WO2019207952A1 - Vibration noise response plan recommendation system - Google Patents

Vibration noise response plan recommendation system Download PDF

Info

Publication number
WO2019207952A1
WO2019207952A1 PCT/JP2019/007676 JP2019007676W WO2019207952A1 WO 2019207952 A1 WO2019207952 A1 WO 2019207952A1 JP 2019007676 W JP2019007676 W JP 2019007676W WO 2019207952 A1 WO2019207952 A1 WO 2019207952A1
Authority
WO
WIPO (PCT)
Prior art keywords
cost
vibration
vibration noise
recommendation system
noise
Prior art date
Application number
PCT/JP2019/007676
Other languages
French (fr)
Japanese (ja)
Inventor
武藤 大輔
直也 三津橋
源太 山内
吉澤 尚志
洋祐 田部
真理 黒澤
高野 靖
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019207952A1 publication Critical patent/WO2019207952A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"

Definitions

  • the present invention relates to a system for determining cost effectiveness related to implementation of a proactive measure for preventing the occurrence of a vibration noise problem, and in particular, a vibration noise countermeasure plan suitable for decision support for implementing a proactive measure based on the cost effectiveness. Regarding the recommended system.
  • Vibration and noise generated from the product are widely recognized as factors that deteriorate the comfort when using the product. For this reason, it is important to understand and control vibration noise.To this end, it is necessary to grasp the source and transmission path of vibration and noise in advance at the design stage, and based on the results, change the current structure plan and Prior study is required.
  • anti-vibration / sound-proof measures implemented to suppress vibration noise not only increase cost and weight but also have a trade-off relationship with other performance. For this reason, it is possible to avoid implementing measures aimed solely at suppressing vibration and noise, and to optimize the strategy of taking post-measures after a problem occurs without applying anti-vibration / sound-proof measures in advance. If so, you can choose. On the other hand, it must be avoided that the cost of subsequent measures taken after a problem occurs is higher than the expected cost when measures are taken in advance.
  • Patent Document 1 data necessary for calculation so that even a less experienced user can handle noise prediction around a site / building. has been proposed to display the noise spectrum and the contribution ratio for each source, by making it easier to input by reading a map of the site and building. Further, as described in Patent Document 2, a technique for estimating the cause and factors of noise based on uncertain information and past countermeasure examples has been proposed. Further, as disclosed in Patent Document 3, regarding noise source estimation, a technology for determining whether a sound source whose noise type is not specified is a sound source to be analyzed using a probability density distribution. Proposed.
  • the sound source, excitation source and transmission path In order to suppress the vibration and noise generated by the product, it is necessary to first understand the sound source, excitation source and transmission path, and in general, the sound source and transfer characteristics are identified using measured data. Further, the dominant transmission path and the contribution rate indicating the magnitude of the contribution from each path are determined.
  • the anti-vibration / sound-proofing measures implemented to suppress vibration noise not only increase the cost and weight but also have a trade-off relationship with other performance. For this reason, it is necessary to apply measures that can achieve the specifications related to vibration and noise at a marginal and necessary level, and that can be realized while minimizing the total cost including the cost of the measures, the weight, and the effect on other performance. However, that judgment is actually difficult.
  • FIG. 10 is a diagram for explaining a problem in the determination of whether or not the conventional measures against vibration and noise can be implemented.
  • the cost table 34 in the upper diagram of FIG. 10 it is assumed that there is a certain noise and noise reduction measure. If this is applied in advance at the initial design stage, the construction cost of the measure, redesign or adjustment of other performance, etc. It is assumed that the cost including the cost (preliminary cost) is “2”.
  • a cost of “5” (ex-post cost) will be incurred due to countermeasures, design changes or payment of a penalty to the customer. .
  • the cost table 34 is as shown in the lower diagram of FIG.
  • the most promising is when there is no problem after the fact even if no prior action is taken, and the total cost at this time is “0” (best condition).
  • the total cost at this time is “7” (worst condition).
  • FIG. 11 shows the vibration noise problem suppression accuracy table 32 and the cost table 34 in this case, and “2” is the first to show the causal relationship between the implementation of such a proactive measure and the occurrence of a post-problem. Determining the occurrence of subsequent problems by investing costs and implementing proactive measures is determined to be better than paying the cost of “5” for countermeasures for subsequent problems without implementing proactive measures. I can do it.
  • FIG. 12 is a diagram showing a case of vibration noise evaluation of a railway vehicle.
  • an element test 52 for confirming whether the countermeasure partial structure has a predetermined performance is performed at the initial stage of design. It is.
  • a structure test of a prototype vehicle to which the vibration and noise countermeasure partial structure is applied is performed, and here, it is confirmed whether or not the assumed performance can be obtained as a whole structure.
  • Patent Document 1 As such a vibration noise prediction calculation technique, for example, there is a technique described in Patent Document 1, and there is a description regarding a technique for predicting vibration noise under a given condition based on stored and managed design data. There is, however, no treatment for probabilistic reasoning about uncertain factors. Further, as a technique having probabilistic reasoning, it is specified whether or not this is an analysis object from the technique described in Patent Document 2 inferred from past cases, or measurement data of a sound source for which the type of noise is not specified. For this reason, there is Patent Document 3 which presents a method for inferring, but neither of them has a technology for presenting cost-effectiveness related to design options.
  • the present invention provides a vibration and noise countermeasure plan that can present a cost-effectiveness for each option of measures for suppressing vibration or noise, particularly when designing a newly developed product or considering an improvement plan for an existing product. Provide a recommended system.
  • a vibration noise countermeasure plan recommendation system includes (1) a vibration noise problem factor estimating device for estimating a vibration noise transmission state and a contribution rate of an actual operating state of the device, and (2) Based on the vibration noise transmission path probability reasoning model generated by the vibration noise problem factor estimation device, a vibration noise problem suppression accuracy table that correlates the presence / absence of implementation of a proactive measure and a post-problem occurrence suppression rate is generated and each input
  • a cost table is generated based on a prior cost list consisting of a prior cost for implementing a measure for suppressing vibration noise problems and a subsequent cost after the occurrence of the problem, and a gain related to expected cost based on the vibration noise problem suppression accuracy table and the cost table Vibration and noise problem cost-effectiveness judgment device that generates a table, and (3) action selection in each process of design and production of input products
  • a game tree that is a tree structure for situation determination; and a design data management / storage unit that stores the pre- and post-cost list
  • a vibration and noise countermeasure plan capable of presenting a cost-effectiveness for each option of a measure for suppressing vibration or noise, particularly when designing a newly developed product or considering an improvement plan for an existing product. It is possible to provide a recommended system. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
  • FIG. 4 is a diagram illustrating cost-effectiveness determination regarding the implementation of vibration and noise countermeasures illustrated in FIG. 3 together with action selection and situation determination during the design / production process illustrated in FIG. 2. It is a figure explaining the structural example of the vibration noise problem factor estimation apparatus which comprises the vibration noise countermeasure plan recommendation system which concerns on one Example of this invention.
  • FIG. 5 is a diagram for explaining that the selection criteria for action selection and situation determination during the design / production process shown in FIG. 4 change depending on the discovery of a new solution measure. It is a figure explaining the situation determination as a result of the action selection in the design and production process shown in FIG. 8, and the recommended strategy of the next action selection in the present condition on that. It is a figure explaining the problem in judgment of the conventional vibration noise countermeasure implementation feasibility.
  • FIG. 1 is a functional block diagram of a vibration / noise problem cost-effectiveness determination apparatus according to an embodiment of the present invention
  • FIG. 2 is an action selection and situation determination performed based on data obtained in a product design / production process
  • FIG. 3 is a diagram for explaining the processing outline of the vibration noise problem cost-effectiveness determination apparatus shown in FIG.
  • the conventional method shown in FIG. 11 is based on the premise that there is a certain causal relationship between the implementation of the proactive measures and the occurrence of the posterior problem, and takes into account variations and uncertainties that occur in the vibration noise problem. The problem was that there was no probabilistic treatment. Further, a systematic mechanism for updating the next measure application strategy using the data 53 obtained sequentially as the design and production process 51 progresses as shown in FIG.
  • FIG. 2 is a diagram for explaining the application of the data 53 obtained sequentially by performing the evaluation test 52 to the design judgment as these steps progress.
  • FIG. 2 shows a hierarchical chain structure of a tree that performs conditional branching related to situation determination 55 from evaluation test data 53 of each process obtained as a result of conditional branching related to design selection action selection 54 and each process. What is recorded as a history together with its rationale is stored and / or updated in the design data management / storage unit 59 described later in detail as knowledge 56 in each process. As a result, it is possible to visually explain where the current situation is in the current past and future situations. In the development type game theory, such a branch diagram of action selection and situation determination in the design and production process is referred to as a game tree 50. What is important at this time is the judgment reasoning for the action selection 54.
  • the vibration noise problem cost-effectiveness determination device 40 includes a cost table generation unit 41, a vibration noise problem suppression accuracy table generation unit 42, a gain table generation unit 43, an input I / F 44, and an output I / F 45. Is provided.
  • the cost table generation unit 41, the vibration noise problem suppression accuracy table generation unit 42, and the gain table generation unit 43 include, for example, a processor (not shown) such as a CPU (Central Processing Unit), a ROM that stores various programs, and data of calculation processes.
  • At least one of the cost table generation unit 41, the vibration noise problem suppression accuracy table generation unit 42, and the gain table generation unit 43 constituting the vibration noise problem cost-effectiveness determination device 40 is, for example, a program (for example, in a program memory).
  • the program may be realized by a stored program. In other words, all of the cost table generation unit 41, the vibration noise problem suppression accuracy table generation unit 42, and the gain table generation unit 43 may be incorporated into one program, or a desired combination may be incorporated into one program. good.
  • the post-problem occurrence suppression rate when the proactive measure for the vibration noise problem is implemented is 80%, and the post-problem occurrence suppression rate when the proactive measure for the vibration noise problem is not implemented. Is assumed to be 30%.
  • the gain table 35 at the time of making a strategy becomes an expected cost value, which is obtained by multiplying the cost table 34 by the vibration noise problem suppression accuracy table 32. From this gain table 35, it can be explained that the expected cost value when implementing the proactive measure is “3.0”, which is a better strategy than the expected cost value “3.5” when not implementing the proactive measure. I can do it.
  • the cost table generation unit 41 constituting the vibration noise problem cost-effectiveness determination device 40 has a function of generating the cost table 34, and the vibration noise problem suppression accuracy table generation unit 42 suppresses the vibration noise problem.
  • a function to generate the accuracy table 32 is provided.
  • the gain table generation unit 43 multiplies the vibration noise problem suppression accuracy table 32 generated by the vibration noise problem suppression accuracy table generation unit 42 by the cost table 34 generated by the cost table generation unit 41, thereby obtaining a gain table. 35 is generated.
  • FIG. 4 shows the gain table 35 generated by the gain table generation unit 43 constituting the vibration noise problem cost-effectiveness determination apparatus 40 described in FIG. 3 together with the game tree 50 of FIG. 2 described above.
  • FIG. 4 shows that the respective situation judgments 55 are executed from the test evaluation data 53 obtained in the step 51 at that time with respect to the results obtained as the results of the respective options in the action selection 54.
  • the occurrence probability and cost of each event at each end of the game tree 50, and the expected cost value obtained by multiplying them are shown as a gain table 35.
  • the above-described processing is in principle the same as the calculation of the gain table 35 from the vibration noise problem suppression accuracy table 32 and the cost table 34 shown in FIG. 3, and the process of creating the gain table 35 shown in FIG.
  • the vibration noise problem cost-effectiveness determination apparatus 40 shown in FIG. 1 operates.
  • the name of the measure or the situation is shown above each arrow derived from the action selection 54 and the situation judgment 55, and the [] below each arrow is generated by the action selection 54 or the response to the situation.
  • the cost to perform (in this case, the recovery cost when the target is not achieved) is represented by a numerical value.
  • the name of each measure or situation derived from the action selection 54 and the situation judgment 55 is input and set by the user (designer) at the design stage. Further, the vibration noise problem cost-effectiveness determination device 40 calculates an expected cost value of each option for each measure based on a prior and subsequent cost list 33 input by a user (designer) described later in detail.
  • the policy and the situation itself branching in each design / production process (each level) 51 are set by the user (designer), but the policy branches in each design / production process (each level) 51.
  • the vibration and noise problem cost-effectiveness judging device 40 is expected to provide the cost expected value of each measure option, that is, each judgment Calculate the expected cost of.
  • the action selection 54 means extraction of measure options, for example.
  • FIG. 5 is a diagram for explaining a configuration example of a vibration noise problem factor estimation device constituting a vibration noise countermeasure plan recommendation system according to an embodiment of the present invention.
  • the vibration noise problem suppression accuracy table generation unit 42 (FIG. 1) constituting the vibration noise problem cost-effectiveness determination device 40.
  • FIG. 3 is a vibration noise problem suppression accuracy table 32 (FIG. 3) generated by The vibration noise problem factor estimation device 30 shown in FIG. 5 is necessary for constructing the vibration noise problem suppression accuracy table 32.
  • FIG. 3 is a vibration noise problem suppression accuracy table 32 (FIG. 3) generated by The vibration noise problem factor estimation device 30 shown in FIG. 5 is necessary for constructing the vibration noise problem suppression accuracy table 32.
  • FIG. 3 is a vibration noise problem suppression accuracy table 32 (FIG. 3) generated by The vibration noise problem factor estimation device 30 shown in FIG. 5 is necessary for constructing the vibration noise problem suppression accuracy table 32.
  • FIG. 3 the configuration of the vibration noise problem factor estimation device 30 will be described. As shown in FIG.
  • the vibration noise problem factor estimation device 30 includes an on-site data extraction unit 11 that extracts various types of vibration and noise data in the actual operation state of the existing measurement target product 10, and an on-site data extraction unit 11.
  • An on-site data storage unit 12 is provided for storing the extracted actual operation data on the site.
  • the vibration noise problem factor estimating device 30 generates a transmission path model 16a in which the vibration noise transmission path of the measurement target product 10 estimated by the user (designer) 20 and the transmission path is expressed by a graphical model.
  • a laboratory data storage unit 17 to be stored in the model data storage unit 13, a sound source / transfer characteristic estimation engine 14, a sound source / transfer characteristic probability distribution data storage unit 15, a contribution rate estimation engine 18, and a contribution rate display unit 19 are provided.
  • the sound source / transfer characteristic estimation engine 14, the laboratory data storage unit 17, and the contribution rate estimation engine 18 are, for example, a processor (not shown) such as a CPU (Central Processing Unit), a ROM for storing various programs, and data of calculation processes temporarily. Is realized by a storage device such as a RAM and an external storage device, and a processor such as a CPU reads out and executes various programs stored in the ROM, and the operation result as an execution result is stored in the RAM or the external storage device. Store.
  • a processor such as a CPU (Central Processing Unit)
  • ROM Read Only Memory
  • ROM Read Only Memory Stick
  • the sound source / transfer characteristic estimation engine 14 includes a plurality of actual operation site data stored in the site data storage unit 12 and a transfer path model stored in the transfer route model data storage unit 13 and selected by the user (designer) 20. 16a, the probability distribution of the sound source / transfer characteristic corresponding to each transfer path of the transfer path model 16a is estimated.
  • the sound source / transfer characteristic estimation engine 14 stores the estimated probability distribution of the sound source / transfer characteristic in the sound source / transfer characteristic probability distribution data storage unit 15.
  • the contribution rate estimation engine 18 includes a transmission path model 16a stored in the transmission path model data storage unit 13, a sound source / transfer characteristic probability distribution data stored in the sound source / transfer characteristic probability distribution data storage unit 15, and a field data storage unit.
  • the vibration noise contribution rate is calculated on the basis of a plurality of actual operation site data stored in 12.
  • the contribution rate estimation engine 18 outputs the calculated vibration noise contribution rate to the contribution rate display unit 19.
  • the user (designer) 20 operates the contribution rate display unit 19 to display the contribution rate with respect to a predetermined partial structural element of the measurement target product 10 on a display screen (not shown) of the contribution rate display unit 19. In addition, it is possible to obtain a probabilistic inference result regarding the degree of influence on the entire measurement target product and the cost effectiveness when planning a structural change.
  • the sound source / transfer characteristic probability distribution data 16b acquired in the pre-shipment test or the periodic inspection test of the measurement target product 10 is generated by the user (designer) 20 by the laboratory data storage unit 17 by the sound source / transfer characteristic probability distribution. It is also possible to store and update the data storage unit 15.
  • the laboratory data storage unit 17 allows the user (designer) 20 to store the transmission path model 16a and the sound source / transfer characteristics that can be stored in the transmission path model data storage unit 13 and the sound source / transfer characteristic probability distribution data storage unit 15, respectively.
  • the probability distribution data 16b can be examined and calculated based on laboratory measurement results and analysis results, thereby updating and improving the vibration noise model of the product to be examined. For this reason, the transfer path model 16a and the sound source / transfer characteristic probability distribution data 16b are collectively referred to as laboratory data 16 here.
  • Bayesian network assumes a causal relationship between an event H and data D obtained thereunder, and a conditional probability density distribution in which the data D occurs under the occurrence of the event H is a likelihood P (D
  • the estimated phase after obtaining the vibration noise S n of the evaluation point at the time of actual operation, the transmission characteristic data can be observed H 1, likelihood relates H 2 P (S n
  • the sound source and the transfer characteristic are interchangeable in that they are multiplied by the vibration noise at the evaluation point. Therefore, if the above method is taken in reverse, it can be used for identification of excitation sources and sound sources that are difficult to measure directly during actual operation.
  • F ⁇ N) between the sound source N and the vibration noise S i at the evaluation point is acquired in a pre-shipment test or the like, and this is converted into a database. It is stored in the transfer characteristic probability distribution data storage unit 15.
  • F ⁇ N) of the excitation force F or the sound source N that can be observed from this vibration noise S n at the evaluation point acquired during actual operation is the number of observation signals. By sequentially multiplying only, the excitation force and the size of the sound source during actual operation can be identified stochastically.
  • the contribution of the evaluation point vibration noise in the current model is probabilistically calculated, and based on this, the specifications and design of the next model are calculated. Guideline can be considered.
  • the likelihood data of the next model's excitation force and the transmission characteristics of the evaluation point vibration noise for the sound source are acquired, and the excitation force / sound source of the current model described above is obtained.
  • the evaluation point vibration noise during operation of the next model can be predicted probabilistically in advance before operation.
  • the above-mentioned evaluation points are basically set by the user (designer) 20, but cannot be set as evaluation points for portions where measured data cannot be measured by sensors or the like.
  • FIG. 6 is a diagram showing a screen display example of the contribution rate display unit 19 constituting the vibration noise problem factor estimating device 30 shown in FIG.
  • the display screen of the contribution rate display unit 19 displays a transfer path graphical model display area 19 a that displays the transfer path model indicated by the graphical model, and a two-dimensional graph that represents the frequency characteristics of the contribution rate.
  • a contribution rate two-dimensional graph display area 19b and an influence / probability determination element display area 19c for displaying design determination materials are configured.
  • variations in sound source / transfer characteristics related to the element are included in the overall estimation result.
  • the degree of influence is displayed on the two-dimensional graph in the contribution rate two-dimensional graph display area 19b.
  • the upper limit and lower limit of the contribution ratio of vibration noise passing through the element, or The confidence interval is displayed in the contribution rate two-dimensional graph display area 19b.
  • the frequency characteristic of the evaluation point noise is indicated by a thick black line in the contribution rate two-dimensional graph display area 19b, and the median of the contribution rate of the selected element is indicated by a gray line, and the variation is represented by a confidence interval. (Vertical bar), and the fluctuation width of the evaluation point noise due to the uncertainty of the contribution rate is indicated by a gray broken line.
  • the possibility / risk judgment element display area 19c shows the possibility that the evaluation point noise will increase by 2 dB or more with a probability of 25% and decrease by 2 dB or more with a probability of 5%. Further, if such an influence degree calculation result is further processed, it is possible to provide a function for displaying structural elements that need to be examined in order to suppress vibration noise at the evaluation point in order of priority of countermeasures.
  • FIG. 7 is an overall schematic configuration diagram of the vibration and noise countermeasure plan recommendation system 1 according to the present embodiment, and is a diagram for explaining data and processing.
  • the vibration noise countermeasure plan recommendation system 1 includes the vibration noise problem factor estimation device 30 shown in FIG. 5, the vibration noise problem cost effectiveness determination device 40 shown in FIG. 1, and design data management.
  • a storage unit 59 is included.
  • the vibration noise problem factor estimation device 30 automatically generates the vibration noise transmission path probability inference model 31
  • the vibration noise problem suppression accuracy table generation unit 42 constituting the vibration noise problem cost effectiveness determination device 40 generates the generated vibration noise transmission. Based on the path probability inference model 31, a vibration noise problem suppression accuracy table 32 is generated.
  • the generation of the vibration noise problem suppression accuracy table 32 is not generated by the vibration noise problem suppression accuracy table generation unit 42 based on the vibration noise transmission path probability inference model 31, but is generated.
  • the vibration noise problem suppression accuracy table 32 may be automatically generated based on the model 31.
  • the user (designer) 20 has a game tree 50 that is a tree structure of action selection and situation determination in the product design and production process, and prior costs for implementing measures for suppressing each vibration and noise problem in each action selection, and occurrence of problems. When the subsequent cost is estimated and input as the prior and subsequent cost list 33, these are temporarily stored in the design data management / storage unit 59.
  • the cost table generation unit 41 constituting the vibration noise problem cost-effectiveness determination apparatus 40 inputs the game tree 50 and the pre-post and post-cost list 33 input to the design data management / storage unit 59 via the input I / F 44. Then, the cost table generation unit 41 generates a cost table 34 for each option in each action selection 54 (FIG. 4) based on the game tree 50 and the pre- and post-cost list 33.
  • the gain table generation unit 43 constituting the vibration noise problem cost effectiveness determination device 40 is generated by the vibration noise problem suppression accuracy table 32 generated by the vibration noise problem suppression accuracy table generation unit 42 and the cost table generation unit 41. Based on the cost table 34, a gain table 35 for each option in an action selection 54 in the process is generated.
  • the vibration noise problem cost-effectiveness determination device 40 outputs the output I / O including the optimum applied measure in the action selection 54 and the expected vibration noise level and contribution rate when the measure is implemented, including the variation and the fluctuation range thereof. It outputs to the contribution rate display part 19 which comprises the vibration noise problem factor estimation apparatus 30 via F45.
  • the contribution rate display part 19 which comprises the vibration noise problem factor estimation apparatus 30 via F45.
  • the game tree 50 and the gain table 35 may be displayed side by side.
  • the recommended strategy with the smallest cost expectation value at that time is highlighted in a chained manner (from the most upstream to the most downstream (end) of the design and production process 51. ) Is preferably highlighted (highlighted or otherwise distinguishable)).
  • FIG. 8 is a diagram for explaining that the selection criteria for action selection and situation judgment during the design / production process shown in FIG. 4 change depending on the discovery of a new solution measure. That is, FIG. 8 shows, as an example, how the initial strategy is changed by finding a new discovery solution measure 57 as a recovery measure for achieving the target in the previous process. Specifically, when the measure A0 of the cost “0” is performed in the process A under the situation shown in FIG. 4, as a response method when the target is not reached in the evaluation test in the process A, This shows the situation after the prospect of achieving the target with a relatively high probability by implementing the measure B1 that pays the additional cost “2” in the measure in the process B.
  • the expected cost value when applying the strategy is “2.4”, which is smaller than the expected cost value “3.0” when the measure A1 is implemented in the initial process A. Is shown. That is, by finding the above-mentioned new discovery solution measure 57, it is determined that there is no problem in process A because even if measure A0 that is less costly than measure A1, which is the initial strategy, can be recovered later. It will be updated. As described above, in the present embodiment, the optimum judgment using the latest knowledge at the present time can be shown by reflecting the estimation result of the problem suppression accuracy of the examination measure at that time as needed and reviewing the gain table 35. .
  • FIG. 9 is a diagram for explaining a situation determination as a result of action selection during the design / production process shown in FIG. 8 and a recommended strategy for the next action selection in the current situation. That is, FIG. 9 shows the situation where the target is not reached after actually implementing the measure A0 in the situation shown in FIG. 8 above, and further investigates the vibration noise problem suppression accuracy of the measure B1 at that time. As a result, the situation worsened from the initial assumption shown in FIG. As shown in FIG. 9, the expected cost value at the time of implementation of the measure B1 at this time increases to “5.5” due to the above-described deterioration of the vibration noise problem suppression accuracy, and the implementation cost “0” that the target cannot be achieved is inevitable.
  • the total cost when the process A is returned from the process A to the process B and the measure A1 is further implemented is “4”, and the target achievement probability when the measure A1 is implemented after returning the process is 100%. Since it is known, the expected cost value is “4.0”, which is the strategy with the lowest expected cost value compared to implementing the measure B0 and implementing the measure B1. .
  • the present embodiment it is possible to present cost-effectiveness for each option of a measure for suppressing vibration or noise, particularly when designing a newly developed product or considering an improvement plan for an existing product. It is possible to provide a vibration noise countermeasure plan recommendation system.
  • Reasoning is possible, and it is possible to provide a judgment material for making a rational judgment for suppressing vibration and noise.
  • these probabilities are updated as needed based on the obtained data, so the optimal strategy at that time is displayed along with the rationale.
  • Vibration noise countermeasure plan recommendation system 10 ... Product to be measured, 11 ... Site data extraction part, 12 ... Site data storage part, 13 ... Transmission path model data storage part, 14 ... Sound source and transfer characteristic estimation engine, 15 ... Sound source Transfer characteristic probability distribution data storage unit 16 ... laboratory data, 16a ... transfer path model, 16b ... sound source / transfer characteristic probability distribution data, 17 ... laboratory data storage unit, 18 ... contribution rate estimation engine, 19 ... contribution rate Display unit 19a ... Transmission path graphical model display area 19b ... Contribution rate two-dimensional graph display area 19c ... Influence / probability judgment element display area 20 ... User (designer) 30 ... Vibration noise problem factor estimation device, 31 ...
  • Vibration noise transmission path probability reasoning model 32 ... Vibration noise problem suppression accuracy table, 33 ... Pre- and post-cost list, 34 ... Cost table, 35 ... Gain , 40 ... Vibration noise problem cost effectiveness determination device, 41 ... Cost table generation unit, 42 ... Vibration noise problem suppression accuracy table generation unit, 43 ... Gain table generation unit, 44 ... Input I / F, 45 ... Output I / F 50 ... Game tree (branch diagram of action judgment and situation recognition in the design and production process), 51 ... Design and production process, 52 ... Data extraction work such as inspection, evaluation, and test performed in the design and production process, 53 ... Design and production process 54 ... Action selection in the design production process, 55 ... Situation judgment in the design production process, 56 ... Reflection knowledge in the design production process, 57 ... New discovery solution measure, 59 ... Design data management / storage unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

