JP2020094323A - Polyester-based short fibers with fine fineness - Google Patents

Polyester-based short fibers with fine fineness Download PDF

Info

Publication number
JP2020094323A
JP2020094323A JP2019218067A JP2019218067A JP2020094323A JP 2020094323 A JP2020094323 A JP 2020094323A JP 2019218067 A JP2019218067 A JP 2019218067A JP 2019218067 A JP2019218067 A JP 2019218067A JP 2020094323 A JP2020094323 A JP 2020094323A
Authority
JP
Japan
Prior art keywords
polyester
fiber
short fibers
fineness
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019218067A
Other languages
Japanese (ja)
Inventor
慶 石原
Kei Ishihara
慶 石原
田中 知樹
Tomoki Tanaka
知樹 田中
達比古 杉崎
Tatsuhiko Sugizaki
達比古 杉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Publication of JP2020094323A publication Critical patent/JP2020094323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

To provide polyester-based short fibers with fine fineness allowing acquisition of a high-quality non-woven fabric that has good processability and excellent bulkiness, in particular, when used as a raw material for a non-woven fabric for dry process from polyester-based short fibers having fine fineness with a single fiber fineness of 0.5 dtex or less.SOLUTION: There is provided polyester-based short fibers that comprise polyester short fibers with a single fiber fineness of 0.1 to 0.5 dtex, in which the polyester constituting the short fibers includes terephthalic acid, ethylene glycol, and diethylene glycol as constituent components. A content of diethylene glycol in the polyester is less than 1.7 mol% based on the total glycol component content, an intrinsic viscosity of the short fibers is 0.53 to 0.69. The short fibers include titanium oxide, and a content of the titanium oxide in short fibers is 0.01 to 1.0 mass%.SELECTED DRAWING: None

Description

本発明は、単繊維繊度が0.5dtex以下の繊度の小さい短繊維に関するものであり、特に乾式用不織布の原料として用いた場合に、工程通過性が良好で、嵩高性に優れた不織布を提供しうる細繊度ポリエステル系短繊維に関するものである。 The present invention relates to a short fiber having a single fiber fineness of 0.5 dtex or less and a small fineness, and particularly when used as a raw material for a dry-use nonwoven fabric, provides a nonwoven fabric excellent in process passability and excellent in bulkiness. The present invention relates to fine polyester fine fibers which can be finely divided.

従来から、ポリエステル繊維は、衣料用、産業資材用等、種々の用途に使用されているが、中でも細繊度のポリエステル繊維は、その特性を生かし、湿式用不織布の原料や、車両用内装材や吸遮音材の原料として広く用いられている。 BACKGROUND ART Conventionally, polyester fibers have been used for various applications such as clothing and industrial materials. Among them, polyester fibers having a fineness of fineness make use of their characteristics, and are used as a raw material for nonwoven fabrics for wet and interior materials for vehicles and Widely used as a raw material for sound absorbing and sound insulating materials.

例えば、特許文献1は、繊度0.3〜1.0dtex、繊維長2〜10mmであり、特定の油剤を付着してなるノークリンプショートカット繊維であって、特定の油剤を付着してなることにより、水中での分散性を良好とし、均一で品位の高い湿式不織布が得られることを開示している。しかし、この繊維は湿式不織布用に適用するノークリンプショートカット繊維であって、湿式不織布を得る際の抄造工程における水中での分散・均一性が向上させるものであり、水中でウェブを作成しない乾式ウェブを作成する技術に、特許文献1の技術を適用しても、同様の効果は奏しない。 For example, Patent Document 1 is a no-crimp short cut fiber having a fineness of 0.3 to 1.0 dtex, a fiber length of 2 to 10 mm, and a specific oil agent attached thereto, and by adhering a specific oil agent, It is disclosed that the dispersibility in water is good and that a uniform and high-quality wet non-woven fabric can be obtained. However, this fiber is a no-crimp shortcut fiber applied for wet non-woven fabrics, which improves dispersion/uniformity in water during the papermaking process when obtaining wet non-woven fabrics, and is a dry web that does not form a web in water. Even if the technique of Patent Document 1 is applied to the technique of creating the, the same effect is not obtained.

また、特許文献2には、単繊維繊度が0.01〜0.5dtex、繊維長が3〜60mmの繊維を吸・遮音材用繊維として用いること、またその繊維として、アクリル繊維は比重が小さく、生産性の観点から好適であることが記載されている。したがって、細い繊度のポリエステル繊維であって、品位の高い繊維を得ることに関しては記載されていない。 Further, in Patent Document 2, a fiber having a single fiber fineness of 0.01 to 0.5 dtex and a fiber length of 3 to 60 mm is used as a fiber for a sound absorbing and sound insulating material, and as the fiber, an acrylic fiber has a small specific gravity. It is described that it is suitable from the viewpoint of productivity. Therefore, there is no description about obtaining a high-quality fiber which is a polyester fiber having a fine fineness.

特許第4624094号公報Japanese Patent No. 4624094 国際公開2018/021319号公報International Publication 2018/021319

本発明は、単繊維繊度が0.5dtex以下の繊度の小さいポリエステル系短繊維において、特に乾式用不織布の原料として用いた場合に、工程通過性が良好で、嵩高性に優れた品位の高い不織布を得ることができる細繊度ポリエステル系短繊維を提供することを課題とする。 INDUSTRIAL APPLICABILITY The present invention is a polyester short fiber having a single fiber fineness of 0.5 dtex or less and a small fineness, and particularly when it is used as a raw material for a non-woven fabric for a dry process, has a good process passage property and a high-quality non-woven fabric having excellent bulkiness An object of the present invention is to provide a polyester fine fiber having a fineness capable of obtaining the above.

本発明者らは、上記の課題を解決するために、すなわち、品位が高い乾式ウェブを得るためには、高品質で均質な細繊度のポリエステル短繊維を得ようと考え、ポリエステル短繊維を構成する樹脂組成物に着目し、鋭意検討した結果、本発明に到達した。 In order to solve the above problems, that is, in order to obtain a dry dry web of high quality, the inventors of the present invention intend to obtain polyester short fibers of high quality and uniform fineness, and configure polyester short fibers. As a result of earnestly studying and focusing on the resin composition to be achieved, the present invention has been achieved.

