JP2020094278A - Insulation coating soft magnetic alloy powder - Google Patents

Insulation coating soft magnetic alloy powder Download PDF

Info

Publication number
JP2020094278A
JP2020094278A JP2019213122A JP2019213122A JP2020094278A JP 2020094278 A JP2020094278 A JP 2020094278A JP 2019213122 A JP2019213122 A JP 2019213122A JP 2019213122 A JP2019213122 A JP 2019213122A JP 2020094278 A JP2020094278 A JP 2020094278A
Authority
JP
Japan
Prior art keywords
alloy powder
soft magnetic
magnetic alloy
iron
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019213122A
Other languages
Japanese (ja)
Other versions
JP7247866B2 (en
Inventor
慎吾 林
Shingo Hayashi
慎吾 林
泰志 木野
Yasushi Kino
泰志 木野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Publication of JP2020094278A publication Critical patent/JP2020094278A/en
Application granted granted Critical
Publication of JP7247866B2 publication Critical patent/JP7247866B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • B22F2302/256Silicium oxide (SiO2)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

To provide a soft magnetic alloy powder that has both of magnetic properties and reliability of insulation, corrosion resistance and the like.SOLUTION: There is provided an insulation coating soft magnetic alloy powder wherein an oxide coat of 1-10 nm in thickness is formed on the surface of iron-based soft magnetic alloy powder, with the ratio between particle size (D50)/oxide coat thickness being 100-21000.SELECTED DRAWING: Figure 1

Description

本発明は、絶縁被膜軟磁性合金粉末に関する。 The present invention relates to an insulating coated soft magnetic alloy powder.

近年、電源回路で使用されるパワーインダクタは、小型化・低背化の要求から大電流・高周波数で使用できる軟磁性材料が望まれている。従来、インダクタの主材料として酸化物であるフェライト系材料が使用されてきたが、飽和磁化が低いため小型化には不利であり、近年、飽和磁化が高く小型・低背化に有利な合金系材料を使用したメタルインダクタが急増している。メタルインダクタには、鉄を主材料とした軟磁性合金粉末(以下、鉄基軟磁性合金粉末ともいう)が用いられ、軟磁性合金粉末と樹脂とを混合し、圧縮成形した圧粉磁心などが知られている。圧粉磁心の磁気特性(飽和磁化、透磁率、コアロス、周波数特性など)は、使用する軟磁性合金粉末の磁気特性や粒度分布、充填性、電気抵抗に依存する。 In recent years, for power inductors used in power supply circuits, soft magnetic materials that can be used at large currents and high frequencies have been demanded due to demands for downsizing and height reduction. Conventionally, ferrite-based materials, which are oxides, have been used as the main material of inductors, but they are disadvantageous in downsizing due to their low saturation magnetization. In recent years, alloy-based materials that have high saturation magnetization and are advantageous for downsizing and height reduction The number of metal inductors using materials is increasing rapidly. A soft magnetic alloy powder containing iron as a main material (hereinafter, also referred to as iron-based soft magnetic alloy powder) is used for the metal inductor, and a soft magnetic alloy powder and a resin are mixed, and a powder magnetic core formed by compression molding is used. Are known. The magnetic characteristics (saturation magnetization, magnetic permeability, core loss, frequency characteristics, etc.) of the dust core depend on the magnetic characteristics, particle size distribution, filling property, and electrical resistance of the soft magnetic alloy powder used.

従来使用されてきたフェライト系材料は酸化物であることから、絶縁性や耐食性などの信頼性が高かったが、合金系材料はこれらの信頼性がフェライト系材料と比較して低く、軟磁性合金粉末の絶縁性や耐食性を向上させる手法として、例えば、リン酸処理による被膜形成が知られている(特許文献1、2)。しかしながら、リン酸処理による被膜形成では、被膜の膜厚がミクロンオーダーと厚いため、粉末の磁気特性が低下すること、更には、外力により被膜が剥離し易く、インダクタの材料として用いる場合、インダクタ内での磁性体の通電や錆の発生等により特性が劣化することなどの問題がある。絶縁性や耐食性などの信頼性と磁気特性とを両立する上で、より薄く剥離し難い被膜が必要である。 Conventionally used ferrite materials are oxides, so they had high reliability such as insulation and corrosion resistance, but alloy materials have lower reliability than ferrite materials, and soft magnetic alloys As a method of improving the insulating property and corrosion resistance of powder, for example, film formation by phosphoric acid treatment is known (Patent Documents 1 and 2). However, in the case of forming a film by phosphoric acid treatment, the film thickness of the film is as thick as micron order, so the magnetic properties of the powder are deteriorated, and further, the film is easily peeled off by an external force. There is a problem that the characteristics are deteriorated due to the energization of the magnetic material and the generation of rust. In order to achieve both magnetic properties and reliability such as insulation and corrosion resistance, a thinner coating that is difficult to peel off is required.

特開2003−272911号公報JP, 2003-272911, A 特開2008−63651号公報JP, 2008-63651, A

本発明は、高い磁気特性と絶縁性や耐食性などの信頼性とを兼ね備える軟磁性合金粉末を提供することを目的とする。 It is an object of the present invention to provide a soft magnetic alloy powder having both high magnetic properties and reliability such as insulation and corrosion resistance.

本発明者は、種々の研究を行った結果、鉄基軟磁性合金粉末にナノオーダーの膜厚を有する薄い酸化物被膜を形成し、その結果、磁気特性の低下を抑えながらも高い絶縁性と耐食性とを有する鉄基軟磁性合金粉末(以下、絶縁被膜軟磁性合金粉末ともいう)が得られるとの知見を得て、本発明を完成するに至った。 The present inventor, as a result of various studies, formed a thin oxide film having a nano-order film thickness on the iron-based soft magnetic alloy powder, and as a result, a high insulating property was obtained while suppressing deterioration of magnetic properties. The present invention has been completed based on the finding that an iron-based soft magnetic alloy powder having corrosion resistance (hereinafter also referred to as an insulating coating soft magnetic alloy powder) can be obtained.

すなわち、本発明は、1〜10nmの膜厚を有する酸化物被膜が鉄基軟磁性合金粉末の表面に形成されており、粒径(D50)/酸化物被膜の膜厚の比が100〜21000である、絶縁被膜軟磁性合金粉末である。 That is, in the present invention, an oxide film having a film thickness of 1 to 10 nm is formed on the surface of the iron-based soft magnetic alloy powder, and the particle diameter (D50)/oxide film thickness ratio is 100 to 21000. Which is a soft magnetic alloy powder having an insulating coating.

本発明の一態様によれば、酸化物被膜の膜厚が1〜6nmである、上記の絶縁被膜軟磁性合金粉末が提供される。 According to one aspect of the present invention, there is provided the above-mentioned insulating coated soft magnetic alloy powder, wherein the oxide coating has a thickness of 1 to 6 nm.

本発明の一態様によれば、粒径(D50)/酸化物被膜の膜厚の比率が150〜3000である、上記の絶縁被膜軟磁性合金粉末が提供される。 According to one aspect of the present invention, there is provided the above-described insulating coated soft magnetic alloy powder having a particle diameter (D50)/oxide coating thickness ratio of 150 to 3000.

本発明の一態様によれば、鉄基軟磁性合金粉末の粒径(D50)が0.7〜5μmである、上記の絶縁被膜軟磁性合金粉末が提供される。 According to one aspect of the present invention, there is provided the above-mentioned insulating coated soft magnetic alloy powder, wherein the iron-based soft magnetic alloy powder has a particle size (D50) of 0.7 to 5 μm.

