/noise originating from them, and an estimation result. Regarding the effect judgment of the structural change.

製品から発生する振動や騒音は製品使用時の快適性を悪化させる要因として広く認識されている。そのため、振動・騒音の把握と抑制が重要となり,これに向けて,設計段階で事前に振動や騒音の発生源と伝達経路を把握し,その結果を元に構造変更の検討が必要となる。対策すべき振動や騒音の発生源と伝達経路の把握には伝達特性の計測が重要であり,特許文献1では入出力間の振動伝達特性を求めるために,実稼働状態にて入出力とも加速度を計測し,入出力間の伝達特性(出力加速度/入力加速度)を計算している。 Vibrations and noises generated from products are widely recognized as factors that deteriorate comfort when using the products. Therefore, it is important to understand and suppress vibration and noise. Toward this end, it is necessary to understand the source of vibration and noise and the transmission path in advance at the design stage, and to study the structural change based on the result. It is important to measure the transfer characteristics in order to understand the source of vibration and noise and the transfer path to be taken. In Patent Document 1, in order to obtain the vibration transfer characteristics between the input and output, both the input and output are accelerated in the actual operating state. Is measured and the transfer characteristics between the input and output (output acceleration/input acceleration) are calculated.

一方で入力信号は,本来は加速度ではなく加振力や音源の大きさを測定するべきであるとの考えから,特許文献2では実稼働状態では直接的な計測が困難な加振力について複数の観測可能信号から決定論的に同定する手法を示しており,その上で得られた加振力や音源の大きさの推定結果を用いて伝達特性を算出する方法を示している。 On the other hand, from the idea that the input signal should originally measure the excitation force or the size of the sound source, not the acceleration, and therefore, in Patent Document 2, there are multiple excitation forces that are difficult to measure directly in actual operation. It shows a method of deterministically identifying from the observable signal of, and a method of calculating the transfer characteristic using the estimation results of the excitation force and the size of the sound source obtained on it.

特開2007−57460号公報JP, 2007-57460, A 特開2016−017808号公報JP, 2016-017808, A

製品が発生する振動や騒音を抑制するには,まず音源や加振源および伝達経路の把握が必要であり,その実現には一般には実測データを用いた音源や伝達特性の同定が行なわれ,さらには支配的な伝達経路と各経路からの寄与の大きさを示す寄与率の判定が行なわれる。しかし,振動・騒音現象の計測では,一般にバラツキの大きいデータが得られる場合が多い。従って,同定結果も,データのバラツキに起因する不確実性を含んだ確率論的な取り扱がなされることが望まれ,その結果から打ち出される構造変更の検討も振動騒音推定値の確率分布とその影響度合いに基づく判断が行なわれることが望まれる。 In order to suppress the vibration and noise generated by the product, it is first necessary to understand the sound source, the vibration source, and the transmission path. To realize this, generally, the sound source and the transfer characteristic are identified using the measured data. Furthermore, the dominant transmission path and the contribution rate indicating the magnitude of the contribution from each path are determined. However, in the measurement of vibration and noise phenomena, data with large variations are often obtained. Therefore, it is desirable that the identification result also be treated probabilistically, including the uncertainty due to the variation in the data, and the examination of the structural change that is made out of the result is also considered as the probability distribution of the vibration noise estimation value. It is desirable that the judgment be made based on the degree of influence.

これに対し,特許文献1や特許文献2に記載の伝達特性取得方法では,決定論的な伝達特性が算出され,この結果にはデータのバラツキや不確実性は考慮されない。例えば,図1に示すように,複数の信号間の伝達特性を同定する場合,一般には最小二乗法や重回帰分析あるいは逆マトリクス法などと呼ばれる方法により信号間の比例定数を画一的な数値として近似的に同定するが,この場合,実機計測データに含まれるバラツキが考慮されないため,図1左図と中央図の違いは近似曲線の僅かな傾きでしか表現され得ない。このほかにも,右図のように伝達特性を示す比例定数が意図せず負値となるような問題も発生しうる。そのため,このような画一的な数値として表現された伝達特性を用いた振動騒音把握は,当然ながらデータのバラツキを考慮した取り扱いはできないため,課題とされるデータの不確実性を含めた確率論的な判断を採ることができない。 On the other hand, in the transfer characteristic acquisition method described in Patent Document 1 or Patent Document 2, a deterministic transfer characteristic is calculated, and the result does not take into account data variations and uncertainties. For example, as shown in FIG. 1, when identifying the transfer characteristics between a plurality of signals, the proportional constant between the signals is generally determined by a method called a least squares method, a multiple regression analysis, or an inverse matrix method. However, in this case, since the variation contained in the actual measurement data is not taken into consideration, the difference between the left diagram and the center diagram of FIG. 1 can be expressed only by a slight inclination of the approximation curve. In addition, as shown in the figure on the right, a problem may occur in which the proportional constant indicating the transfer characteristic is unintentionally negative. Therefore, it is not possible to handle vibration and noise using such transfer characteristics expressed as a uniform numerical value, of course, because it is not possible to handle the variation of data. I can't make a logical judgment.