すなわち、本発明は、単繊維繊度が0.1〜0.5dtexのポリエステル短繊維であり、
短繊維を構成するポリエステル樹脂は、テレフタル酸、エチレングリコール、ジエチレングリコールを構成成分とし、ポリエステル中のジエチレングリコールの含有量が全グリコール成分に対して1.7mol%未満であり、
短繊維の極限粘度が0.53〜0.69であり、
短繊維は酸化チタンを含み、短繊維中における酸化チタンの含有量は0.01〜1.0質量%であること特徴とするポリエステル系細繊度短繊維を要旨とするものである。
That is, the present invention is a polyester short fiber having a single fiber fineness of 0.1 to 0.5 dtex,
The polyester resin constituting the short fibers has terephthalic acid, ethylene glycol, and diethylene glycol as constituent components, and the content of diethylene glycol in the polyester is less than 1.7 mol% with respect to the total glycol component,
The intrinsic viscosity of the short fibers is 0.53 to 0.69,
The short fibers include titanium oxide, and the content of the titanium oxide in the short fibers is 0.01 to 1.0% by mass.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明の細繊度短繊維を構成するポリエステルは、テレフタル酸、エチレングリコール、ジエチレングリコールを構成成分とする。ポリエステル系短繊維に含まれるジエチレングリコール含有量は全グリコール成分に対して1.7mol%未満である必要がある。1.7mol%を超えると繊維の結晶性が低下することで、耐熱性が低下し、熱収縮率が高くなる。また、不織布作製時の熱処理により捲縮がヘタリ易くなり、得られる不織布の嵩が低下する。ジエチレングリコールの下限は、1.0mol%がよい。 The polyester constituting the fine fine staple fibers of the present invention contains terephthalic acid, ethylene glycol and diethylene glycol as constituent components. The content of diethylene glycol contained in the polyester staple fiber needs to be less than 1.7 mol% with respect to the total glycol component. When it exceeds 1.7 mol %, the crystallinity of the fiber is lowered, the heat resistance is lowered, and the heat shrinkage rate is increased. In addition, the heat treatment during the production of the non-woven fabric makes the crimp more likely to set and reduces the bulk of the resulting non-woven fabric. The lower limit of diethylene glycol is preferably 1.0 mol %.

本発明のポリエステル短繊維は、その極限粘度が0.53〜0.69である。さらに極限粘度は0.55〜0.68がより好ましい。繊維の極限粘度がこの範囲であることにより、均質で品位の高い短繊維となる。短繊維の極限粘度の範囲が0.53〜0.69とするためには、短繊維を製造する際に用いる原料であるところのポリエステル樹脂チップの極限粘度は、0.55〜0.71の範囲とする。ポリエステル樹脂チップの極限粘度が0.55を下回ると、紡糸工程における紡糸口金での計量性が低下し、紡糸における繊径のバラつきが大きくなり、紡糸性が悪化し、得られる短繊維の品位が低下する。一方、ポリエステル樹脂チップの極限粘度が0.71を超えると、紡糸後の未延伸糸伸度が低くなり、0.5デシテックス以下の細繊度短繊維を得るための延伸倍率(2.8倍以上)が掛けられなくなり、所望する繊度が得られずに太繊度の繊維となる。 The polyester short fibers of the present invention have an intrinsic viscosity of 0.53 to 0.69. Furthermore, the intrinsic viscosity is more preferably 0.55 to 0.68. When the intrinsic viscosity of the fiber is within this range, it becomes a homogeneous and high-quality short fiber. In order for the range of the intrinsic viscosity of the short fibers to be 0.53 to 0.69, the intrinsic viscosity of the polyester resin chip, which is a raw material used when producing the short fibers, is 0.55 to 0.71. Range. When the intrinsic viscosity of the polyester resin chip is less than 0.55, the metering property in the spinneret in the spinning process is reduced, the variation in the fiber diameter in the spinning is increased, the spinnability is deteriorated, and the quality of the obtained short fiber is deteriorated. descend. On the other hand, when the intrinsic viscosity of the polyester resin chip exceeds 0.71, the undrawn yarn elongation after spinning becomes low, and a draw ratio (2.8 times or more for obtaining a fine fine staple fiber of 0.5 decitex or less). ) Is not applied, and a desired fineness is not obtained, and a fiber having a large fineness is obtained.

本発明の短繊維は、酸化チタンを含んでおり、短繊維中の酸化チタンの含有量は0.01〜1.0質量%である。酸化チタンは、上記したポリエステル樹脂中に含まれるものであり、短繊維を構成するポリエステル樹脂中に酸化チタンが含まれることで、製造工程や加工工程で接触する金属等との摩擦が低下し、紡糸口金表面からの溶融樹脂の面離れが良くなり、紡糸性が良好となる。また摩擦が低下することにより延伸時の単糸切れを抑制することができ、均質な細繊度短繊維を得ることができる。酸化チタンの含有量は0.01〜1.0質量%の範囲が好ましく、中でも0.02〜0.4質量%であることが好ましい。酸化チタンの含有量が0.01質量%未満であると摩擦低下の効果が発揮しにくい。一方、1.0質量%を超えると紡糸性および延伸性が悪化する。 The short fiber of the present invention contains titanium oxide, and the content of titanium oxide in the short fiber is 0.01 to 1.0% by mass. Titanium oxide is contained in the polyester resin described above, by containing titanium oxide in the polyester resin constituting the short fibers, the friction with the metal or the like to be contacted in the manufacturing process or processing step is reduced, The surface separation of the molten resin from the surface of the spinneret becomes good, and the spinnability becomes good. Further, since the friction is reduced, it is possible to suppress the breakage of single yarn during drawing, and it is possible to obtain a uniform short fine fiber. The content of titanium oxide is preferably in the range of 0.01 to 1.0% by mass, and more preferably 0.02 to 0.4% by mass. When the content of titanium oxide is less than 0.01% by mass, it is difficult to exert the effect of reducing friction. On the other hand, if it exceeds 1.0% by mass, the spinnability and stretchability will deteriorate.

