JP2020094198A - Soil improvement material, and soil improvement method - Google Patents

Soil improvement material, and soil improvement method Download PDF

Info

Publication number
JP2020094198A
JP2020094198A JP2019215546A JP2019215546A JP2020094198A JP 2020094198 A JP2020094198 A JP 2020094198A JP 2019215546 A JP2019215546 A JP 2019215546A JP 2019215546 A JP2019215546 A JP 2019215546A JP 2020094198 A JP2020094198 A JP 2020094198A
Authority
JP
Japan
Prior art keywords
soil
soil improvement
present
component
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019215546A
Other languages
Japanese (ja)
Inventor
裕之 中川
Hiroyuki Nakagawa
裕之 中川
由起 平賀
Yuki Hiraga
由起 平賀
博之 有友
Hiroyuki Aritomo
博之 有友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Research Institute Inc
Shikoku Electric Power Co Inc
Original Assignee
Shikoku Research Institute Inc
Shikoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Research Institute Inc, Shikoku Electric Power Co Inc filed Critical Shikoku Research Institute Inc
Publication of JP2020094198A publication Critical patent/JP2020094198A/en
Pending legal-status Critical Current

Links

Abstract

To provide a novel material capable of improving strength to clay-like soil high in moisture content, capable of suppressing elution of a harmful material even when the harmful material such as selenium or boron, and capable of being used for soil improvement.SOLUTION: The soil improvement material contains at least one burned product selected from a group consisting of a burned product of a following (A) component, a burned product of a following (B) component, or a mixture containing the (A) component and the (B) component. (A) component: at least one component selected from a group consisting of Ca(OH), CaCO, CaCl, and Ca(NO). (B) component: at least one component of Al(OH)and Al(SO).SELECTED DRAWING: Figure 1

Description

本発明は、土質改良材、および土質改良方法に関する。 The present invention relates to a soil improvement material and a soil improvement method.

高い含水比の土は、粘性を示し、その強度も低下するため、このような土から構成される地盤は、軟弱である。このため、土木工事において、地盤がこのように軟弱であると、様々な問題が発生する。すなわち、重機等の走行が困難になる(トラフィカビリティの低下)、地盤から採取した土を運搬する際、容器から流れ出てしまう、等の問題である。このため、軟弱な地盤の場合、まず、地盤の土に対して、土質を改良する処理が必要となる。 Soil having a high water content is viscous and its strength is reduced, so that the ground composed of such soil is soft. Therefore, in the civil engineering work, if the ground is soft like this, various problems occur. That is, it is difficult to run heavy machinery (decrease in trafficability), and when the soil collected from the ground is transported, it flows out of the container. Therefore, in the case of soft ground, first, a treatment for improving the soil quality is required for the soil of the ground.

軟弱な地盤の土質の改良方法としては、一般的に、地盤から採取した土に、いわゆるセメント系固化材を混合する方法がある(特許文献1)。 As a method of improving the soil quality of soft ground, generally, there is a method of mixing so-called cement-based solidifying material with soil collected from the ground (Patent Document 1).

特開2014−162696号公報JP, 2014-162696, A

しかしながら、含水比が高い土の場合、前記セメント系固化材を混合しても、その混合物は、強度が低く、粘性の高い状態が維持されるという問題がある。 However, in the case of soil having a high water content, even if the cement-based solidifying material is mixed, the mixture has a problem that the strength is low and the viscosity is high.

そこで本発明は、例えば、含水比が高い粘土状の土に対して強度を向上できる、土質改良に使用できる新たな材料の提供を目的とする。 Therefore, an object of the present invention is to provide, for example, a new material that can be used for soil improvement by improving the strength of clay-like soil having a high water content.

前記目的を達成するために、本発明の土質改良材は、下記(A)成分の焼成物、下記(B)成分の焼成物、または、前記(A)成分および前記(B)成分を含む混合物の焼成物からなる群から選択された少なくとも一つの焼成物を含むことを特徴とする。
(A)成分:Ca(OH)、CaCO、CaCl、およびCa(NOからなる群から選択される少なくとも一つの成分
(B)成分:Al(OH)、およびAl(SOの少なくとも一方の成分
In order to achieve the above-mentioned object, the soil improvement material of the present invention is a fired product of the following component (A), a fired product of the following component (B), or a mixture containing the component (A) and the component (B). And at least one fired product selected from the group consisting of fired products of 1.
Component (A): at least one component selected from the group consisting of Ca(OH) 2 , CaCO 3 , CaCl 2 , and Ca(NO 3 ) 2 Component (B): Al(OH) 3 and Al 2 ( SO 4 ) 3 at least one component

本発明の土質改良方法は、地盤から採取した土に、前記本発明の土質改良材を混合する混合工程を含むことを特徴とする。 The soil improvement method of the present invention is characterized by including a mixing step of mixing the soil improvement material of the present invention with soil collected from the ground.

本発明の改良土は、地盤の土と、前記本発明の土質改良材とを含むことを特徴とする。 The improved soil of the present invention is characterized by including ground soil and the soil improvement material of the present invention.

本発明の改良土の生産方法は、土質改良工程を含み、前記土質改良工程が、前記本発明の土質改良方法により実施されることを特徴とする。 The method for producing improved soil of the present invention includes a soil improvement step, and the soil improvement step is performed by the soil improvement method of the present invention.

本発明の改良土地の生産方法は、土地改良工程を含み、前記土地改良工程が、前記本発明の土質改良方法により実施されることを特徴とする。 The method for producing improved land of the present invention includes a land improvement step, and the land improvement step is performed by the soil improvement method of the present invention.

本発明の土質改良材によれば、例えば、地盤から採取した土に、前記土質改良材を混合することによって、前記土の含水比が高い場合であっても、前記土を、より取り扱い性に優れた強度の土に改質できる。したがって、本発明は、例えば、土木工事における土の改良、地盤の改良において、極めて有用である。 According to the soil improvement material of the present invention, for example, the soil collected from the ground, by mixing the soil improvement material, even if the water content of the soil is high, the soil, more manageable It can be modified into soil with excellent strength. Therefore, the present invention is extremely useful, for example, in soil improvement and ground improvement in civil engineering work.

実施例1における含水比40%の土試料の外観を示す写真である。3 is a photograph showing the appearance of a soil sample with a water content ratio of 40% in Example 1. 実施例1の混合試料について、強度を示すグラフである。3 is a graph showing the strength of the mixed sample of Example 1. 実施例1の混合試料について、有害物質の溶出濃度を示すグラフである。3 is a graph showing the elution concentration of harmful substances in the mixed sample of Example 1. 実施例2における含水比200%の土試料の外観を示す写真である。5 is a photograph showing the appearance of a soil sample with a water content of 200% in Example 2.

本発明の土質改良材は、例えば、前記焼成物におけるCaとAlとのモル比(Ca/Al)が、0.5〜15の範囲である。 In the soil improvement material of the present invention, the calcined product has a molar ratio of Ca to Al (Ca/Al) in the range of 0.5 to 15, for example.

本発明の土質改良材は、例えば、前記焼成物が、前記(A)成分および前記(B)成分を含む混合物の焼成物であり、前記(A)成分が、Ca(OH)、およびCaCOの少なくとも一方であり、前記(B)成分が、Al(OH)である。 In the soil improvement material of the present invention, for example, the fired product is a fired product of a mixture containing the component (A) and the component (B), and the component (A) is Ca(OH) 2 and CaCO. 3 ), and the component (B) is Al(OH) 3 .

本発明の土質改良材は、例えば、前記焼成物として、CaO、Ca12Al1433、CaAl14、CaAl33、Ca12Al14、およびCaAlからなる群から選択された少なくとも一つの結晶性化合物を含む。 Soil improvement agent of the present invention, for example, as the fired product, CaO, consisting Ca 12 Al 14 O 33, Ca 5 Al 6 O 14, CaAl 4 O 33, Ca 12 Al 14 O 7, and CaAl 2 O 4 It comprises at least one crystalline compound selected from the group.

本発明の土質改良材は、例えば、さらに、前記セメント系固化材を含む。 The soil improvement material of the present invention further includes the cement-based solidifying material, for example.

本発明の土質改良材は、例えば、イオン吸着機能を持つ。 The soil improvement material of the present invention has, for example, an ion adsorption function.

本発明の土質改良材において、例えば、前記イオンが、六価クロム、セレン、ヒ素、フッ素、およびホウ素からなる群から選択された少なくとも一つのイオンである。 In the soil improvement material of the present invention, for example, the ion is at least one ion selected from the group consisting of hexavalent chromium, selenium, arsenic, fluorine, and boron.

本発明の土質改良方法は、例えば、前記混合工程において、さらに、セメント系固化材を混合する。 In the soil improvement method of the present invention, for example, a cement-based solidifying material is further mixed in the mixing step.

本発明の土質改良方法は、例えば、前記土1mあたりの前記土質改良材の添加量が、10〜300kgである。 In the soil improvement method of the present invention, for example, the amount of the soil improvement agent added per 1 m 3 of the soil is 10 to 300 kg.

本発明の土質改良方法は、例えば、前記土1mあたりの前記セメント系固化材の添加量が、10〜300kgである。 In the soil improvement method of the present invention, for example, the addition amount of the cement-based solidifying material per 1 m 3 of the soil is 10 to 300 kg.

本発明の土質改良方法は、例えば、前記土質改良材と前記セメント系固化材との添加割合が、1:0.03〜1:30の範囲である。 In the soil improvement method of the present invention, for example, the addition ratio of the soil improvement material and the cement-based solidifying material is in the range of 1:0.03 to 1:30.

本発明の土質改良方法は、例えば、前記混合工程における混合物に対して、加熱による固化処理を施さない。 In the soil improvement method of the present invention, for example, the mixture in the mixing step is not solidified by heating.

以下に、本発明の実施形態を説明する。なお、本発明は、以下の実施形態には限定されない。 Embodiments of the present invention will be described below. The present invention is not limited to the embodiments below.

(土質改良材)
本発明の土質改良材は、前述のように、下記(A)成分の焼成物、下記(B)成分の焼成物、または、前記(A)成分および前記(B)成分を含む混合物の焼成物からなる群から選択された少なくとも一つの焼成物を含むことを特徴とする。
(A)成分:Ca(OH)、CaCO、CaCl、およびCa(NOからなる群から選択される少なくとも一つの成分
(B)成分:Al(OH)、およびAl(SOの少なくとも一方の成分
(Soil improvement material)
As described above, the soil improvement material of the present invention is a fired product of the following component (A), a fired product of the following component (B), or a fired product of a mixture containing the component (A) and the component (B). At least one fired product selected from the group consisting of:
Component (A): at least one component selected from the group consisting of Ca(OH) 2 , CaCO 3 , CaCl 2 , and Ca(NO 3 ) 2 Component (B): Al(OH) 3 and Al 2 ( SO 4 ) 3 at least one component

本発明の土質改良材によれば、例えば、後述するように、土質を改良できる。また、前記焼成物を前記セメント系固化材と併用することにより、さらに効果的に土質を改良できる。具体的には、本発明の土質改良材によれば、含水比が高い土について、前記セメント系固化材のみを添加した場合と比較して、処理後の土の強度を向上できる。また、例えば、前記焼成物と前記セメント系固化材とを併用することによって、処理後の土の強度をさらに向上できる。本発明の土質改良材は、例えば、地盤の土質を改良できることから、地盤改良材ともいう。また、本発明の土質改良材は、前記セメント系固化材との併用により、土質の改良を効率よく行えることから、前記セメント系固化材に対する土質改良補助材ということもできる。また、本発明の土質改良材は、例えば、このような効果から、土に対する吸水材、または、土の強度増加材ともいえる。 According to the soil quality improving material of the present invention, the soil quality can be improved, for example, as described later. Further, by using the fired product together with the cement-based solidifying material, the soil quality can be improved more effectively. Specifically, according to the soil improvement material of the present invention, the strength of the soil after the treatment can be improved in the soil having a high water content ratio as compared with the case where only the cement-based solidifying material is added. Further, for example, the strength of the treated soil can be further improved by using the burned material and the cement-based solidifying material in combination. The soil improving material of the present invention is also referred to as a soil improving material because it can improve the soil quality of the ground. Further, the soil-improving material of the present invention can be used as a soil-improving auxiliary material for the cement-based solidifying material because it can efficiently improve the soil quality when used in combination with the cement-based solidifying material. Further, the soil improving material of the present invention can be said to be a water absorbing material for soil or a soil strength increasing material because of such effects.