Provided is a vibration noise response plan recommendation system with which it is possible to present cost effectiveness for each option of measures for suppressing vibration or noise specifically when designing a product to newly develop or examining plans for improving an existing product. A vibration noise response plan recommendation system 1 is provided with: a cause-of-vibration-noise problem estimation device 30 for estimating the vibration noise propagation state of actual operation state of an apparatus and the rate of contribution thereof; a vibration-noise problem cost-effectiveness determination device 40 for generating a vibration-noise problem suppression probability table 32, as well as generating a cost table 34 on the basis of a prior-subsequent cost list 33 comprising the prior cost required for the implementation of a suppression measure for each of inputted vibration noise problems and the subsequent cost required after the occurrence of a problem, and generating a pay-off table 35 pertaining to a cost expectation value on the basis of the vibration-noise problem suppression probability table 32 and the cost table 34; and a design data management and storage unit 59 for storing the prior-subsequent cost list 33 and a game tree 50, which is a tree structure of inputted action selection and status determination in each process of product design and manufacture. The vibration noise response plan recommendation system 1 generates the pay-off table 35 pertaining to the cost expectation value of each option of action selection in the game tree 50.

Description

振動騒音対策プラン推奨システムVibration noise countermeasure plan recommendation system
 本発明は、振動騒音問題の発生防止に向けた事前対応施策実施に関する費用対効果の判定に関するシステムに係り、特に、その費用対効果に基づく事前対応施策実施の判断支援に好適な振動騒音対策プラン推奨システムに関する。 The present invention relates to a system for determining cost effectiveness related to implementation of a proactive measure for preventing the occurrence of a vibration noise problem, and in particular, a vibration noise countermeasure plan suitable for decision support for implementing a proactive measure based on the cost effectiveness. Regarding the recommended system.
 製品から発生する振動や騒音は製品使用時の快適性を悪化させる要因として広く認識されている。そのため、振動騒音の把握と抑制が重要となり、これに向けて、設計段階で事前に振動や騒音の発生源と伝達経路を把握し、その結果を元に現状の構造案に対する変更とその効果の事前検討が必要となる。ところで、一般に振動騒音を抑止するために実施される防振・防音施策は、コストや重量を増大させるばかりか、他の性能とトレードオフの関係にあることが多い。そのため、振動騒音抑止のみを目的とした施策を、むやみやたらに実施することは避けられ、あえて事前に防振・防音施策は適用せず、問題発生後に事後対策を行なうという戦略も、それが最適であれば選択し得る。一方で逆に、問題発生後に実施した事後対策の費用が、事前に施策を実施した場合の想定費用よりも高額になることも、当然ながら避けなければならない。 ∙ Vibration and noise generated from the product are widely recognized as factors that deteriorate the comfort when using the product. For this reason, it is important to understand and control vibration noise.To this end, it is necessary to grasp the source and transmission path of vibration and noise in advance at the design stage, and based on the results, change the current structure plan and Prior study is required. By the way, in general, anti-vibration / sound-proof measures implemented to suppress vibration noise not only increase cost and weight but also have a trade-off relationship with other performance. For this reason, it is possible to avoid implementing measures aimed solely at suppressing vibration and noise, and to optimize the strategy of taking post-measures after a problem occurs without applying anti-vibration / sound-proof measures in advance. If so, you can choose. On the other hand, it must be avoided that the cost of subsequent measures taken after a problem occurs is higher than the expected cost when measures are taken in advance.
 このように、究極的には要求される振動騒音に関する仕様を必要十分なぎりぎりのレベルで達成し、且つ、施策費用や重量或いは他性能への影響なども含めた総合的なコストを最小限にして実現できる施策の適用が求められるが、その判断は実際には難しい。なぜならば、設計初期段階では性能やコストに関するさまざまな因子の不確実性があるためであり、決定論的な判断にはなりにくく、また実際施工時にも施工状況や材料特性などのばらつきが大きいためである。 In this way, ultimately, the required specifications for vibration and noise can be achieved at the barely necessary level, and the total cost including the cost of measures, weight, and other effects on performance can be minimized. Although it is necessary to apply measures that can be realized, it is actually difficult to judge. This is because there are uncertainties in various factors related to performance and cost in the initial design stage, and it is difficult to make deterministic judgments. Also, there are large variations in construction conditions and material characteristics during actual construction. It is.
 このような振動騒音の事前対策に関する判断支援の技術に関しては、例えば、特許文献1に記載されるように、敷地・建物周辺の騒音予測について経験の少ないユーザーでも取り扱えるように、計算に必要なデータを敷地及び建物の地図を読み込ませることでより簡単に入力できるようにした上で、騒音のスペクトルや発生源別の寄与割合を表示する技術が提案されている。また、特許文献2に記載されるように、不確実な情報や過去の対策事例などに基づき騒音の原因や要因を推定する技術について提案されている。また、特許文献3に開示されるように、騒音源推定に関して、騒音の種別が特定されていない音源についても、確率密度分布を用いて分析対象とする音源であるか否かを判定する技術について提案されている。 Regarding the technology for decision support regarding such precautions against vibration noise, for example, as described in Patent Document 1, data necessary for calculation so that even a less experienced user can handle noise prediction around a site / building. Has been proposed to display the noise spectrum and the contribution ratio for each source, by making it easier to input by reading a map of the site and building. Further, as described in Patent Document 2, a technique for estimating the cause and factors of noise based on uncertain information and past countermeasure examples has been proposed. Further, as disclosed in Patent Document 3, regarding noise source estimation, a technology for determining whether a sound source whose noise type is not specified is a sound source to be analyzed using a probability density distribution. Proposed.
特開2006-260370号公報JP 2006-260370 A 特開平10-187784号公報JP-A-10-187784 再公表特許WO2009/139052号公報Republished patent WO2009 / 139052
 製品が発生する振動や騒音を抑制するには、まず音源や加振源および伝達経路の把握が必要であり、その実現には一般には実測データを用いた音源や伝達特性の同定が行なわれ、更には支配的な伝達経路と各経路からの寄与の大きさを示す寄与率の判定が行なわれる。 In order to suppress the vibration and noise generated by the product, it is necessary to first understand the sound source, excitation source and transmission path, and in general, the sound source and transfer characteristics are identified using measured data. Further, the dominant transmission path and the contribution rate indicating the magnitude of the contribution from each path are determined.
 上述のように、一般に振動騒音を抑止するために実施される防振・防音施策は、コストや重量を増大させるばかりか、他の性能とトレードオフの関係にあることが多い。そのため振動騒音に関する仕様を必要十分なぎりぎりのレベルで達成し、且つ、施策費用や重量或いは他性能への影響なども含めた総合的なコストを最小限にして実現できる施策の適用が求められる。しかしながら、その判断は実際には難しい。 As described above, in general, the anti-vibration / sound-proofing measures implemented to suppress vibration noise not only increase the cost and weight but also have a trade-off relationship with other performance. For this reason, it is necessary to apply measures that can achieve the specifications related to vibration and noise at a marginal and necessary level, and that can be realized while minimizing the total cost including the cost of the measures, the weight, and the effect on other performance. However, that judgment is actually difficult.
 この判断の難しさにつき図面を用いて説明する。図10は従来の振動騒音対策実施可否の判断における問題を説明する図である。図10の上図のコスト表34に示すように、いま、ある振動騒音低減施策が存在するとし、これを初期設計段階で事前に適用すると、施策の施工コストや他性能の再設計や調整なども含めたコスト(事前コスト)が「2」発生するものと仮定する。また、製品生産・出荷後に結局振動騒音が目標性能に達しないことが判明した場合、対策や設計変更或いは顧客へのペナルティ支払いなどで「5」のコスト(事後コスト)が発生するものと仮定する。するとコスト表34は図10の下図に示すようになる。最も期待されるのは、事前対応を実施せずとも事後に問題が発生しない場合で、この時のトータルコストは「0」(最善条件)となる。一方で最も回避されるべきは、事前に対応したにもかかわらず事後に問題が発生する場合であり、この時のトータルコストは「7」(最悪条件)となる。いま、仮に事前対応施策実施と事後問題発生の間に何の因果関係も認められないと仮定して結果論をベースに議論する。この場合、事後に問題が発生しないことがわかっているのであれば、事前対応施策を実施する(トータルコスト:2)ことに対して事前対応施策を実施しない(トータルコスト:0)ほうが良い。同様に、事後に問題が発生することがわかっているのであれば、事前対応施策を実施する(トータルコスト:7)ことに対して事前対応施策を実施しない(トータルコスト:5)ほうが良い。いずれにしても、事前対応施策を実施しない方が良い結果となる。ゲーム理論ではこれを「支配戦略」と呼び、このように事前対応施策実施と事後問題発生の間に因果関係を認めなければ、必ず、事前対応施策を実施しない方が、コストが低くより良い戦略であると判断される。 The difficulty of this judgment will be explained using drawings. FIG. 10 is a diagram for explaining a problem in the determination of whether or not the conventional measures against vibration and noise can be implemented. As shown in the cost table 34 in the upper diagram of FIG. 10, it is assumed that there is a certain noise and noise reduction measure. If this is applied in advance at the initial design stage, the construction cost of the measure, redesign or adjustment of other performance, etc. It is assumed that the cost including the cost (preliminary cost) is “2”. In addition, if it is determined that vibration and noise do not reach the target performance after product production / shipment, it is assumed that a cost of “5” (ex-post cost) will be incurred due to countermeasures, design changes or payment of a penalty to the customer. . Then, the cost table 34 is as shown in the lower diagram of FIG. The most promising is when there is no problem after the fact even if no prior action is taken, and the total cost at this time is “0” (best condition). On the other hand, what should be avoided the most is a case where a problem occurs after the fact despite the fact that it has been handled in advance, and the total cost at this time is “7” (worst condition). Now, suppose that there is no causal relationship between the implementation of proactive measures and the occurrence of post-problems. In this case, if it is known that a problem does not occur after the fact, it is better not to implement a proactive measure (total cost: 0) than to implement a proactive measure (total cost: 2). Similarly, if it is known that a problem will occur after the fact, it is better not to implement a proactive measure (total cost: 5) than to implement a proactive measure (total cost: 7). In any case, it is better not to implement a proactive measure. In game theory, this is called a “domination strategy”. If you do not recognize a causal relationship between the implementation of proactive measures and the occurrence of subsequent problems, it is always better not to implement proactive measures at a lower cost and better strategy. It is judged that.
 一方で、問題発生抑止を目的とした事前対応施策である以上、本来は事前対応施策実施と事後問題発生の間には因果関係が存在する。仮に、事前対応施策を実施すれば事後問題は確実に抑止され、逆に事前対応を実施しなければ事後問題が確実に発生するとする。図11はこの場合の振動騒音問題抑止確度表32及びコスト表34を示したものであり、このような事前対応施策実施と事後問題発生の間の因果関係を示すことで初めて、「2」のコストを投じて事前対応施策を実施することで事後問題の発生を抑止したほうが、事前対応施策を実施せずにあとで事後問題の対策のために「5」のコストを払うよりも良いと判断することが出来る。 On the other hand, as long as it is a proactive measure aimed at preventing problems, there is a causal relationship between the implementation of proactive measures and the occurrence of subsequent problems. If the proactive measures are implemented, the posterior problems are surely suppressed. Conversely, if the proactive measures are not implemented, the posterior problems will surely occur. FIG. 11 shows the vibration noise problem suppression accuracy table 32 and the cost table 34 in this case, and “2” is the first to show the causal relationship between the implementation of such a proactive measure and the occurrence of a post-problem. Determining the occurrence of subsequent problems by investing costs and implementing proactive measures is determined to be better than paying the cost of “5” for countermeasures for subsequent problems without implementing proactive measures. I can do it.
 しかしながら、振動騒音現象の計測では、ノイズの混入や計測条件の微妙な変動により、一般にバラツキのあるデータが得られる場合が多い。従って、上述の音源や伝達特性の同定結果も、データのバラツキに起因する不確実性が多分に含まれることとなる。すなわち、このような実測結果に基づいた伝達モデルを元に判断される想定伝達経路や振動騒音寄与率、更にそれを元に算出される構造変更の見通しも、当然のことながら本来は決定論的な議論は出来ないと考えられる。すなわち、図11のような確実な因果関係で説明することは実際問題においては困難である。そのため、バラツキや不確実性が考慮された確率論的な取り扱がなされることが望まれ、その結果から打ち出される構造変更実施の判断支援も、振動騒音推定値の確率分布とその影響度合いに基づいた判定が行なわれることが望まれる。なお、ここでは説明の便宜上、施策については「実施する」と「実施しない」の二値のみを扱うが、本来は、「施策しない」、「施策Aを実施する」、「施策Bを実施する」など、3つ以上の施策・選択肢がある場合が一般的である。また、事後問題発生についてもここでは「事後問題発生する」と「事後問題発生しない」の二値のみとなっているが、一般的には目標未達量に応じてその事後対策費用も変わってくるため、これも複数の水準となるのが一般的であろう。 However, in the measurement of vibration noise phenomenon, generally, there are many cases in which data with variations is obtained due to noise mixing and subtle fluctuations in measurement conditions. Therefore, the above-described sound source and transfer characteristic identification results also include a lot of uncertainties due to data variations. In other words, the assumed transmission path and vibration / noise contribution rate determined based on the transmission model based on such actual measurement results, and the prospects for structural changes calculated based on it are naturally deterministic. It is thought that it is not possible to make an argument That is, it is difficult in the actual problem to explain with a certain causal relationship as shown in FIG. For this reason, it is desirable that probabilistic treatment is performed in consideration of variations and uncertainties, and the decision support for implementing structural changes derived from the results is also based on the probability distribution of the vibration noise estimate and the degree of its influence. It is desirable to make a determination based on it. Here, for convenience of explanation, only two values, “implement” and “not implement”, are handled as measures, but originally “do not implement”, “implement measure A”, and “implement measure B” In general, there are three or more measures / options. In addition, there are only two values for the occurrence of a subsequent problem: “occurs after the problem occurs” and “does not occur after the problem”. However, the cost of the subsequent countermeasures generally changes depending on the amount of the target not achieved. Therefore, it will generally be at multiple levels.