本発明の一態様によれば、鉄基軟磁性合金粉末が、鉄基アモルファス合金粉末又は鉄基結晶質合金粉末である、上記の絶縁被膜軟磁性合金粉末が提供される。 According to one aspect of the present invention, there is provided the above-mentioned insulating coated soft magnetic alloy powder, wherein the iron based soft magnetic alloy powder is an iron based amorphous alloy powder or an iron based crystalline alloy powder.

本発明の一態様によれば、
鉄基軟磁性合金粉末が、下記組成式:
(Fe1-s-tCosNit100-x-y{(Siabm(Pcdnxy
[式中、Fe、Co及びNiの組成比率が、
19≦x≦22、
0≦y≦6.0、
0≦s≦0.35、
0≦t≦0.35、及び
s+t≦0.35であり、
Si、B、P及びCの組成比率が、
(0.5:1)≦(m:n)≦(6:1)、
(2.5:7:5)≦(a:b)≦(5.5:4.5)及び
(5.5:4.5)≦(c:d)≦(9.5:0.5)であり、
Mが、Nb又はMoである]
で表される組成を有する鉄基アモルファス合金粉末である、上記の絶縁被膜軟磁性合金粉末が提供される。
According to one aspect of the invention,
The iron-based soft magnetic alloy powder has the following composition formula:
(Fe 1-st Co s Ni t) 100-xy {(Si a B b) m (P c C d) n} x M y
[Wherein the composition ratio of Fe, Co and Ni is
19≦x≦22,
0≦y≦6.0,
0≦s≦0.35,
0≦t≦0.35, and s+t≦0.35,
The composition ratio of Si, B, P and C is
(0.5:1)≦(m:n)≦(6:1),
(2.5:7:5)≦(a:b)≦(5.5:4.5) and (5.5:4.5)≦(c:d)≦(9.5:0.5) ),
M is Nb or Mo]
There is provided the above-mentioned insulating coated soft magnetic alloy powder which is an iron-based amorphous alloy powder having a composition represented by:

本発明の一態様によれば、鉄基軟磁性合金粉末がFe−Si−Cr系結晶質合金粉末である、上記の絶縁被膜軟磁性合金粉末が提供される。 According to one aspect of the present invention, there is provided the above-described insulating coated soft magnetic alloy powder, wherein the iron-based soft magnetic alloy powder is a Fe-Si-Cr-based crystalline alloy powder.

本発明の一態様によれば、5重量%以下のCrを含む、上記の絶縁被膜軟磁性合金粉末が提供される。 According to one aspect of the present invention, there is provided the above-described insulating coated soft magnetic alloy powder containing 5% by weight or less of Cr.

本発明の一態様によれば、酸化物被膜がSiO膜である、上記の絶縁被膜軟磁性合金粉末が提供される。 According to one aspect of the present invention, there is provided the above-mentioned insulating film soft magnetic alloy powder, wherein the oxide film is a SiO 2 film.

本発明によれば、高い磁気特性と絶縁性や耐食性などの信頼性とを兼ね備える軟磁性合金粉末を提供することができる。 According to the present invention, it is possible to provide a soft magnetic alloy powder having both high magnetic properties and reliability such as insulation and corrosion resistance.

本発明の絶縁被膜軟磁性合金粉末の透過型電子顕微鏡写真である。2 is a transmission electron micrograph of the insulating coated soft magnetic alloy powder of the present invention. 本発明の絶縁被膜軟磁性合金粉末及び酸化物被膜が形成されていない鉄基アモルファス合金粉末の走査型電子顕微鏡写真及びエネルギー分散型X線分析装置による酸素のラインスキャン結果を示すグラフである。3 is a graph showing a scanning electron micrograph of an insulating coated soft magnetic alloy powder and an iron-based amorphous alloy powder on which an oxide coating is not formed, and a line scan result of oxygen by an energy dispersive X-ray analyzer. 比較例5及び実施例11−17に係る、酸化物被膜の膜厚と絶縁被膜軟磁性合金粉末の粒径及び酸素量との関係を示すグラフである。It is a graph which shows the film thickness of an oxide film, the particle size of an insulating film soft magnetic alloy powder, and the amount of oxygen concerning Comparative Example 5 and Examples 11-17. 比較例5及び実施例11−17に係る、酸化物被膜の膜厚と抵抗率との関係を示すグラフである。It is a graph which shows the relationship between the film thickness of an oxide film and the resistivity which concerns on the comparative example 5 and Example 11-17. 実施例及び比較例に係る、塩水噴霧試験後の錆の発生の有無を示す写真である。It is a photograph which shows the presence or absence of rust after a salt spray test concerning an example and a comparative example. 比較例5及び実施例11−17に係る、酸化物被膜の膜厚と透磁率との関係を示すグラフである。It is a graph which shows the relationship between the film thickness of an oxide film and magnetic permeability which concerns on the comparative example 5 and Example 11-17.

以下、本発明の一実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。 Hereinafter, one embodiment of the present invention will be described in detail. The present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within a range that does not impair the effects of the present invention.

本実施形態に係る絶縁被膜軟磁性合金粉末は、1〜10nmの膜厚を有する酸化物被膜が、鉄基軟磁性合金粉末の表面に形成されている。本実施形態に係る絶縁被膜軟磁性合金粉末において、酸化物被膜は、1〜10nm、好ましくは1〜9nm、より好ましくは1〜8nm、更に好ましくは1〜6nmの膜厚を有する。上述の範囲のナノオーダーの薄い膜厚の酸化物被膜が鉄基軟磁性合金粉末の表面に形成されていることにより、絶縁被膜軟磁性合金粉末の磁気特性の低下を抑えながらも高い絶縁性及び耐食性が得られる。 In the insulating coated soft magnetic alloy powder according to the present embodiment, an oxide coating having a film thickness of 1 to 10 nm is formed on the surface of the iron-based soft magnetic alloy powder. In the insulating coated soft magnetic alloy powder according to the present embodiment, the oxide coating has a film thickness of 1 to 10 nm, preferably 1 to 9 nm, more preferably 1 to 8 nm, still more preferably 1 to 6 nm. By forming a thin oxide film of nano-order in the above range on the surface of the iron-based soft magnetic alloy powder, the insulating film has a high insulating property while suppressing the deterioration of the magnetic properties of the soft magnetic alloy powder. Corrosion resistance can be obtained.

[膜厚]
本実施形態に係る絶縁被膜軟磁性合金粉末の酸化物被膜の膜厚は、透過型電子顕微鏡等を用いて測定された膜厚の実測値を意味する。
[Film thickness]
The film thickness of the oxide film of the insulating film soft magnetic alloy powder according to the present embodiment means an actually measured value of the film thickness measured using a transmission electron microscope or the like.

[酸化物被膜]
本明細書において、「酸化物被膜」とは、鉄基軟磁性合金粉末状に形成された、酸化物を含む絶縁性を有する被膜を意味し、被膜が絶縁性を有する限り、酸化物は特に限定されない。
[Oxide coating]
In the present specification, the “oxide coating” means an insulating coating containing an oxide, which is formed in the form of an iron-based soft magnetic alloy powder, and as long as the coating has insulating properties, the oxide is particularly Not limited.