また,振動騒音の抑制方法に関しても,一般的な製品では依然として構造の変更による振動騒音低減施策が主であり,この構造変更実施の判断の際にも,その費用対効果に関してデータのバラツキや不確実性を考慮した確率論的な議論が必要とされる。 In addition, regarding the method of suppressing vibration noise, general products still mainly use vibration noise reduction measures by changing the structure, and even when making a decision on this structure change, there are variations in data and inconsistencies regarding the cost-effectiveness. Probabilistic discussion considering certainty is required.

上記課題は測定された信号を元にして加振源・音源や信号間の関係をベイジアンネットワークで表現することで解決される。これにより信号間の関係が,従来画一的な数値で表されていた音源・伝達特性に変わって条件付確立密度分布である尤度で表現されることとなり,構造変更の影響度合いを確率論的に表現することが達成される。これを実現するため,本発明の請求項1では必要なデータ収集と格納及び分析手法を組み合わせたシステム構成を,請求項2では寄与の表示方法と要素選択時にその要素が系全体へ及ぼす影響や,振動・騒音抑制に向けて検討が必要な要素が対策優先順に表示される機能を持たせたことを特徴とする表示システムを,請求項3では構造変更を検討している要素を選択したときにその構造変更に具するコストと振動騒音抑制効果が表示される機能を有することを特徴とした構造を示している。 The above problem is solved by expressing the relationship between the excitation source, the sound source, and the signal based on the measured signal with a Bayesian network. As a result, the relationship between signals is expressed by the likelihood, which is a conditional probability density distribution, instead of the sound source/transfer characteristics that were conventionally represented by uniform numerical values, and the degree of influence of structural change is calculated by the probability theory. Expressive is achieved. In order to realize this, claim 1 of the present invention provides a system configuration in which necessary data collection, storage, and analysis methods are combined, and claim 2 presents a method of displaying contributions and the effect of the element on the entire system at the time of element selection and , When a display system characterized by having a function of displaying elements in consideration of vibration and noise suppression in order of priority of countermeasures is selected, an element for which structural modification is considered in claim 3 is selected. Shows a structure characterized by having a function of displaying the cost of changing the structure and the effect of suppressing vibration and noise.

本発明により,課題である音源や加振源および伝達経路や,任意の要素の全体への影響度合い,および構造変更の費用対効果に関する確率論的な推論が可能となり,振動や騒音の抑制に向けた合理的な判断を下すための判断材料を提供することができる。 INDUSTRIAL APPLICABILITY The present invention enables probabilistic inference regarding the sound source, the excitation source, and the transmission path, the degree of influence of arbitrary elements on the whole, and the cost-effectiveness of structural change, which is a subject, and suppresses vibration and noise. It is possible to provide a judgment material for making a rational judgment.

従来の振動騒音伝達同定におけるバラツキを考慮できない課題を示す図である。It is a figure which shows the subject which cannot consider the variation in the conventional vibration noise transmission identification. 本発明の実施形態で提案の振動騒音伝達同定におけるバラツキ考慮の概念を示す図である。It is a figure which shows the concept of the variation consideration in vibration noise transmission identification proposed in the embodiment of the present invention. 本発明の実施形態で提案のバラツキを考慮した音源・伝達特性の概念を説明する図である。It is a figure explaining the concept of the sound source and transfer characteristic which considered the variation proposed in the embodiment of the present invention. 本発明の実施形態の振動騒音問題要因推定システムの構成を説明する図である。It is a figure explaining the structure of the vibration noise problem factor estimation system of embodiment of this invention. 本発明の実施形態の振動騒音問題要因推定システムの別の構成を説明する図である。It is a figure explaining another structure of the vibration noise problem factor estimation system of embodiment of this invention. 本発明の実施形態の振動騒音問題要因推定システムの別の構成を説明する図である。It is a figure explaining another structure of the vibration noise problem factor estimation system of embodiment of this invention. 本発明の実施形態の寄与率表示システムにおける表示例を説明する図である。It is a figure explaining the example of a display in the contribution rate display system of an embodiment of the present invention. 本発明の実施形態の寄与率表示システムにおける別の表示例を説明する図である。It is a figure explaining another example of a display in the contribution rate display system of an embodiment of the present invention.