 ところで、製品が完成するまでの間には、製品の信頼性をそれぞれの製作過程で確認するためにいくつかの検査や評価、試験が行なわれる。したがって、これらの検査試験の結果を製品の振動騒音目標値達成の可否に関する推定に反映することで、この推定の確実性が徐々に高まってくる。例えば、図12は鉄道車両の振動騒音評価の場合について示した図であり、この場合では、まず対策部分構造が所定の性能を有しているかどうかを確認する要素試験52が設計初期段階で行なわれる。また、設計後期では上記振動騒音対策部分構造を適用した試作車両の構体試験が行なわれ、ここでは構体全体として想定した性能が得られるかどうかを確認する。更に設計が終わると製作が開始されるが、ここでも各種試験が行われ、最終的に完成車の場内定置試験で仕様達成の見通しの最終判断がなされた後に、走行試験によって仕様達成の判定がなされる。このようにして、設計製作工程51が進むにつれて発生する評価・試験データを反映することで、上述の図11で示された事前対応施策の実施と事後問題発生の因果関係は、その推定の確実性が徐々に高まると考えるのが一般である。すなわち図11に示したような事前対応施策に対する事後問題発生確率は、図12に示すような製品の製作過程を通じて行なわれる検査・評価試験結果を上手に活用することで、次第に0%か100%に漸近収束していくものと考えられ、この過程で万が一目標未達が濃厚と判断される場合は費用対効果を鑑みて、随時設計判断が見直されることとなる。また、図示しないが出荷後も運用保守時のデータをモニタリングし、得られたデータを再度次機種の設計に反映するということも考えられる。 By the way, until the product is completed, several inspections, evaluations, and tests are performed in order to confirm the reliability of the product in each manufacturing process. Therefore, the reliability of this estimation gradually increases by reflecting the results of these inspection tests in the estimation regarding whether or not the vibration noise target value of the product can be achieved. For example, FIG. 12 is a diagram showing a case of vibration noise evaluation of a railway vehicle. In this case, first, an element test 52 for confirming whether the countermeasure partial structure has a predetermined performance is performed at the initial stage of design. It is. In the latter half of the design, a structure test of a prototype vehicle to which the vibration and noise countermeasure partial structure is applied is performed, and here, it is confirmed whether or not the assumed performance can be obtained as a whole structure. After the design is completed, production will start. Various tests are conducted here, and after the final judgment of the specification achievement prospect is finally made in the in-place stationary test of the finished vehicle, the judgment of achievement of the specification is made by the running test. Made. In this way, by reflecting the evaluation / test data generated as the design and production process 51 progresses, the causal relationship between the implementation of the proactive measures shown in FIG. It is common to think that sex gradually increases. In other words, the probability of occurrence of the posterior problem for the proactive measures as shown in FIG. 11 is gradually 0% or 100% by making good use of the inspection / evaluation test results conducted through the product manufacturing process as shown in FIG. In this process, if it is judged that the target has not been achieved, it is necessary to review the design judgment at any time in view of cost effectiveness. Although not shown, it is conceivable that the data at the time of operation and maintenance is monitored after shipment and the obtained data is reflected in the design of the next model again.
 このような振動騒音の予測計算技術については、例えば特許文献1に記載される技術があり、格納・管理された設計データを元にして、与えられた条件における振動騒音を予測する技術に関する記述があるが、不確定な要因についての確率推論に関しての取り扱いは具備されていない。また確率推論を具備する技術としては過去の事例から推論する特許文献2に記載される技術や、騒音の種別が特定されていない音源の測定データから、これが分析対象であるか否かを特定するために推論する方法を提示している特許文献3があるが、どちらも設計選択肢に関する費用対効果を提示する技術を具備していない。 As such a vibration noise prediction calculation technique, for example, there is a technique described in Patent Document 1, and there is a description regarding a technique for predicting vibration noise under a given condition based on stored and managed design data. There is, however, no treatment for probabilistic reasoning about uncertain factors. Further, as a technique having probabilistic reasoning, it is specified whether or not this is an analysis object from the technique described in Patent Document 2 inferred from past cases, or measurement data of a sound source for which the type of noise is not specified. For this reason, there is Patent Document 3 which presents a method for inferring, but neither of them has a technology for presenting cost-effectiveness related to design options.
 以上のように、格納・管理された設計データを元に与えられた条件における振動騒音を予測する技術や、音源・加振源の特性や伝達経路の伝達特性など各種条件の不確実性を表現し、最適な選択肢を提示する技術に関しては存在する。しかしながら、上述の特許文献1乃至特許文献3では、振動騒音対策とそれに要するコスト等とはトレードオフの関係にあるものの、各種振動騒音対策の選択肢毎に費用対効果を提示するものではない。 As described above, it expresses the uncertainty of various conditions such as the technology to predict vibration noise under the given conditions based on the stored and managed design data, the characteristics of the sound source / excitation source and the transmission characteristics of the transmission path However, there is a technology that presents the best options. However, in Patent Document 1 to Patent Document 3 described above, although there is a trade-off relationship between the vibration noise countermeasure and the cost required for it, the cost effectiveness is not presented for each option of various vibration noise countermeasures.
 そこで、本発明は、特に、新規に開発する製品の設計時又は既存の製品の改良案の検討時における、振動或いは騒音を抑制する施策の選択肢毎に費用対効果を提示し得る振動騒音対策プラン推奨システムを提供する。 Therefore, the present invention provides a vibration and noise countermeasure plan that can present a cost-effectiveness for each option of measures for suppressing vibration or noise, particularly when designing a newly developed product or considering an improvement plan for an existing product. Provide a recommended system.
 上記課題を解決するため、本発明に係る振動騒音対策プラン推奨システムは、(1)機器の実稼働状態の振動騒音伝達状態及びその寄与率を推定する振動騒音問題要因推定装置と、(2)前記振動騒音問題要因推定装置により生成された振動騒音伝達経路確率推論モデルに基づき事前対応施策実施の有無と事後問題発生抑止率を関連付ける振動騒音問題抑止確度表を生成すると共に、入力される各々の振動騒音問題の抑制施策実施にかかる事前コスト及び問題発生後にかかる事後コストからなる事前事後コストリストに基づきコスト表を生成し、前記振動騒音問題抑止確度表及び前記コスト表に基づきコスト期待値に関する利得表を生成する振動騒音問題費用対効果判定装置と、(3)入力される製品の設計製作の各工程における行動選択と状況判断のツリー構造であるゲーム木と、前記事前事後コストリストを格納する設計データ管理・格納部と、を備え、前記振動騒音問題費用対効果判定装置は、前記ゲーム木における行動選択の各選択肢のコスト期待値に関する利得表を生成しユーザーに提示することを特徴とする。 In order to solve the above-mentioned problems, a vibration noise countermeasure plan recommendation system according to the present invention includes (1) a vibration noise problem factor estimating device for estimating a vibration noise transmission state and a contribution rate of an actual operating state of the device, and (2) Based on the vibration noise transmission path probability reasoning model generated by the vibration noise problem factor estimation device, a vibration noise problem suppression accuracy table that correlates the presence / absence of implementation of a proactive measure and a post-problem occurrence suppression rate is generated and each input A cost table is generated based on a prior cost list consisting of a prior cost for implementing a measure for suppressing vibration noise problems and a subsequent cost after the occurrence of the problem, and a gain related to expected cost based on the vibration noise problem suppression accuracy table and the cost table Vibration and noise problem cost-effectiveness judgment device that generates a table, and (3) action selection in each process of design and production of input products A game tree that is a tree structure for situation determination; and a design data management / storage unit that stores the pre- and post-cost list, and the vibration noise problem cost-effectiveness determination device is configured to select each of action selections in the game tree. It is characterized by generating and presenting to the user a gain table relating to the expected cost of the option.
 本発明によれば、特に、新規に開発する製品の設計時又は既存の製品の改良案の検討時における、振動或いは騒音を抑制する施策の選択肢毎に費用対効果を提示し得る振動騒音対策プラン推奨システムを提供することが可能となる。 
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, a vibration and noise countermeasure plan capable of presenting a cost-effectiveness for each option of a measure for suppressing vibration or noise, particularly when designing a newly developed product or considering an improvement plan for an existing product. It is possible to provide a recommended system.
Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明の一実施例に係る振動騒音問題費用対効果判定装置の機能ブロック図である。It is a functional block diagram of a vibration noise problem cost-effectiveness determination apparatus according to an embodiment of the present invention. 製品の設計・製作工程で得られるデータを元にして行なわれる行動選択と状況判断を説明する図である。It is a figure explaining action selection and situation judgment performed based on data obtained in a product design / production process. 図1に示す振動騒音問題費用対効果判定装置の処理概要を説明する図である。It is a figure explaining the process outline | summary of the vibration noise problem cost-effectiveness determination apparatus shown in FIG. 図3で示した振動騒音対策実施に関する費用対効果判断について図2で示した設計・製作工程中における行動選択と状況判断とともに示した図である。FIG. 4 is a diagram illustrating cost-effectiveness determination regarding the implementation of vibration and noise countermeasures illustrated in FIG. 3 together with action selection and situation determination during the design / production process illustrated in FIG. 2. 本発明の一実施例に係る振動騒音対策プラン推奨システムを構成する振動騒音問題要因推定装置の構成例を説明する図である。It is a figure explaining the structural example of the vibration noise problem factor estimation apparatus which comprises the vibration noise countermeasure plan recommendation system which concerns on one Example of this invention. 図5に示す振動騒音問題要因推定装置を構成する寄与率表示部の画面表示例を示す図である。It is a figure which shows the example of a screen display of the contribution rate display part which comprises the vibration noise problem factor estimation apparatus shown in FIG. 本発明の一実施例に係る振動騒音対策プラン推奨システムの全体概略構成図であって、データと処理を説明する図である。It is a whole schematic block diagram of the vibration noise countermeasure plan recommendation system which concerns on one Example of this invention, Comprising: It is a figure explaining data and a process. 図4で示した設計・製作工程中における行動選択と状況判断が、新たな解決施策の発見によりその判断基準が変わることを説明する図である。FIG. 5 is a diagram for explaining that the selection criteria for action selection and situation determination during the design / production process shown in FIG. 4 change depending on the discovery of a new solution measure. 図8で示した設計・製作工程中における行動選択の結果としての状況判断と、その上で現状での次の行動選択の推奨戦略を説明する図である。It is a figure explaining the situation determination as a result of the action selection in the design and production process shown in FIG. 8, and the recommended strategy of the next action selection in the present condition on that. 従来の振動騒音対策実施可否の判断における問題を説明する図である。It is a figure explaining the problem in judgment of the conventional vibration noise countermeasure implementation feasibility. 従来の振動騒音対策実施可否の判断における他の問題を説明する図である。It is a figure explaining the other problem in judgment of the conventional vibration noise countermeasure implementation feasibility. 製品の設計・製作工程とその過程で行なわれる検査や評価・試験などのデータ抽出作業、更にこれらのデータ抽出作業で得られるデータについて鉄道車両の場合について説明する図である。It is a figure explaining the case of a railroad vehicle about the data extraction work, such as a design / manufacturing process of a product, the test | inspection performed in the process, evaluation, and a test, and the data obtained by these data extraction work.
 以下、図面を用いて本発明の実施例について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は本発明の一実施例に係る振動騒音問題費用対効果判定装置の機能ブロック図であり、図2は製品の設計・製作工程で得られるデータを元にして行なわれる行動選択と状況判断を説明する図であり、図3は図1に示す振動騒音問題費用対効果判定装置の処理概要を説明する図である。 
 図11に示した従来方法では、事前対応施策実施と事後問題発生の間に確実な因果関係が存在することを前提とした判断であり、振動騒音問題に発生するバラツキや不確実性が考慮された確率論的な取り扱がなされていないことが課題であった。また、図12に示したような設計製作工程51が進むにつれて逐次得られるデータ53を活用して、次の施策適用戦略を更新する体系的な仕組みが組み込まれていなかった。図2はこれら工程が進むにつれて評価試験52を行なうことで逐次得られるデータ53について設計判断に適用することについて説明する図である。図2では、設計判断の行動選択54に関する条件分岐とその結果として得られた各工程の評価試験データ53から状況判断55に関する条件分岐を行なうツリーの階層連鎖構造を示しており、それぞれの行動選択54の判断をその論拠とともに履歴として記録したものを、それぞれの工程における知見56として、詳細後述する設計データ管理・格納部59に格納及び/又は更新される。これにより、現在、想定される過去と未来の状況において現状どこにいるかを視覚的に説明することができる。
展開型ゲーム理論では、このような設計製作工程における行動選択や状況判断の分岐図をゲーム木50と称する。この時重要となるのは行動選択54の際の判断論拠である。
FIG. 1 is a functional block diagram of a vibration / noise problem cost-effectiveness determination apparatus according to an embodiment of the present invention, and FIG. 2 is an action selection and situation determination performed based on data obtained in a product design / production process. FIG. 3 is a diagram for explaining the processing outline of the vibration noise problem cost-effectiveness determination apparatus shown in FIG.
The conventional method shown in FIG. 11 is based on the premise that there is a certain causal relationship between the implementation of the proactive measures and the occurrence of the posterior problem, and takes into account variations and uncertainties that occur in the vibration noise problem. The problem was that there was no probabilistic treatment. Further, a systematic mechanism for updating the next measure application strategy using the data 53 obtained sequentially as the design and production process 51 progresses as shown in FIG. 12 has not been incorporated. FIG. 2 is a diagram for explaining the application of the data 53 obtained sequentially by performing the evaluation test 52 to the design judgment as these steps progress. FIG. 2 shows a hierarchical chain structure of a tree that performs conditional branching related to situation determination 55 from evaluation test data 53 of each process obtained as a result of conditional branching related to design selection action selection 54 and each process. What is recorded as a history together with its rationale is stored and / or updated in the design data management / storage unit 59 described later in detail as knowledge 56 in each process. As a result, it is possible to visually explain where the current situation is in the current past and future situations.
In the development type game theory, such a branch diagram of action selection and situation determination in the design and production process is referred to as a game tree 50. What is important at this time is the judgment reasoning for the action selection 54.