[鉄基軟磁性合金粉末]
本明細書において、「鉄基軟磁性合金粉末」とは、従来公知の鉄を主材料とした軟磁性合金粉末を意味する。磁気特性、生産性など観点から、鉄基軟磁性合金粉末として、水アトマイズ法で製造された鉄基アモルファス合金粉末又は鉄基結晶質合金粉末であることが好ましい。鉄基軟磁性合金粉末の粒径は、特に限定されず、所望の磁気特性に応じて調整される。
[Iron-based soft magnetic alloy powder]
In the present specification, the "iron-based soft magnetic alloy powder" means a conventionally known soft magnetic alloy powder mainly composed of iron. From the viewpoint of magnetic properties and productivity, the iron-based soft magnetic alloy powder is preferably an iron-based amorphous alloy powder or an iron-based crystalline alloy powder produced by a water atomizing method. The particle size of the iron-based soft magnetic alloy powder is not particularly limited and is adjusted according to desired magnetic characteristics.

[粒径(D50)/酸化物被膜の膜厚の比]
本実施形態に係る絶縁被膜軟磁性合金粉末は、絶縁被膜軟磁性合金粉末の粒径(D50)/酸化物被膜の膜厚の比が100〜21000、好ましくは100〜10000、より好ましくは150〜5000、更に好ましくは150〜3000である。「粒径(D50)/酸化物被膜の膜厚の比」とは、絶縁被膜軟磁性合金粉末のメディアン径:D50の測定値と、酸化物被膜の膜厚の測定値との比であり、単位を有さない無次元量である。粒径(D50)/酸化物被膜の膜厚の比が上述の範囲であることにより、絶縁被膜軟磁性合金粉末は、圧粉磁心の材料として優れた、磁気特性と絶縁性及び耐食性とを兼ね備える。
本実施形態に係る鉄基軟磁性合金粉末の粒径は、好ましくは0.1〜210μm、より好ましくは0.2〜100μm、更に好ましくは0.5〜50μm、更により好ましくは0.5〜30μm、特に好ましくは0.7〜5μmである。
[Ratio of particle size (D50)/thickness of oxide film]
In the insulating coated soft magnetic alloy powder according to the present embodiment, the ratio of the particle diameter of the insulating coated soft magnetic alloy powder (D50)/the film thickness of the oxide coating is 100 to 21000, preferably 100 to 10000, and more preferably 150 to. It is 5,000, more preferably 150 to 3,000. The “particle size (D50)/oxide film thickness ratio” is the ratio of the measured value of median diameter D50 of the insulating film soft magnetic alloy powder to the measured film thickness of the oxide film, It is a dimensionless quantity that has no unit. Since the ratio of the particle diameter (D50)/the film thickness of the oxide film is within the above range, the insulating film soft magnetic alloy powder has excellent magnetic properties, insulating properties and corrosion resistance as a material for a dust core. ..
The particle diameter of the iron-based soft magnetic alloy powder according to the present embodiment is preferably 0.1 to 210 μm, more preferably 0.2 to 100 μm, still more preferably 0.5 to 50 μm, and even more preferably 0.5 to 30 μm, particularly preferably 0.7 to 5 μm.

[粒径]
本明細書において、「粒径」とは、メディアン径:D50を意味し、従来公知の方法、例えば、レーザー回折・散乱法により測定されるものである。
[Particle size]
In the present specification, the “particle diameter” means a median diameter: D50, which is measured by a conventionally known method, for example, a laser diffraction/scattering method.

本実施形態に係る絶縁被膜軟磁性合金粉末は、鉄基軟磁性合金粉末が、鉄基アモルファス合金粉末又は鉄基結晶質合金粉末であることが好ましい。鉄基アモルファス合金粉末又は鉄基結晶質合金粉末を用いることにより、優れた軟磁気特性を有する。 In the insulating coated soft magnetic alloy powder according to the present embodiment, the iron-based soft magnetic alloy powder is preferably iron-based amorphous alloy powder or iron-based crystalline alloy powder. The use of the iron-based amorphous alloy powder or the iron-based crystalline alloy powder has excellent soft magnetic properties.

本実施形態に係る絶縁被膜軟磁性合金粉末は、鉄基軟磁性合金粉末が、下記組成式:
(Fe1-s-tCosNit100-x-y{(Siabm(Pcdnxy
[式中、Fe、Co及びNiの組成比率が、
19≦x≦22、
0≦y≦6.0、
0≦s≦0.35、
0≦t≦0.35、及び
s+t≦0.35であり、
Si、B、P及びCの組成比率が、
(0.5:1)≦(m:n)≦(6:1)、
(2.5:7:5)≦(a:b)≦(5.5:4.5)及び
(5.5:4.5)≦(c:d)≦(9.5:0.5)であり、
Mが、Nb又はMoである]
で表される組成を有する鉄基アモルファス合金粉末であることが好ましい。
鉄基軟磁性合金粉末が上記の組成を有する鉄基アモルファス合金粉末であることにより、優れた軟磁気特性に加えて、難燃性を有する。
In the insulating coated soft magnetic alloy powder according to the present embodiment, the iron-based soft magnetic alloy powder has the following composition formula:
(Fe 1-st Co s Ni t) 100-xy {(Si a B b) m (P c C d) n} x M y
[Wherein the composition ratio of Fe, Co and Ni is
19≦x≦22,
0≦y≦6.0,
0≦s≦0.35,
0≦t≦0.35, and s+t≦0.35,
The composition ratio of Si, B, P and C is
(0.5:1)≦(m:n)≦(6:1),
(2.5:7:5)≦(a:b)≦(5.5:4.5) and (5.5:4.5)≦(c:d)≦(9.5:0.5) ),
M is Nb or Mo]
An iron-based amorphous alloy powder having a composition represented by is preferable.
Since the iron-based soft magnetic alloy powder is the iron-based amorphous alloy powder having the above composition, it has flame retardancy in addition to excellent soft magnetic properties.

本実施形態に係る絶縁被膜軟磁性合金粉末は、鉄基軟磁性合金粉末がFe−Si−Cr系結晶質合金粉末である、鉄基結晶質合金粉末であることが好ましい。鉄基軟磁性合金粉末がFe−Si−Cr系結晶質合金粉末であることにより、優れた軟磁気特性と耐食性とを有する。 The insulating coated soft magnetic alloy powder according to the present embodiment is preferably an iron-based crystalline alloy powder in which the iron-based soft magnetic alloy powder is a Fe-Si-Cr-based crystalline alloy powder. Since the iron-based soft magnetic alloy powder is the Fe-Si-Cr-based crystalline alloy powder, it has excellent soft magnetic characteristics and corrosion resistance.

本実施形態に係る絶縁被膜軟磁性合金粉末は、鉄基軟磁性合金粉末が5重量%以下のCrを含むことが好ましい。Crを含むことにより、鉄基軟磁性合金粉末自体の表面に酸化被膜が形成され、絶縁性軟磁性合金粉末として耐食性が更に向上する。Crに限らず、Al、Znなども鉄基軟磁性合金粉末自体の表面の酸化被膜の形成に寄与するため、同様の効果を奏する。Alは、Cr及び/又はZnにより形成された酸化被膜の硬度を高め、耐食性を向上する効果を有するため、Cr及び/又はZnとAlとを同時に含むことにより相乗効果が得られる。 In the insulating coated soft magnetic alloy powder according to this embodiment, the iron-based soft magnetic alloy powder preferably contains 5 wt% or less of Cr. By containing Cr, an oxide film is formed on the surface of the iron-based soft magnetic alloy powder itself, and the corrosion resistance of the insulating soft magnetic alloy powder is further improved. Not only Cr but also Al, Zn, etc. contribute to the formation of an oxide film on the surface of the iron-based soft magnetic alloy powder itself, and therefore, the same effect is obtained. Since Al has the effect of increasing the hardness of the oxide film formed by Cr and/or Zn and improving the corrosion resistance, a synergistic effect can be obtained by simultaneously including Cr and/or Zn and Al.