前記「強度の向上」とは、本発明の土質改良材を添加しない場合と比較して、有意に前記土の強度が向上することを意味する。前記強度の指標は、特に制限されず、例えば、一軸圧縮強度でもよいし、コーン指数でもよい。前記一軸圧縮強度およびコーン指数は、例えば、後述する実施例に記載の方法により測定できる。 The “improvement in strength” means that the strength of the soil is significantly improved as compared with the case where the soil improvement agent of the present invention is not added. The strength index is not particularly limited, and may be, for example, uniaxial compressive strength or cone index. The uniaxial compressive strength and Cone index can be measured, for example, by the methods described in Examples below.

また、本発明の土質改良材は、例えば、イオン吸着機能を有していてもよい。このため本発明の土質改良材を使用することによって、例えば、土に含まれる有害物質や、前記セメント系固化材に含まれる六価クロム等の有害物質についても、これらを吸着して、外部への溶出を抑制することにより、土質を改良することもできる。前記有害物質の溶出抑制に関しては、例えば、セメントを主成分とするセメント系土壌固化材またはCa系土壌固化材を、有害物質であるイオンを固定化するイオン吸着材として利用する方法が知られているが、これらは、前記イオン吸着材として利用されている前記固化材の種類によって、溶出抑制できる有害物質の種類が限られている。しかしながら、本発明の土質改良材によれば、例えば、前記有害物質として知られている六価クロム、セレン、ヒ素、フッ素、およびホウ素等、広範囲のイオン物質について、吸着による溶出抑制が可能である。このため、本発明の土質改良材は、例えば、イオン吸着材または有害物質吸着材ということもできる。なお、吸着される前記有害物質の形態は、イオンには制限されない。 The soil improvement material of the present invention may have an ion adsorption function, for example. Therefore, by using the soil improvement material of the present invention, for example, harmful substances contained in the soil, even for harmful substances such as hexavalent chromium contained in the cement-based solidifying material, these are adsorbed to the outside. Soil quality can also be improved by suppressing the elution of. Regarding the suppression of elution of the harmful substance, for example, a method of using a cement-based soil solidifying material or a Ca-based soil solidifying material containing cement as a main component as an ion adsorbent for immobilizing ions that are harmful substances is known. However, the types of harmful substances that can be suppressed from elution are limited depending on the type of the solidifying material used as the ion adsorbent. However, according to the soil improvement material of the present invention, it is possible to suppress elution by adsorption of a wide range of ionic substances such as hexavalent chromium, selenium, arsenic, fluorine, and boron known as the harmful substances. .. Therefore, the soil improvement material of the present invention can be referred to as, for example, an ion adsorbent or a harmful substance adsorbent. The form of the adsorbed harmful substance is not limited to ions.

本発明の土質改良材は、いずれかの前記焼成物を含むことが特徴であって、その他の構成は、何ら制限されない。本発明の土質改良材は、例えば、前記焼成物のみを含んでもよいし、前記焼成物の他に、前記焼成物の効果を阻害しない範囲で、その他の成分をさらに含んでもよい。 The soil improvement material of the present invention is characterized in that it contains any of the above fired products, and other configurations are not limited at all. The soil improvement material of the present invention may include, for example, only the fired product, or may further include other components in addition to the fired product as long as the effects of the fired product are not impaired.

以下、前記(A)成分の焼成物を、単体焼成物A、前記(B)成分の焼成物を、単体焼成物B、前記(A)成分および前記(B)成分を含む混合物(AB)の焼成物を、混合焼成物ABという。本発明の土質改良材は、焼成物として、例えば、前記単体焼成物Aのみを含んでもよいし、前記単体焼成物Bのみを含んでもよいし、前記単体焼成物Aと前記単体焼成物Bの両方を含んでもよいし、前記混合焼成物ABのみを含んでもよいし、前記混合焼成物ABと、前記単体焼成物A、前記単体焼成物B、または、前記単体焼成物Aおよび前記単体焼成物Bの両方とを含んでもよい。中でも、本発明の土質改良材は、焼成物として、例えば、前記混合焼成物ABを含むことが好ましい。 Hereinafter, the calcined product of the component (A) is a simple substance calcined product A, the calcined product of the component (B) is a simple substance calcined product B, and a mixture (AB) containing the component (A) and the component (B). The fired product is referred to as a mixed fired product AB. The soil-improving material of the present invention may include, as the fired product, only the single-fired product A or the single-fired product B alone, or may include the single-fired product A and the single-fired product B. Both may be included, or only the mixed fired product AB may be included, and the mixed fired product AB and the simple substance fired product A, the single substance fired product B, or the single substance fired product A and the single substance fired product. Both B may be included. Among them, the soil improving material of the present invention preferably contains, for example, the mixed fired product AB as a fired product.

本発明の土質改良材において、前記焼成物由来のCaおよびAlの比率は、特に制限されず、CaとAlとのモル比(Ca/Al)は、例えば、0.5〜15、1〜10、2〜5である。CaとAlとのモル比(Ca/Al)は、例えば、強度をより向上できる点から、1〜10が好ましく、また、ホウ素および六価クロム等の有害物質の溶出をより効果的に抑制できる点から、2〜5が好ましい。 In the soil improvement material of the present invention, the ratio of Ca and Al derived from the fired product is not particularly limited, and the molar ratio of Ca and Al (Ca/Al) is, for example, 0.5 to 15, 1 to 10. , 2 to 5. The molar ratio of Ca to Al (Ca/Al) is preferably 1 to 10 from the viewpoint that strength can be further improved, and the elution of harmful substances such as boron and hexavalent chromium can be suppressed more effectively. From the point, 2 to 5 is preferable.

本発明の土質改良材において、前記(A)成分は、例えば、Ca(OH)、およびCaCOの少なくとも一方が好ましく、前記(B)成分は、例えば、Al(OH)が好ましい。また、本発明の土質改良材において、前記焼成物は、前記混合焼成物ABが好ましく、この場合、例えば、Ca(OH)、およびCaCOの少なくとも一方の前記(A)成分と、Al(OH)の前記(B)成分とを含む混合物(AB)の焼成物ABが好ましい。 In the soil improvement material of the present invention, the component (A) is preferably at least one of Ca(OH) 2 and CaCO 3 , and the component (B) is preferably Al(OH) 3 . Further, in the soil improvement material of the present invention, the fired product is preferably the mixed fired product AB, and in this case, for example, at least one of the component (A) of Ca(OH) 2 and CaCO 3 and Al( A fired product AB of the mixture (AB) containing (OH) 3 and the component (B) is preferable.

前記単体焼成物Aは、例えば、CaO等の結晶性化合物があげられる。本発明の土質改良材が前記単体焼成物Aを含む場合、例えば、その種類は、1種類でもよいし、2種類以上でもよい。本発明の土質改良材が前記単体焼成物Bを含む場合、例えば、その種類は、1種類でもよいし、2種類以上でもよい。 Examples of the simple substance fired product A include crystalline compounds such as CaO. When the soil improvement material of the present invention contains the simple substance fired product A, for example, the type may be one type or two or more types. When the soil improvement material of the present invention contains the simple substance fired product B, the type thereof may be one type or two or more types.

前記混合焼成物ABは、例えば、Ca12Al1433、CaAl14、CaAl33、Ca12Al14、およびCaAl等の結晶性化合物があげられる。本発明の土質改良材が前記混合焼成物ABを含む場合、例えば、その種類は、1種類でもよいし、2種類以上でもよい。前記結晶性化合物は、前記成分(A)と前記成分(B)との混合物を焼成することで、化学反応により生成される。前記混合焼成物Cは、例えば、使用する前記(A)成分と前記(B)成分との割合(モル比)、焼成温度等によって、前記結晶性化合物の組成を変化させることができる。 Examples of the mixed calcined material AB include crystalline compounds such as Ca 12 Al 14 O 33 , Ca 5 Al 6 O 14 , CaAl 4 O 33 , Ca 12 Al 14 O 7 , and CaAl 2 O 4 . When the soil improvement material of the present invention contains the mixed fired product AB, for example, the type thereof may be one type or two or more types. The crystalline compound is produced by a chemical reaction by firing a mixture of the component (A) and the component (B). In the mixed fired product C, the composition of the crystalline compound can be changed depending on, for example, the ratio (molar ratio) of the component (A) and the component (B) used, the firing temperature, and the like.

前記焼成物A、前記焼成物B、および前記混合焼成物は、例えば、前記(A)成分、前記(B)成分、または前記混合物(AB)を焼成することにより生成できる。前記焼成温度は、特に制限されず、その下限は、例えば、600℃以上、800℃以上であり、その上限は、例えば、1200℃以下、1000℃以下である。 The baked product A, the baked product B, and the mixed baked product can be produced, for example, by baking the component (A), the component (B), or the mixture (AB). The firing temperature is not particularly limited, and the lower limit thereof is, for example, 600° C. or higher and 800° C. or higher, and the upper limit thereof is, for example, 1200° C. or lower and 1000° C. or lower.

本発明の土質改良材は、前述のように、他の成分を含んでもよく、前記他の成分としては、例えば、重金属等のイオンを吸着する吸着材等があげられる。 As described above, the soil improvement material of the present invention may contain other components, and examples of the other components include adsorbents that adsorb ions such as heavy metals.

また、本発明の土質改良材は、例えば、前述のように、さらに、セメント系固化材を含んでもよい。後述する本発明の土質改良方法においては、例えば、前記焼成物と、前記セメント系固化材とを使用することで、土質の改良を効果的に行うことができる。 Further, the soil improvement material of the present invention may further include a cement-based solidifying material, as described above. In the soil quality improvement method of the present invention described below, for example, the soil quality can be effectively improved by using the fired product and the cement-based solidifying material.