 図1に示す本実施例に係る振動騒音問題費用対効果判定装置40では、上述の図11で扱えなかった因果関係の不確実性を確率として取り入れている。図1に示すように、振動騒音問題費用対効果判定装置40は、コスト表生成部41、振動騒音問題抑止確度表生成部42、利得表生成部43、入力I/F44、及び出力I/F45を備える。コスト表生成部41、振動騒音問題抑止確度表生成部42、及び、利得表生成部43は、例えば、図示しないCPU(Central Processing Unit)などのプロセッサ、各種プログラムを格納するROM、演算過程のデータを一時的に格納するRAM、外部記憶装置などの記憶装置にて実現されると共に、CPUなどのプロセッサがROMに格納された各種プログラムを読み出し実行し、実行結果である演算結果をRAM又は外部記憶装置に格納する。振動騒音問題費用対効果判定装置40を構成する、コスト表生成部41、振動騒音問題抑止確度表生成部42、及び利得表生成部43のうち少なくとも1つは、例えばプログラム(例えば、プログラムメモリに格納されたプログラム)によって実現されるよう構成しても良い。換言すれば、コスト表生成部41、振動騒音問題抑止確度表生成部42、及び利得表生成部43のすべてを1つのプログラムに組み込んでも良く、或は、所望の組み合わせを1つのプログラムに組み込んでも良い。 In the vibration noise problem cost-effectiveness determination apparatus 40 according to the present embodiment shown in FIG. 1, the uncertainties of the causal relationship that could not be handled in FIG. 11 described above are incorporated as probabilities. As shown in FIG. 1, the vibration noise problem cost-effectiveness determination device 40 includes a cost table generation unit 41, a vibration noise problem suppression accuracy table generation unit 42, a gain table generation unit 43, an input I / F 44, and an output I / F 45. Is provided. The cost table generation unit 41, the vibration noise problem suppression accuracy table generation unit 42, and the gain table generation unit 43 include, for example, a processor (not shown) such as a CPU (Central Processing Unit), a ROM that stores various programs, and data of calculation processes. Is realized by a storage device such as a RAM and an external storage device, and a processor such as a CPU reads out and executes various programs stored in the ROM, and the operation result as an execution result is stored in the RAM or the external storage. Store in the device. At least one of the cost table generation unit 41, the vibration noise problem suppression accuracy table generation unit 42, and the gain table generation unit 43 constituting the vibration noise problem cost-effectiveness determination device 40 is, for example, a program (for example, in a program memory). The program may be realized by a stored program. In other words, all of the cost table generation unit 41, the vibration noise problem suppression accuracy table generation unit 42, and the gain table generation unit 43 may be incorporated into one program, or a desired combination may be incorporated into one program. good.
 図3に示すように、いま、振動騒音問題に対する事前対応施策を実施したときの事後問題発生抑止率を80%とし、振動騒音問題に対する事前対応施策を実施しなかったときの事後問題発生抑止率を30%と仮定する。すると、戦略立案を行なう際の利得表35はコスト期待値となり、これはコスト表34に対して振動騒音問題抑止確度表32を掛け合わせたものとなる。この利得表35から、事前対応施策実施時のコスト期待値は「3.0」となり、事前対応施策を実施しないときのコスト期待値「3.5」よりも良い戦略であると説明することが出来る。なお、詳細後述するが、振動騒音問題費用対効果判定装置40を構成するコスト表生成部41はコスト表34を生成する機能を有し、振動騒音問題抑止確度表生成部42は振動騒音問題抑止確度表32を生成する機能を有する。また、利得表生成部43は、振動騒音問題抑止確度表生成部42により生成された振動騒音問題抑止確度表32に、コスト表生成部41により生成されたコスト表34を乗ずることにより、利得表35を生成する機能を有する。 
 このような考え方を用いることにより、バラツキが大きいデータや不確実性の大きい施策の費用対効果に対しても、施策費用や重量、他性能への影響なども含めた総合的なコストを最小限にして、要求される仕様を必要十分なぎりぎりのレベルで達成したい場合の最適な施策を判断する効果的な手法となる。
As shown in FIG. 3, the post-problem occurrence suppression rate when the proactive measure for the vibration noise problem is implemented is 80%, and the post-problem occurrence suppression rate when the proactive measure for the vibration noise problem is not implemented. Is assumed to be 30%. Then, the gain table 35 at the time of making a strategy becomes an expected cost value, which is obtained by multiplying the cost table 34 by the vibration noise problem suppression accuracy table 32. From this gain table 35, it can be explained that the expected cost value when implementing the proactive measure is “3.0”, which is a better strategy than the expected cost value “3.5” when not implementing the proactive measure. I can do it. As will be described in detail later, the cost table generation unit 41 constituting the vibration noise problem cost-effectiveness determination device 40 has a function of generating the cost table 34, and the vibration noise problem suppression accuracy table generation unit 42 suppresses the vibration noise problem. A function to generate the accuracy table 32 is provided. Further, the gain table generation unit 43 multiplies the vibration noise problem suppression accuracy table 32 generated by the vibration noise problem suppression accuracy table generation unit 42 by the cost table 34 generated by the cost table generation unit 41, thereby obtaining a gain table. 35 is generated.
By using this concept, the overall cost, including the cost, weight, and other performance impacts, is minimized even for cost-effectiveness of highly variable data and highly uncertain measures. Thus, it is an effective method for determining an optimum measure when it is desired to achieve a required specification at a barely sufficient level.
 図3で説明した振動騒音問題費用対効果判定装置40を構成する利得表生成部43により生成された利得表35を、上述の図2のゲーム木50とともに表したのが図4である。
図4は、行動選択54の際の各選択肢の結果としてもたらされる結果に関して、その各々の状況判断55を、そのときの工程51で得られる試験評価データ53より実行することを表したものであり、これらゲーム木50の各終端における事象の発生確率とそれらのコスト、およびこれらを掛けたコスト期待値を利得表35として示したものである。上述の処理は、すなわち図3で示した振動騒音問題抑止確度表32及びコスト表34から利得表35を算出したのと原理的には同じであり、図4に示す利得表35を作成する過程で図1に示した振動騒音問題費用対効果判定装置40が動作することとなる。なお、図4において、行動選択54および状況判断55より派生する各矢印の上には施策或いは状況の名称を、各矢印の下の[]内にはその行動選択54もしくは状況への対応によって発生するコスト(この場合では目標未達時の挽回コスト)を数値で表している。ここでは一例として、初期の行動選択54において採り得る3つの選択肢「施策A0(施策実施なし:コスト0)」、「施策A1」、「施策A2」のうち,現時点で考えられる各施策の費用とその効果の見通しから判断した結果、「施策A1」が目下のコストは「2」掛かるものの、将来的なコスト期待値の最も小さい最も適切である(図4の場合、各判断のコスト期待値が「3.0」)、と判断される論拠となる利得表35をゲーム木50とともに示している。また、このようなゲーム木50と利得表35をある設計段階での判断論拠として記録し、残しておくことは、後で次機種の設計を行なう際の重要な知見となる。
FIG. 4 shows the gain table 35 generated by the gain table generation unit 43 constituting the vibration noise problem cost-effectiveness determination apparatus 40 described in FIG. 3 together with the game tree 50 of FIG. 2 described above.
FIG. 4 shows that the respective situation judgments 55 are executed from the test evaluation data 53 obtained in the step 51 at that time with respect to the results obtained as the results of the respective options in the action selection 54. The occurrence probability and cost of each event at each end of the game tree 50, and the expected cost value obtained by multiplying them are shown as a gain table 35. The above-described processing is in principle the same as the calculation of the gain table 35 from the vibration noise problem suppression accuracy table 32 and the cost table 34 shown in FIG. 3, and the process of creating the gain table 35 shown in FIG. Thus, the vibration noise problem cost-effectiveness determination apparatus 40 shown in FIG. 1 operates. In FIG. 4, the name of the measure or the situation is shown above each arrow derived from the action selection 54 and the situation judgment 55, and the [] below each arrow is generated by the action selection 54 or the response to the situation. The cost to perform (in this case, the recovery cost when the target is not achieved) is represented by a numerical value. Here, as an example, among the three options “Measure A0 (No Policy Implementation: Cost 0)”, “Measure A1”, and “Measure A2” that can be taken in the initial action selection 54, Judging from the prospect of the effect, although the current cost of “Measure A1” is “2”, it is the most appropriate with the smallest expected cost in the future (in the case of FIG. 4, the expected cost of each judgment is “3.0”) is shown along with the game tree 50 as a reason for determining that “3.0”). In addition, recording and leaving such a game tree 50 and the gain table 35 as a judgment rationale at a certain design stage is important knowledge when designing the next model later.
 図4において、行動選択54および状況判断55より派生する各施策或いは状況の名称については、設計段階にてユーザー(設計者)が入力し設定するものである。また、詳細後述するユーザー(設計者)により入力される事前事後コストリスト33に基づき振動騒音問題費用対効果判定装置40が、各施策の選択肢のコスト期待値を算出する。換言すれば、ゲーム木50は、各設計製作工程(各階層)51において分岐する施策および状況自体はユーザー(設計者)が設定するものの、これら各設計製作工程(各階層)51において施策の分岐および状況(達成見通し、未達見通し)を含めたトータルの施策の組み合わせを網羅的に評価するため、振動騒音問題費用対効果判定装置40が、各施策の選択肢のコスト期待値、すなわち、各判断のコスト期待値を算出する。なお、行動選択54とは、例えば、施策選択肢の抽出を意味する。 In FIG. 4, the name of each measure or situation derived from the action selection 54 and the situation judgment 55 is input and set by the user (designer) at the design stage. Further, the vibration noise problem cost-effectiveness determination device 40 calculates an expected cost value of each option for each measure based on a prior and subsequent cost list 33 input by a user (designer) described later in detail. In other words, in the game tree 50, the policy and the situation itself branching in each design / production process (each level) 51 are set by the user (designer), but the policy branches in each design / production process (each level) 51. In addition, in order to comprehensively evaluate the combination of the total measures including the situation and the prospects (achieved prospects, unachieved prospects), the vibration and noise problem cost-effectiveness judging device 40 is expected to provide the cost expected value of each measure option, that is, each judgment Calculate the expected cost of. The action selection 54 means extraction of measure options, for example.
 図5は、本発明の一実施例に係る振動騒音対策プラン推奨システムを構成する振動騒音問題要因推定装置の構成例を説明する図である。上述の図4に示すゲーム木50とそれに基づく利得表35を得る上で重要となるのが、振動騒音問題費用対効果判定装置40を構成する振動騒音問題抑止確度表生成部42(図1)により生成される振動騒音問題抑止確度表32(図3)である。図5に示す振動騒音問題要因推定装置30は、この振動騒音問題抑止確度表32を構築する上で必要となる。以下、振動騒音問題要因推定装置30の構成について説明する。 
 図5に示すように、振動騒音問題要因推定装置30は、現存する計測対象製品10の実稼働状態における振動や騒音の各種データを抽出する現場データ抽出部11、及び、現場データ抽出部11により抽出された現場の実稼動データを格納する現場データ記憶部12を備える。また、振動騒音問題要因推定装置30は、ユーザー(設計者)20により推定された計測対象製品10の振動騒音の伝達経路及びこの伝達経路をグラフィカルモデルで表現された伝達経路モデル16aを、伝達経路モデルデータ記憶部13へ格納する実験室データ格納部17、音源・伝達特性推定エンジン14、音源・伝達特性確率分布データ記憶部15、寄与率推定エンジン18、及び、寄与率表示部19を備える。音源・伝達特性推定エンジン14、実験室データ格納部17、及び寄与率推定エンジン18は、例えば、図示しないCPU(Central Processing Unit)などのプロセッサ、各種プログラムを格納するROM、演算過程のデータを一時的に格納するRAM、外部記憶装置などの記憶装置にて実現されると共に、CPUなどのプロセッサがROMに格納された各種プログラムを読み出し実行し、実行結果である演算結果をRAM又は外部記憶装置に格納する。
FIG. 5 is a diagram for explaining a configuration example of a vibration noise problem factor estimation device constituting a vibration noise countermeasure plan recommendation system according to an embodiment of the present invention. What is important in obtaining the game tree 50 and the gain table 35 based thereon shown in FIG. 4 is the vibration noise problem suppression accuracy table generation unit 42 (FIG. 1) constituting the vibration noise problem cost-effectiveness determination device 40. FIG. 3 is a vibration noise problem suppression accuracy table 32 (FIG. 3) generated by The vibration noise problem factor estimation device 30 shown in FIG. 5 is necessary for constructing the vibration noise problem suppression accuracy table 32. Hereinafter, the configuration of the vibration noise problem factor estimation device 30 will be described.
As shown in FIG. 5, the vibration noise problem factor estimation device 30 includes an on-site data extraction unit 11 that extracts various types of vibration and noise data in the actual operation state of the existing measurement target product 10, and an on-site data extraction unit 11. An on-site data storage unit 12 is provided for storing the extracted actual operation data on the site. Further, the vibration noise problem factor estimating device 30 generates a transmission path model 16a in which the vibration noise transmission path of the measurement target product 10 estimated by the user (designer) 20 and the transmission path is expressed by a graphical model. A laboratory data storage unit 17 to be stored in the model data storage unit 13, a sound source / transfer characteristic estimation engine 14, a sound source / transfer characteristic probability distribution data storage unit 15, a contribution rate estimation engine 18, and a contribution rate display unit 19 are provided. The sound source / transfer characteristic estimation engine 14, the laboratory data storage unit 17, and the contribution rate estimation engine 18 are, for example, a processor (not shown) such as a CPU (Central Processing Unit), a ROM for storing various programs, and data of calculation processes temporarily. Is realized by a storage device such as a RAM and an external storage device, and a processor such as a CPU reads out and executes various programs stored in the ROM, and the operation result as an execution result is stored in the RAM or the external storage device. Store.
 音源・伝達特性推定エンジン14は、現場データ記憶部12に格納された複数の実稼動現場データと、伝達経路モデルデータ記憶部13に格納され、ユーザー(設計者)20によって選択された伝達経路モデル16aとに基づき、伝達経路モデル16aの各伝達経路に対応する音源・伝達特性の確率分布を推定する。音源・伝達特性推定エンジン14は、推定した音源・伝達特性の確率分布を音源・伝達特性確率分布データ記憶部15に格納する。 
 寄与率推定エンジン18は、伝達経路モデルデータ記憶部13に格納された伝達経路モデル16a、音源・伝達特性確率分布データ記憶部15に格納された音源・伝達特性確率分布データ、及び現場データ記憶部12に格納された複数の実稼動現場データに基づき振動騒音寄与率を算出する。寄与率推定エンジン18は、算出した振動騒音寄与率を寄与率表示部19へ出力する。ユーザー(設計者)20は、寄与率表示部19を操作することにより、計測対象製品10の所定の部分構造要素に対する寄与率を寄与率表示部19の図示しない表示画面に表示し、これを元に計測対象製品全体への影響度合いや、構造変更を計画する時の費用対効果に関する確率論的な推論結果を得ることができる。 
 なお、計測対象製品10の出荷前試験や定期検査試験などで取得した音源・伝達特性確率分布データ16bは、実験室データ格納部17によって、ユーザー(設計者)20により、音源・伝達特性確率分布データ記憶部15へ格納・更新することも可能である。
The sound source / transfer characteristic estimation engine 14 includes a plurality of actual operation site data stored in the site data storage unit 12 and a transfer path model stored in the transfer route model data storage unit 13 and selected by the user (designer) 20. 16a, the probability distribution of the sound source / transfer characteristic corresponding to each transfer path of the transfer path model 16a is estimated. The sound source / transfer characteristic estimation engine 14 stores the estimated probability distribution of the sound source / transfer characteristic in the sound source / transfer characteristic probability distribution data storage unit 15.