本実施形態に係る絶縁被膜軟磁性合金粉末は、酸化物被膜がSiO膜であることが好ましい。酸化物被膜が緻密で化学的に非常に安定であるSiO膜であることにより、剥がれ難く高い絶縁性及び耐食性を有する絶縁被膜軟磁性合金粉末が得られる。 In the insulating coated soft magnetic alloy powder according to the present embodiment, the oxide coating is preferably a SiO 2 film. Since the oxide film is a dense and chemically very stable SiO 2 film, it is possible to obtain an insulating film soft magnetic alloy powder that is hard to peel off and has high insulation and corrosion resistance.

[製造方法]
本実施形態に係る絶縁被膜軟磁性合金粉末は、鉄基軟磁性合金粉末に酸化物被膜を形成することにより製造される。
[Production method]
The insulating coated soft magnetic alloy powder according to the present embodiment is manufactured by forming an oxide coating on the iron-based soft magnetic alloy powder.

材料である鉄基軟磁性合金粉末は、従来公知の溶融プロセス法、機械的プロセス法又は化学的プロセス法により製造され得るが、特に、アトマイズ法により製造されることが好ましい。所望の組成に調整した材料を溶解した溶湯に対し、所望の冷却条件や粒径となるようパラメータを設定したアトマイズ法を行うことにより粉末を得て、その後、その粉末を乾燥させ、目的とする鉄基軟磁性粉末を得ることができる。アトマイズ法の中でも、大気雰囲気下で製造できるため設備費及び製造コストが低く、小径の粉末が得られる水アトマイズ法が好ましい。粉末が小径であることにより、渦電流損失を抑え、優れた磁気特性を有する圧粉磁心等を製造するができる。 The iron-based soft magnetic alloy powder, which is a material, can be manufactured by a conventionally known melting process method, mechanical process method, or chemical process method, but is preferably manufactured by an atomizing method. For the melt in which the material adjusted to the desired composition is melted, the powder is obtained by performing the atomizing method in which the parameters are set so that the desired cooling conditions and the particle size are obtained, and then the powder is dried to obtain the target. An iron-based soft magnetic powder can be obtained. Among the atomizing methods, the water atomizing method is preferable because it can be produced in the atmosphere and thus the equipment cost and the production cost are low and a powder having a small diameter can be obtained. Since the powder has a small diameter, it is possible to suppress eddy current loss and manufacture a dust core or the like having excellent magnetic characteristics.

酸化物被膜の形成は、化学的蒸着法(CVD)及び物理的蒸着法(PVD)などの気相法や溶射法など、従来公知の方法により行うことができるが、特に、生産性やコストの観点から、ゾル−ゲル法により行うことが好ましい。ゾル−ゲル法では、被膜成分である酸化物の原料である金属アルコキシドや金属酢酸塩、加水分解のための水、溶媒としてのアルコール、触媒である酸又は塩基等を含む溶液と、上述のように得られた鉄基軟磁性合金粉末とを混合した後に、加熱して溶媒を除去することにより酸化物被膜が形成される。混合は、例えば、プラネタリーミキサー、ミックスマラー、らいかい機、リボンミキサー等を用いて行うことができ、粉末と溶液とを混ぜ合わせる機構を有する装置であれば、混合に用いる装置は特に限定されない。ゾル−ゲル法において、酸化物被膜の膜厚は、酸化物の配合量、混合時間、溶液の滴下方法、滴下量、温度等の条件を調整することにより、所望の膜厚に調製することができる。 The oxide film can be formed by a conventionally known method such as a vapor phase method such as a chemical vapor deposition method (CVD) or a physical vapor deposition method (PVD) or a thermal spraying method. From the viewpoint, the sol-gel method is preferred. In the sol-gel method, a solution containing a metal alkoxide or metal acetate as a raw material of an oxide as a film component, water for hydrolysis, an alcohol as a solvent, an acid or a base as a catalyst, and the like as described above. After mixing with the iron-based soft magnetic alloy powder obtained in (1), the solvent is removed by heating to form an oxide film. Mixing can be performed using, for example, a planetary mixer, a mix muller, a raft mixer, a ribbon mixer, or the like, and the device used for mixing is not particularly limited as long as it is a device having a mechanism for mixing powder and solution. .. In the sol-gel method, the film thickness of the oxide film can be adjusted to a desired film thickness by adjusting conditions such as the compounding amount of the oxide, the mixing time, the dropping method of the solution, the dropping amount, and the temperature. it can.

酸化物被膜の形成後、分級を行うことにより、所望の磁気特性に応じた目的の粒径を有する絶縁被膜軟磁性合金粉末を得ることができる。 By carrying out classification after forming the oxide film, it is possible to obtain an insulating film soft magnetic alloy powder having a target particle size according to desired magnetic characteristics.

以下に本発明の実施例を示す。本発明の内容はこれらの実施例により限定して解釈されるものではない。 Examples of the present invention will be shown below. The contents of the present invention should not be construed as being limited to these examples.

[絶縁被膜軟磁性合金粉末の製造]
1.原料合金粉末の調製
以下の組成を有するように調製した原料混合物を高周波誘導炉にて溶解し、水アトマイズ法を用いて、鉄基アモルファス合金粉末及び鉄基結晶質合金粉末を製造した。
<鉄基アモルファス合金粉末>
(Fe1-s-tCosNit100-x-y{(Siabm(Pcdnxy
式中、s=0、t=0、x=22、y=0.89、m:n=3:1、a:b=3.8:6.2、c:d=7.8:2.2であり、Cr:0wt%〜3.0wt%。
<鉄基結晶質合金粉末>
・(92)Fe3.5Si4.5Cr(wt%)、
・(95)Fe2Si3Cr(wt%)、
・(92)Fe5Si3Cr(wt%)、
・(90)Fe7Si3Cr(wt%)、
・(92)Fe7Si1Cr(wt%)、及び
・(91)Fe7Si2Cr(wt%)
鉄基アモルファス合金粉末及び鉄基結晶質合金粉末製造における水アトマイズ条件は以下の通りであった。
<鉄基アモルファス合金粉末−水アトマイズ条件>
・水圧:100MPa
・水量:100L/分
・水温:20℃
・オリフィス径:φ4mm
・溶湯温度:1500℃
<鉄基結晶質合金粉末−水アトマイズ条件>
・水圧:100MPa
・水量:100L/分
・水温:20℃
・オリフィス径:φ4mm
・溶湯温度:1800℃
[Production of soft magnetic alloy powder for insulating film]
1. Preparation of Raw Material Alloy Powder A raw material mixture prepared so as to have the following composition was melted in a high frequency induction furnace, and an iron-based amorphous alloy powder and an iron-based crystalline alloy powder were produced by using a water atomizing method.
<Iron-based amorphous alloy powder>
(Fe 1-st Co s Ni t) 100-xy {(Si a B b) m (P c C d) n} x M y
In the formula, s=0, t=0, x=22, y=0.89, m:n=3:1, a:b=3.8:6.2, c:d=7.8:2. .2 and Cr: 0 wt% to 3.0 wt %.
<Iron-based crystalline alloy powder>
-(92) Fe3.5Si4.5Cr (wt%),
・(95)Fe2Si3Cr(wt%),
・(92)Fe5Si3Cr(wt%),
・(90)Fe7Si3Cr(wt%),
-(92)Fe7Si1Cr (wt%), and-(91)Fe7Si2Cr (wt%)
The conditions of water atomizing in the production of the iron-based amorphous alloy powder and the iron-based crystalline alloy powder were as follows.
<Iron-based amorphous alloy powder-water atomizing conditions>
・Water pressure: 100 MPa
・Water volume: 100 L/min ・Water temperature: 20°C
・Orifice diameter: φ4mm
・Melting temperature: 1500℃
<Iron-based crystalline alloy powder-water atomizing conditions>
・Water pressure: 100 MPa
・Water volume: 100 L/min ・Water temperature: 20°C
・Orifice diameter: φ4mm
・Melting temperature: 1800℃