以下,本発明の実施形態について図を用いて説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図2は本発明の実施形態で提案の振動騒音特性同定におけるバラツキ考慮の概念を示す図である。前述のとおり,最小二乗法などを用いて信号間の比例定数を画一的な数値として近似的に同定すると,信号のバラツキの影響が考慮できず,このデータを用いたそれ以降の処理に,データのバラツキに起因した不確実性を判断材料として盛り込むことができない。図2は上記課題を解決する方法として,データ間の関係をバラツキも含めた形で保持する概念を示したものであり,これにより,左図と中央図の違いをデータのバラツキの観点で表現できるばかりか,右図のように仮に最小二乗近似すると比例定数が負値となるような場合であってもその事に関する解釈について疑義を生じさせずにデータを管理・保持できる。 FIG. 2 is a diagram showing a concept of considering variation in vibration noise characteristic identification proposed in the embodiment of the present invention. As described above, when the proportional constant between signals is approximately identified as a uniform numerical value by using the least squares method, etc., the influence of signal variation cannot be considered, and the subsequent processing using this data Uncertainty due to data dispersion cannot be included as a criterion. As a method to solve the above problem, Fig. 2 shows the concept of maintaining the relationship between data in a form that includes variations. By this, the difference between the left figure and the central figure is expressed from the viewpoint of data variation. Not only can it be done, but even if the least squares approximation causes the proportionality constant to become a negative value as shown in the figure on the right, the data can be managed and retained without causing any doubt about the interpretation of that matter.

図3はこれらの結果を元に算出されるバラツキを考慮した音源・伝達特性の概念を示す図であり,このような特性データの管理・保持の仕方により,課題とされる不確実性を考慮した確率論的な判断が実現でき,さらに構造変更の判断の際にも同様に,その費用対効果に関してデータのバラツキや不確実性を考慮した確率論的な議論が可能となる。 FIG. 3 is a diagram showing the concept of the sound source/transfer characteristics in consideration of the variations calculated based on these results. Considering the uncertainties to be solved by the way of managing/holding such characteristic data. The above probabilistic judgment can be realized, and in the case of the structural change, the probabilistic discussion in consideration of the variation in data and uncertainty regarding the cost-effectiveness can also be realized.

図4は本発明の実施形態を実現するシステム構成を示す図である。計測対象製品10の実稼働状態における振動や騒音の各種データを現場データ抽出システム11により抽出し,現場データ抽出システム11は抽出された現場の実稼動データを現場データベースストレージ12へ格納する。ユーザー20は計測対象製品の振動騒音の伝達経路を推定し,これをグラフィカルモデルで表現した伝達経路モデル16aを用意して,実験室データ格納システム17によって伝達経路モデルデータストレージ13に格納する。音源・伝達特性推定エンジン14は,前記現場データベースストレージ12に格納された複数の実稼動現場データと,伝達経路モデルデータストレージ13に格納され,ユーザーによって選択された伝達経路モデル16aを元に,伝達経路モデル16aの各伝達経路に対応する音源・伝達特性の確率分布を推定し,推定された音源・伝達特性の確率分布を音源・伝達特性確率分布データベース15に格納する。寄与率推定エンジン18は,前記の伝達経路モデルデータストレージ13に格納された伝達経路モデル16aと音源・伝達特性確率分布データベース15に格納された音源・伝達特性確率分布データ16b,さらに現場データベースストレージ12に格納された複数の実稼動現場データを元に振動騒音寄与率を算出し,算出された振動騒音寄与率を寄与率表示システム19に渡す。ユーザー20は寄与率表示システム19を操作し,計測対象製品10の所定の部分構造要素に対する寄与を表示し,これを元に計測対象製品全体への影響度合いや,構造変更を計画する時の,費用対効果に関する確率論的な推論結果を得ることができる。なお,計測対象製品10の出荷前試験や定期検査試験などで取得した音源・伝達特性確率分布データ16bは,先述の実験室データ格納システム17によって,ユーザー20により,音源・伝達特性確率分布データベース15へ格納・更新することも可能である。 FIG. 4 is a diagram showing a system configuration for implementing the embodiment of the present invention. Various data of vibration and noise in the actual operation state of the measurement target product 10 are extracted by the on-site data extraction system 11, and the on-site data extraction system 11 stores the extracted actual operation data of the on-site in the on-site database storage 12. The user 20 estimates the transmission path of vibration and noise of the product to be measured, prepares a transmission path model 16a that represents this in a graphical model, and stores it in the transmission path model data storage 13 by the laboratory data storage system 17. The sound source/transmission characteristic estimation engine 14 transmits based on the plurality of actual operation site data stored in the site database storage 12 and the transmission route model data storage 13 and the transmission route model 16a selected by the user. The sound source/transfer characteristic probability distribution corresponding to each transfer path of the path model 16 a is estimated, and the estimated sound source/transfer characteristic probability distribution is stored in the sound source/transfer characteristic probability distribution database 15. The contribution rate estimation engine 18 uses the transfer path model 16a stored in the transfer path model data storage 13, the sound source/transfer characteristic probability distribution data 16b stored in the sound source/transfer characteristic probability distribution database 15, and the field database storage 12 as well. The vibration and noise contribution rate is calculated based on the plurality of actual operation site data stored in, and the calculated vibration and noise contribution rate is passed to the contribution rate display system 19. The user 20 operates the contribution rate display system 19 to display the contribution of the measurement target product 10 to a predetermined partial structural element, and based on this, the degree of influence on the measurement target product as a whole, and when planning a structural change, Probabilistic inference results regarding cost effectiveness can be obtained. It should be noted that the sound source/transfer characteristic probability distribution data 16b acquired in the pre-shipment test or the periodic inspection test of the measurement target product 10 is stored in the sound source/transfer characteristic probability distribution database 15 by the user 20 by the laboratory data storage system 17 described above. It is also possible to store and update to.