The contribution rate estimation engine 18 includes a transmission path model 16a stored in the transmission path model data storage unit 13, a sound source / transfer characteristic probability distribution data stored in the sound source / transfer characteristic probability distribution data storage unit 15, and a field data storage unit. The vibration noise contribution rate is calculated on the basis of a plurality of actual operation site data stored in 12. The contribution rate estimation engine 18 outputs the calculated vibration noise contribution rate to the contribution rate display unit 19. The user (designer) 20 operates the contribution rate display unit 19 to display the contribution rate with respect to a predetermined partial structural element of the measurement target product 10 on a display screen (not shown) of the contribution rate display unit 19. In addition, it is possible to obtain a probabilistic inference result regarding the degree of influence on the entire measurement target product and the cost effectiveness when planning a structural change.
Note that the sound source / transfer characteristic probability distribution data 16b acquired in the pre-shipment test or the periodic inspection test of the measurement target product 10 is generated by the user (designer) 20 by the laboratory data storage unit 17 by the sound source / transfer characteristic probability distribution. It is also possible to store and update the data storage unit 15.
 上述のように実験室データ格納部17によってユーザー(設計者)20が、伝達経路モデルデータ記憶部13及び音源・伝達特性確率分布データ記憶部15にそれぞれ格納できる伝達経路モデル16aや音源・伝達特性確率分布データ16bは、実験室での測定結果や解析結果によって検討したり算出したりすることができ、これによって検討対象製品の振動騒音モデルを更新し改善することができる。そのため、ここではこれら伝達経路モデル16aと音源・伝達特性確率分布データ16bをまとめて実験室データ16と称すこととする。 As described above, the laboratory data storage unit 17 allows the user (designer) 20 to store the transmission path model 16a and the sound source / transfer characteristics that can be stored in the transmission path model data storage unit 13 and the sound source / transfer characteristic probability distribution data storage unit 15, respectively. The probability distribution data 16b can be examined and calculated based on laboratory measurement results and analysis results, thereby updating and improving the vibration noise model of the product to be examined. For this reason, the transfer path model 16a and the sound source / transfer characteristic probability distribution data 16b are collectively referred to as laboratory data 16 here.
 上述の音源・伝達特性推定エンジン14による確率論的推定のアルゴリズムとしては、例えば、ベイジアンネットワークと呼ばれる手法が用いられる。ベイジアンネットワークとは、事象Hとその下で得られるデータDについて因果関係を仮定した上で、事象H発生の下でのデータDが発生する条件付き確率密度分布を尤度P(D|H)として事前に持っておき、実際の現場でデータDが得られたときに、そのデータが得られうる事象Hの発生確率を、先に示した事象Hに対するデータDの尤度P(D|H)をもとに推定する手法である。 As an algorithm for the probabilistic estimation by the above-described sound source / transfer characteristic estimation engine 14, for example, a technique called a Bayesian network is used. A Bayesian network assumes a causal relationship between an event H and data D obtained thereunder, and a conditional probability density distribution in which the data D occurs under the occurrence of the event H is a likelihood P (D | H). And the probability of occurrence of the event H from which the data D 1 can be obtained when the data D 1 is obtained at the actual site is the likelihood P (D of the data D 1 for the event H shown above. 1 | H) is an estimation method.
 例えば、実稼働試験など、加振力Fや音源Nなどの信号と評価点の振動騒音Sを直接測定できる場合、まず学習フェーズにおいてそれらの間の伝達特性H=S/F、およびH=S/Nを逆算し、その結果H,Hに対する評価点の振動騒音Sの条件付き確率密度分布を尤度P(S|H∩H)としてデータベース化しておき、音源・伝達特性確率分布データ記憶部15に格納する。次に、推定フェーズにおいて、実稼動時における評価点の振動騒音Sを得た後,このデータが観測し得る伝達特性H,Hに関する尤度P(S|H∩H)を観測信号の数だけ順次掛け合わせることによって、実稼動時の伝達特性H,Hを確率論的に同定することができる。 For example, when the vibration noise S i at the evaluation point and the signal such as the excitation force F or the sound source N can be directly measured in an actual operation test or the like, first, in the learning phase, the transfer characteristic H 1 = S i / F between them and H 2 = S i / N is calculated backward, and as a result, the conditional probability density distribution of the vibration noise S i at the evaluation point for H 1 and H 2 is converted into a database as likelihood P (S i | H 1 ∩H 2 ). And stored in the sound source / transfer characteristic probability distribution data storage unit 15. Then, the estimated phase, after obtaining the vibration noise S n of the evaluation point at the time of actual operation, the transmission characteristic data can be observed H 1, likelihood relates H 2 P (S n | H 1 ∩H 2) Are sequentially multiplied by the number of observation signals, and the transfer characteristics H 1 and H 2 during actual operation can be identified probabilistically.
 なお、音源と伝達特性は掛け合わせて評価点の振動騒音になる点において互いに可換である。よって、上記手法を逆手に取れば、実稼動時に直接測定が困難な加振源や音源の同定にも用いることができる。例えば、出荷前試験などで任意の加振力F或いは音源Nと評価点の振動騒音Sの間の尤度P(S|F∩N)を取得し、これをデータベース化して、音源・伝達特性確率分布データ記憶部15に格納する。次いで、実稼動時に取得された評価点の振動騒音Sから、このデータが観測しうる加振力F或いは音源Nに関する尤度の確率密度P(S|F∩N)を観測信号の数だけ順次掛け合わせることによって、実稼動時の加振力や音源の大きさを確率論的に同定することができる。 It should be noted that the sound source and the transfer characteristic are interchangeable in that they are multiplied by the vibration noise at the evaluation point. Therefore, if the above method is taken in reverse, it can be used for identification of excitation sources and sound sources that are difficult to measure directly during actual operation. For example, an arbitrary excitation force F or likelihood P (S i | F∩N) between the sound source N and the vibration noise S i at the evaluation point is acquired in a pre-shipment test or the like, and this is converted into a database. It is stored in the transfer characteristic probability distribution data storage unit 15. Next, the probability density P (S n | F∩N) of the excitation force F or the sound source N that can be observed from this vibration noise S n at the evaluation point acquired during actual operation is the number of observation signals. By sequentially multiplying only, the excitation force and the size of the sound source during actual operation can be identified stochastically.
 このようにして、現行機種における加振力・音源特性と伝達特性を推定することで、現行機種における評価点振動騒音の寄与が確率論的に算出され、これを元に次機種の仕様や設計指針を検討できる。 
 またその後、次機種完成時に出荷前試験において、次機種の加振力や音源に対する評価点振動騒音の伝達特性の尤度データを取得しておき、これに上述の現行機種の加振力・音源の確率論的同定結果を掛け合わせることにより、次機種の運転時の評価点振動騒音を運転前に事前に確率論的に予測することができる。なお、上述の評価点は、基本的にはユーザー(設計者)20が設定するものの、センサ等により実測データを計測できない部分につては、評価点として設定はできない。
In this way, by estimating the excitation force / sound source characteristics and transfer characteristics in the current model, the contribution of the evaluation point vibration noise in the current model is probabilistically calculated, and based on this, the specifications and design of the next model are calculated. Guideline can be considered.
After that, when the next model is completed, in the pre-shipment test, the likelihood data of the next model's excitation force and the transmission characteristics of the evaluation point vibration noise for the sound source are acquired, and the excitation force / sound source of the current model described above is obtained. By multiplying the probabilistic identification results, the evaluation point vibration noise during operation of the next model can be predicted probabilistically in advance before operation. The above-mentioned evaluation points are basically set by the user (designer) 20, but cannot be set as evaluation points for portions where measured data cannot be measured by sensors or the like.
 図6は、図5に示す振動騒音問題要因推定装置30を構成する寄与率表示部19の画面表示例を示す図である。図6に示すように、寄与率表示部19の表示画面は、グラフィカルモデルで示された伝達経路モデルを表示する伝達経路グラフィカルモデル表示領域19a、寄与率の周波数特性を表す二次元グラフを表示する寄与率二次元グラフ表示領域19b、及び設計判断材料を表示する影響度・確率判断要素表示領域19cから構成されている。伝達経路グラフィカルモデル表示領域19a内に表示される伝達経路を表すグラフィカルモデル上において例えばマウスポインタ等により所望の要素が選択されると、その要素に関わる音源・伝達特性のバラツキが全体の推定結果にどの程度影響するかが、寄与率二次元グラフ表示領域19b内の二次元グラフ上に表示される。具体的には、図6に示すように、伝達経路グラフィカルモデル表示領域19a内で選択した要素に関わる音源・伝達特性のバラツキから、その要素を経由する振動騒音の寄与率の上限や下限、若しくは信頼区間が寄与率二次元グラフ表示領域19bに表示される。この図を元に、選択した要素の振動騒音特性のバラツキが全体系の振動騒音特性へ与える影響、具体的には上振れおよび下振れの程度とその確率が判断できる。例えば図4では、寄与率二次元グラフ表示領域19b内において評価点騒音の周波数特性を黒太線で示しており、このうちの選択した要素の寄与率の中央値を灰色線で、バラツキを信頼区間(縦バー)で示しており、この寄与率の不確実性による評価点騒音の振れ幅を灰色破線で示している。また、その結果として評価点騒音が25%の確率で2dB以上上振れし、5%の確率で2dB以上下振れする可能性を影響度・確率判断要素表示領域19cに示している。 
 また、このような影響度算出結果を更に処理すれば、評価点における振動騒音を抑制するために検討が必要な構造要素を、対策の優先順に表示される機能を具備させることも可能である。
FIG. 6 is a diagram showing a screen display example of the contribution rate display unit 19 constituting the vibration noise problem factor estimating device 30 shown in FIG. As shown in FIG. 6, the display screen of the contribution rate display unit 19 displays a transfer path graphical model display area 19 a that displays the transfer path model indicated by the graphical model, and a two-dimensional graph that represents the frequency characteristics of the contribution rate. A contribution rate two-dimensional graph display area 19b and an influence / probability determination element display area 19c for displaying design determination materials are configured. When a desired element is selected by a mouse pointer or the like on the graphical model representing the transmission path displayed in the transmission path graphical model display area 19a, variations in sound source / transfer characteristics related to the element are included in the overall estimation result. The degree of influence is displayed on the two-dimensional graph in the contribution rate two-dimensional graph display area 19b. Specifically, as shown in FIG. 6, from the variation of the sound source / transfer characteristics related to the element selected in the transfer path graphical model display area 19a, the upper limit and lower limit of the contribution ratio of vibration noise passing through the element, or The confidence interval is displayed in the contribution rate two-dimensional graph display area 19b. Based on this figure, it is possible to determine the influence of the variation in the vibration noise characteristics of the selected elements on the vibration noise characteristics of the entire system, specifically the degree and probability of upward and downward vibrations. For example, in FIG. 4, the frequency characteristic of the evaluation point noise is indicated by a thick black line in the contribution rate two-dimensional graph display area 19b, and the median of the contribution rate of the selected element is indicated by a gray line, and the variation is represented by a confidence interval. (Vertical bar), and the fluctuation width of the evaluation point noise due to the uncertainty of the contribution rate is indicated by a gray broken line. As a result, the possibility / risk judgment element display area 19c shows the possibility that the evaluation point noise will increase by 2 dB or more with a probability of 25% and decrease by 2 dB or more with a probability of 5%.
Further, if such an influence degree calculation result is further processed, it is possible to provide a function for displaying structural elements that need to be examined in order to suppress vibration noise at the evaluation point in order of priority of countermeasures.
 図7は、本実施例に係る振動騒音対策プラン推奨システム1の全体概略構成図であって、データと処理を説明する図である。 
 図7に示すように、振動騒音対策プラン推奨システム1は、上述の図5に示した振動騒音問題要因推定装置30、図1に示した振動騒音問題費用対効果判定装置40、及び設計データ管理・格納部59より構成される。振動騒音問題要因推定装置30が振動騒音伝達経路確率推論モデル31を自動生成すると、振動騒音問題費用対効果判定装置40を構成する振動騒音問題抑止確度表生成部42は、生成された振動騒音伝達経路確率推論モデル31に基づき振動騒音問題抑止確度表32を生成する。なお、振動騒音問題抑止確度表32の生成については、振動騒音問題抑止確度表生成部42が振動騒音伝達経路確率推論モデル31に基づき生成することに代えて、生成された振動騒音伝達経路確率推論モデル31に基づき振動騒音問題抑止確度表32が自動生成される構成としても良い。 
 ユーザー(設計者)20は、製品の設計製作工程における行動選択と状況判断のツリー構造であるゲーム木50、さらに各々の行動選択における各振動騒音問題の抑制施策実施にかかる事前コスト、および問題発生後にかかる事後コストを見積もり、事前事後コストリスト33として入力すると、これらは一旦、設計データ管理・格納部59に格納される。振動騒音問題費用対効果判定装置40を構成するコスト表生成部41は、入力I/F44を介して設計データ管理・格納部59に入力されたゲーム木50および事前事後コストリスト33を入力する。そして、コスト表生成部41は、ゲーム木50および事前事後コストリスト33に基づき各行動選択54(図4)における各選択肢のコスト表34を生成する。振動騒音問題費用対効果判定装置40を構成する利得表生成部43は、振動騒音問題抑止確度表生成部42により生成された振動騒音問題抑止確度表32と、コスト表生成部41により生成されたコスト表34に基づき工程中のある行動選択54における各選択肢の利得表35を生成する。振動騒音問題費用対効果判定装置40は、その行動選択54における最適な適用施策と共にその施策を実施した時の予想振動騒音レベルや寄与率などをそのバラツキやその変動幅も含めて、出力I/F45を介して、振動騒音問題要因推定装置30を構成する寄与率表示部19へ出力する。これにより、寄与率表示部19の表示画面上には、例えば上述の図6に示した表示情報、換言すれば、新規に開発する製品の設計時又は既存の製品の改良案の検討時における、振動或いは騒音を抑制する施策に対する評価情報を、容易に視認することが可能となる。なお、寄与率表示部19での表示に関しては、図6のようにある設計製作工程51における選択肢判断のための寄与率二次元グラフを表示しても良く、図4のように全体工程51におけるゲーム木50と利得表35を並べて表示しても良い。また図4のようにゲーム木50と利得表35を並べて表示する場合は、その時点においてコスト期待値の最も小さい推奨戦略を連鎖的に強調表示(設計製作工程51の最上流から最下流(終端)までのルートを強調表示(ハイライト表示、他の識別可能に表示))する構成とすることが望ましい。このようにすることで、現在の状況と今後の見通し、および最適戦略を工程全体の中で俯瞰することが可能となる。
FIG. 7 is an overall schematic configuration diagram of the vibration and noise countermeasure plan recommendation system 1 according to the present embodiment, and is a diagram for explaining data and processing.
As shown in FIG. 7, the vibration noise countermeasure plan recommendation system 1 includes the vibration noise problem factor estimation device 30 shown in FIG. 5, the vibration noise problem cost effectiveness determination device 40 shown in FIG. 1, and design data management. A storage unit 59 is included. When the vibration noise problem factor estimation device 30 automatically generates the vibration noise transmission path probability inference model 31, the vibration noise problem suppression accuracy table generation unit 42 constituting the vibration noise problem cost effectiveness determination device 40 generates the generated vibration noise transmission. Based on the path probability inference model 31, a vibration noise problem suppression accuracy table 32 is generated. The generation of the vibration noise problem suppression accuracy table 32 is not generated by the vibration noise problem suppression accuracy table generation unit 42 based on the vibration noise transmission path probability inference model 31, but is generated. The vibration noise problem suppression accuracy table 32 may be automatically generated based on the model 31.