酸化チタンは、平均粒径が0.1〜1μmの範囲にあるものを用いるとよく、0.2〜0.8μmであることがより好ましい。なお、本発明における平均粒径は、酸化チタンをエチレングリコール溶液に微分散させた後、島津製作所社製のレーザー回折式粒度分布測定装置SALD−7100を用い、体積分布基準換算、屈折率2.00−0.00iの条件で測定するものである。平均粒径が0.1μm未満の酸化チタンを使用すると、ポリエステル樹脂の重合時や紡糸時に凝集が発生し易くなる。一方、1μmを超える平均粒径の酸化チタンを用いると紡糸時に切糸が発生し易くなる。 As titanium oxide, those having an average particle size in the range of 0.1 to 1 μm are preferably used, and more preferably 0.2 to 0.8 μm. In addition, the average particle diameter in the present invention is obtained by finely dispersing titanium oxide in an ethylene glycol solution, and then using a laser diffraction particle size distribution analyzer SALD-7100 manufactured by Shimadzu Corporation, in terms of volume distribution standard and a refractive index of 2. It is measured under the condition of 00-0.00i. When titanium oxide having an average particle size of less than 0.1 μm is used, aggregation easily occurs during polymerization of the polyester resin or during spinning. On the other hand, if titanium oxide having an average particle size of more than 1 μm is used, a cutting yarn is likely to occur during spinning.

繊維中に含まれる酸化チタンの粒度分布については、粒子径0.618μm未満の粒子の頻度が60〜95%、粒子径0.618μm以上の粒子の頻度が5〜40%、2.6μmを超える粒子の頻度が0%であることが好ましい。この範囲とすることで、紡糸での切糸を抑制することができ、より均質な細繊度短繊維を得ることができる。また、この範囲の粒度分布とし、0.618μmを超える粒子を一定割合含有することで、低い酸化チタン濃度でも効果的に繊維の摩擦を低下することができ、延伸での単糸切れを抑制することができる。なお、粒度分布をこの範囲とするために、所定の粒度分布の酸化チタンを1種類用いてもよいし、平平均粒径の異なる複数の酸化チタンを用いてもよい。 Regarding the particle size distribution of titanium oxide contained in the fiber, the frequency of particles having a particle size of less than 0.618 μm is 60 to 95%, the frequency of particles having a particle size of 0.618 μm or more is 5 to 40%, and exceeds 2.6 μm. The particle frequency is preferably 0%. By setting it in this range, it is possible to suppress the cutting yarn in spinning, and it is possible to obtain a more uniform fine fineness staple fiber. Further, by having a particle size distribution in this range and containing a certain proportion of particles exceeding 0.618 μm, it is possible to effectively reduce the friction of the fiber even with a low titanium oxide concentration, and to prevent single yarn breakage during drawing. be able to. In order to set the particle size distribution within this range, one type of titanium oxide having a predetermined particle size distribution may be used, or a plurality of titanium oxides having different average particle sizes may be used.

さらに、ポリエステル樹脂中に、その効果を損なわない範囲で、酸化防止剤、紫外線吸収剤、光安定剤、顔料、抗菌剤、導電性付与剤、親水剤、吸水剤等を含有させてもよい。 Further, the polyester resin may contain an antioxidant, an ultraviolet absorber, a light stabilizer, a pigment, an antibacterial agent, a conductivity-imparting agent, a hydrophilic agent, a water-absorbing agent, etc. within a range that does not impair the effect.

ポリエステル系短繊維の断面形状は特に限定されるものではないが、円形断面であることが好ましい。円形断面とすることで、紡糸性良く、細繊度の短繊維を得ることができる。 The cross-sectional shape of the polyester-based short fiber is not particularly limited, but a circular cross-section is preferable. With a circular cross section, short fibers with good spinnability and fineness can be obtained.

本発明のポリエステル系短繊維の繊度は0.1〜0.5dtexである。繊度が0.1dtex未満になると、紡糸延伸性が低下し、品位に劣る繊維となる。また、より細繊度とするため紡糸時の吐出量を低くする必要があり、紡糸性が悪化する。また生産レートが低くなり、高コストとなる。よって、繊度は、0.3〜0.5dtexが好ましく、より好ましくは0.4〜0.5dtexである。一方、0.5dtexを超えると吸音・遮音材用の繊維として用いた場合に、性能が低下する。 The fineness of the polyester short fibers of the present invention is 0.1 to 0.5 dtex. When the fineness is less than 0.1 dtex, the spinnability and drawability deteriorate, resulting in poor quality fiber. Further, in order to obtain a finer fiber, it is necessary to reduce the discharge amount during spinning, which deteriorates the spinnability. In addition, the production rate becomes low and the cost becomes high. Therefore, the fineness is preferably 0.3 to 0.5 dtex, more preferably 0.4 to 0.5 dtex. On the other hand, if it exceeds 0.5 dtex, the performance deteriorates when used as a fiber for a sound absorbing/sound-insulating material.

本発明におけるポリエステル系細繊度短繊維は、繊維径の変動率が10%未満である。繊維径の変動率とは、繊維径のバラつきの程度を指す。繊維径の変動率は、8%以下であることが好ましく、5.0%以下であることがより好ましい。10%を超えると、紡糸時の切糸が増加し操業性が悪化する。また得られる短繊維の品質が低下する。繊維径の変動率は、繊維横断面を光学顕微鏡等で観察したとき、50本の繊維について繊維の直径を測定し、標準偏差と平均値を算出した後、下式により算出する。
繊維径の変動率(%)=(繊維直径の標準偏差/繊維直径の平均値)×100
The polyester-based fine-fineness short fibers in the present invention have a variation rate of the fiber diameter of less than 10%. The fluctuation rate of the fiber diameter refers to the degree of variation in the fiber diameter. The variation rate of the fiber diameter is preferably 8% or less, and more preferably 5.0% or less. If it exceeds 10%, the number of cutting yarns at the time of spinning increases and the operability deteriorates. In addition, the quality of the obtained short fibers is deteriorated. The variation rate of the fiber diameter is calculated by the following formula after measuring the fiber diameter of 50 fibers when observing the cross section of the fiber with an optical microscope or the like, calculating the standard deviation and the average value.
Variation rate of fiber diameter (%)=(standard deviation of fiber diameter/average value of fiber diameter)×100

繊維径の変動率を10%未満とするために、面径が180mm程度の紡糸口金の場合、孔数を1500〜2500個とすることが好ましく、1800〜2200個とすることが、より好ましい。孔数を前述の範囲とすることで、紡糸レートを低くせずに、繊維径のバラつきの小さい、低コストで高品質な短繊維を得ることができる。 In order to set the variation rate of the fiber diameter to less than 10%, in the case of a spinneret having a surface diameter of about 180 mm, the number of holes is preferably 1500 to 2500, and more preferably 1800 to 2200. By setting the number of holes within the above range, it is possible to obtain high-quality short fibers at a low cost with a small variation in fiber diameter without lowering the spinning rate.