上記のように実験室データ格納システム17によってユーザー20がシステムに格納できる伝達経路モデル16aや音源・伝達特性確率分布データ16bは,実験室での測定結果や解析結果によって検討したり算出したりすることができ,これによって検討対象製品の振動騒音モデルを更新し改善することができる。そのため,ここではこれら伝達経路モデル16aと音源・伝達特性確率分布データ16bをまとめて実験室データ16と称すこととする。 As described above, the transmission path model 16a and the sound source/transfer characteristic probability distribution data 16b that the user 20 can store in the system by the laboratory data storage system 17 are examined or calculated based on the measurement result and the analysis result in the laboratory. This makes it possible to update and improve the vibration noise model of the product under consideration. Therefore, here, the transfer path model 16a and the sound source/transfer characteristic probability distribution data 16b are collectively referred to as laboratory data 16.

上記で示した確率論的推定のアルゴリズムとしては,ベイジアンネットワークと呼ばれる手法を用いる方法が妥当である。ベイジアンネットワークとは,事象Hとその下で得られるデータDについて因果関係を仮定した上で,事象H発生の下でのデータDが発生する条件付き確率密度分布を尤度P(D|H)として事前に持っておき,実際の現場でデータDが得られたときに,そのデータが得られうる事象Hの発生確率を,先に示した事象Hに対するデータDの尤度P(D|H)をもとに推定する手法である。 As a probabilistic estimation algorithm shown above, a method using a method called Bayesian network is appropriate. Bayesian network assumes a causal relationship between the event H and the data D obtained under the event H, and then calculates the conditional probability density distribution in which the data D occurs under the occurrence of the event H as the likelihood P(D|H). , And when the data D 1 is obtained at the actual site, the probability of occurrence of the event H for which the data D 1 can be obtained is the likelihood P(D 1 |H).

例えば,実稼働試験など,加振力Fや音源Nなどの信号と評価点の振動・騒音Sを直接測定できる場合,まず学習フェーズにおいてそれらの間の伝達特性H=S/F,およびH=S/Nを逆算し,その結果H,Hに対する評価点の振動・騒音Sの条件付き確率密度分布を尤度P(S|H∩H)としてデータベース化しておき,音源・伝達特性確率分布データベース15に格納する。 For example, when the signals of the excitation force F and the sound source N and the vibration/noise S i at the evaluation point can be directly measured in the actual operation test, first, in the learning phase, the transfer characteristic H 1 =S i /F, And H 2 =S i /N are calculated backward, and the conditional probability density distribution of the vibration/noise S i at the evaluation points with respect to H 1 and H 2 is stored in the database as likelihood P(S i |H 1 ∩H 2 ). It is converted and stored in the sound source/transfer characteristic probability distribution database 15.

次に,推定フェーズにおいて,実稼動時における評価点の振動・騒音Sを得た後,このデータが観測しうる伝達特性H,Hに関する尤度P(S|H∩H)を観測信号の数だけ順次掛け合わせることによって,実稼動時の伝達特性H,Hを確率論的に同定することができる。 Next, in the estimation phase, after obtaining the vibration/noise S n at the evaluation point during actual operation, the likelihood P(S n |H 1 ∩H 2 regarding the transfer characteristics H 1 and H 2 that can be observed by this data is obtained. ) Is sequentially multiplied by the number of observed signals, the transfer characteristics H 1 and H 2 in actual operation can be identified stochastically.