得られた鉄基アモルファス合金粉末及び鉄基結晶質合金粉末のそれぞれを振動真空乾燥機(中央加工機製:VU−60)により乾燥させた。乾燥条件は以下の通りである。
<乾燥条件>
・温度:100℃
・圧力:10kPa以下
・時間:60分
乾燥後の鉄基アモルファス合金粉末及び鉄基結晶質合金粉末のそれぞれについて、組成分析をICP発光分析装置〔SPS3500DD:日立ハイテクサイエンス製〕にて行い、目的とする組成を有していることを確認した。
Each of the obtained iron-based amorphous alloy powder and iron-based crystalline alloy powder was dried by a vibrating vacuum dryer (VU-60 manufactured by Central Processing Machine). The drying conditions are as follows.
<Drying conditions>
・Temperature: 100℃
-Pressure: 10 kPa or less-Time: 60 minutes With respect to each of the iron-based amorphous alloy powder and the iron-based crystalline alloy powder after drying, the composition analysis was performed by an ICP emission spectrometer [SPS3500DD: manufactured by Hitachi High-Tech Science] It was confirmed that it had a composition that

2.被膜処理
乾燥後の鉄基アモルファス合金粉末及び鉄基結晶質合金粉末のそれぞれを、SiOの被膜を形成するために必要な成分を有する成分を有するコーティング液と目的とする膜厚が得られる条件で混合し、加熱して溶媒を完全に除去すると同時に酸化物被膜を硬化させ、種々の膜厚の酸化物被膜を形成した。なお、膜厚をコントロールする条件は、コーティング液の被膜成分濃度(コーティング液の固形成分濃度)と被膜成分の比重と各粉末の比表面積から算出して決定した。
例えば、膜厚5nmの酸化物被膜を得る場合、各粉末1kgに対して濃度10%のコーティング液10.98gを混合した。
2. Conditions for obtaining a coating solution containing iron-based amorphous alloy powder and iron-based crystalline alloy powder after coating treatment and drying, each having components necessary for forming a SiO 2 coating, and a target film thickness Was mixed and heated to completely remove the solvent, and at the same time, the oxide film was cured to form oxide films of various thicknesses. The conditions for controlling the film thickness were determined by calculating from the concentration of the coating component of the coating liquid (concentration of the solid component of the coating liquid), the specific gravity of the coating component, and the specific surface area of each powder.
For example, when obtaining an oxide film having a film thickness of 5 nm, 10.98 g of a coating liquid having a concentration of 10% was mixed with 1 kg of each powder.

3.分級処理
被膜処理、乾燥後の鉄基アモルファス合金粉末及び鉄基結晶質合金粉末のそれぞれを、気流分級装置〔日清エンジニアリング製:ターボクラシファイア〕により分級し、目的とする絶縁被膜軟磁性合金粉末を得た。得られた絶縁被膜軟磁性合金粉末の粒径(D50)は、湿式粒度分布測定機〔MT3300EX II:マイクロトラック・ベル製〕を用いて測定した。
3. Classifying treatment Coating treatment, iron-based amorphous alloy powder and iron-based crystalline alloy powder after drying, respectively, are classified by an air flow classifier [Nisshin Engineering: Turbo Classifier] to obtain the target insulating coated soft magnetic alloy powder. Obtained. The particle size (D50) of the obtained insulating coated soft magnetic alloy powder was measured by using a wet particle size distribution analyzer [MT3300EX II: manufactured by Microtrac Bell].

鉄基アモルファス合金粉末を用いて作製した絶縁被膜軟磁性合金粉末(実施例1−32、比較例1−16)を及び鉄基結晶質合金粉末を用いて作製した絶縁被膜軟磁性合金粉末(実施例33−50、比較例17−28)に対し、以下の評価を行った。 Insulating film soft magnetic alloy powder (Example 1-32, Comparative Example 1-16) produced using iron-based amorphous alloy powder, and insulating film soft magnetic alloy powder produced using iron-based crystalline alloy powder (implementation The following evaluations were performed on Examples 33-50 and Comparative Examples 17-28).

[評価項目]
1.粉体物性
1−1.被膜観察
走査型電子顕微鏡(SEM)〔JSM7200:日本電子製〕を用いて、絶縁被膜軟磁性合金粉末の形状を観察し、エネルギー分散型X線分析装置(EDS)〔X−MAX50:Oxford Instruments製〕、透過型電子顕微鏡(TEM)〔H−9500:日立ハイテクノロジーズ製〕を用いて、酸化物被膜を観察した。
1−2.酸素量測定
酸素分析計〔EMGA823:堀場製作所製〕を用いて、絶縁被膜軟磁性合金粉末に含まれる酸素量を測定した。
[Evaluation item]
1. Powder physical properties
1-1. Film observation Scanning electron microscope (SEM) [JSM7200: made by JEOL] was used to observe the shape of the insulating film soft magnetic alloy powder, and an energy dispersive X-ray analyzer (EDS) [X-MAX50: made by Oxford Instruments ], the oxide film was observed using the transmission electron microscope (TEM) [H-9500: made by Hitachi High-Technologies].
1-2. Oxygen content measurement The oxygen content contained in the insulating coated soft magnetic alloy powder was measured using an oxygen analyzer [EMGA823: manufactured by Horiba, Ltd.].

2.被膜性能
絶縁被膜軟磁性合金粉末とエポキシ樹脂とを混合して造粒紛を作製し、円柱状に圧粉成形してペレット(径:12mm、高さ:5mm)を作製し、以下を行った。
2−1.絶縁性評価
耐電圧絶縁抵抗計〔TOS9201:菊水電機製〕を用いて、ペレットの両面を銅板で挟み、二端子法で抵抗値を測定し、ペレットの外形寸法と抵抗値から体積抵抗率を算出した。
2−2.耐食性評価
塩水噴霧試験機〔STP−90V−4:スガ試験機製〕を用いて、米国規格ASTM−B117に従い、塩水噴霧試験を行った。24時間毎に96時間までペレット表面の錆の発生状況を目視にて確認した。
2. Coating performance Insulating coating Soft magnetic alloy powder and epoxy resin were mixed to produce granulated powder, which was pressed into a cylindrical shape to produce pellets (diameter: 12 mm, height: 5 mm). ..
2-1. Insulation evaluation Withstanding voltage insulation resistance tester [TOS9201: Kikusui Denki], both sides of the pellet were sandwiched between copper plates, the resistance value was measured by the two-terminal method, and the volume resistivity was calculated from the external dimensions and resistance value of the pellet. did.
2-2. Evaluation of Corrosion Resistance Using a salt spray tester [STP-90V-4: manufactured by Suga Test Instruments], a salt spray test was conducted according to American Standard ASTM-B117. The occurrence of rust on the pellet surface was visually checked every 24 hours up to 96 hours.