The user (designer) 20 has a game tree 50 that is a tree structure of action selection and situation determination in the product design and production process, and prior costs for implementing measures for suppressing each vibration and noise problem in each action selection, and occurrence of problems. When the subsequent cost is estimated and input as the prior and subsequent cost list 33, these are temporarily stored in the design data management / storage unit 59. The cost table generation unit 41 constituting the vibration noise problem cost-effectiveness determination apparatus 40 inputs the game tree 50 and the pre-post and post-cost list 33 input to the design data management / storage unit 59 via the input I / F 44. Then, the cost table generation unit 41 generates a cost table 34 for each option in each action selection 54 (FIG. 4) based on the game tree 50 and the pre- and post-cost list 33. The gain table generation unit 43 constituting the vibration noise problem cost effectiveness determination device 40 is generated by the vibration noise problem suppression accuracy table 32 generated by the vibration noise problem suppression accuracy table generation unit 42 and the cost table generation unit 41. Based on the cost table 34, a gain table 35 for each option in an action selection 54 in the process is generated. The vibration noise problem cost-effectiveness determination device 40 outputs the output I / O including the optimum applied measure in the action selection 54 and the expected vibration noise level and contribution rate when the measure is implemented, including the variation and the fluctuation range thereof. It outputs to the contribution rate display part 19 which comprises the vibration noise problem factor estimation apparatus 30 via F45. Thereby, on the display screen of the contribution rate display unit 19, for example, the display information shown in FIG. 6 described above, in other words, at the time of designing a product to be newly developed or at the time of examining an improvement plan of an existing product, Evaluation information for measures for suppressing vibration or noise can be easily visually confirmed. As for the display on the contribution rate display unit 19, a contribution rate two-dimensional graph for option judgment in a certain design / production process 51 as shown in FIG. 6 may be displayed, and in the overall process 51 as shown in FIG. The game tree 50 and the gain table 35 may be displayed side by side. In addition, when the game tree 50 and the gain table 35 are displayed side by side as shown in FIG. 4, the recommended strategy with the smallest cost expectation value at that time is highlighted in a chained manner (from the most upstream to the most downstream (end) of the design and production process 51. ) Is preferably highlighted (highlighted or otherwise distinguishable)). By doing in this way, it becomes possible to look down on the present situation, future prospects, and optimum strategy in the whole process.
 図8は、図4で示した設計・製作工程中における行動選択と状況判断が、新たな解決施策の発見によりその判断基準が変わることを説明する図である。すなわち、図8では、先々の工程における目標達成にむけた挽回策として新規発見解決施策57を見出したことで、初期の戦略が変化する様子を一例として示している。具体的には、図4に示した状況下の工程Aにおいてコスト「0」の施策A0を実施したとき、その後、工程Aにおける評価試験にて目標未達見通しとなった際の対応方法として、工程Bでの施策において追加コスト「2」を払う施策B1を実施することによって、比較的高い確率で目標を達成できる見通しを得た後の状況を示したものであり、このときの工程Aにおける戦略(施策A0)を適用した場合のコスト期待値が「2.4」となって、当初案である工程Aにおいて施策A1を実施したときのコスト期待値「3.0」よりも小さくなることを示している。すなわち、上述の新規発見解決施策57を見出したことで、工程Aでは当初の戦略である施策A1よりも、よりコストの掛からない施策A0を選択しても後で挽回できるため問題ないと判断が更新されたこととなる。このように本実施例ではその時点での検討施策の問題抑止確度の推定結果を随時反映して、利得表35を見直すことにより、現時点での最新の知見を用いた最適判断を示すことができる。 FIG. 8 is a diagram for explaining that the selection criteria for action selection and situation judgment during the design / production process shown in FIG. 4 change depending on the discovery of a new solution measure. That is, FIG. 8 shows, as an example, how the initial strategy is changed by finding a new discovery solution measure 57 as a recovery measure for achieving the target in the previous process. Specifically, when the measure A0 of the cost “0” is performed in the process A under the situation shown in FIG. 4, as a response method when the target is not reached in the evaluation test in the process A, This shows the situation after the prospect of achieving the target with a relatively high probability by implementing the measure B1 that pays the additional cost “2” in the measure in the process B. The expected cost value when applying the strategy (measure A0) is “2.4”, which is smaller than the expected cost value “3.0” when the measure A1 is implemented in the initial process A. Is shown. That is, by finding the above-mentioned new discovery solution measure 57, it is determined that there is no problem in process A because even if measure A0 that is less costly than measure A1, which is the initial strategy, can be recovered later. It will be updated. As described above, in the present embodiment, the optimum judgment using the latest knowledge at the present time can be shown by reflecting the estimation result of the problem suppression accuracy of the examination measure at that time as needed and reviewing the gain table 35. .
 図9は、図8で示した設計・製作工程中における行動選択の結果としての状況判断と、その上で現状での次の行動選択の推奨戦略を説明する図である。すなわち、図9では、上述の図8に示す状況において、実際に施策A0を実施した後に目標未達になった状況を表しており、さらにその時点での施策B1の振動騒音問題抑止確度を調査した結果、図8に示した当初想定よりも悪化した状況を示している。図9に示すようにこの時点での施策B1実施時のコスト期待値は、上述の振動騒音問題抑止確度悪化の影響で「5.5」に増大し、目標未達が必至な実施コスト「0」の施策B0を実施の後、目標未達による事後コスト「5.0」を払うほうが良いという判断となる。この場合は後になって、当初想定した施策B1の振動騒音問題抑止確度の目論見が甘かったことにより、結局「工程Aにおいて施策A0を実施した」という誤った判断を下したことになるのであるが、このような図9に示すように形態で記録として残し、さらに施策B1の振動騒音問題抑止確度について最新の結果を次機種設計でも活用することにより、次機種の設計に生かされ同様な誤判断を未然に防ぐことが可能となる。 FIG. 9 is a diagram for explaining a situation determination as a result of action selection during the design / production process shown in FIG. 8 and a recommended strategy for the next action selection in the current situation. That is, FIG. 9 shows the situation where the target is not reached after actually implementing the measure A0 in the situation shown in FIG. 8 above, and further investigates the vibration noise problem suppression accuracy of the measure B1 at that time. As a result, the situation worsened from the initial assumption shown in FIG. As shown in FIG. 9, the expected cost value at the time of implementation of the measure B1 at this time increases to “5.5” due to the above-described deterioration of the vibration noise problem suppression accuracy, and the implementation cost “0” that the target cannot be achieved is inevitable. After implementing the measure B0, it is determined that it is better to pay the post-cost “5.0” for not achieving the target. In this case, later, because the prospect of the vibration noise problem suppression accuracy of measure B1 that was initially assumed was unsatisfactory, an erroneous determination was made that “measure A0 was implemented in process A”. As shown in FIG. 9, such a record is recorded in the form, and the latest result of the vibration noise problem suppression accuracy of the measure B1 is also utilized in the next model design. Can be prevented in advance.
 また図が複雑になるため図には示さないが、工程を1つ戻すという選択肢を設けても良い。すなわち、設計変更手戻りによるコストとその設計変更後のコスト期待値の合算よりも、現行方針を強行するときのコスト期待値のほうが大きいと判断される場合は、工程を1つ戻すという選択肢が最善であり、本実施例はそれを客観的で合理的な論拠として示すのに有効である。具体的には図9で工程Bまで進んだ現状において、工程Aで施策A1を実施した場合の目標達成確率が100%であったことが後になって分かり、さらに、施策Bの現状から施策Aに戻すのが比較的容易で、その手戻りコストが「2」であった場合を考える。この場合、工程を工程Aから工程Bに戻して更に施策A1を実施するときの合計コストが「4」となり、さらに、工程を戻した後に施策A1を実施したときの目標達成確率が100%であることが分かっているのであるから、コスト期待値は「4.0」となって、現状で施策B0を実施するよりも、また施策B1を実施するよりも最もコスト期待値の低い戦略となる。 Also, since the figure is complicated, it is not shown in the figure, but an option of returning one process may be provided. In other words, if it is determined that the expected cost when the current policy is enforced is greater than the sum of the cost due to redesign and the expected cost after the design change, there is an option to return one step. It is best and this embodiment is effective to show it as an objective and rational argument. Specifically, in the current situation where the process has progressed to process B in FIG. 9, it can be seen later that the target achievement probability when implementing the process A1 in process A was 100%. Let us consider a case where the return cost is relatively easy and the return cost is “2”. In this case, the total cost when the process A is returned from the process A to the process B and the measure A1 is further implemented is “4”, and the target achievement probability when the measure A1 is implemented after returning the process is 100%. Since it is known, the expected cost value is “4.0”, which is the strategy with the lowest expected cost value compared to implementing the measure B0 and implementing the measure B1. .
 以上の通り本実施例によれば、特に、新規に開発する製品の設計時又は既存の製品の改良案の検討時における、振動或いは騒音を抑制する施策の選択肢毎に費用対効果を提示し得る振動騒音対策プラン推奨システムを提供することが可能となる。 
 また、本実施例によれば、課題である音源や加振源および伝達経路や,任意の要素の変更が構造全体の振動騒音に及ぼす影響度合い,さらには構造変更の費用対効果に関する確率論的な推論が可能となり,振動や騒音の抑制に向けた合理的な判断を下すための判断材料を提供することができる。さらに,設計・製作工程が進むにつれて,得られたデータを元にこれらの確率が随時更新されるため,その時点における最適戦略が論拠とともに表示される。そのため,複数の設計者間で各施策の費用対効果について客観的な情報として共有されることとなり,設計方針に関する意思決定が円滑化される。また事後にその時点での設計判断がトレースすることができ,将来の設計にその判断戦略を過去の経験知として有効に活用することが可能となる。
As described above, according to the present embodiment, it is possible to present cost-effectiveness for each option of a measure for suppressing vibration or noise, particularly when designing a newly developed product or considering an improvement plan for an existing product. It is possible to provide a vibration noise countermeasure plan recommendation system.
In addition, according to this embodiment, the problem of the sound source, excitation source and transmission path, the degree of influence of changes in arbitrary elements on the vibration noise of the entire structure, and the probabilistic theory regarding the cost effectiveness of the structure change. Reasoning is possible, and it is possible to provide a judgment material for making a rational judgment for suppressing vibration and noise. Furthermore, as the design / production process progresses, these probabilities are updated as needed based on the obtained data, so the optimal strategy at that time is displayed along with the rationale. For this reason, the cost-effectiveness of each measure is shared as objective information among a plurality of designers, and the decision-making regarding the design policy is facilitated. In addition, design decisions at that time can be traced after the fact, and the decision strategy can be used effectively as past experience knowledge for future designs.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。
例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
In addition, this invention is not limited to an above-described Example, Various modifications are included.
For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
1…振動騒音対策プラン推奨システム、10…計測対象製品、11…現場データ抽出部、12…現場データ記憶部、13…伝達経路モデルデータ記憶部、14…音源・伝達特性推定エンジン、15…音源・伝達特性確率分布データ記憶部、16…実験室データ、16a…伝達経路モデル、16b…音源・伝達特性確率分布データ、17…実験室データ格納部、18…寄与率推定エンジン、19…寄与率表示部、19a…伝達経路グラフィカルモデル表示領域、19b…寄与率二次元グラフ表示領域、19c…影響度・確率判断要素表示領域、20…ユーザー(設計者)、30…振動騒音問題要因推定装置、31…振動騒音伝達経路確率推論モデル、32…振動騒音問題抑止確度表、33…事前事後コストリスト、34…コスト表、35…利得表、40…振動騒音問題費用対効果判定装置、41…コスト表生成部、42…振動騒音問題抑止確度表生成部、43…利得表生成部、44…入力I/F、45…出力I/F、50…ゲーム木(設計製作工程における行動判断および状況認識の分岐図)、51…設計製作工程、52…設計製作工程で行なわれる検査や評価,試験などのデータ抽出作業、53…設計製作工程で得られるデータ、54…設計製作工程における行動選択、55…設計製作工程における状況判断、56…設計製作工程への反映知見、57…新規発見解決施策、59…設計データ管理・格納部 DESCRIPTION OF SYMBOLS 1 ... Vibration noise countermeasure plan recommendation system, 10 ... Product to be measured, 11 ... Site data extraction part, 12 ... Site data storage part, 13 ... Transmission path model data storage part, 14 ... Sound source and transfer characteristic estimation engine, 15 ... Sound source Transfer characteristic probability distribution data storage unit 16 ... laboratory data, 16a ... transfer path model, 16b ... sound source / transfer characteristic probability distribution data, 17 ... laboratory data storage unit, 18 ... contribution rate estimation engine, 19 ... contribution rate Display unit 19a ... Transmission path graphical model display area 19b ... Contribution rate two-dimensional graph display area 19c ... Influence / probability judgment element display area 20 ... User (designer) 30 ... Vibration noise problem factor estimation device, 31 ... Vibration noise transmission path probability reasoning model, 32 ... Vibration noise problem suppression accuracy table, 33 ... Pre- and post-cost list, 34 ... Cost table, 35 ... Gain , 40 ... Vibration noise problem cost effectiveness determination device, 41 ... Cost table generation unit, 42 ... Vibration noise problem suppression accuracy table generation unit, 43 ... Gain table generation unit, 44 ... Input I / F, 45 ... Output I / F 50 ... Game tree (branch diagram of action judgment and situation recognition in the design and production process), 51 ... Design and production process, 52 ... Data extraction work such as inspection, evaluation, and test performed in the design and production process, 53 ... Design and production process 54 ... Action selection in the design production process, 55 ... Situation judgment in the design production process, 56 ... Reflection knowledge in the design production process, 57 ... New discovery solution measure, 59 ... Design data management / storage unit