なお,音源と伝達特性は掛け合わせて評価点の振動・騒音になる点において互いに可換である。よって,上記手法を逆手に取れば,実稼動時に直接測定が困難な加振源や音源の同定にも用いることができる。例えば,出荷前試験などで任意の加振力Fあるいは音源Pと評価点の振動・騒音Sの間の尤度P(S|F∩N)を取得し,これをデータベース化して,音源・伝達特性確率分布データベース15に格納する。次いで,実稼動時に取得された評価点の振動・騒音Sから,このデータが観測しうる加振力Fあるいは音源Nに関する尤度の確率密度P(S|F∩N)を観測信号の数だけ順次掛け合わせることによって,実稼動時の加振力や音源の大きさを確率論的に同定することができる。 It should be noted that the sound source and the transfer characteristic are commutative in that they become the vibration and noise at the evaluation point by being multiplied. Therefore, if the above method is taken in reverse, it can be used for identifying the excitation source and sound source that are difficult to measure directly in actual operation. For example, the likelihood P(S i |F∩N) between an arbitrary excitation force F or sound source P and the vibration/noise S i at the evaluation point is acquired in a pre-shipment test, and this is stored in a database to generate a sound source. Stored in the transfer characteristic probability distribution database 15. Next, from the vibration/noise S n at the evaluation points acquired during actual operation, the probability density P(S n |F∩N) of the excitation force F or the sound source N that can be observed by this data is calculated from the observed signal. By sequentially multiplying by the number, it is possible to probabilistically identify the excitation force and the size of the sound source during actual operation.

このようにして,現行機種における加振力・音源特性と伝達特性を推定することで,現行機種における評価点振動・騒音の寄与が確率論的に算出され,これを元に次機種の仕様や設計指針を議論できる。 In this way, by estimating the excitation force/sound source characteristics and transfer characteristics of the current model, the contribution of the evaluation point vibration/noise in the current model is calculated stochastically, and based on this, the specifications of the next model and Discuss design guidelines.

またその後,次機種完成時に出荷前試験において,次機種の加振力や音源に対する評価点振動・騒音の伝達特性の尤度データを取得しておき,これに前記の現行機種の加振力・音源の確率論的同定結果を掛け合わせることにより,次機種の運転時の評価点振動・騒音を運転前に事前に確率論的に予測することができる。 After that, at the time of the completion of the next model, in the pre-shipment test, the likelihood data of the excitation force of the next model and the transmission characteristics of the evaluation point vibration and noise with respect to the sound source were acquired. By multiplying the probabilistic identification results of sound sources, it is possible to predict the vibration and noise at the evaluation point of the next model during operation probabilistically before operation.

図5は図4で示した,二つの計算エンジンである音源・伝達特性推定エンジン14と寄与率推定エンジン18を一体化し,さらに,ユーザーインターフェースである実験室データ格納システム17と寄与率表示システム19も一体化した構成を示したものである。このように計算エンジンやユーザーインターフェースなどの機能ごとに統合してもよい。また,図6に示すようにデータストレージである伝達経路モデルデータストレージ13と音源・伝達特性確率分布データベース15も統合してもよい。 In FIG. 5, the sound source/transfer characteristic estimation engine 14 and the contribution rate estimation engine 18, which are the two calculation engines shown in FIG. 4, are integrated, and further, the laboratory data storage system 17 and the contribution rate display system 19 which are user interfaces are integrated. Also shows an integrated configuration. In this way, the functions such as the calculation engine and the user interface may be integrated. Further, as shown in FIG. 6, a transmission path model data storage 13 which is a data storage and a sound source/transmission characteristic probability distribution database 15 may be integrated.

図7は実施例1で示した寄与率表示システム19での寄与率の表示方法の一例を示したものである。図のように寄与率表示システム19は,グラフィカルモデルで示された伝達経路モデルを表示する伝達経路グラフィカルモデル表示領域19aと寄与率の周波数特性を表す二次元グラフを表示する寄与率二次元グラフ表示領域19b,さらに設計判断材料を表示する影響度・確率判断要素表示領域19cで構成されている。このうち伝達経路を表すグラフィカルモデル上において任意の要素を選択すると,その要素に関わる音源・伝達特性のバラツキが全体の推定結果にどの程度影響するかが二次元グラフ上に表示される。具体的には選択した要素に関わる音源・伝達特性のバラツキから,その要素を経由する振動騒音の寄与率の上限や下限,もしくは信頼区間が表示され,この図を元に,選択した要素の振動騒音特性のバラツキが全体系の振動騒音特性へ与える影響,具体的には上振れおよび下振れの程度とその確率が判断できる。例えば図7では寄与率二次元グラフ表示領域19b内において評価点騒音の周波数特性を黒太線で示しており,このうちの選択した要素寄与の中央値を灰色線で,バラツキを信頼区間で示しており,この寄与の不確実性による評価点騒音の振れ幅を灰色破線で示している。また,その結果として評価点騒音が35%の確率で3dB上振れし,25%の確率で2dB下振れする可能性を影響度・確率判断要素表示領域19cに示している。 FIG. 7 shows an example of a contribution ratio display method in the contribution ratio display system 19 shown in the first embodiment. As shown in the figure, the contribution rate display system 19 displays a transmission path graphical model display area 19a for displaying a transmission path model represented by a graphical model and a contribution rate two-dimensional graph display for displaying a two-dimensional graph showing frequency characteristics of the contribution rate. An area 19b and an influence degree/probability judgment element display area 19c for displaying design judgment materials are provided. When an arbitrary element is selected on the graphical model that represents the transfer path, the extent to which variations in the sound source and transfer characteristics related to that element affect the overall estimation result is displayed on a two-dimensional graph. Specifically, the upper and lower limits or the confidence intervals of the contribution ratio of vibration and noise passing through the element are displayed from the variation of the sound source and transfer characteristics related to the selected element. Based on this figure, the vibration of the selected element is displayed. It is possible to determine the effect of variations in noise characteristics on the vibration noise characteristics of the entire system, specifically, the degree of upward and downward deflection and its probability. For example, in FIG. 7, the frequency characteristic of the evaluation point noise is shown by a thick black line in the contribution rate two-dimensional graph display area 19b, the median value of the selected element contributions among these is shown by a gray line, and the variation is shown by a confidence interval. The fluctuation range of the evaluation point noise due to the uncertainty of this contribution is shown by the gray dashed line. In addition, as a result, the possibility that the evaluation point noise will move upward by 3 dB with a probability of 35% and downward by 2 dB with a probability of 25% is shown in the influence degree/probability judgment element display area 19c.