なお、紡糸口金の孔径は直径φ0.14〜0.16mmの範囲とすることが好ましい。直径φ0.14mm未満であると、紡糸後のノズル再生の難易度が高くなり、ノズル孔の孔詰まりが発生しやすくなる。また直径0.16mmを超えると、紡糸時のドラフトが高くなり紡糸性が悪化する。また、繊維径のバラつきが大きくなる。 The hole diameter of the spinneret is preferably in the range of diameter φ0.14 to 0.16 mm. If the diameter is less than 0.14 mm, the difficulty of nozzle regeneration after spinning becomes high, and clogging of nozzle holes is likely to occur. If the diameter exceeds 0.16 mm, the draft during spinning becomes high and the spinnability deteriorates. In addition, the variation in fiber diameter becomes large.

本発明のポリエステル系細繊度短繊維を170℃、1分間の条件で乾熱処理した際の熱収縮率は1%未満である。1%を超えると、不織布作製時の熱処理により、嵩が低下する。 The heat shrinkage ratio of the polyester fine fine staple fibers of the present invention when dry heat treated at 170° C. for 1 minute is less than 1%. If it exceeds 1%, the bulk decreases due to the heat treatment during the production of the nonwoven fabric.

本発明のポリエステル系細繊度短繊維は、繊維の製造工程において捲縮が付与されていることが好ましい。繊維長25mm当たりの捲縮数は10〜18ケであることが好ましく、捲縮率は9〜17%の範囲であることが好ましく、10〜16%の範囲であることがより好ましい。捲縮数が10ケ/25mm未満であると繊維同士の絡みが弱くなり、不織布作製工程での短繊維の搬送性が悪化する。一方、18ケ/25mmを超えると、繊維の開繊性が悪くなり、得られる不織布の地合いが悪くなる。また、捲縮率は9%未満であると繊維同士の絡みが弱くなり、搬送性が悪化する。また、ウェブの強度が低下する。さらに嵩高性に優れた不織布を得ることが困難になる。捲縮率が17%を超えると、繊維の開繊性が悪くなり、得られる不織布の地合いが悪くなる。 It is preferable that the polyester type fine fine short fibers of the present invention are crimped in the fiber manufacturing process. The number of crimps per 25 mm of fiber length is preferably 10 to 18, and the crimp rate is preferably 9 to 17%, more preferably 10 to 16%. If the number of crimps is less than 10/25 mm, the entanglement between fibers becomes weak, and the transportability of short fibers in the non-woven fabric manufacturing process deteriorates. On the other hand, when the number exceeds 18/25 mm, the fiber openability is deteriorated and the texture of the resulting nonwoven fabric is deteriorated. If the crimping rate is less than 9%, the entanglement between the fibers becomes weak and the transportability deteriorates. Also, the strength of the web is reduced. Further, it becomes difficult to obtain a non-woven fabric excellent in bulkiness. When the crimping rate exceeds 17%, the fiber openability is deteriorated and the texture of the resulting nonwoven fabric is deteriorated.

捲縮は、押し込み式クリンパーを用いて付与することが好ましい。押し込み式クリンパーに繊維を導入する前には繊維を収束させる必要があり、従来は、水を付与することで収束させるが、本発明においては、水ではなく、油剤をスプレー方式で付与することが好ましい。また、押し込み式クリンパーに繊維を導入する直前に、150〜180℃の加熱ローラーおよびスチームにより繊維を加熱することが好ましい。本発明のポリエステル系細繊度短繊維は0.1〜0.5dtexの細繊度であるため、一般的な繊度の繊維と比較して捲縮の付与および固定化が難しく、捲縮率は低くなる傾向がある。前述した方法を採用することにより、低水分率の状態で繊維の収束性を保ちつつ、高温下での捲縮付与が可能となり、細繊度繊維の場合でも高捲縮率の短繊維を得ることができる。また、高温下で捲縮が付与されているため、不織布作製時の熱処理による捲縮のヘタリを抑制することができる。 The crimp is preferably applied using a push-in type crimper. It is necessary to converge the fibers before introducing the fibers into the push-in type crimper, and conventionally, the fibers are converged by applying water, but in the present invention, not the water but the oil agent may be applied by a spray method. preferable. Further, immediately before introducing the fiber into the push-in type crimper, it is preferable to heat the fiber with a heating roller and steam at 150 to 180°C. Since the polyester fine-fine short fibers of the present invention have a fineness of 0.1 to 0.5 dtex, it is more difficult to apply and fix crimps and the crimp ratio is lower than that of fibers having general fineness. Tend. By adopting the method described above, crimping can be applied at a high temperature while maintaining the fiber convergence in a low moisture content state, and even in the case of fine-fineness fibers, short fibers with a high crimping rate can be obtained. You can Further, since crimping is applied at a high temperature, it is possible to suppress the settling of the crimp due to the heat treatment during the production of the nonwoven fabric.

捲縮付与後の繊維は、乾燥機にて熱処理されることなく、冷却コンベアで冷却され、その後、カッターにて所定の長さにカットされることが好ましい。捲縮付与後に乾燥機にて熱処理を行わずに冷却することで、クリンパーにて付与した捲縮がヘタることなく、良好に捲縮が付与された短繊維を得ることができる。 It is preferable that the crimped fiber is cooled by a cooling conveyor without being heat-treated by a dryer, and then cut into a predetermined length by a cutter. By cooling without applying heat treatment in a drier after applying the crimps, the crimps applied with the crimper can be obtained without sagging and crimped staple fibers can be obtained.

本発明の短繊維は、標準状態(25℃)で測定した捲縮数(X)と、170℃、1分間の熱処理後の捲縮数(X)は、下記条件を満たすことが好ましい。下記の条件を満たすことで、不織布作製時の熱処理による捲縮のヘタリを抑制することができ、嵩高性に優れ、均質な高品質の不織布を得ることができる。
(1)X/X≧0.7
In the short fiber of the present invention, the number of crimps (X A ) measured in a standard state (25° C.) and the number of crimps (X B ) after heat treatment at 170° C. for 1 minute preferably satisfy the following conditions. .. By satisfying the following conditions, it is possible to suppress the settling of the crimps due to the heat treatment during the production of the nonwoven fabric, and it is possible to obtain a nonwoven fabric with excellent bulkiness and uniform quality.
(1) X B /X A ≧0.7

本発明の短繊維の繊維長は20〜44mmであることが好ましく、中でも25〜32mmであることが好ましい。繊維長が20mm未満であると、繊維同士の絡みが弱くなり不織布作製工程での短繊維の搬送性が悪化する。一方、44mmを超えると繊維の開繊性が悪くなり、得られる不織布の地合いが悪くなる。 The short fiber of the present invention preferably has a fiber length of 20 to 44 mm, and more preferably 25 to 32 mm. If the fiber length is less than 20 mm, the entanglement between the fibers becomes weak and the transportability of the short fibers in the non-woven fabric manufacturing process deteriorates. On the other hand, when it exceeds 44 mm, the openability of the fiber is deteriorated and the texture of the obtained nonwoven fabric is deteriorated.