3.磁気特性
上述の造粒紛をリング状に圧粉成形(成形圧力:5MPa)して圧粉磁心(外径:15mm、内径:9mm、厚さ:3mm)を作製し、線径:0.3mmの銅線をバイフェラ巻きしたトロイダルコアを作製し評価資料とした。BHアナライザ〔SY8258:岩通計測製〕を用いて、測定周波数:1000kHz、最大磁束密度:40mTの条件で透磁率を測定した。
3. Magnetic properties The above-mentioned granulated powder is pressed into a ring shape (molding pressure: 5 MPa) to produce a dust core (outer diameter: 15 mm, inner diameter: 9 mm, thickness: 3 mm), wire diameter: 0.3 mm The toroidal core in which the copper wire of No. 2 was wound by bi-ferra was prepared and used as the evaluation data. The magnetic permeability was measured using a BH analyzer [SY8258: manufactured by Iwatsu Keisoku] under the conditions of measurement frequency: 1000 kHz and maximum magnetic flux density: 40 mT.

[評価結果]
1.粉体物性
図1は、実施例16に係る、鉄基アモルファス合金粉末に酸化物被膜を形成した、絶縁被膜軟磁性合金粉末の透過型電子顕微鏡(TEM)写真である。図1に示されるように、鉄基アモルファス合金粉末に被膜(膜厚:5nm)が確かに形成されていることが確認された。また、酸化物被膜の被膜処理条件から計算される膜厚と実際に膜厚がほぼ一致することが確認された。
[Evaluation results]
1. Powder Physical Properties FIG. 1 is a transmission electron microscope (TEM) photograph of an insulating coated soft magnetic alloy powder obtained by forming an oxide coating on an iron-based amorphous alloy powder according to Example 16. As shown in FIG. 1, it was confirmed that a film (film thickness: 5 nm) was certainly formed on the iron-based amorphous alloy powder. It was also confirmed that the film thickness calculated from the film treatment conditions of the oxide film and the film thickness actually match.

図2は、実施例15に係る絶縁被膜軟磁性合金粉末と(図2右側)、比較例5に係る酸化物被膜を有しない鉄基アモルファス合金粉末(図2左側)の走査型電子顕微鏡写真(SEM)とエネルギー分散型X線分析装置(EDS)による酸素のラインスキャン結果である。縦軸は酸素のKα線の時間当たりのカウント数であり、数値が高いほど酸素が存在している、すなわち、酸化物被膜が形成されていることを意味する。図2の左右の比較から明らかなように、被膜処理を施したことにより、鉄基アモルファス合金粉末に酸化物被膜が確かに形成されていることが確認された。 FIG. 2 is a scanning electron micrograph of an insulating coated soft magnetic alloy powder according to Example 15 (on the right in FIG. 2) and an iron-based amorphous alloy powder without an oxide coating according to Comparative Example 5 (on the left in FIG. 2) ( It is a line scan result of oxygen by a SEM) and an energy dispersive X-ray analyzer (EDS). The vertical axis represents the number of oxygen Kα rays counted per hour, and the higher the value, the more oxygen is present, that is, the oxide film is formed. As is clear from the left-right comparison in FIG. 2, it was confirmed that the oxide film was certainly formed on the iron-based amorphous alloy powder by the film treatment.

図3は、酸化物被膜の形成条件から算出された酸化物被膜の膜厚(nm)と、絶縁被膜軟磁性合金粉末の粒径(D50:μm)及び酸素量(wt%)との関係を示すグラフの一例である(比較例5及び実施例11−17)。図3に示されるように、膜厚を増大させるに従い、比例して酸素量が増大しており、これは、酸化物被膜が鉄基アモルファス合金粉末に形成されていることを意味し、酸化物被膜を目的とする膜厚に調製できることを意味する。 FIG. 3 shows the relationship between the film thickness (nm) of the oxide film calculated from the conditions for forming the oxide film, the particle size (D50: μm) of the insulating film soft magnetic alloy powder, and the oxygen amount (wt %). It is an example of the graph shown (Comparative example 5 and Examples 11-17). As shown in FIG. 3, as the film thickness is increased, the amount of oxygen is increased in proportion, which means that the oxide film is formed on the iron-based amorphous alloy powder. It means that the film can be adjusted to a desired film thickness.

2.被膜性能
図4は、絶縁被膜軟磁性合金粉末の酸化物被膜の膜厚と抵抗率との関係を示すグラフの一例である(比較例5及び実施例11−17)。酸化物被膜を有しない鉄基アモルファス合金粉末の抵抗率は、凡そ1.0×10Ω・mであったが、酸化物被膜の膜厚が1nmであっても100倍程抵抗率が上昇し、酸化物被膜の膜厚が2nmになると凡そ1.0×10Ω・mもの高い抵抗率となった。
2. Film Performance FIG. 4 is an example of a graph showing the relationship between the film thickness and the resistivity of the oxide film of the insulating film soft magnetic alloy powder (Comparative Example 5 and Examples 11-17). The resistivity of the iron-based amorphous alloy powder having no oxide film was about 1.0×10 4 Ω·m, but the resistivity increased about 100 times even if the thickness of the oxide film was 1 nm. However, when the film thickness of the oxide film was 2 nm, the resistivity was as high as about 1.0×10 7 Ω·m.

図5は、塩水噴霧試験後の錆の発生の有無を示す写真の一例であり、破線で囲われた写真中の黒い点状のものが発生した錆である。酸化物被膜を有しない鉄基アモルファス合金粉末は、48時間経過後には、錆が発生している。一方、酸化被膜を有する鉄基アモルファス合金粉末は、膜厚2.5nmの場合96時間後に初めて錆の発生が観察され、膜厚が3nmの場合、96時間後であっても錆の発生が観察されなかった。本実施例に係る絶縁被膜軟磁性合金粉末は、酸化物被膜の膜厚がナノオーダーの薄さであっても、耐食性が大きく向上したことが分かる。 FIG. 5 is an example of a photograph showing the presence or absence of rust after the salt spray test, in which the black dots in the photograph surrounded by the broken line are the rust. The iron-based amorphous alloy powder having no oxide film has rust after 48 hours. On the other hand, in the iron-based amorphous alloy powder having an oxide film, rust was observed only after 96 hours when the film thickness was 2.5 nm, and when the film thickness was 3 nm, rust was observed even after 96 hours. Was not done. It can be seen that the insulating coated soft magnetic alloy powder according to the present example has significantly improved corrosion resistance even when the oxide coating has a nano-thickness.

3.磁気特性
図6は、酸化物被膜の膜厚と透磁率との関係を示すグラフの一例である(比較例5及び実施例11−17)。酸化被膜の膜厚が、ナノオーダーと薄いため、膜厚が増加しても透磁率の低下が小さく、透磁率の低下も緩やかであることが分かる。
3. Magnetic Properties FIG. 6 is an example of a graph showing the relationship between the film thickness of the oxide film and the magnetic permeability (Comparative Example 5 and Examples 11-17). It can be seen that since the thickness of the oxide film is as thin as nano-order, even if the film thickness increases, the decrease in magnetic permeability is small and the decrease in magnetic permeability is moderate.