本発明において、前記セメント系固化材は、特に制限されず、例えば、公知のセメント系固化材に限られず、本願出願後のセメント系固化材等も使用できる。前記セメント系固化材は、主成分として、例えば、珪酸三カルシウム3CaO・SiO(アリット)、珪酸二カルシウム2CaO・SiO(ベリット)、アルミン酸三カルシウム3CaO・Al、鉄アルミン酸四カルシウム4CaO・Al・Fe(セリット)、および二水石膏CaSO・2HO等を含む。前記セメント系固化材は、例えば、代表的なものとして、改良対象の土壌に対応した一般軟弱土用固化材、および特殊土用固化材等の汎用固化材、高有機質土用固化材、使用環境に対応した発塵抑制型固化材等があげられる。 In the present invention, the cement-based solidifying material is not particularly limited, and is not limited to, for example, a known cement-based solidifying material, and a cement-based solidifying material after the application of the present application can also be used. The cement solidifying material, as a main component, for example, silicate tricalcium 3CaO · SiO 2 (Alit), dicalcium silicate 2CaO · SiO 2 (Berit), tricalcium aluminate 3CaO · Al 2 O 3, iron aluminate tetracalcium calcium 4CaO · Al 2 O 3 · Fe 2 O 3 ( celite), and a gypsum CaSO 4 · 2H 2 O or the like. The cement-based solidifying material is, for example, as a typical one, a solidifying material for general soft soil corresponding to the soil to be improved, and a general-purpose solidifying material such as a solidifying material for special soil, a solidifying material for high organic soil, a use environment. A dust-suppression type solidifying material and the like corresponding to the above are listed.

本発明の土質改良材は、後述する本発明の土質改良方法に使用できる。また、例えば、前記焼成物と前記セメント系固化材とを併用して、前記土質改良方法に使用することもできる。本発明の土質改良材が、前記焼成物と前記セメント系固化材とを含む場合、例えば、地盤から採取した土に対して、前記セメント系固化材と前記焼成物とを、別々に混合してもよいし、同時に混合してもよい。このため、本発明の土質改良材が、前記焼成物と前記セメント系固化材とを含む場合、例えば、前記セメント系固化材と前記焼成物とが、別個に独立したキット形態でもよいし、前記セメント系固化材と前記焼成物とが混合された混合状態であってもよい。 The soil improvement material of the present invention can be used in the soil improvement method of the present invention described later. Further, for example, the fired product and the cement-based solidifying material may be used together and used in the soil improvement method. When the soil improvement material of the present invention contains the fired product and the cement-based solidifying material, for example, with respect to the soil collected from the ground, the cement-based solidifying material and the fired material are mixed separately. Or may be mixed at the same time. Therefore, when the soil improvement material of the present invention contains the fired product and the cement-based solidifying material, for example, the cement-based solidifying material and the fired product may be in the form of separate kits, It may be in a mixed state in which the cement-based solidifying material and the fired product are mixed.

本発明の土質改良材が、前記焼成物と前記セメント系固化材とを含む場合、前記セメント系固化材と前記土質改良材との含有割合は、特に制限されず、例えば、後述する本発明の土質改良方法における使用割合が援用できる。 Soil improvement material of the present invention, when containing the fired product and the cement-based solidifying material, the content ratio of the cement-based solidifying material and the soil-improving material is not particularly limited, for example, of the present invention described below. The usage rate in the soil improvement method can be applied.

(土質改良方法)
本発明の土質改良方法は、前述のように、地盤の土に、前記本発明の土質改良材を混合する混合工程を含むことを特徴とする。本発明の土質改良方法は、前記本発明の土質改良材(具体的には、前記焼成物)を使用することが特徴であり、その他の工程および条件は何ら制限されない。前記土質改良材については、前記本発明の土質改良材の記載を援用できる。本発明の土質改良方法は、例えば、地盤の土質を改良できることから、地盤改良方法ともいう。また、本発明の土質改良方法は、例えば、前記土質改良材の前記焼成物と前記セメント系固化材との併用により、さらに土質の改良を効率よく行えることから、前記セメント系固化材に対する土質改良補助方法ということもできる。前記セメント系固化材については、前記本発明の土質改良材の記載を援用できる。また、本発明の土質改良方法は、例えば、このような効果から、土に対する吸水方法、または、土の強度増加方法ともいえる。
(Soil improvement method)
The soil improvement method of the present invention is characterized by including a mixing step of mixing the soil improvement material of the present invention with the soil of the ground as described above. The soil improvement method of the present invention is characterized by using the soil improvement material of the present invention (specifically, the fired product), and other steps and conditions are not limited at all. Regarding the soil improving material, the description of the soil improving material of the present invention can be applied. The soil improvement method of the present invention is also referred to as a soil improvement method because, for example, the soil quality of the soil can be improved. Further, the soil improvement method of the present invention, for example, by combining the fired product of the soil improvement material and the cement-based solidifying material, since it is possible to further efficiently improve the soil quality, soil improvement for the cement-based solidifying material It can also be called an auxiliary method. Regarding the cement-based solidifying material, the description of the soil improving material of the present invention can be applied. Further, the soil improvement method of the present invention can be said to be a water absorption method for soil or a soil strength increasing method, for example, from such effects.

前述のように、前記混合工程において、前記本発明の土質改良材に加えて、例えば、さらに前記セメント系固化材を混合してもよい。前記本発明の土質改良材が、前記焼成物の他に、前記セメント系固化材を含む場合、前記混合工程は、例えば、前記土質改良材とは別に、前記セメント系固化材を準備する必要はなく、前記本発明の土質改良材が、前記セメント系固化材を含まない場合は、前記土質改良材とは別に、前記セメント系固化材を準備すればよい。 As described above, in the mixing step, in addition to the soil improvement material of the present invention, for example, the cement-based solidifying material may be further mixed. The soil improvement material of the present invention, in addition to the fired product, if the cement-based solidifying material, the mixing step, for example, separately from the soil-improving material, it is necessary to prepare the cement-based solidifying material. If the soil improvement material of the present invention does not include the cement-based solidifying material, the cement-based solidifying material may be prepared separately from the soil-based solidifying material.

前記混合工程は、例えば、前記地盤の土を掘り起こし、その場で処理を施してもよいし、地盤の土を掘り起こし、シャベル等で土を別の場所に移動させ、移動させた場所で処理を施してもよい。 In the mixing step, for example, the soil of the ground may be dug up and treated on the spot, or the soil of the ground may be dug up, the soil may be moved to another place by a shovel or the like, and the treatment may be performed at the moved place. May be given.

前記土に対する、前記土質改良材における前記焼成物の添加量は、特に制限されない。前記土1mあたりの、前記土質改良材における前記焼成物の添加量は、その下限が、例えば、10kg、20kg、50kgであり、その上限が、例えば、200kg、300kgであり、範囲は、例えば、10〜300kg、50〜200kg等である。ここで、土の単位「m」は、例えば、処理する土の出所である地盤の体積で表すことができ、具体例として、土1mとは、地盤1mを掘削して採取される土を意味する。地盤の体積は、例えば、土の重量に換算でき、地盤1mの土は、含水比40%、密度1〜2.1と仮定した場合、例えば、水を含む土の重量は、1400〜2940kgである。 The amount of the burned material added to the soil improvement material to the soil is not particularly limited. The lower limit of the amount of the burned material added to the soil improvement material per 1 m 3 of soil is, for example, 10 kg, 20 kg, or 50 kg, and the upper limit thereof is, for example, 200 kg or 300 kg, and the range is, for example. , 10 to 300 kg, 50 to 200 kg and the like. Here, the soil unit “m 3 ”can be represented, for example, by the volume of the ground that is the source of the soil to be treated. As a specific example, 1 m 3 of soil is obtained by excavating the ground 1 m 3. Means soil. The volume of the ground can be converted into, for example, the weight of soil, and assuming that the soil of 1 m 3 of soil has a water content ratio of 40% and a density of 1 to 2.1, for example, the weight of soil containing water is 1400 to 2940 kg. Is.

本発明の土質改良材は、例えば、相対的に含水比の高い土の土質改良に適しており、本発明の土質改良方法も、例えば、そのような含水比の土に適用することが好ましい。前記含水比は、例えば、処理対象の土について、水分を除く重量を100%とした場合の水の比率(%)であり、具体例として、処理対象の土の重量(水分含む)が140kgであり、水分を除く重量が100kgであれば、含水比(%)は、100×(140−100)/100=40%と表すことができる。本発明において、処理対処の土の前記含水比は、特に制限されず、例えば、30〜200%、30〜60%、40〜50%等があげられる。前記混合工程において、前記土に対する前記土質改良材の添加量は、例えば、前述の範囲であれば、前記含水比に該当する土を効果的に改良できる。 The soil improvement material of the present invention is suitable for soil improvement of soil having a relatively high water content ratio, and the soil improvement method of the present invention is preferably applied to soil having such a water content ratio, for example. The water content ratio is, for example, the ratio (%) of water when the weight of the soil to be treated is 100%, excluding the weight of water. As a specific example, the weight of the soil to be treated (including moisture) is 140 kg. If the weight excluding water is 100 kg, the water content ratio (%) can be expressed as 100×(140-100)/100=40%. In the present invention, the water content ratio of the soil to be treated is not particularly limited, and examples thereof include 30 to 200%, 30 to 60%, 40 to 50% and the like. In the mixing step, if the amount of the soil improvement agent added to the soil is within the above range, the soil having the water content ratio can be effectively improved.

本発明の土質改良方法は、例えば、泥状の土(泥土)の土質を改良することもできる。前記泥土は、例えば、土木事業の分野において、建設汚泥、泥土等として、一般的に分類されている土壌区分である。前記泥土の含水比は、特に制限されず、例えば、80%以上であり、その構成成分は、例えば、主として細粒分で構成されている。このような土は、例えば、掘削工事または浚渫工事等によって搬出される。前記泥状の土の具体例は、ため池、河川、または沿岸部の底泥等があげられる。なお、前記泥状の状態とは、強度で分類してもよく、この場合、例えば、「標準仕様ダンプトラックに山積みができず、また、その上を人が歩けない状態をいい、この状態を土の強度を示す指標でいえば、コーン指数がおおむね200kN/m以下又は一軸圧縮強度がおおむね50kN/m以下」の土のことをいう(参考資料:建設工事から生じる廃棄物の適性処理について(環廃産第276号,平成13年6月))。 The soil quality improvement method of the present invention can also improve the soil quality of mud-like soil (mud), for example. The mud is a soil classification generally classified as construction sludge, mud, etc. in the field of civil engineering business, for example. The water content of the mud is not particularly limited and is, for example, 80% or more, and its constituent component is, for example, mainly composed of fine particles. Such soil is carried out, for example, by excavation work or dredging work. Specific examples of the mud-like soil include reservoirs, rivers, and bottom mud in coastal areas. Note that the muddy state may be classified by strength, and in this case, for example, "a state where a standard specification dump truck cannot be stacked and a person cannot walk on it, in terms of the indicator of the strength of the soil, corn index is approximately 200kN / m 2 or less, or uniaxial compressive strength generally refers to the soil of 50kN / m 2 or less "(reference: aptitude processing of waste arising from construction work About (Environment Abandoned Product No. 276, June 2001).