また,このような影響度算出結果を更に処理すれば,評価点における振動・騒音を抑制するために検討が必要な構造要素を,対策の優先順に表示される機能を具備させることも可能である。 Further, by further processing such an impact degree calculation result, it is possible to provide a function for displaying structural elements that need to be examined in order to suppress vibration and noise at the evaluation point in order of priority of measures. ..

図8は実施例1で示した寄与率表示システム19での寄与率の表示方法の別の一例を示したものである。前記同様,寄与率表示システム19では,グラフィカルモデルで示された伝達経路モデルと寄与率の周波数特性を表す二次元グラフで構成されており,このうち伝達経路を表すグラフィカルモデル上において任意の要素を選択し,この要素変更方針を別で開かれるダイアログで設定する。すると図の寄与率二次元グラフ表示領域19b内において,所定の要素の構造変更前後の寄与がそのバラツキと一緒に表示され,この変更に伴う評価点騒音の増減が確率論的に議論できる。例えば図8では,寄与率二次元グラフ表示領域19b内において構造変更前の評価点騒音の周波数特性を灰色太線で示しており,このうちの選択要素の寄与を灰色細線,その他選択要素の以外の寄与を黒色一点破線で示している。構造変更に伴って当初灰色細線であった寄与が低減するが,その寄与の低減効果を中央値を黒細線として信頼区間付きで表現している。この結果,評価点騒音は前記黒細線で示す変更要素の寄与と黒色一点破線で示す変更要素の以外の寄与の総和として黒太線となる見通しであり,図示はしないがこの黒太線で示される変更後の評価点騒音も確率分布ないし信頼区間を持ったものとなっている。これらの結果をまとめ,影響度・確率判断要素表示領域19cには構造変更を予定している要素を選択したときに,その構造変更に掛かるコストと振動騒音抑制効果が表示され,この例では騒音仕様値65dBに対して,構造変更によるコスト3M¥,騒音仕様達成可能性は75%であることを示している。 FIG. 8 shows another example of the contribution rate display method in the contribution rate display system 19 shown in the first embodiment. Similarly to the above, the contribution rate display system 19 is composed of a transfer path model represented by a graphical model and a two-dimensional graph showing the frequency characteristics of the contribution rate. Select and set this element change policy in a separate dialog that opens. Then, in the contribution ratio two-dimensional graph display area 19b, the contributions of the predetermined element before and after the structural change are displayed together with the variations, and the increase or decrease of the evaluation point noise due to this change can be discussed stochastically. For example, in FIG. 8, the frequency characteristics of the evaluation point noise before the structure change is shown by a thick gray line in the contribution rate two-dimensional graph display area 19b, and the contribution of the selected elements among these is shown by the gray thin line and other than the selected elements. The contribution is shown by the black dashed line. Although the contribution that was initially a gray thin line decreases as the structure changes, the effect of reducing that contribution is expressed with a confidence interval with the median value as the black thin line. As a result, it is expected that the evaluation point noise will be a thick black line as the sum of the contributions of the change elements indicated by the black thin line and the contributions other than the change elements indicated by the black dashed-dotted line. The subsequent evaluation point noise also has a probability distribution or confidence interval. Summarizing these results, when an element for which a structural change is planned is selected, the cost and vibration noise suppression effect of the structural change are displayed in the influence degree/probability judgment element display area 19c. Compared with the specification value of 65 dB, the cost of the structure change is 3 M¥ and the noise specification achievability is 75%.