Claims (8)

  1.  機器の実稼働状態の振動騒音伝達状態及びその寄与率を推定する振動騒音問題要因推定装置と、
     前記振動騒音問題要因推定装置により生成された振動騒音伝達経路確率推論モデルに基づき事前対応施策実施の有無と事後問題発生抑止率を関連付ける振動騒音問題抑止確度表を生成すると共に、入力される各々の振動騒音問題の抑制施策実施にかかる事前コスト及び問題発生後にかかる事後コストからなる事前事後コストリストに基づきコスト表を生成し、前記振動騒音問題抑止確度表及び前記コスト表に基づきコスト期待値に関する利得表を生成する振動騒音問題費用対効果判定装置と、
     入力される製品の設計製作の各工程における行動選択と状況判断のツリー構造であるゲーム木と、前記事前事後コストリストを格納する設計データ管理・格納部と、を備え、
     前記振動騒音問題費用対効果判定装置は、前記ゲーム木における行動選択の各選択肢のコスト期待値に関する利得表を生成しユーザーに提示することを特徴とする振動騒音対策プラン推奨システム。
    Vibration noise problem factor estimating device for estimating vibration noise transmission state of equipment in actual operation state and its contribution rate;
    Based on the vibration noise transmission path probability reasoning model generated by the vibration noise problem factor estimation device, a vibration noise problem suppression accuracy table that correlates the presence / absence of implementation of a proactive measure and a post-problem occurrence suppression rate is generated and each input A cost table is generated based on a prior cost list consisting of a prior cost for implementing a measure for suppressing vibration noise problems and a subsequent cost after the occurrence of the problem, and a gain related to expected cost based on the vibration noise problem suppression accuracy table and the cost table Vibration and noise problem cost-effectiveness determination device to generate a table;
    A game tree that is a tree structure of action selection and situation determination in each process of design and production of an input product, and a design data management / storage unit that stores the pre-post and post-cost list,
    The vibration / noise problem cost-effectiveness determination device generates a gain table regarding expected cost values of each option of action selection in the game tree and presents it to a user.
  2.  請求項1に記載の振動騒音対策プラン推奨システムにおいて、
     前記ゲーム木における行動選択の各選択肢のコスト期待値に関する利得表と、当該ゲーム木とを並べて表示部に表示することを特徴とする振動騒音対策プラン推奨システム。
    In the vibration and noise countermeasure plan recommendation system according to claim 1,
    A vibration noise countermeasure plan recommendation system characterized in that a gain table relating to an expected cost value of each option of action selection in the game tree and the game tree are displayed side by side on a display unit.
  3.  請求項1に記載の振動騒音対策プラン推奨システムにおいて、
     前記ゲーム木における行動選択の各選択肢のコスト期待値に関する利得表に基づき、コスト期待値の最も小さい推奨戦略を連鎖的にゲーム木中に強調表示する表示部を有することを特徴とする振動騒音対策プラン推奨システム。
    In the vibration and noise countermeasure plan recommendation system according to claim 1,
    An anti-vibration measure characterized by having a display unit that highlights a recommended strategy having the smallest cost expected value in the game tree based on a gain table relating to the cost expected value of each option of action selection in the game tree Plan recommendation system.
  4.  請求項2又は請求項3に記載の振動騒音対策プラン推奨システムにおいて、
     前記利得表に基づき最適な適用施策を実施した時の予想振動騒音レベルをそのバラツキ及び変動幅も含めて寄与率二次元グラフとして前記表示部に表示することを特徴とする振動騒音対策プラン推奨システム。
    In the vibration noise countermeasure plan recommendation system according to claim 2 or claim 3,
    A vibration noise countermeasure plan recommendation system that displays an expected vibration noise level when an optimum application measure is implemented based on the gain table as a contribution rate two-dimensional graph including variations and fluctuation ranges on the display unit. .
  5.  請求項4に記載の振動騒音対策プラン推奨システムにおいて、
     前記振動騒音問題費用対効果判定装置は、製品の設計製作の工程が進むに従い得られるデータに基づき前記利得表を生成し、逐次推奨戦略を更新し前記設計データ管理・格納部に格納することを特徴とする振動騒音対策プラン推奨システム。
    In the vibration noise countermeasure plan recommendation system according to claim 4,
    The vibration noise problem cost-effectiveness determination device generates the gain table based on data obtained as a product design and production process proceeds, updates a recommended strategy sequentially, and stores it in the design data management / storage unit. Recommended system for vibration and noise countermeasure plan.
  6.  請求項5に記載の振動騒音対策プラン推奨システムにおいて、
     前記振動騒音問題費用対効果判定装置は、前記振動騒音問題要因推定装置により生成された振動騒音伝達経路確率推論モデルに基づき事前対応施策実施の有無と事後問題発生抑止率を関連付ける振動騒音問題抑止確度表を生成する振動騒音問題抑止確度表生成部と、入力される各々の振動騒音問題の抑制施策実施にかかる事前コスト及び問題発生後にかかる事後コストからなる事前事後コストリストに基づきコスト表を生成するコスト表生成部と、前記振動騒音問題抑止確度表及び前記コスト表に基づき利得表を生成する利得表生成部と、を有することを特徴とする振動騒音対策プラン推奨システム。
    In the vibration noise countermeasure plan recommendation system according to claim 5,
    The vibration noise problem cost-effectiveness determination device is based on the vibration noise transmission path probability inference model generated by the vibration noise problem factor estimation device, and the vibration noise problem suppression accuracy that correlates the presence / absence of a prior measure and the subsequent problem occurrence suppression rate. A cost table is generated based on a prior and subsequent cost list composed of a vibration cost problem suppression accuracy table generation unit for generating a table and a prior cost for implementing each vibration noise problem suppression measure and a subsequent cost after the problem occurs. A vibration noise countermeasure plan recommendation system comprising: a cost table generation unit; and a gain table generation unit that generates a gain table based on the vibration noise problem suppression accuracy table and the cost table.
  7.  請求項5に記載の振動騒音対策プラン推奨システムにおいて、
     前記振動騒音問題要因推定装置は、
     少なくとも、評価対象製品から現場データを計測する現場データ抽出部と、
     伝達経路モデルを格納する伝達経路モデルデータ記憶部と、
     前記現場データと前記伝達経路モデルデータ記憶部に格納された伝達経路モデルから、評価対象製品における伝達経路モデルの要素、経路に対応する音源・伝達特性の確率分布データを推定する音源・伝達特性推定エンジンと、
     前記伝達経路モデルデータ記憶部に格納された伝達経路モデルと、前記音源・伝達特性推定エンジンにより推定された音源・伝達特性確率分布と、前記現場データに基づき振動騒音寄与率を推定する寄与率推定エンジンと、を備えることを特徴とする振動騒音対策プラン推奨システム。
    In the vibration noise countermeasure plan recommendation system according to claim 5,
    The vibration noise problem factor estimating device is:
    At least an on-site data extraction unit that measures on-site data from the evaluation target product,
    A transmission path model data storage unit for storing the transmission path model;
    Sound source / transfer characteristic estimation for estimating the probability distribution data of the sound source / transfer characteristic corresponding to the element of the evaluation target product from the field data and the transfer path model stored in the transfer path model data storage unit Engine,
    Contribution rate estimation for estimating the vibration noise contribution rate based on the transmission route model stored in the transmission route model data storage unit, the sound source / transfer characteristic probability distribution estimated by the sound source / transfer characteristic estimation engine, and the field data And a vibration and noise countermeasure plan recommendation system characterized by comprising an engine.
  8.  請求項6に記載の振動騒音対策プラン推奨システムにおいて、
     前記振動騒音問題要因推定装置は、
     少なくとも、評価対象製品から現場データを計測する現場データ抽出部と、
     伝達経路モデルを格納する伝達経路モデルデータ記憶部と、
     前記現場データと前記伝達経路モデルデータ記憶部に格納された伝達経路モデルから、評価対象製品における伝達経路モデルの要素、経路に対応する音源・伝達特性の確率分布データを推定する音源・伝達特性推定エンジンと、
     前記伝達経路モデルデータ記憶部に格納された伝達経路モデルと、前記音源・伝達特性推定エンジンにより推定された音源・伝達特性確率分布と、前記現場データに基づき振動騒音寄与率を推定する寄与率推定エンジンと、を備えることを特徴とする振動騒音対策プラン推奨システム。
    In the vibration noise countermeasure plan recommendation system according to claim 6,
    The vibration noise problem factor estimating device is:
    At least an on-site data extraction unit that measures on-site data from the evaluation target product,
    A transmission path model data storage unit for storing the transmission path model;
    Sound source / transfer characteristic estimation for estimating the probability distribution data of the sound source / transfer characteristic corresponding to the element of the evaluation target product from the field data and the transfer path model stored in the transfer path model data storage unit Engine,
    Contribution rate estimation for estimating the vibration noise contribution rate based on the transmission route model stored in the transmission route model data storage unit, the sound source / transfer characteristic probability distribution estimated by the sound source / transfer characteristic estimation engine, and the field data And a vibration and noise countermeasure plan recommendation system characterized by comprising an engine.
PCT/JP2019/007676 2018-04-24 2019-02-27 Vibration noise response plan recommendation system WO2019207952A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018082842A JP2019191851A (en) 2018-04-24 2018-04-24 Vibration noise countermeasure plan recommendation system
JP2018-082842 2018-04-24