また、前記土に対する前記焼成物の添加量は、例えば、前記土の含水比に応じて、適宜設定することもできる。処理対象の土の含水比が40%の場合、前記土1mあたりの前記土質改良材における前記焼成物の添加量は、その下限が、例えば、10kg、20kg、50kgであり、その上限が、例えば、200kg、300kg、500kgであり、範囲は、例えば、10〜300kg、50〜200kg等である。処理対象の土の含水比が200%の場合、前記土1mあたりの前記土質改良材における前記焼成物の添加量は、その下限が、例えば、50kg、100kg、150kgであり、その上限は、特に制限されず、例えば、200kg、300kg、500kgであり、範囲は、例えば、50〜500kg、100〜300kg、150〜200kg等である。そして、例えば、含水比40%を基準とした場合、処理対象の土の含水比が相対的に高い場合、前記焼成物の添加量を相対的に増加させ、処理対象の土の含水比が相対的に低い場合、前記焼成物の添加量を相対的に低減させてもよい。前記焼成物の添加量は、例えば、予め、処理する土壌の含水比を確認し、前述のような条件に基づいて算出することで、適宜設定できる。 Further, the amount of the burned material added to the soil may be appropriately set depending on, for example, the water content ratio of the soil. When the water content of the soil to be treated is 40%, the lower limit of the addition amount of the fired product in the soil improvement material per 1 m 3 of the soil is, for example, 10 kg, 20 kg, 50 kg, and the upper limit thereof is For example, it is 200 kg, 300 kg, 500 kg, and the range is, for example, 10 to 300 kg, 50 to 200 kg and the like. When the water content of the soil to be treated is 200%, the lower limit of the amount of the burned material added to the soil improvement material per 1 m 3 of the soil is, for example, 50 kg, 100 kg, 150 kg, and the upper limit thereof is: It is not particularly limited and is, for example, 200 kg, 300 kg, 500 kg, and the range is, for example, 50 to 500 kg, 100 to 300 kg, 150 to 200 kg and the like. Then, for example, when the water content ratio of 40% is used as a reference, and when the water content ratio of the soil to be treated is relatively high, the addition amount of the fired product is relatively increased so that the water content ratio of the soil to be treated is relatively high. When the amount is low, the addition amount of the fired product may be relatively reduced. The amount of the burned material added can be appropriately set by, for example, confirming the water content ratio of the soil to be treated in advance and calculating it based on the conditions as described above.

また、前記土に対する前記焼成物の添加量は、例えば、最終的な混合物の目的の強度に応じて、適宜設定することもできる。 Further, the amount of the fired product added to the soil may be appropriately set depending on, for example, the intended strength of the final mixture.

前記混合工程において、さらに、前記セメント系固化材を混合する場合、前記土に対する前記セメント系固化材の添加量は、特に制限されない。前記土1mあたりの前記セメント系固化材の添加量は、その下限が、例えば、10kg、20kg、50kgであり、その上限が、例えば、100kg、200kg、300kgであり、範囲は、例えば、10〜300kg、50〜200kg等である。 When the cement-based solidifying material is further mixed in the mixing step, the amount of the cement-based solidifying material added to the soil is not particularly limited. The lower limit of the amount of the cement-based solidifying agent added per 1 m 3 of the soil is, for example, 10 kg, 20 kg, and 50 kg, and the upper limit thereof is, for example, 100 kg, 200 kg, and 300 kg, and the range is, for example, 10 ~300 kg, 50-200 kg, etc.

前記土に添加する前記土質改良材と前記セメント系固化材との添加割合は、例えば、1:0.25〜1:1、1:0.03〜1:30である。 The addition ratio of the soil conditioner and the cement-based solidifying agent added to the soil is, for example, 1:0.25 to 1:1 and 1:0.03 to 1:30.

前記土に対する前記セメント系固化材および前記焼成物の混合順序は、特に制限されず、例えば、両者を同時に混合してもよいし、前記セメント系固化材を混合した後、前記焼成物を混合してもよいし、前記焼成物を混合した後、前記セメント系固化材を混合してもよい。 The order of mixing the cement-based solidifying material and the fired product with respect to the soil is not particularly limited, for example, both may be mixed at the same time, or after mixing the cement-based solidifying material, the fired product is mixed. Alternatively, the cement-based solidifying material may be mixed after mixing the burned material.

前記土と前記セメント系固化材および前記焼成物との混合方法は、特に制限されず、例えば、現場においては、油圧式ショベル等の重機による撹拌、移動式プラントによる混合等で行うことができる。 The method of mixing the soil with the cement-based solidifying material and the fired product is not particularly limited, and for example, in the field, mixing with a heavy machine such as a hydraulic excavator or mixing with a mobile plant can be performed.

本発明の土質改良方法は、前記混合工程において、前記土と前記土質改良材の焼成物とを混合するのみでよく、例えば、前記混合工程における混合物に対して、加熱による固化処理を施さないことが好ましい。前記固化処理は、例えば、前記セメント系固化材を混合する場合、前記セメント系固化材の種類に依存するが、通常、加熱処理が例示できる。前記加熱処理は、例えば、高圧の蒸気または低圧の蒸気による蒸気養生処理があげられ、前記蒸気養生処理は、例えば、60℃以上で行われる。土木工事においては、例えば、地盤から採取した土を、別の場所に移して再利用したり、目的の作業が終了した後に、もとの地盤に戻して地ならしする場合がある。このような場合、前記地盤から採取した土の混合物に加熱処理を施し、完全に固化させてコンクリート化してしまうと、再利用が困難となる。また、例えば、作業時のみ地盤の強度を向上させたい場合も、コンクリート化してしまうと、土壌の地盤に戻すことができなくなる。本発明によれば、例えば、前記混合工程を行うのみで、加熱による固化(コンクリート化)を行うことなく、強度を向上する改良が可能であるため、固化してしまうことによる問題も解消できる。 In the soil improving method of the present invention, in the mixing step, it is only necessary to mix the soil and the fired material of the soil improving material, for example, the mixture in the mixing step is not solidified by heating. Is preferred. The solidification treatment depends on the type of the cement-based solidifying material, for example, when the cement-based solidifying material is mixed, but usually heat treatment can be exemplified. Examples of the heat treatment include steam curing treatment with high-pressure steam or low-pressure steam, and the steam curing treatment is performed at, for example, 60° C. or higher. In the civil engineering work, for example, the soil collected from the ground may be moved to another place for reuse, or after the desired work is completed, the soil may be returned to the original ground for earthmoving. In such a case, if the soil mixture collected from the ground is subjected to heat treatment to be completely solidified into concrete, reuse becomes difficult. Further, for example, even when it is desired to improve the strength of the ground only during work, if it is made concrete, it cannot be returned to the soil ground. According to the present invention, for example, only by performing the mixing step, it is possible to improve the strength without solidification (concreteization) by heating, so that the problem due to solidification can be solved.

本発明の土質改良方法によれば、前述のように、例えば、土に含まれる有害物質や、前記セメント系固化材に含まれる有害物質は、前記土質改良材に吸着され、不溶化されるため、前記有害物質の溶出が抑制されると解される。なお、この推定は本発明を限定するものではない。 According to the soil improvement method of the present invention, as described above, for example, harmful substances contained in soil, and harmful substances contained in the cement-based solidifying material are adsorbed to the soil improving material and are insolubilized, It is understood that the elution of the harmful substances is suppressed. However, this estimation does not limit the present invention.

本発明の土質改良方法によれば、例えば、地盤の土に前記本発明の土質改良材を混合することにより、土質を改良し、より取り扱い性に優れた強度の土に改質できる。 According to the soil improvement method of the present invention, for example, by mixing the soil improvement agent of the present invention with the soil of the ground, the soil quality can be improved, and the soil can be improved to have strength excellent in handleability.

(改良土)
本発明の改良土は、前述のように、地盤の土と、前記本発明の土質改良材とを含む。本発明の改良土は、前記本発明の土質改良材を含むことが特徴であって、その他の条件および構成は、特に制限されない。本発明の改良土において、前記土質改良材は、前記本発明の土質改良材および前記土質改良方法の説明を援用できる。本発明の改良土は、例えば、後述する本発明の改良土の生産方法により製造できる。
(Improved soil)
As described above, the improved soil of the present invention includes the soil of the ground and the soil improvement material of the present invention. The improved soil of the present invention is characterized by including the soil improving material of the present invention, and other conditions and configurations are not particularly limited. In the improved soil of the present invention, the description of the soil improvement material and the soil improvement method of the present invention can be applied to the soil improvement material. The improved soil of the present invention can be produced, for example, by the method for producing the improved soil of the present invention described below.

本発明の改良土は、前記本発明の土質改良材を含むため、土質が改良されており、具体的には、土の強度が向上しているため、例えば、取り扱い性に優れている。このため、本発明の改良土は、例えば、工事基礎地盤材、堤防盛土材、道路の路盤、および道路の路床材等に利用できる。 The improved soil of the present invention includes the soil improvement material of the present invention, and thus has improved soil quality. Specifically, the soil strength is improved, and therefore, the improved soil is, for example, excellent in handleability. Therefore, the improved soil of the present invention can be used, for example, as a foundation ground material for construction work, an embankment embankment material, a roadbed, and a roadbed material.

(改良土の生産方法)
本発明の改良土の生産方法は、前述のように、土質改良工程を含み、前記土質改良工程が、前記本発明の土質改良方法により実施されることを特徴とする。本発明の土質改良方法は、前記本発明の土質改良方法により土質を改良すること、すなわち、地盤の土に、前記本発明の土質改良材を混合することが特徴であり、その他の工程および条件は、特に制限されない。本発明の改良土の生産方法は、地盤の土に、前記本発明の土質改良材を混合するため、土質が改良された改良土を生産できる。本発明の改良土の生産方法は、前記本発明の土質改良材および土質改良方法の説明を援用できる。
(Method for producing improved soil)
As described above, the method for producing improved soil of the present invention is characterized by including the soil improvement step, and the soil improvement step is carried out by the soil improvement method of the present invention. The soil improvement method of the present invention is characterized in that the soil is improved by the soil improvement method of the present invention, that is, the soil of the ground is mixed with the soil improvement material of the present invention, and other steps and conditions. Is not particularly limited. According to the method for producing improved soil of the present invention, since the soil improvement material of the present invention is mixed with the soil of the ground, it is possible to produce improved soil having improved soil quality. The description of the soil improvement material and soil improvement method of the present invention can be applied to the method for producing improved soil of the present invention.

前記土質改良工程における前記本発明の土質改良材の添加量および混合方法は、特に制限されず、混合対象の地盤の土の体積および含水比に応じて適宜設定できる。本発明の改良土の生産方法における前記土質改良材の添加量および混合方法は、前記本発明の土質改良方法における混合工程の説明を援用できる。 The amount of the soil improvement agent of the present invention to be added and the mixing method in the soil improvement step are not particularly limited and can be appropriately set according to the soil volume and water content of the soil to be mixed. Regarding the addition amount and mixing method of the soil quality improving material in the method for producing improved soil of the present invention, the description of the mixing step in the soil quality improving method of the present invention can be applied.

前記改良土は、前記本発明の改良土の生産方法によって生産されたことを特徴とし、その他の条件は、特に制限されない。前記改良土は、例えば、前記本発明の土質改良材を含む。 The improved soil is produced by the method for producing improved soil of the present invention, and other conditions are not particularly limited. The improved soil includes, for example, the soil improvement material of the present invention.