本発明の短繊維を用いて不織布とする際には、本発明の短繊維以外に、熱融着繊維等のバインダーとなる繊維と混合して不織布や繊維成型体とするのがよい。また、本発明の効果を損なわない範囲において、他の材料を混合したり併用したりしてもよい。 When the short fiber of the present invention is used to form a nonwoven fabric, it is preferable to mix the short fiber of the present invention with a fiber serving as a binder such as a heat fusion fiber to form a nonwoven fabric or a fiber molded body. Further, other materials may be mixed or used in combination as long as the effects of the present invention are not impaired.

本発明の細繊度短繊維は、均質で品位が高いため、得られる不織布においても、均一な性能を発揮するため、均質で高品位の不織布や繊維成型体が得られる。このような不織布や繊維成型体は、均質であるため、吸音・遮音材として好適に適用することが期待できる。 Since the fine fine staple fibers of the present invention are homogeneous and of high quality, even the obtained nonwoven fabric exhibits uniform performance, so that a homogeneous and high-quality nonwoven fabric or fiber molded body can be obtained. Since such a non-woven fabric or a fiber molding is homogeneous, it can be expected to be suitably applied as a sound absorbing/sound insulating material.

本発明によれば、均質なポリエステル系細繊度短繊維を得ることができることから、本発明の短繊維を、特に乾式用不織布の原料として用いた場合に、工程通過性が良好で、嵩高性に優れた高品質な不織布を得ることができる。 According to the present invention, since it is possible to obtain a homogeneous polyester fine fiber short fibers, when using the short fibers of the present invention, particularly when used as a raw material for a dry process nonwoven fabric, good process passability and bulkiness are achieved. An excellent high quality nonwoven fabric can be obtained.

次に、本発明を実施例により具体的に説明する。なお、実施例における特性値等の測定法は次のとおりである。
(1)極限粘度〔η〕
フェノールとテトラクロロエタンとの等重量混合物を溶媒とし、20℃で、繊維0.2gを試料として投入し、濃度を0.5%として、相対粘度〔ηcr〕を測定し、その値を用いて、下式により極限粘度〔η〕を算出した。
Next, the present invention will be specifically described with reference to examples. In addition, the measuring method of the characteristic value etc. in an Example is as follows.
(1) Intrinsic viscosity [η]
Using an equal weight mixture of phenol and tetrachloroethane as a solvent, 0.2 g of fiber was added as a sample at 20° C., the concentration was 0.5%, the relative viscosity [η cr ] was measured, and the value was used. The intrinsic viscosity [η] was calculated by the following formula.