このように,構造変更に伴う効果を確率論的に表現できれば,これと更に構造変更のコストを加味することにより,多くの場合トレードオフとなる振動騒音低減と施策適用のコストに関する費用対効果の合理的な議論が可能となり,設計指針の形式知化が可能となる。 In this way, if the effects associated with structural changes can be expressed stochastically, by adding this and the cost of structural changes, the cost-effectiveness of vibration noise reduction and policy application, which are often trade-offs, can be reduced. It enables rational discussion and formalization of design guidelines.

10:計測対象製品
11:現場データ抽出システム
12:現場データベースストレージ
13:伝達経路モデルデータストレージ
14:音源・伝達特性推定エンジン
15:音源・伝達特性確率分布データベース
16:実験室データ
16a:伝達経路モデル
16b:音源・伝達特性確率分布データ
17:実験室データ格納システム
18:寄与率推定エンジン
19:寄与率表示システム
19a:伝達経路グラフィカルモデル表示領域
19b:寄与率二次元グラフ表示領域
19c:影響度・確率判断要素表示領域
20:ユーザー
10: Product to be measured 11: Field data extraction system 12: Field database storage 13: Transmission path model data storage
14: Sound source/transfer characteristic estimation engine
15: Sound source/transfer characteristic probability distribution database
16: Laboratory data
16a: transfer path model 16b: sound source/transfer characteristic probability distribution data
17: Laboratory data storage system
18: Contribution rate estimation engine
19: Contribution rate display system
19a: Transmission route graphical model display area
19b: Contribution rate two-dimensional graph display area
19c: influence degree/probability judgment element display area 20: user

Claims (3)

評価対象製品から現場データを計測する現場データ抽出システムと,
前記現場データを格納する現場データベースストレージと,
伝達経路モデルを格納する伝達経路モデルデータストレージと,
前記現場データベースストレージに格納された現場データと前記伝達経路モデルデータストレージに格納された伝達経路モデルから,評価対象製品における伝達経路モデルの要素、経路に対応する音源・伝達特性の確率分布データを推定する音源・伝達特性推定エンジンと,
前記音源・伝達特性推定エンジンにより算出された音源・伝達特性確率分布データを格納する音源・伝達特性確率分布データベースと,
前記伝達経路モデルデータストレージに想定された伝達経路モデルを格納し,または、前記音源・伝達特性確率分布データベースに実験室での計測あるいは数値解析にて求められた音源・伝達特性確率分布データを格納する実験室データ格納システムと
前記伝達経路モデルデータストレージに格納された伝達経路モデルと,前記音源・伝達特性確率分布データベースに格納された音源・伝達特性確率分布と,前記現場データベースストレージに格納された現場データから振動騒音寄与率を推定する寄与率推定エンジンと,
前記寄与率推定エンジンで計算された寄与率を表示する寄与率表示システムと、
を備えることを特徴とする振動騒音問題要因推定システム。
A site data extraction system that measures site data from the products to be evaluated,
A site database storage for storing the site data,
A transmission path model data storage for storing a transmission path model,
Estimate the probability distribution data of the sound source/transfer characteristics corresponding to the elements and paths of the transfer path model in the product to be evaluated from the field data stored in the field database storage and the transfer path model stored in the transfer path model data storage Sound source/transfer characteristic estimation engine
A sound source/transfer characteristic probability distribution database storing sound source/transfer characteristic probability distribution data calculated by the sound source/transfer characteristic estimation engine;
The assumed transfer path model is stored in the transfer path model data storage, or the sound source/transfer characteristic probability distribution data obtained by measurement or numerical analysis in a laboratory is stored in the sound source/transfer characteristic probability distribution database. A laboratory data storage system, a transfer path model stored in the transfer path model data storage, a sound source/transfer characteristic probability distribution stored in the sound source/transfer characteristic probability distribution database, and a field data storage stored in the field database storage. A contribution rate estimation engine that estimates the contribution rate of vibration and noise from field data,
A contribution rate display system for displaying the contribution rate calculated by the contribution rate estimation engine;
A noise and noise problem factor estimation system comprising:
請求項1に記載の振動騒音問題要因推定システムに関し,
振動騒音伝達経路とその寄与度がグラフィカルモデルで示された伝達経路モデルを表示する伝達経路グラフィカルモデル表示領域と寄与率の周波数特性の表す二次元グラフを表示する寄与率二次元グラフ表示領域で構成され,伝達経路を表すグラフィカルモデル上の任意の要素を選択すると,その要素に関わる伝達率が全体にどの程度影響するかが二次元グラフ上に表示されるとともに,振動・騒音を抑制するために検討が必要な構造要素が対策の優先順に表示される機能を有していることを特徴とする,振動騒音問題要因推定システム。
Regarding the vibration noise problem factor estimation system according to claim 1,
Vibration and noise transfer path and its contribution are displayed in a graphical model.A transfer path graphical model display area is displayed, and a contribution rate two-dimensional graph display area is displayed to display a two-dimensional graph representing the frequency characteristics of the contribution rate. Then, when any element on the graphical model that represents the transmission path is selected, the degree to which the transmissibility related to that element affects the whole is displayed on the two-dimensional graph and in order to suppress vibration and noise. A vibration and noise problem factor estimation system, which has a function of displaying structural elements that need to be examined in order of priority of countermeasures.
請求項1ないし請求項2に記載の振動騒音問題要因推定システムに関し,
構造変更を予定している要素を選択したときに,その構造変更に具するコストと振動騒音抑制効果が表示される機能を有することを特徴とする振動騒音問題要因推定システム。
The vibration noise problem factor estimation system according to claim 1 or 2,
A vibration and noise problem factor estimation system having a function of displaying the cost and vibration and noise suppression effect of the structure change when an element for which the structure change is planned is selected.
JP2017043388A 2017-03-08 2017-03-08 Factor estimation system for vibration noise problem Pending JP2020094805A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017043388A JP2020094805A (en) 2017-03-08 2017-03-08 Factor estimation system for vibration noise problem
PCT/JP2018/002218 WO2018163640A1 (en) 2017-03-08 2018-01-25 System for estimating cause of vibration or noise problem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017043388A JP2020094805A (en) 2017-03-08 2017-03-08 Factor estimation system for vibration noise problem