本発明の改良土の生産方法により生産された改良土は、その土質が改良されており、強度が向上している。このため、前記改良土は、例えば、工事基礎地盤材、堤防盛土材、道路の路盤、および道路の路床材等に利用できる。 The improved soil produced by the improved soil production method of the present invention has improved soil quality and improved strength. Therefore, the improved soil can be used, for example, as a foundation ground material for construction work, a bank embankment material, a roadbed, and a roadbed material.

(改良土地の生産方法)
本発明の改良土地の生産方法は、前述のように、土地改良工程を含み、前記土地改良工程が、前記本発明の土質改良方法により実施されることを特徴とする。本発明の土地改良方法は、前記本発明の土質改良方法により土地を改良すること、すなわち、地盤の土に、前記本発明の土質改良材を混合することが特徴であり、その他の工程および条件は、特に制限されない。本発明の改良土地の生産方法は、地盤の土に、前記本発明の土質改良材を混合するため、土質が改良された改良土を含む改良土地を生産できる。前記改良土地は、例えば、土壌中に前記改良土を含んだ土地であり、改良土壌ともいう。本発明の改良土地の生産方法は、前記本発明の土質改良材、土質改良方法および改良土の生産方法の説明を援用できる。
(Method of producing improved land)
As described above, the method for producing improved land of the present invention includes a land improvement step, and the land improvement step is performed by the soil improvement method of the present invention. The land improvement method of the present invention is characterized in that the soil is improved by the soil improvement method of the present invention, that is, the soil of the ground is mixed with the soil improvement material of the present invention. Other steps and conditions Is not particularly limited. According to the method for producing improved land of the present invention, the soil improving material of the present invention is mixed with the soil of the ground, so that the improved soil containing the improved soil can be produced. The improved land is, for example, a land containing the improved soil in soil and is also referred to as improved soil. Regarding the method for producing improved land of the present invention, the description of the soil improvement material, soil improvement method and improved soil production method of the present invention can be applied.

前記土地改良工程における前記本発明の土質改良材の添加量および混合方法は、特に制限されず、混合対象の地盤の土の体積および含水比に応じて適宜設定できる。本発明の改良土地の生産方法における前記土質改良材の添加量および混合方法は、前記本発明の土質改良方法における混合工程の説明を援用できる。 The addition amount and mixing method of the soil improvement material of the present invention in the land improvement step are not particularly limited, and can be appropriately set according to the soil volume and water content of the ground to be mixed. Regarding the addition amount and the mixing method of the soil improvement material in the method for producing improved land of the present invention, the description of the mixing step in the soil improvement method of the present invention can be applied.

前記改良土地は、前記本発明の改良土地の生産方法によって生産されたことを特徴とし、その他の条件は、特に制限されない。前記改良土地は、例えば、前記本発明の改良土および/または前記本発明の土質改良材を含む。 The improved land is produced by the method for producing improved land of the present invention, and other conditions are not particularly limited. The improved land includes, for example, the improved soil of the present invention and/or the soil improvement material of the present invention.

本発明の改良土地の生産方法により生産された改良土地は、その土質が改良されており、強度が向上している。このため、前記改良土地は、例えば、土木工事用地、堤防、および道路等に利用できる。 The improved land produced by the improved land producing method of the present invention has improved soil quality and improved strength. Therefore, the improved land can be used, for example, as a site for civil engineering work, a bank, a road, or the like.

[実施例1]
本発明の土質改良材を用いて、土を処理し、その土質を確認した。
[Example 1]
The soil was treated with the soil improvement material of the present invention, and the soil quality was confirmed.

(1)土質改良材の調製
以下のようにして、前記(A)成分と前記(B)成分との混合物(AB)から、焼成物を調製して、これを土質改良材として使用した。具体的には、Ca/Al モル比=5としたCaCOとAl(OH)との混合物を、1000℃で焼成して、焼成物を得た。
(1) Preparation of Soil Conditioning Material As described below, a fired product was prepared from the mixture (AB) of the component (A) and the component (B) and used as a soil improving agent. Specifically, a mixture of CaCO 3 and Al(OH) 3 with a Ca/Al molar ratio=5 was fired at 1000° C. to obtain a fired product.

(2)土試料
埋立地の地盤を削孔し、複数のポイントから土を採取した。具体的には、削孔にはボーリングを使用し、円柱状の土を採取した。そして、円柱状の複数の土を、小石等を除いて均一に混合した。前記混合土は、質量4.8kg(水を含む)、密度1190kg(水を含む)/m、含水比33.3%であった。前記混合土を、500gずつに分け、それぞれ水を添加し、うち4つは、含水比40%の土試料1、うち4つは、含水比50%の土試料2となるように調製した。
(2) Soil sample The soil in the landfill was drilled and soil was collected from multiple points. Specifically, boring was used for drilling, and columnar soil was collected. Then, a plurality of cylindrical soils were uniformly mixed except for pebbles and the like. The mixed soil had a mass of 4.8 kg (including water), a density of 1190 kg (including water)/m 3 , and a water content ratio of 33.3%. The mixed soil was divided into 500 g each, and water was added to each of them, and four of them were prepared to be a soil sample 1 having a water content ratio of 40%, and four of which were soil samples 2 having a water content ratio of 50%.

(3)土質改良処理
前記セメント系固化材として、JIS規格の高炉セメントB種を使用した。前記土試料1(含水比40%)および前記土試料2(含水比50%)のそれぞれに対して、自然含水比(40%、50%)の湿潤土1mに対する質量が50kg/mとなるように、前記セメント系固化材を添加し、手練りで十分に混合した後、さらに、所定量(0、50、100、200kg/m)となるように、前記土質改良材を添加し、同様にして、十分に混合した。
(3) Soil improvement treatment JIS standard blast furnace cement class B was used as the cement-based solidifying material. With respect to each of the soil sample 1 (water content ratio 40%) and the soil sample 2 (water content ratio 50%), the mass of the natural water content ratio (40%, 50%) per 1 m 3 of wet soil was 50 kg/m 3 . So that the cement-based solidifying material is added and thoroughly mixed by hand-kneading, and then the soil-improving material is added so that a predetermined amount (0, 50, 100, 200 kg/m 3 ) is obtained. , And mixed well in the same manner.

(4)土質の確認
(4−1)外観
前記土試料1および前記土試料2のそれぞれについて、前記(3)に示すように土質改良処理を行い、その外観を確認した。具体的には、前記セメント系固化材の添加前、前記セメント系固化材の添加後、さらに前記セメント系固化材および前記土質改良材の両方を添加後の外観を確認した。これらの結果を、図1に示す。図1は、前記試料2(含水比50%)についての外観を示す写真である。
(4) Confirmation of soil quality (4-1) Appearance For each of the soil sample 1 and the soil sample 2, soil improvement treatment was performed as shown in (3), and the appearance was confirmed. Specifically, the appearance was confirmed before the addition of the cement-based solidifying material, after the addition of the cement-based solidifying material, and after the addition of both the cement-based solidifying material and the soil improvement material. The results are shown in FIG. FIG. 1 is a photograph showing the appearance of the sample 2 (water content ratio 50%).

前記試料2(含水比50%)については、図1に示すように、以下のような結果が得られた。まず、図1(A)に示すように、未処理の土試料2は、含水比が高いため、土自体が水分を保持しきれず、非常に緩く、ベタベタした粘性の軟弱土であった。そして、前記未処理の土試料2に前記セメント系固化材を混合した混合試料は、図1(B)に示すように、水っぽさは若干軽減されたものの、緩く、ベタベタした粘性を示した。このような状態の土は、かろうじて土が水分を保持できるように改質されているが、例えば、材料運搬、盛り立て等の土木工事への利用は困難である。これに対して、さらに、前記セメント系固化材の混合後、さらに、前記土質改良材である前記焼成物を添加した混合試料は、図1(C1)および(C2)に示すように、水っぽさがなくなり、ポロポロとした複数の塊に分解された。このような状態の土は、前述のような土木工事への利用も十分に可能である。また、図示していないが、前記試料1(含水比40%)についても、同様の挙動が確認できた。 As shown in FIG. 1, the following results were obtained for the sample 2 (water content ratio 50%). First, as shown in FIG. 1(A), since the untreated soil sample 2 had a high water content ratio, the soil itself could not retain water, and was very loose and sticky and viscous soft soil. Then, as shown in FIG. 1(B), the mixed sample obtained by mixing the untreated soil sample 2 with the cement-based solidifying material showed a slight water-like property, but showed a loose and sticky viscosity. It was The soil in such a state is barely modified so that the soil can retain water, but it is difficult to use it for civil engineering work such as material transportation and pile-up. On the other hand, after mixing the cement-based solidifying material, the mixed sample to which the burned material that is the soil-improving material was further added was, as shown in FIG. 1 (C1) and (C2), It has lost its porosity and has been decomposed into lumps. The soil in such a state can be sufficiently used for the civil engineering work described above. Although not shown, similar behavior could be confirmed for the sample 1 (water content ratio 40%).

(4−2)強度
前記(4−1)の各試料について、それぞれ、以下に示すようにして、強度試験を行った。
(4-2) Strength A strength test was performed on each of the samples of (4-1) as described below.

土試料1(含水比40%)については、前記セメント系固化材(50kg/m)を混合し且つ前記焼成物(土質改良材)未添加の混合試料(40−0)、前記セメント系固化材(50kg/m)および前記焼成物(50kg/m)を混合した混合試料(40−50)、前記セメント系固化材(50kg/m)および前記焼成物(100kg/m)を混合した混合試料(40−100)、前記セメント系固化材(50kg/m)および前記焼成物(200kg/m)を混合した混合試料(40−200)を使用した。また、土試料2(含水比50%)については、前記セメント系固化材(50kg/m)を混合し且つ前記焼成物未添加の混合試料(50−0)、前記セメント系固化材(50kg/m)および前記焼成物(50kg/m)を混合した混合試料(50−50)、前記セメント系固化材(50kg/m)および前記焼成物(100kg/m)を混合した混合試料(50−100)、前記セメント系固化材(50kg/m)および前記焼成物(200kg/m)を混合した混合試料(50−200)を使用した。 For the soil sample 1 (water content ratio 40%), the cement-based solidifying material (50 kg/m 3 ) was mixed and the burned material (soil conditioner) was not added to the mixed sample (40-0), the cement-based solidifying material. Material (50 kg/m 3 ) and the fired product (50 kg/m 3 ) mixed sample (40-50), the cement-based solidifying material (50 kg/m 3 ) and the fired product (100 kg/m 3 ). A mixed sample (40-100), a mixed sample (40-200) in which the cement-based solidifying material (50 kg/m 3 ) and the fired product (200 kg/m 3 ) were mixed were used. For the soil sample 2 (water content ratio 50%), the cement-based solidifying material (50-0) mixed with the cement-based solidifying material (50 kg/m 3 ) and the cement-based solidifying material (50 kg) was added. /M 3 ) and the burned material (50 kg/m 3 ) mixed sample (50-50), the cement-based solidifying material (50 kg/m 3 ) and the burned material (100 kg/m 3 ) mixed. A mixed sample (50-200) in which a sample (50-100), the cement-based solidifying material (50 kg/m 3 ) and the fired product (200 kg/m 3 ) were mixed was used.