(2)ジエチレングリコール(DEG)含有量
繊維2.2gを三角フラスコに投入し、0.8等量の水酸化カリウムメタノール溶液を加え、マグネチックスターラ攪拌下加熱還流してケン化を行う。その後、テレフタル酸を加え中和し、沈殿物を濾過し、ガスクロマトグラフィにて濾液中のDEG含有量を測定した。
(3)酸化チタン含有量
試料として繊維10gを溶融固化させて円盤状の成型体を作製し、リガク社製蛍光X線分析装置ZSM Primusを用いて酸化チタン含有量を測定した。
(4)酸化チタンの粒度分布
試料として繊維10mgを、フェノールとテトラクロロエタンとの等質量混合物に溶解し、島津製作所社製のレーザー回折式粒度分布測定装置SALD−7100にて、繊維中に含まれる酸化チタンの粒度分布を、体積分布基準換算、屈折率2.00−0.00iの条件で測定した。
(5)繊維繊度
JIS L1015 8.5.1 B法により測定した。
(6)繊維径の変動率(%)
繊維横断面を光学顕微鏡で観察し、50本の繊維について繊維の直径を測定し、繊維径の標準偏差および繊維径の平均値を求めた後、下式により変動率を算出した。
繊維径の変動率(%)=(繊維径の標準偏差/繊維径の平均値)×100
(7)繊維長
JIS L1015 8.4.1 A法により測定した。
(8)乾熱収縮率
JIS L1015 8.15に基づき測定した。なお測定温度は170℃、処理時間は1分とした。
(9)捲縮数
JIS L1015 8.12.1および8.12.2により測定した。このとき、標準状態(25℃)で測定した捲縮数(X)と、170℃、1分間の熱処理後の捲縮数(X)を測定し、下記条件を満たすものを合格(〇)とした。
(1)X/X≧0.7
(10)紡糸性
繊維紡糸工程における切糸回数について、紡糸量1トンあたり3回未満を合格(○)とし、3回以上を不合格(×)とした。
(11)延伸性
繊維延伸工程における単糸切れ回数が、延伸量1トンあたり3回未満を合格(○)とし、3回以上を不合格(×)とした。
(12)工程通過性
有限会社竹内製作所製CH−500ホッパーフィーダーのボックスに繊維10kgを順次投入し、スパイクラチスで持ち揚げ方式(設置面から約2.3mの高さまで上げる)により、繊維を搬送し、搬送された繊維量(質量)を測定した。「搬送された繊維量」を「投入した繊維量(10kg)」で除した値に100を乗じた値を搬送率とし、搬送率が、95%以上のものを合格(〇)、95%未満を不合格(×)とした。
(13)嵩高性
得られた繊維とユニチカ製110℃融点の芯鞘型熱融着繊維(芯がポリエチレンテレフタレート、鞘が融点110℃の共重合ポリエステルにより構成された短繊維であって、2.2dtex×51mm)を混率80/20質量%の条件にてカードウェブ(目付100g/m)を作製し、温度150℃、風量38m/分、処理時間1分間の条件で熱風乾燥機にて熱処理を行い、目付100g/mの不織布を作製した。熱処理前のカードウェブと熱処理後の不織布の厚み(無加重)をそれぞれ測定し、それぞれのみかけ密度を算出した。熱処理前後のみかけ密度の変化において、熱処理後の嵩低下率が20%未満の場合を合格(○)、20%を超えるものを不合格(×)とした。
(2) Content of Diethylene Glycol (DEG) 2.2 g of fiber is put into an Erlenmeyer flask, 0.8 equivalent of a potassium hydroxide methanol solution is added, and the mixture is heated under reflux with magnetic stirring to perform saponification. Then, terephthalic acid was added for neutralization, the precipitate was filtered, and the DEG content in the filtrate was measured by gas chromatography.
(3) Titanium oxide content As a sample, 10 g of fiber was melted and solidified to prepare a disk-shaped molded body, and the titanium oxide content was measured using a fluorescent X-ray analyzer ZSM Primus manufactured by Rigaku Corporation.
(4) As a particle size distribution sample of titanium oxide, 10 mg of fiber was dissolved in an equal mass mixture of phenol and tetrachloroethane, and contained in the fiber with a laser diffraction particle size distribution analyzer SALD-7100 manufactured by Shimadzu Corporation. The particle size distribution of titanium oxide was measured under the conditions of a volume distribution standard conversion and a refractive index of 2.00 to 0.00i.
(5) Fiber fineness Measured according to JIS L1015 8.5.1 B method.
(6) Variation rate of fiber diameter (%)
The cross-section of the fiber was observed with an optical microscope, the fiber diameter was measured for 50 fibers, the standard deviation of the fiber diameter and the average value of the fiber diameter were determined, and then the variation rate was calculated by the following formula.
Variation rate of fiber diameter (%)=(standard deviation of fiber diameter/average value of fiber diameter)×100
(7) Fiber length Measured by JIS L1015 8.4.1 A method.
(8) Dry heat shrinkage It was measured based on JIS L1015 8.15. The measurement temperature was 170° C. and the treatment time was 1 minute.
(9) Number of crimps Measured according to JIS L1015 8.12.1 and 8.12.2. At this time, the number of crimps (X A ) measured in the standard state (25° C.) and the number of crimps (X B ) after heat treatment at 170° C. for 1 minute were measured, and those satisfying the following conditions were accepted (◯). ).
(1) X B /X A ≧0.7
(10) Spinnability Regarding the number of cutting threads in the fiber spinning step, less than 3 times per 1 ton of the spinning amount was passed (◯), and 3 times or more was rejected (x).
(11) Stretchability Regarding the number of single yarn breakages in the fiber stretching step, less than 3 times per 1 ton of the stretched amount was passed (◯), and 3 times or more was rejected (x).
(12) Process passability 10 kg of fibers are sequentially charged into the CH-500 hopper feeder box manufactured by Takeuchi Seisakusho Co., Ltd., and the fibers are transported by the spike lattice (raising to a height of about 2.3 m from the installation surface). Then, the amount (mass) of the transported fiber was measured. The value obtained by dividing the "conveyed fiber amount" by the "input fiber amount (10 kg)" and multiplying by 100 is taken as the conveying rate, and the conveying rate of 95% or more is passed (○), less than 95%. Was designated as a failure (x).
(13) Bulkiness The obtained fiber and a core-sheath type heat-sealing fiber made of Unitika and having a melting point of 110° C. (a short fiber having a core made of polyethylene terephthalate and a sheath made of a copolymerized polyester having a melting point of 110° C., 2. 2 dtex×51 mm) to prepare a card web (area weight: 100 g/m 2 ) with a mixing ratio of 80/ 20 % by mass, and use a hot air dryer under the conditions of a temperature of 150° C., an air volume of 38 m 3 /min, and a treatment time of 1 minute. Heat treatment was performed to produce a nonwoven fabric having a basis weight of 100 g/m 2 . The thicknesses of the card web before heat treatment and the nonwoven fabric after heat treatment (without weight) were measured, and the apparent densities thereof were calculated. In the change of the apparent density before and after the heat treatment, the case where the bulk reduction rate after the heat treatment was less than 20% was judged as pass (∘), and the one in which the bulk reduction rate exceeded 20% was judged as fail (x).

実施例1
極限粘度0.70、酸化チタン量0.37質量%(平均粒径0.3μm、平均粒径0.6μmの酸化チタンを重合時に9/1の比率で添加)のポリエステル(全酸成分に対してテレフタル酸100mol%、全グリコール成分に対してエチレングリコール98.5mol%、ジエチレングリコール1.5mol%)を孔数2160H、孔径0.16mmの紡糸口金を用い、吐出量312g/分、紡糸温度297℃、紡糸速度1176m/分で溶融紡糸を行った。切糸回数は1.5回/トンであった。得られた未延伸糸を収束し、50ktexのトウとし、延伸温度70℃、延伸倍率3.2倍の条件で延伸した。延伸後、温度199℃のヒートドラムにて熱セットを行い、その後、ラウリルフォスフェートカリウム塩を主成分とする油剤をスプレー方式でトウに付与し、170℃の加熱ローラーでトウを加熱し、その後、スチームによる加熱を行い、押し込み式クリンパーに導入し捲縮を付与した。その後、トウを乾燥機で熱処理を行わずに、冷却コンベアにてトウを冷却し、32mmにカットし、細繊度短繊維を得た。得られた短繊維を用いて、前記した測定方法の(13)嵩高性の記載に基づき、不織布を作製した。
Example 1
Intrinsic viscosity 0.70, titanium oxide amount 0.37% by mass (titanium oxide having an average particle size of 0.3 μm and an average particle size of 0.6 μm was added at a ratio of 9/1 during polymerization) polyester (based on all acid components) Terephthalic acid 100 mol%, ethylene glycol 98.5 mol%, diethylene glycol 1.5 mol% based on all glycol components) using a spinneret with a hole number of 2160H and a hole diameter of 0.16 mm, discharge rate of 312 g/min, spinning temperature of 297° C. Melt spinning was performed at a spinning speed of 1176 m/min. The number of cutting threads was 1.5 times/ton. The obtained unstretched yarn was converged, made into 50 ktex tow, and stretched under the conditions of a stretching temperature of 70° C. and a stretching ratio of 3.2 times. After stretching, heat setting was performed with a heat drum at a temperature of 199° C., then an oil agent containing lauryl phosphate potassium salt as a main component was applied to the tow by a spray method, and the tow was heated with a heating roller at 170° C. Then, it was heated with steam and introduced into a push-in type crimper to provide crimping. After that, the tow was cooled by a cooling conveyer without being heat-treated by a dryer and cut into 32 mm to obtain fine fibers with short fineness. Using the obtained short fibers, a non-woven fabric was produced based on the description of (13) Bulkiness in the above-mentioned measurement method.