Publications (1)

Publication Number Publication Date
JP2020094805A true JP2020094805A (en) 2020-06-18

Family

ID=63447627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017043388A Pending JP2020094805A (en) 2017-03-08 2017-03-08 Factor estimation system for vibration noise problem

Country Status (2)

Country Link
JP (1) JP2020094805A (en)
WO (1) WO2018163640A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019191851A (en) * 2018-04-24 2019-10-31 株式会社日立製作所 Vibration noise countermeasure plan recommendation system
JP6979477B2 (en) * 2020-03-10 2021-12-15 エヌ・ティ・ティ・アドバンステクノロジ株式会社 Status determination device, status determination method and computer program

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3430795B2 (en) * 1996-05-27 2003-07-28 東海ゴム工業株式会社 Adaptive control method for periodic signals
JP3816738B2 (en) * 2000-08-31 2006-08-30 株式会社東芝 Reliability design support apparatus, reliability design support method, and medium recording program
JP4028562B2 (en) * 2005-08-26 2007-12-26 本田技研工業株式会社 Vibration / sound pressure transfer characteristic analysis apparatus and method
JP4844502B2 (en) * 2007-08-27 2011-12-28 トヨタ自動車株式会社 Vibration analysis system and vibration analysis method
JP5282976B2 (en) * 2009-10-06 2013-09-04 スズキ株式会社 Contribution analysis method and apparatus
JP6260477B2 (en) * 2014-07-07 2018-01-17 株式会社豊田中央研究所 Vibration analysis apparatus and vibration analysis method

Also Published As

Publication number Publication date
WO2018163640A1 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
Russo Simple bayesian algorithms for best arm identification
JP6740157B2 (en) Analysis device, analysis method, and program
Nobre et al. Dynamic linear model and SARIMA: a comparison of their forecasting performance in epidemiology
JP6571914B2 (en) Detecting anomalies in job performance data by combining multiple domains of information
US20190340532A1 (en) Quantum computer simulator characterization
JP2016004525A (en) Data analysis system and data analysis method
JP2015524594A (en) System and method for updating a data structure using sensor measurement data
Mead et al. Determining change points in data completeness for the Holocene eruption record
JPWO2012173283A1 (en) System performance prediction method, information processing apparatus and control program thereof
JP6272478B2 (en) Image display system and image display method
JP2020094805A (en) Factor estimation system for vibration noise problem
JP2020068000A (en) Training device, method for training, prediction device, method for prediction, and program
Impraimakis et al. Integration, identification, and assessment of generalized damped systems using an online algorithm
JP2017227994A (en) Human flow prediction device, parameter estimation device, method and program
Li et al. Bayesian updating of time-dependent structural reliability using the method of moment
WO2019207952A1 (en) Vibration noise response plan recommendation system
WO2020044599A1 (en) Vibration noise transmission route estimation system and transmission rate estimation method
Wooditch et al. Ordinary least squares regression
Moradi et al. A new version of earned value analysis for mega projects under interval-valued fuzzy environment
WO2019103773A1 (en) Automatically identifying alternative functional capabilities of designed artifacts
Whitney et al. Bayesian networks for social modeling
JP2019162254A (en) Visual field examination device, control method thereof, and visual field examination program
Beer et al. Fuzzy probability in engineering analyses
Denysiuk et al. A new hybrid evolutionary multiobjective algorithm guided by descent directions
WO2015145555A1 (en) Probabilistic inference system