前記各試料を、モールド(成形容器)に充填し、直径5cm×高さ10cmの円柱状の試験体に加工した。具体的には、以下のように行った。 Each of the samples was filled in a mold (molding container) and processed into a cylindrical test body having a diameter of 5 cm and a height of 10 cm. Specifically, it carried out as follows.

(作製方法)
円筒状の前記モールドに、1.5kgランマーおよびカラーを用いて、前記試料を突固め、前記円筒状の試験体を作製した。前記試験体が前記モールドに密着し、剥がれにくいおそれのある場合には、予め、前記モールドの内壁に円筒状のポリエチレンシートを貼った上で、前記試料を突固めた。突固め方法は、前記ランマーを、20cmの高さから自由落下させ、3層で突固めた。突固め回数は、各層12回とした。1層当たりに突固める前記試料の量は、突固め後の試験体の高さのほぼ1/3程度となるように、前記モールドに加える前記試料の量を加減した。また、各層の突き終り面には、へら等で刻みを付し、その上の層との密着をはかった。3層突固め後、前記カラーを取り外して、前記モールド上部の余分の土をストレートエッジで注意深く削り取った。砂粒等のために、前記試験体の表面にできた穴は、前記試料の細粒分で埋め、前記モールドの上面と同じ高さになるよう平滑に仕上げた。前記試験体の作製は、できるだけ速やかに終了させた。
(Production method)
The sample was tamped on the cylindrical mold using a 1.5 kg rammer and a collar to prepare the cylindrical test body. When the test body was in close contact with the mold and was unlikely to peel off, a cylindrical polyethylene sheet was previously attached to the inner wall of the mold, and then the sample was tamped. As for the tamping method, the rammer was allowed to fall freely from a height of 20 cm and rammed in three layers. The number of times of compaction was 12 times for each layer. The amount of the sample added to the mold was adjusted so that the amount of the sample compacted per layer was about ⅓ of the height of the test body after the compaction. Moreover, the end surface of each layer was notched with a spatula or the like to ensure close contact with the layer above it. After compacting 3 layers, the collar was removed and excess soil on top of the mold was carefully scraped off with a straight edge. Holes formed on the surface of the test body due to sand grains and the like were filled with fine particles of the sample, and finished so as to have the same height as the upper surface of the mold. The production of the test body was completed as soon as possible.

(養生方法)
作製した前記試験体は、その上面に、薄いポリエチレンフィルムをかぶせ、輪ゴムで緊結し、表面の乾燥を防ぎ、翌日まで静置養生した。材齢1日後、前記モールドから前記試験体を取り出し、その湿潤密度を測定した。その後、水分蒸発がないように密封養生した。なお、前記試験体の強度が低く、材齢1日で前記モールドから脱型することが困難な場合には、脱型可能な強度になってから、前記モールドから脱型した。前記試験体は、温度20±3℃、湿度95%以上の恒温恒湿槽内またはこれに準じる条件下、所定材齢まで密封養生した。前記試験体の養生期間は、前記試験体の作製後、7日間を標準とした。なお、必要に応じて、3日、28日等、任意に設定した。
(Curing method)
The prepared test body was covered with a thin polyethylene film on its upper surface and tightly bound with a rubber band to prevent the surface from drying, and was allowed to stand and cure until the next day. After one day of material age, the test body was taken out from the mold and its wet density was measured. Then, it was cured by sealing so as to prevent water evaporation. In addition, when the strength of the test body was low and it was difficult to remove the mold from the mold after 1 day of age, it was released from the mold after the strength reached a level capable of releasing the mold. The test body was sealed and cured to a predetermined material age in a thermo-hygrostat at a temperature of 20±3° C. and a humidity of 95% or more or under conditions similar thereto. The standard curing period of the test body was 7 days after the preparation of the test body. In addition, if necessary, it was arbitrarily set to 3 days, 28 days, or the like.

前記円柱状試験体を、前述の方法によって、7日間放置により養生した後(材齢7日)、圧縮強度試験を行った。圧縮強度試験は、JIS A1108に準拠し、圧縮強度試験機(JTトーシ社製、ABM200S)を用いて圧縮強度(N/mm)を測定した。 The columnar specimen was cured by leaving it to stand for 7 days (age 7 days) by the above-mentioned method, and then a compressive strength test was conducted. The compressive strength test was based on JIS A1108, and the compressive strength (N/mm 2 ) was measured using a compressive strength tester (ABM200S, manufactured by JT Toshi Co., Ltd.).

これらの結果を、図2に示す。図2は、各混合試料の円柱状試験体の圧縮強度を示すグラフであり、縦軸は、圧縮強度(N/mm)を示す。図2に示すように、試料1(含水比40%)については、前記セメント系固化材のみを添加して前記焼成物(土質改良材)未添加の混合試料(40−0)と比較して、前記焼成物(土質改良材)を混合した混合試料(40−50)は、著しく高い圧縮強度を示した。また、試料2(含水比50%)についても、同様に、前記セメント系固化材のみを添加して前記焼成物(土質改良材)未添加の混合試料(50−0)と比較して、さらに、前記焼成物(土質改良材)を混合した混合試料(50−50)は、著しく高い圧縮強度を示した。 The results are shown in FIG. FIG. 2 is a graph showing the compressive strength of the cylindrical test body of each mixed sample, and the vertical axis represents the compressive strength (N/mm 2 ). As shown in FIG. 2, for sample 1 (water content 40%), only the cement-based solidifying material was added and compared with the mixed sample (40-0) to which the burned material (soil conditioner) was not added. The mixed sample (40-50) obtained by mixing the fired product (soil conditioner) showed remarkably high compressive strength. Similarly, for sample 2 (water content ratio 50%), as compared with the mixed sample (50-0) in which only the cement-based solidifying material was added and the burned material (soil conditioner) was not added, The mixed sample (50-50) obtained by mixing the fired product (soil conditioner) showed remarkably high compressive strength.

前記セメント系固化材は、通常、加熱養生により固化(コンクリート化)させて強度を向上させるが、本実施例においては、加熱養生は行っていない。このため、前記セメント系固化材のみを添加した混合試料(40−0)、(50−0)は、いずれも低い強度であったが、さらに、前記焼成物(土質改良材)を混合した各混合試料は、いずれも、前述のように、前記焼成物未添加の混合試料(40−0)、(50−0)よりも、格段に優れた強度を示した。これは、前記焼成物(土質改良材)が、土中の水分を吸収した結果、前記セメント系固化材の硬化に影響を与え、結果として、強度を増加させたと推測される。なお、この推測は、本発明を何ら制限しない。 The cement-based solidifying material is usually solidified (concreteized) by heat curing to improve strength, but in this embodiment, heat curing is not performed. For this reason, the mixed samples (40-0) and (50-0) to which only the cement-based solidifying material was added had low strength, but each of the mixed samples (soil conditioner) was further mixed. As described above, each of the mixed samples exhibited significantly higher strength than the mixed samples (40-0) and (50-0) to which the baked product was not added. It is presumed that, as a result of the fired product (soil conditioner) absorbing water in the soil, it affects the hardening of the cementitious solidifying material, resulting in an increase in strength. This assumption does not limit the present invention.

(4−3)溶出防止
前記(4−2)で得られた各混合試料の材齢7日の円柱状試験体を使用し、前記円柱状試験体からの物質の溶出量と、前記円柱状試験体中の物質の含有量(残存量)とを確認した。
(4-3) Elution prevention Using the columnar specimen of each mixed sample obtained in the above (4-2) at 7 days old, the amount of the substance eluted from the columnar specimen and the columnar The content (remaining amount) of the substance in the test body was confirmed.

溶出量は、以下のようにして、測定した。すなわち、前記円柱状試験体をそれぞれ粉砕し、篩にかけて、粒径2mm以下の粉砕物とした。前記粉砕物100gを、純水1Lに懸濁し、6時間振とうさせた後、ろ紙(孔径0.45μmのメンブランフィルター)によりろ過した。そして、得られたろ液中の六価クロム、セレン、ヒ素、フッ素、およびホウ素の濃度を測定した。具体的には、ジフェニルカルバジド吸光光度法(分光光度計 U-2900型、日立製作所社製)にて六価クロムの濃度を測定し、ICP質量分析法(ICP-MS 7700Series、アジレント・テクノロジー社製)にてセレン、ヒ素、およびホウ素の濃度を測定し、流れ分析法(オートアナライザーSYNCA FCP、ビーエルテック社製)にてフッ素濃度を測定した。 The elution amount was measured as follows. That is, each of the cylindrical test bodies was pulverized and sieved to obtain a pulverized product having a particle size of 2 mm or less. 100 g of the pulverized product was suspended in 1 L of pure water, shaken for 6 hours, and then filtered through a filter paper (membrane filter having a pore size of 0.45 μm). Then, the concentrations of hexavalent chromium, selenium, arsenic, fluorine, and boron in the obtained filtrate were measured. Specifically, the concentration of hexavalent chromium was measured by a diphenylcarbazide absorptiometry (Spectrophotometer U-2900, manufactured by Hitachi, Ltd.), and ICP mass spectrometry (ICP-MS 7700 Series, Agilent Technologies, Inc.) was used. Selenium, arsenic, and boron concentrations were measured, and the fluorine concentration was measured by a flow analysis method (autoanalyzer SYNCA FCP, manufactured by BL TEC Co., Ltd.).

これらの結果を、図3に示す。図3は、前記各混合試料の円柱状試験体を用いた物質の溶出量を示すグラフである。各グラフにおいて、縦軸は、各物質の濃度を示し、横軸は、前記混合試料における前記土質改良材(前記焼成物)の量を示し、◆は、前記土試料1(含水比40%)を含む混合試料の結果であり、■は、前記土試料2(含水比50%)を含む混合試料の結果である。また、各グラフにおいて、低値の破線は、定量下限値を示す。図3において、(A)は、六価クロムの結果であり、(B)は、セレンの結果であり、(C)は、ヒ素の結果であり、(D)は、フッ素の結果であり、(E)は、ホウ素の結果である。なお、グラフにおいて、■のプロットしか見えていない箇所は、◆も同じ位置にプロットされている。 The results are shown in FIG. FIG. 3 is a graph showing the elution amount of a substance using the cylindrical test body of each mixed sample. In each graph, the vertical axis represents the concentration of each substance, the horizontal axis represents the amount of the soil improvement material (the burned material) in the mixed sample, and ◆ represents the soil sample 1 (water content ratio 40%). Is the result of the mixed sample containing, and ▪ is the result of the mixed sample containing the soil sample 2 (water content 50%). In addition, in each graph, the broken line with a low value indicates the lower limit of quantification. In FIG. 3, (A) is the result of hexavalent chromium, (B) is the result of selenium, (C) is the result of arsenic, (D) is the result of fluorine, (E) is the result of boron. In addition, in the graph, where only the plot of ■ is visible, the plot of ◆ is also plotted at the same position.