得られた短繊維と不織布の特性は表1に示す通りであった。なお、得られた繊維中の酸化チタンの粒度分布は、粒子径0.618μm未満の粒子が69%、粒子径0.618を超える粒子が31%、2.6μmを超える粒子が0%であった。 The properties of the obtained short fibers and nonwoven fabric are shown in Table 1. The particle size distribution of titanium oxide in the obtained fiber was 69% for particles having a particle size of less than 0.618 μm, 31% for particles having a particle size of more than 0.618, and 0% for particles having a particle size of more than 2.6 μm. It was

実施例2
極限粘度0.62、酸化チタン量0.02質量%(平均粒径0.3μm、平均粒径0.6μmの酸化チタンを重合時に9/1の比率で添加)のポリエステル(全酸成分に対してテレフタル酸100mol%、全グリコール成分に対してエチレングリコール98.5mol%、ジエチレングリコール1.5mol%)を孔数2160H、孔径0.16mmの紡糸口金を用い、吐出量334g/分、紡糸温度297℃、紡糸速度1176m/分で溶融紡糸を行った。切糸回数は2.3回/トンであった。延伸倍率を3.4倍とした以外は、実施例1と同様にして短繊維を得た。得られた短繊維と不織布の特性は表1に示す通りであった。なお、得られた繊維中の酸化チタンの粒度分布は、粒子径0.618μm未満の粒子が69%、粒子径0.618を超える粒子が12%、2.6μmを超える粒子が0%であった。
Example 2
Intrinsic viscosity 0.62, titanium oxide amount 0.02% by mass (titanium oxide having an average particle size of 0.3 μm and an average particle size of 0.6 μm was added at a ratio of 9/1 during polymerization) polyester (based on all acid components) Terephthalic acid 100mol%, ethylene glycol 98.5mol%, diethylene glycol 1.5mol% based on all glycol components) using a spinneret with a hole number of 2160H and a hole diameter of 0.16mm, discharge rate 334g/min, spinning temperature 297°C. Melt spinning was performed at a spinning speed of 1176 m/min. The number of cutting threads was 2.3 times/ton. Short fibers were obtained in the same manner as in Example 1 except that the draw ratio was 3.4 times. The properties of the obtained short fibers and nonwoven fabric are shown in Table 1. The particle size distribution of titanium oxide in the obtained fiber was 69% for particles having a particle size of less than 0.618 μm, 12% for particles having a particle size of more than 0.618, and 0% for particles having a particle size of more than 2.6 μm. It was

比較例1〜2
極限粘度が0.74のポリエステルを用いたこと(比較例1)極限粘度が0.51のポリエステルを用いたこと(比較例2)以外は、実施例1と同様に行った。
Comparative Examples 1-2
Example 1 was repeated except that a polyester having an intrinsic viscosity of 0.74 was used (Comparative Example 1) and a polyester having an intrinsic viscosity of 0.51 was used (Comparative Example 2).

比較例3
テレフタル酸100mol%、エチレングリコール97.5mol%、ジエチレングリコール2.5mol%、のポリエステルを用いた以外は、実施例1と同様に行った。
Comparative Example 3
The same procedure as in Example 1 was carried out except that a polyester containing 100 mol% of terephthalic acid, 97.5 mol% of ethylene glycol and 2.5 mol% of diethylene glycol was used.

比較例4
酸化チタン含有量が0質量%のポリエステルを用いた以外は、実施例1と同様に行った。
Comparative Example 4
The same procedure as in Example 1 was carried out except that a polyester having a titanium oxide content of 0 mass% was used.

比較例5
酸化チタン含有量が2.0質量%のポリエステルを用いた以外は、実施例1と同様に行った。
Comparative Example 5
The same procedure as in Example 1 was performed except that polyester having a titanium oxide content of 2.0% by mass was used.

表1から明らかなように、実施例1〜2では紡糸性および延伸性良く細繊度短繊維を得
ることができ、得られた短繊維の捲縮特性、熱収縮率、工程通過性は優れるものであり、
不織布の嵩高性に優れるものであった。
As is clear from Table 1, in Examples 1 and 2, fine fiber short fibers can be obtained with good spinnability and drawability, and the obtained short fibers have excellent crimp characteristics, heat shrinkage, and process passability. And
The non-woven fabric was excellent in bulkiness.

一方、比較例1は、繊維の極限粘度が高く、紡糸後の未延伸糸伸度が低くなったため、
0.5dtex未満の細繊度短繊維を得るための延伸倍率を掛けられず、延伸倍率2.5
5倍で延伸したことから、太繊度となった。なお、本発明が目的とする繊度でないことか
ら、繊維としての評価は行わなかった。
On the other hand, in Comparative Example 1, since the intrinsic viscosity of the fiber was high and the undrawn yarn elongation after spinning was low,
A draw ratio of 2.5 cannot be applied in order to obtain short fibers having a fineness of less than 0.5 dtex.
Since it was stretched 5 times, the fineness was increased. The fiber was not evaluated because the fineness was not the object of the present invention.

比較例2は、ポリエチレンテレフタレートの極限粘度が低いため、紡糸工程における紡
糸口金での計量性が低下したことで、繊維径のバラつきが大きくなり、切糸が多発し、細
繊度の短繊維を得ることができなかった。
In Comparative Example 2, since the intrinsic viscosity of polyethylene terephthalate is low, the metering property of the spinneret in the spinning process is reduced, the variation of the fiber diameter is increased, the number of cutting yarns is increased, and a short fiber having a fineness is obtained. I couldn't.

比較例3は、繊維のジエチレングリコール含有量が多いため、熱収縮率が高くなり、ま
た熱処理後の捲縮特性が低下した。
In Comparative Example 3, since the fiber contained a large amount of diethylene glycol, the heat shrinkage ratio was high, and the crimp property after heat treatment was deteriorated.

比較例4は、酸化チタンの含有量が0質量%であり、紡糸口金表面からの溶融ポリマー
の面離れが悪くなり、切糸が多発し、細繊度の短繊維を得ることができなかった。
In Comparative Example 4, the content of titanium oxide was 0% by mass, the surface separation of the molten polymer from the surface of the spinneret was deteriorated, the number of cutting threads was increased, and short fibers having a fineness could not be obtained.

比較例5は、酸化チタンの含有量が多すぎたため、紡糸性および延伸性が悪化した。
In Comparative Example 5, since the content of titanium oxide was too large, the spinnability and drawability were deteriorated.