鉄基アモルファス合金粉末を用いて作製した絶縁被膜軟磁性合金粉末(実施例1−32、比較例1−16)についての評価結果を表1に、鉄基結晶質合金粉末を用いて作製した絶縁被膜軟磁性合金粉末(実施例33−50、比較例17−28)についての評価結果を表2に示す。 Table 1 shows the evaluation results of the insulating coating soft magnetic alloy powder (Example 1-32, Comparative Example 1-16) produced by using the iron-based amorphous alloy powder, and the insulation produced by using the iron-based crystalline alloy powder. Table 2 shows the evaluation results of the coated soft magnetic alloy powders (Example 33-50, Comparative Examples 17-28).

表1及び表2において、「低下率(%)」とは、被膜処理を施していない酸化物被膜が形成されていない合金粉末と比較した透磁率の低下率であり、「耐食性(h)」とは、上述の塩水噴霧試験において、24時間毎に錆の発生を目視にて確認した結果であり、「−48」は48時間以内に錆の発生が確認されたこと、「48−72」は48時間〜72時間以内に錆の発生が確認されたこと、「72−96」は72時間〜96時間以内に錆の発生が確認されたこと、及び「96−」は96時間経過後も錆の発生が確認されなかったことを表している。 In Tables 1 and 2, the "reduction rate (%)" is the reduction rate of the magnetic permeability compared to the alloy powder on which the oxide film not subjected to the film treatment is not formed, and the "corrosion resistance (h)" In the above-mentioned salt spray test, is the result of visually confirming the occurrence of rust every 24 hours, "-48" was the occurrence of rust was confirmed within 48 hours, "48-72" Indicates that rust has been confirmed within 48 hours to 72 hours, "72-96" indicates that rust has occurred within 72 hours to 96 hours, and "96-" indicates that 96 hours have elapsed. It means that the generation of rust was not confirmed.

表1及び表2に示されているように、実施例に係る絶縁被膜軟磁性合金粉末は、アモルファスであるか結晶質であるかに寄らず、透磁率の低下率を20%未満に抑え、かつ、被膜が形成されていない比較例に比べ、抵抗率及び耐食性が向上している。なお、表1中の実施例11、24、27については、それぞれ比較例5、11、13と同様に耐食性評価の結果が「−48」であるが、比較例5、11、13と比べて、抵抗率が大幅に向上していることから、酸化物被膜が確かに形成されていることが明らかであり、24時間毎の観察では差は現れなかったが、酸化物被膜が形成されていない比較例と比べ、耐食性が向上したことは明らかであると言える。この結果から、実施例に係る絶縁被膜軟磁性合金粉末は、圧粉磁心の材料として優れた特性を有していることが言える。とりわけ、実施例1−9、11−15、18、19、21、22、24、25、27、28、30、31に係る絶縁被膜軟磁性合金粉末は、透磁率の低下率が10%未満という優れた磁気特性を有し、その中でも特に、実施例1、2、5−9、14、15、19、31に係る絶縁被膜軟磁性合金粉末は、高い抵抗率と耐食性とを更に兼ね備えている。実施例に係る絶縁被膜軟磁性合金粉末は、圧粉磁心の材料として非常に優れた特性を有している。 As shown in Tables 1 and 2, the insulating coated soft magnetic alloy powders according to the examples suppress the decrease rate of magnetic permeability to less than 20% regardless of whether they are amorphous or crystalline. Moreover, the resistivity and the corrosion resistance are improved as compared with the comparative example in which the coating is not formed. In addition, about Examples 11, 24, and 27 in Table 1, the result of corrosion resistance evaluation is "-48" similarly to Comparative Examples 5, 11, and 13, respectively, but compared with Comparative Examples 5, 11, and 13. Since the resistivity was significantly improved, it was clear that the oxide film was indeed formed, and no difference was observed by observation every 24 hours, but the oxide film was not formed. It can be said that the corrosion resistance is improved as compared with the comparative example. From this result, it can be said that the insulating coated soft magnetic alloy powders according to the examples have excellent properties as a material for the dust core. In particular, the insulating coated soft magnetic alloy powder according to Examples 1-9, 11-15, 18, 19, 21, 21, 22, 24, 25, 27, 28, 30, 31 has a decrease rate of magnetic permeability of less than 10%. That is, the insulating coated soft magnetic alloy powders according to Examples 1, 2, 5-9, 14, 15, 19, and 31 further have high resistivity and corrosion resistance. There is. The insulating coated soft magnetic alloy powder according to the example has very excellent characteristics as a material for a dust core.

表1及び表2に示されているように、実施例に係る絶縁被膜軟磁性合金粉末は、鉄基軟磁性合金粉末自体の表面に酸化被膜を形成し、耐食性を向上させる効果を有るCrの含有量が少なくても、耐食性が向上している。すなわち、本発明により、Crの使用量を減らすことができ、より安価に絶縁被膜軟磁性合金粉末を製造すること可能である。 As shown in Tables 1 and 2, the insulating coated soft magnetic alloy powders according to the examples are formed of an oxide coating on the surface of the iron-based soft magnetic alloy powder itself, and are effective in improving the corrosion resistance of Cr. Even if the content is small, the corrosion resistance is improved. That is, according to the present invention, the amount of Cr used can be reduced and the insulating coated soft magnetic alloy powder can be produced at a lower cost.

本実施例では、SiO膜で各粉末を被膜したが、Al膜で被膜しても同様の結果が得られる。 In this embodiment, each powder was coated with a SiO 2 film, but the same result can be obtained by coating with an Al 2 O 3 film.

Claims (9)