Publications (1)

Publication Number Publication Date
WO2019207952A1 true WO2019207952A1 (en) 2019-10-31

Family

ID=68294976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007676 WO2019207952A1 (en) 2018-04-24 2019-02-27 Vibration noise response plan recommendation system

Country Status (2)

Country Link
JP (1) JP2019191851A (en)
WO (1) WO2019207952A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111723434A (en) * 2020-05-26 2020-09-29 浙江零跑科技有限公司 Howling-based electric drive assembly design scheme evaluation method and system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023084609A1 (en) * 2021-11-09 2023-05-19 日本電信電話株式会社 Behavior model cost estimation device, method, and program

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0868688A (en) * 1994-08-30 1996-03-12 Fujitsu Ltd Method and system for simulating noise distribution under multiple sound source environment
JP2000046641A (en) * 1998-07-30 2000-02-18 Hitachi Ltd Sound source separating device with evaluation point frequency analyzing function
JP2000305960A (en) * 1999-04-16 2000-11-02 Okumura Corp Sound insulating structure designing device
JP2004334375A (en) * 2003-05-01 2004-11-25 Ohbayashi Corp Method and system for optimizing countermeasure to noise, program, and recording medium
WO2009139052A1 (en) * 2008-05-14 2009-11-19 日東紡音響エンジニアリング株式会社 Signal judgment method, signal judgment apparatus, program, and signal judgment system
JP2011081543A (en) * 2009-10-06 2011-04-21 Suzuki Motor Corp Contribution degree analysis method and apparatus
JP2014174620A (en) * 2013-03-06 2014-09-22 Toshiba Elevator Co Ltd Bim system and method
WO2018163640A1 (en) * 2017-03-08 2018-09-13 株式会社日立製作所 System for estimating cause of vibration or noise problem

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0868688A (en) * 1994-08-30 1996-03-12 Fujitsu Ltd Method and system for simulating noise distribution under multiple sound source environment
JP2000046641A (en) * 1998-07-30 2000-02-18 Hitachi Ltd Sound source separating device with evaluation point frequency analyzing function
JP2000305960A (en) * 1999-04-16 2000-11-02 Okumura Corp Sound insulating structure designing device
JP2004334375A (en) * 2003-05-01 2004-11-25 Ohbayashi Corp Method and system for optimizing countermeasure to noise, program, and recording medium
WO2009139052A1 (en) * 2008-05-14 2009-11-19 日東紡音響エンジニアリング株式会社 Signal judgment method, signal judgment apparatus, program, and signal judgment system
JP2011081543A (en) * 2009-10-06 2011-04-21 Suzuki Motor Corp Contribution degree analysis method and apparatus
JP2014174620A (en) * 2013-03-06 2014-09-22 Toshiba Elevator Co Ltd Bim system and method
WO2018163640A1 (en) * 2017-03-08 2018-09-13 株式会社日立製作所 System for estimating cause of vibration or noise problem

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111723434A (en) * 2020-05-26 2020-09-29 浙江零跑科技有限公司 Howling-based electric drive assembly design scheme evaluation method and system
CN111723434B (en) * 2020-05-26 2024-02-13 浙江零跑科技股份有限公司 Electric drive assembly design scheme evaluation method and system based on howling

Also Published As

Publication number Publication date
JP2019191851A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
US11086762B2 (en) Methods and systems for predicting estimation of project factors in software development
Carpitella et al. A combined multi-criteria approach to support FMECA analyses: A real-world case
Pozzi et al. Assessing the value of information for long-term structural health monitoring
Morato et al. Optimal inspection and maintenance planning for deteriorating structural components through dynamic Bayesian networks and Markov decision processes
Carmignani An integrated structural framework to cost-based FMECA: The priority-cost FMECA
Mendes et al. Bayesian network models for web effort prediction: a comparative study
Oliveros et al. Fuzzy logic approach for activity delay analysis and schedule updating
US20110270644A1 (en) System and method to estimate the effects of risks on the time progression of projects
Goulet et al. Pre-posterior optimization of sequence of measurement and intervention actions under structural reliability constraint
Kang et al. Periodic performance prediction for real‐time business process monitoring
Fenton et al. Project data incorporating qualitative factors for improved software defect prediction
WO2019207952A1 (en) Vibration noise response plan recommendation system
Wu et al. Sensor deployment based on fuzzy graph considering heterogeneity and multiple-objectives to diagnose manufacturing system
Cha et al. Measuring project performance in consideration of optimal best management practices for building construction in South Korea
Kamariotis et al. A metric for assessing and optimizing data-driven prognostic algorithms for predictive maintenance
Gonzalez-Gonzalez et al. Fuzzy reliability analysis with only censored data
Tüysüz Simulated hesitant fuzzy linguistic term sets-based approach for modeling uncertainty in AHP method
US20140052431A1 (en) Supporting proactive decision-making in event-driven applications
Yildiz et al. Risk mapping in construction projects
Mendes Predicting web development effort using a Bayesian network
KR20170008632A (en) Method for demand forecasting of spare part
WO2018163640A1 (en) System for estimating cause of vibration or noise problem
Ahmadinejad et al. Management of change propagation in mechatronic product design based on minimum cost of changes
JP4940407B2 (en) Model creation device, information analysis device, model creation method, information analysis method, and program
Lipke Project duration increase from rework

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19791551

Country of ref document: EP

Kind code of ref document: A1