まず、六価クロムについて説明する。含水比40%の土試料(◆)については、図3(A)のグラフに示すように、前記土質改良材が未添加である前記混合試料(40−0)と比較して、前記土質改良材を添加した前記各混合試料は、溶出された六価クロム濃度の低下が確認された。また、前記六価クロムの溶出濃度は、前記土質改良材の混合量の増加に伴って低下し、200kg/mの混合量において、定量下限値にまで低下した。なお、含水比50%の土試料(■)についても、同様に溶出濃度の低下が確認でき、50kg/mの混合量において、定量下限値にまで低下した。 First, hexavalent chromium will be described. As for the soil sample (◆) having a water content ratio of 40%, as shown in the graph of FIG. 3(A), the soil improvement was compared with the mixed sample (40-0) to which the soil improvement agent was not added. It was confirmed that the concentration of the eluted hexavalent chromium decreased in each of the mixed samples to which the material was added. Further, the elution concentration of the hexavalent chromium decreased with an increase in the mixing amount of the soil improvement material, and decreased to the lower limit of quantification at the mixing amount of 200 kg/m 3 . Here, also for the water content ratio of 50% soil sample (■), confirmed similar decrease elution concentration in the mixing amount of 50 kg / m 3, was reduced to quantitation limit.

つぎに、セレンについて説明する。含水比40%の土試料(◆)については、図3(B)のグラフに示すように、前記土質改良材が未添加である前記混合試料(40−0)と比較して、前記土質改良材を添加した前記各混合試料は、溶出されたセレン濃度の低下が確認された。また、前記セレンの溶出濃度は、前記土質改良材の混合量の増加に伴って低下し、200kg/mの混合量において、定量下限値にまで低下した。なお、含水比50%の土試料(■)についても、同様に溶出濃度の低下が確認でき、200kg/mの混合量において、定量下限値にまで低下した。 Next, selenium will be described. As for the soil sample (◆) having a water content ratio of 40%, as shown in the graph of FIG. 3(B), the soil improvement was compared with the mixed sample (40-0) to which the soil improvement agent was not added. It was confirmed that the concentration of eluted selenium decreased in each of the mixed samples to which the material was added. Further, the elution concentration of the selenium decreased with an increase in the mixing amount of the soil improvement material, and decreased to the lower limit of quantification at the mixing amount of 200 kg/m 3 . In the soil sample (■) with a water content of 50%, a similar decrease in the elution concentration could be confirmed, and at the mixing amount of 200 kg/m 3 , it decreased to the lower limit of quantification.

つぎに、ヒ素について説明する。図3(C)のグラフに示すように、含水比40%の土試料(◆)については、前記土質改良材が未添加である前記混合試料(40−0)と比較して、前記土質改良材を添加した前記各混合試料は、溶出されたヒ素濃度が著しく低下した。また、前記ヒ素の溶出濃度は、前記土質改良材の混合量の増加に伴って低下し、100kg/mの混合量において、定量下限値にまで低下した。なお、含水比50%の土試料(■)についても、同様に溶出濃度の低下が確認でき、100kg/mの混合量において、定量下限値にまで低下した。 Next, arsenic will be described. As shown in the graph of FIG. 3(C), the soil sample (♦) having a water content of 40% was compared with the mixed sample (40-0) to which the soil improving agent was not added, to improve the soil quality. In each of the mixed samples added with wood, the concentration of eluted arsenic was remarkably reduced. In addition, the elution concentration of the arsenic decreased with an increase in the mixing amount of the soil improvement material, and decreased to the lower limit of quantification at the mixing amount of 100 kg/m 3 . Here, also for the water content ratio of 50% soil sample (■), confirmed similar decrease elution concentration in the mixing amount of 100 kg / m 3, was reduced to quantitation limit.

つぎに、フッ素について説明する。図3(D)のグラフに示すように、含水比40%の土試料(◆)については、前記土質改良材が未添加である前記混合試料(40−0)と比較して、前記土質改良材を添加した前記各混合試料は、溶出されたフッ素濃度が著しく低下した。また、前記フッ素の溶出濃度は、前記土質改良材の混合量の増加に伴って低下した。なお、含水比50%の土試料(■)についても、同様に溶出濃度の低下が確認できた。 Next, fluorine will be described. As shown in the graph of FIG. 3(D), the soil sample (♦) having a water content of 40% was compared with the mixed sample (40-0) to which the soil improving agent was not added, to improve the soil quality. In each of the mixed samples to which the material was added, the concentration of eluted fluorine was significantly reduced. Further, the elution concentration of the fluorine decreased as the amount of the soil improvement agent mixed increased. In addition, the soil sample (■) having a water content ratio of 50% was similarly confirmed to have a lower elution concentration.

つぎに、ホウ素について説明する。含水比40%の土試料(◆)については、図3(E)のグラフに示すように、前記土質改良材が未添加である前記混合試料(40−0)と比較して、前記土質改良材を添加した前記各混合試料は、溶出されたセレン濃度の低下が確認された。また、前記ホウ素の溶出濃度は、前記土質改良材の混合量の増加に伴って低下し、100kg/mの混合量において、定量下限値にまで低下した。なお、含水比50%の土試料(■)についても、同様に溶出濃度の低下が確認でき、100kg/mの混合量において、定量下限値にまで低下した。 Next, boron will be described. As for the soil sample (◆) having a water content ratio of 40%, as shown in the graph of FIG. 3(E), the soil improvement was compared with the mixed sample (40-0) to which the soil improvement agent was not added. It was confirmed that the concentration of eluted selenium decreased in each of the mixed samples to which the material was added. Further, the elution concentration of the boron decreased with an increase in the mixing amount of the soil improvement material, and decreased to the lower limit of quantification at the mixing amount of 100 kg/m 3 . Here, also for the water content ratio of 50% soil sample (■), confirmed similar decrease elution concentration in the mixing amount of 100 kg / m 3, was reduced to quantitation limit.

このように、前記土質改良材を使用した場合、主要な有害物質である、六価クロム、セレン、ヒ素、フッ素、およびホウ素のいずれについても、溶出を抑制できることがわかった。各種有害物質の溶出防止には、通常、有害物質ごとに適した吸着材等の選択が行われているが、本発明の土質改良材によれば、これら全般に対して広く溶出の防止機能を奏することができる。 As described above, it was found that the use of the soil improvement agent can suppress the elution of any of the major harmful substances, hexavalent chromium, selenium, arsenic, fluorine, and boron. In order to prevent elution of various harmful substances, adsorbents and the like suitable for each harmful substance are usually selected, but the soil improvement material of the present invention has a broad elution prevention function for all of these. Can play.

[実施例2]
本発明の土質改良材を用いて、含水比200%の泥土を処理し、その土質を確認した。
[Example 2]
Using the soil improvement material of the present invention, mud having a water content of 200% was treated and the soil quality was confirmed.

まず、含水比36.8%の粘土に水を添加して、含水比200%の土試料(泥土)を調製した。そして、前記土質改良材(焼成物)を使用し、実施例2−1として、前記土試料1mに対する質量が100kgとなるよう、土試料の体積500mlあたり前記焼成物を50g添加し、手練りで十分に混合した。また、実施例2−2として、前記土試料1mに対する質量が、それぞれ100kgとなるように、土試料の体積500mlあたり前記焼成物を50gと、前記実施例1で使用した前記セメント系固化材50gとを添加し、手練りで十分に混合した。比較例2は、前記焼成物を添加せず、前記土試料1mに対する質量が100kgとなるように、土試料の体積500mlあたり前記セメント系固化材を50g添加し、手練りで十分に混合した。 First, water was added to clay having a water content of 36.8% to prepare a soil sample (mud) having a water content of 200%. Then, the use soil improvement agent (the fired product), as in Example 2-1, the mass relative to the soil sample 1 m 3 is such that a 100 kg, the fired product per volume 500ml of soil sample was added 50 g, hand mixing And mixed well. In addition, as Example 2-2, 50 g of the fired product per 500 ml of the volume of the soil sample, and the cement-based solidifying material used in Example 1 so that the mass of the soil sample of 1 m 3 was 100 kg, respectively. 50 g was added and mixed thoroughly by hand. In Comparative Example 2, 50 g of the cement-based solidifying material was added per 500 ml of the volume of the soil sample so that the mass of the soil sample of 1 m 3 was 100 kg without adding the burned material, and the mixture was sufficiently mixed by hand. ..

各試料を混合後、時間を置かずに直径5cm×高さ10cmの円柱状の容器に充填し、山中式土壌硬度計(標準型、株式会社藤原製作所製)を用いて、試料の強度(コーン指数)を測定した。なお、測定は、山中式土壌硬度計の取扱説明書に従って測定した。 After mixing each sample, it was filled into a cylindrical container having a diameter of 5 cm and a height of 10 cm without any time, and a Yamanaka soil hardness meter (standard type, manufactured by Fujiwara Manufacturing Co., Ltd.) was used to measure the strength of the sample (cone. The index) was measured. The measurement was performed according to the instruction manual of the Yamanaka soil hardness meter.

結果を下記表1に示す。また、図4(A)〜(D)に、未処理の土試料(含水比200%)、比較例2、実施例2−1、および実施例2−2の外観を示す。 The results are shown in Table 1 below. In addition, FIGS. 4A to 4D show appearances of untreated soil samples (water content ratio 200%), Comparative Example 2, Example 2-1, and Example 2-2.

前記表1および図4(A)〜(D)に示すように、未処理の土試料は、外観が液状であり、コーン指数0kN/mであった。また、前記セメント系固化材のみを添加した比較例2も、外観が液状、かつコーン指数0kN/mであり、強度が発現していなかった。これに対し、前記本発明の土質改良材(前記焼成物)を添加した実施例2−1は、外観が塑性状となり、かつコーン指数200kN/mであり、強度が向上していた。また、本発明の土質改良材に加えて、さらにセメント系固化材を添加した実施例2−2は、外観が塑性状となり、かつコーン指数250kN/mであり、さらに強度が向上していた。 As shown in Table 1 and FIGS. 4A to 4D, the untreated soil sample had a liquid appearance and a cone index of 0 kN/m 2 . Also, in Comparative Example 2 in which only the cement-based solidifying material was added, the appearance was liquid and the cone index was 0 kN/m 2 , and the strength was not exhibited. On the other hand, in Example 2-1 to which the soil improving material of the present invention (the fired product) was added, the appearance became plastic, and the cone index was 200 kN/m 2 , and the strength was improved. In addition, in Example 2-2 in which a cement-based solidifying material was added in addition to the soil improvement material of the present invention, the appearance became plastic and the cone index was 250 kN/m 2 , and the strength was further improved. ..

前述のように、未処理の含水比200%の泥土およびセメント系固化材のみを混合した比較例2の土試料は、コーン指数200kN/m以下であり、ダンプトラックに山積みができず、またその上を人が歩けない状態である。これに対して、本発明の土質改良材を混合した実施例2−1および実施例2−2の土試料は、コーン指数200kN/m以上であるため、例えば、ダンプトラックに山積みしたり、その上を人が歩くことができる。このように、本発明の土質改良材によれば、含水比200%という高含水比の泥土であっても、土質を改良でき、より取り扱い性に優れた強度の土へ改質できることが分かった。 As described above, the soil sample of Comparative Example 2 in which only the untreated mud having a water content of 200% and the cement-based solidifying material were mixed had a cone index of 200 kN/m 2 or less, which could not be piled up on the dump truck, and A person cannot walk on it. On the other hand, since the soil samples of Example 2-1 and Example 2-2 in which the soil improvement material of the present invention is mixed have a cone index of 200 kN/m 2 or more, for example, they are piled on a dump truck, People can walk on it. As described above, according to the soil improvement material of the present invention, it was found that even the soil having a high water content ratio of 200% can improve the soil property and can be modified into the soil having the strength excellent in handleability. ..