Claims (9)

単繊維繊度が0.1〜0.5dtexのポリエステル短繊維であり、
短繊維を構成するポリエステルは、テレフタル酸、エチレングリコール、ジエチレングリコールを構成成分とし、ポリエステル中のジエチレングリコールの含有量が全グリコール成分に対して1.7mol%未満であり、
短繊維の極限粘度が0.53〜0.69であり、
短繊維は酸化チタンを含み、短繊維中における酸化チタンの含有量は0.01〜1.0質量%であること特徴とするポリエステル系細繊度短繊維。
Polyester staple fibers having a single fiber fineness of 0.1 to 0.5 dtex,
The polyester constituting the short fibers has terephthalic acid, ethylene glycol, and diethylene glycol as constituent components, and the content of diethylene glycol in the polyester is less than 1.7 mol% with respect to the total glycol component,
The intrinsic viscosity of the short fibers is 0.53 to 0.69,
The short fibers include titanium oxide, and the content of titanium oxide in the short fibers is 0.01 to 1.0 mass%.
繊維径の変動率が10%未満であることを特徴とする請求項1記載のポリエステル系細繊度短繊維。 The polyester type fine fiber short fibers according to claim 1, wherein the variation rate of the fiber diameter is less than 10%. 170℃、1分間の熱処理による乾熱収縮率が1%未満であることを特徴とする請求項1または2記載のポリエステル系細繊度短繊維。 The polyester fine fine staple fiber according to claim 1 or 2, which has a dry heat shrinkage ratio of less than 1% by heat treatment at 170°C for 1 minute. 標準状態で測定した捲縮数(X)と、170℃、1分間の熱処理後の捲縮数(X)が下記条件(1)を満たすことを特徴とする請求項1〜3のいずれか1項記載のポリエステル系細繊度短繊維。
(1)X/X≧0.7
4. The number of crimps (X A ) measured in a standard state and the number of crimps (X B ) after heat treatment at 170° C. for 1 minute satisfy the following condition (1): 4. Or a polyester-based fine fineness staple fiber according to item 1.
(1) X B /X A ≧0.7
繊維長が20〜44mmであることを特徴とする請求項1〜4のいずれか1項記載のポリエステル系細繊度短繊維。 The fiber length is 20 to 44 mm, and the polyester type fine fineness chopped fiber according to any one of claims 1 to 4. 繊度が0.4〜0.5dtexであることを特徴とする請求項1〜5のいずれか1項記載のポリエステル系細繊度短繊維。 Fineness is 0.4-0.5 dtex, The polyester type fine fineness chopped fiber of any one of Claims 1-5 characterized by the above-mentioned. ポリエステル系細繊度短繊維は、乾式不織布に用いられるものであることを特徴とする請求項1〜6のいずれか1項記載のポリエステル系細繊度短繊維。 The polyester-based fine fineness short fiber is used for a dry nonwoven fabric, and the polyester-based fineness fine short fiber according to any one of claims 1 to 6. 請求項1〜7のいずれか1項記載のポリエステル系細繊度短繊維が構成繊維に含まれてなることを特徴とする乾式不織布。 A dry non-woven fabric, characterized in that the polyester fine fine staple fibers according to any one of claims 1 to 7 are contained in the constituent fibers. 請求項8記載の乾式不織布を吸音材または遮音材として用いることを特徴とする吸音・遮音材。
A sound absorbing/insulating material, wherein the dry nonwoven fabric according to claim 8 is used as a sound absorbing material or a sound insulating material.
JP2019218067A 2018-12-04 2019-12-02 Polyester-based short fibers with fine fineness Pending JP2020094323A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018227363 2018-12-04
JP2018227363 2018-12-04

Publications (1)

Publication Number Publication Date
JP2020094323A true JP2020094323A (en) 2020-06-18

Family

ID=71084594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019218067A Pending JP2020094323A (en) 2018-12-04 2019-12-02 Polyester-based short fibers with fine fineness

Country Status (1)

Country Link
JP (1) JP2020094323A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114182385A (en) * 2021-12-20 2022-03-15 扬州富威尔复合材料有限公司 Preparation method of fine denier polyester staple fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114182385A (en) * 2021-12-20 2022-03-15 扬州富威尔复合材料有限公司 Preparation method of fine denier polyester staple fiber
CN114182385B (en) * 2021-12-20 2023-08-29 扬州富威尔复合材料有限公司 Preparation method of fine denier polyester staple fiber

Similar Documents

Publication Publication Date Title
EP0615007B1 (en) Electret fibers with improved charge stabilisation, process for their production and textile material containing these electret fibers
CA1158816A (en) Conductive composite filaments and methods for producing said composite filaments
DE60122508T2 (en) POLYESTER FIBER
EP0631638B1 (en) Polyester fibres and process for producing the same
SK1202000A3 (en) Process for shaping polymer mixtures into filaments
EP3128050B1 (en) Polyester binder fibers
DE19937729A1 (en) High tenacity polyester threads and process for their manufacture
JP2020094323A (en) Polyester-based short fibers with fine fineness
KR101495966B1 (en) Method for preparing electrically conductive polyamide- polyolefin composite fiber and electrically conductive composite fiber prepared thereby
JP2011195967A (en) Bulky fiber for non-woven fabric
JP7195592B2 (en) Composite fiber with latent crimpability
EP0089113B1 (en) Fire retardant composite fibres and process for producing them
KR100650885B1 (en) Polyester conjugated fiber with excellent stretchability and anti-microbial property and process of making
JP4357255B2 (en) Short fiber for nonwoven fabric and short fiber nonwoven fabric
EP1208254B1 (en) Polyester-staple fibers and method for the production thereof
KR20130035503A (en) Melt blown nonwoven fabric having high bulkiness and manufacturing method thereof
WO2001011122A1 (en) Hmls-fibers made of polyester and a spin-stretch process for its production
KR19980061106A (en) Manufacturing method of ultrafine polyester composite fiber
JP2005281892A (en) Staple fiber for nonwoven fabric and staple fiber nonwoven fabric
JP2013253817A (en) Radiation shielding fiber and fabric
KR950009487B1 (en) Method for preperation of nonwoven web
JP4791173B2 (en) Split composite short fiber and short fiber nonwoven fabric
JP2009179908A (en) Method for producing sea-island structure fiber and ultrafine short fiber
JP2022154117A (en) Fine-denier polyester staple fiber
JP2023039722A (en) Glass nonwoven fabric, glass fiber-reinforced plastic molded body, glass chopped strand, and production method of glass nonwoven fabric