1〜10nmの膜厚を有する酸化物被膜が鉄基軟磁性合金粉末の表面に形成されており、粒径(D50)/酸化物被膜の膜厚の比が100〜21000である、絶縁被膜軟磁性合金粉末。 An oxide film having a film thickness of 1 to 10 nm is formed on the surface of the iron-based soft magnetic alloy powder, and the ratio of particle diameter (D50)/oxide film thickness is 100 to 21000. Magnetic alloy powder. 酸化物被膜の膜厚が1〜6nmである、請求項1に記載の絶縁被膜軟磁性合金粉末。 The insulating coated soft magnetic alloy powder according to claim 1, wherein the oxide coating has a thickness of 1 to 6 nm. 粒径(D50)/酸化物被膜の膜厚の比が150〜3000である、請求項1又は2に記載の絶縁被膜軟磁性合金粉末。 The insulating coated soft magnetic alloy powder according to claim 1 or 2, wherein a ratio of particle diameter (D50)/oxide coating thickness is 150 to 3000. 鉄基軟磁性合金粉末の粒径(D50)が0.7〜5μmである、請求項1から3のいずれか一項に記載の絶縁被膜軟磁性合金粉末。 The insulating coated soft magnetic alloy powder according to claim 1, wherein the iron-based soft magnetic alloy powder has a particle diameter (D50) of 0.7 to 5 μm. 鉄基軟磁性合金粉末が、鉄基アモルファス合金粉末又は鉄基結晶質合金粉末である、請求項1から4のいずれか一項に記載の絶縁被膜軟磁性合金粉末。 The insulating coated soft magnetic alloy powder according to any one of claims 1 to 4, wherein the iron-based soft magnetic alloy powder is an iron-based amorphous alloy powder or an iron-based crystalline alloy powder. 鉄基軟磁性合金粉末が、下記組成式:
(Fe1-s-tCosNit100-x-y{(Siabm(Pcdnxy
[式中、Fe、Co及びNiの組成比率が、
19≦x≦22、
0≦y≦6.0、
0≦s≦0.35、
0≦t≦0.35、及び
s+t≦0.35であり、
Si、B、P及びCの組成比率が、
(0.5:1)≦(m:n)≦(6:1)、
(2.5:7:5)≦(a:b)≦(5.5:4.5)及び
(5.5:4.5)≦(c:d)≦(9.5:0.5)であり、
Mが、Nb又はMoである]
で表される組成を有する、鉄基アモルファス合金粉末である、請求項5に記載の絶縁被膜軟磁性合金粉末。
The iron-based soft magnetic alloy powder has the following composition formula:
(Fe 1-st Co s Ni t) 100-xy {(Si a B b) m (P c C d) n} x M y
[Wherein the composition ratio of Fe, Co and Ni is
19≦x≦22,
0≦y≦6.0,
0≦s≦0.35,
0≦t≦0.35, and s+t≦0.35,
The composition ratio of Si, B, P and C is
(0.5:1)≦(m:n)≦(6:1),
(2.5:7:5)≦(a:b)≦(5.5:4.5) and (5.5:4.5)≦(c:d)≦(9.5:0.5) ),
M is Nb or Mo]
The insulating coated soft magnetic alloy powder according to claim 5, which is an iron-based amorphous alloy powder having a composition represented by:
鉄基軟磁性合金粉末が、Fe−Si−Cr系結晶質合金粉末である、請求項5に記載の絶縁被膜軟磁性合金粉末。 The insulating coated soft magnetic alloy powder according to claim 5, wherein the iron-based soft magnetic alloy powder is a Fe-Si-Cr-based crystalline alloy powder. 5重量%以下のCrを含む、請求項1から7のいずれか一項に記載の絶縁被膜軟磁性合金粉末。 The insulating coated soft magnetic alloy powder according to claim 1, containing 5 wt% or less of Cr. 酸化物被膜がSiO膜である、請求項1から8のいずれか一項に記載の絶縁被膜軟磁性合金粉末。
The insulating coated soft magnetic alloy powder according to claim 1, wherein the oxide coating is a SiO 2 film.
JP2019213122A 2018-11-30 2019-11-26 Insulation coated soft magnetic alloy powder Active JP7247866B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018224377 2018-11-30
JP2018224377 2018-11-30

Publications (2)

Publication Number Publication Date
JP2020094278A true JP2020094278A (en) 2020-06-18
JP7247866B2 JP7247866B2 (en) 2023-03-29

Family

ID=70950174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019213122A Active JP7247866B2 (en) 2018-11-30 2019-11-26 Insulation coated soft magnetic alloy powder

Country Status (3)

Country Link
JP (1) JP7247866B2 (en)
KR (1) KR20200066187A (en)
CN (1) CN111261358A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113921220B (en) * 2021-09-03 2022-07-29 广东省科学院新材料研究所 Mixed soft magnetic powder and application thereof in preparation of soft magnetic powder core

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154791A (en) * 2003-11-20 2005-06-16 Denso Corp Production method for producing soft magnetic powder material
JP2014169482A (en) * 2013-03-04 2014-09-18 Sintokogio Ltd Iron-based metallic glass alloy powder
JP2018011043A (en) * 2016-06-30 2018-01-18 太陽誘電株式会社 Magnetic material and electronic component

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272911A (en) 2002-03-18 2003-09-26 Jfe Steel Kk Iron-based powder and dust core
JP3861288B2 (en) * 2002-10-25 2006-12-20 株式会社デンソー Method for producing soft magnetic material
JP2007129154A (en) * 2005-11-07 2007-05-24 Hitachi Powdered Metals Co Ltd Treatment liquid and treatment method of soft magnetism green compact, magnetic powder and soft magnetic material, and motor using the green compact
JP4044591B1 (en) 2006-09-11 2008-02-06 株式会社神戸製鋼所 Iron-based soft magnetic powder for dust core, method for producing the same, and dust core
JP2008169439A (en) * 2007-01-12 2008-07-24 Toyota Motor Corp Magnetic powder, dust core, electric motor and reactor
JP2009295613A (en) * 2008-06-02 2009-12-17 Fuji Electric Device Technology Co Ltd Method of manufacturing dust core
JP6113516B2 (en) * 2012-02-06 2017-04-12 Ntn株式会社 Magnetic core powder and powder magnetic core
JP6625334B2 (en) * 2015-03-24 2019-12-25 Ntn株式会社 Manufacturing method of powder for magnetic core
JP2018166156A (en) * 2017-03-28 2018-10-25 セイコーエプソン株式会社 Soft magnetic powder, dust core, magnetic element, and electronic apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154791A (en) * 2003-11-20 2005-06-16 Denso Corp Production method for producing soft magnetic powder material
JP2014169482A (en) * 2013-03-04 2014-09-18 Sintokogio Ltd Iron-based metallic glass alloy powder
JP2018011043A (en) * 2016-06-30 2018-01-18 太陽誘電株式会社 Magnetic material and electronic component

Also Published As

Publication number Publication date
CN111261358A (en) 2020-06-09
KR20200066187A (en) 2020-06-09
TW202105421A (en) 2021-02-01
JP7247866B2 (en) 2023-03-29

Similar Documents

Publication Publication Date Title
CA2990362C (en) Method of manufacturing soft magnetic dust core and soft magnetic dust core
US11011305B2 (en) Powder magnetic core, and coil component
EP3567611A2 (en) Soft magnetic alloy powder, dust core, and magnetic component
TWI605138B (en) Corrosion resistant powder made of iron-based metallic glass
US11817245B2 (en) Soft magnetic powder
US11976344B2 (en) Cu-based alloy powder
CN111093860B (en) Fe-based nanocrystalline alloy powder, method for producing same, Fe-based amorphous alloy powder, and magnetic core
JP5178912B2 (en) Composite magnetic material and magnetic element
JP5327765B2 (en) Powder core
JP7045905B2 (en) Soft magnetic powder and its manufacturing method
JP2020056107A (en) CRYSTALLINE Fe-BASED ALLOY POWDER, MANUFACTURING METHOD THEREFOR, AND MAGNETIC CORE
US11993833B2 (en) Soft magnetic metal powder comprising a metal oxide covering, and electronic component
WO2017086102A1 (en) Method of producing dust core
US20210035719A1 (en) Soft magnetic metal powder and electronic component
JPWO2017175831A1 (en) Iron-based metallic glass alloy powder
JP2021182591A (en) Powder magnetic core and manufacturing method thereof
JP7247866B2 (en) Insulation coated soft magnetic alloy powder
JP2010047788A (en) Iron base alloy water atomized powder and method for producing the iron base alloy water atomized powder
JP2007048902A (en) Powder magnetic core and its manufacturing method
JP6556780B2 (en) Powder magnetic core, powder for magnetic core, and production method thereof
TWI846762B (en) Insulation coated soft magnetic alloy powder
JP7367310B2 (en) Iron-based metal glass alloy powder
JP7493717B2 (en) Soft Magnetic Alloy Powder
JP2022168543A (en) Magnetic metal/ferrite composite and method of producing the same
JP2021027326A (en) Soft magnetic metal powder and electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230227

R150 Certificate of patent or registration of utility model

Ref document number: 7247866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150