前記セメント系固化材は、土中の水分とセメントとが反応して固化することで強度が向上する。本実施例においては、混合後に間を置かず測定を行っているため、前記比較例2は、固化反応が進行せず、強度が発現しなかったと考えられる。これに対して、本発明の土質改良材は、混合直後から土の強度を向上した。また、本発明の土質改良材と、前記セメント系固化材とを併用することにより、さらに強度が向上した。これは、前記焼成物(土質改良材)が、土中の水分を吸収した結果、混合直後から強度を発現しており、また、前記実施例1同様、セメント系固化材の硬化にも影響を与えたと推測される。なお、この推測は、本発明を何ら制限しない。 The strength of the cement-based solidifying material is improved by reacting water in soil with cement to solidify. In this Example, since the measurement was carried out without delay after mixing, it is considered that in Comparative Example 2, the solidification reaction did not proceed and the strength was not exhibited. On the other hand, the soil improvement material of the present invention improved the strength of soil immediately after mixing. Further, the strength was further improved by using the soil improvement material of the present invention and the cement-based solidifying material in combination. This is because the fired product (soil conditioner) developed strength immediately after mixing as a result of absorbing water in the soil, and, like Example 1, also affected the hardening of the cementitious solidifying material. It is speculated that it was given. This assumption does not limit the present invention.

以上、実施形態および実施例を参照して本願発明を説明したが、本願発明は、上記実施形態および実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解しうる様々な変更をできる。 Although the present invention has been described with reference to the exemplary embodiments and examples, the present invention is not limited to the above-described exemplary embodiments and examples. Various modifications that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.

この出願は、2018年12月5日に出願された日本出願特願2018−228407を基礎とする優先権を主張し、その開示のすべてをここに取り込む。 This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2018-228407 for which it applied on December 5, 2018, and takes in those the indications of all here.

本発明によれば、例えば、地盤から採取した土と前記セメント系固化材との混合に、前記土質改良材を併用することによって、前記土の含水比が高い場合であっても、前記土を、より取り扱い性に優れた強度の土に改質できる。さらに、本発明の土質改良材によれば、例えば、前記土中等に、セレン、ホウ素等の有害物質が含まれる場合であっても、これらを吸着して、土から外部への前記有害物質の溶出を抑制することもできる。したがって、本発明は、例えば、土木工事における土の改良、地盤の改良において、極めて有用である。 According to the present invention, for example, in the mixing of the soil and the cement-based solidifying material collected from the ground, by using the soil improvement material together, even if the water content of the soil is high, the soil , And can be modified into a soil with excellent handleability and strength. Furthermore, according to the soil improvement material of the present invention, for example, in the soil or the like, even when harmful substances such as selenium and boron are contained, these are adsorbed and the harmful substances from the soil to the outside are removed. Elution can also be suppressed. Therefore, the present invention is extremely useful, for example, in soil improvement and ground improvement in civil engineering work.

Claims (16)

下記(A)成分の焼成物、下記(B)成分の焼成物、または、下記(A)成分および下記(B)成分を含む混合物の焼成物からなる群から選択された少なくとも一つの焼成物を含むことを特徴とする土質改良材:
(A)成分:Ca(OH)、CaCO、CaCl、およびCa(NOからなる群から選択される少なくとも一つの成分;
(B)成分:Al(OH)、およびAl(SOの少なくとも一方の成分。
At least one fired product selected from the group consisting of a fired product of the following component (A), a fired product of the following component (B), or a fired product of a mixture containing the following components (A) and (B). Soil improvement material characterized by containing:
(A) component: at least one component selected from the group consisting of Ca(OH) 2 , CaCO 3 , CaCl 2 , and Ca(NO 3 ) 2 ;
Component (B): At least one component of Al(OH) 3 and Al 2 (SO 4 ) 3 .
前記焼成物におけるCaとAlとのモル比(Ca/Al)が、0.5〜15の範囲である、請求項1記載の土質改良材。 The soil improvement material according to claim 1, wherein the calcined product has a molar ratio of Ca to Al (Ca/Al) of 0.5 to 15. 前記焼成物が、前記(A)成分および前記(B)成分を含む混合物の焼成物であり、
前記(A)成分が、Ca(OH)、およびCaCOの少なくとも一方であり、
前記(B)成分が、Al(OH)である、請求項1または2に記載の土質改良材。
The fired product is a fired product of a mixture containing the component (A) and the component (B),
The component (A) is at least one of Ca(OH) 2 and CaCO 3 .
The soil improvement material according to claim 1 or 2, wherein the component (B) is Al(OH) 3 .
前記焼成物として、CaO、Ca12Al1433、CaAl14、CaAl33、Ca12Al14、およびCaAlからなる群から選択された少なくとも一つの結晶性化合物を含む、請求項1から3のいずれか一項に記載の土質改良材。 The calcined product is at least one crystalline material selected from the group consisting of CaO, Ca 12 Al 14 O 33 , Ca 5 Al 6 O 14 , CaAl 4 O 33 , Ca 12 Al 14 O 7 and CaAl 2 O 4 . The soil improvement material according to any one of claims 1 to 3, comprising a compound. さらに、セメント系固化材を含む、請求項1から4のいずれか一項に記載の土質改良材。 Furthermore, the soil improvement material according to any one of claims 1 to 4, further comprising a cement-based solidifying material. イオン吸着機能を持つ、請求項1から5のいずれか一項に記載の土質改良材。 The soil improvement material according to any one of claims 1 to 5, which has an ion adsorption function. 前記イオンが、六価クロム、セレン、ヒ素、フッ素、およびホウ素からなる群から選択された少なくとも一つのイオンである、請求項6記載の土質改良材。 The soil improvement material according to claim 6, wherein the ion is at least one ion selected from the group consisting of hexavalent chromium, selenium, arsenic, fluorine, and boron. 地盤の土に、請求項1から7のいずれか一項に記載の土質改良材を混合する混合工程を含むことを特徴とする土質改良方法。 A soil improvement method comprising a mixing step of mixing the soil improvement material according to any one of claims 1 to 7 with the soil of the ground. 前記土1mあたりの、前記土質改良材における前記焼成物の添加量が、10〜300kgである、請求項8記載の土質改良方法。 The soil improvement method according to claim 8, wherein the amount of the fired product added to the soil improvement material per 1 m 3 of the soil is 10 to 300 kg. 前記混合工程において、さらに、セメント系固化材を混合する、請求項8または9記載の土質改良方法。 The soil improvement method according to claim 8 or 9, further comprising mixing a cement-based solidifying material in the mixing step. 前記土1mあたりの前記セメント系固化材の添加量が、10〜300kgである、請求項10記載の土質改良方法。 The soil improvement method according to claim 10, wherein an addition amount of the cement-based solidifying material per 1 m 3 of the soil is 10 to 300 kg. 前記焼成物と前記セメント系固化材との添加重量比が、1:0.03〜1:30の範囲である、請求項10または11のいずれか一項に記載の土質改良方法。 The soil improvement method according to any one of claims 10 and 11, wherein an addition weight ratio of the fired product and the cement-based solidifying material is in a range of 1:0.03 to 1:30. 前記混合工程における混合物に対して、加熱による固化処理を施さない、請求項8から12のいずれか一項に記載の土質改良方法。 The soil improvement method according to any one of claims 8 to 12, wherein the mixture in the mixing step is not solidified by heating. 地盤の土と、請求項1から7のいずれか一項に記載の土質改良材とを含むことを特徴とする、改良土。 Improved soil comprising soil of the ground and the soil improvement material according to any one of claims 1 to 7. 土質改良工程を含み、前記土質改良工程が、請求項8から13のいずれか一項に記載の土質改良方法により実施される、改良土の生産方法。 A method for producing improved soil, comprising a soil improvement step, wherein the soil improvement step is carried out by the soil improvement method according to any one of claims 8 to 13. 土地改良工程を含み、前記土地改良工程が、請求項8から13のいずれか一項に記載の土質改良方法により実施される、改良土地の生産方法。

A method for producing improved land, comprising a land improvement step, wherein the land improvement step is carried out by the soil improvement method according to any one of claims 8 to 13.

JP2019215546A 2018-12-05 2019-11-28 Soil improvement material, and soil improvement method Pending JP2020094198A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018228407 2018-12-05
JP2018228407 2018-12-05

Publications (1)

Publication Number Publication Date
JP2020094198A true JP2020094198A (en) 2020-06-18

Family

ID=71084616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019215546A Pending JP2020094198A (en) 2018-12-05 2019-11-28 Soil improvement material, and soil improvement method

Country Status (1)

Country Link
JP (1) JP2020094198A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518210A (en) * 1978-07-24 1980-02-08 Nippon Cement Co Ltd Sludge solidification treating agent
JPH10265777A (en) * 1997-03-24 1998-10-06 Riyuuiki:Kk Soil-stabilizing material and its production
JP2005021732A (en) * 2003-06-30 2005-01-27 Denki Kagaku Kogyo Kk Arsenic and/or selenium collection material
JP2005270790A (en) * 2004-03-24 2005-10-06 Toda Kogyo Corp Adsorbent adsorbing fluorine and/or boron

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518210A (en) * 1978-07-24 1980-02-08 Nippon Cement Co Ltd Sludge solidification treating agent
JPH10265777A (en) * 1997-03-24 1998-10-06 Riyuuiki:Kk Soil-stabilizing material and its production
JP2005021732A (en) * 2003-06-30 2005-01-27 Denki Kagaku Kogyo Kk Arsenic and/or selenium collection material
JP2005270790A (en) * 2004-03-24 2005-10-06 Toda Kogyo Corp Adsorbent adsorbing fluorine and/or boron

Similar Documents

Publication Publication Date Title
Li et al. Immobilization of phosphogypsum for cemented paste backfill and its environmental effect
Kim et al. Recycling of arsenic-rich mine tailings in controlled low-strength materials
Zhou et al. Sewage sludge ash-incorporated stabilisation/solidification for recycling and remediation of marine sediments
RU2471737C1 (en) Composite structural material
CN107162549A (en) The curing agent and application method of heavy metal pollution site remediation based on entringite
JP4696851B2 (en) Simple paving slag and simple paving body, civil engineering slag and civil engineering construction body
Tempest et al. Characterization and demonstration of reuse applications of sewage sludge ash
Devarangadi Correlation studies on geotechnical properties of various industrial byproducts generated from thermal power plants, iron and steel industries as liners in a landfill-a detailed review
JP2006247645A (en) Modification treatment agent, modification treatment method of heat history silicate and binding shape body modified it
EP0338039B1 (en) Process for sealing soil formations, in particular for creating waste disposal sites
Cheng et al. Workability study of sand-bentonite-cement mixtures for construction of two-phase cut-off wall
Bordoloi et al. Feasibility of construction demolition waste for unexplored geotechnical and geo-environmental applications-a review
TWI434818B (en) Manufacture of artificial stone
KR100773991B1 (en) Solidification method of dredged soils
TW200918193A (en) Treatment material with reduced heavy metal and treatment method for reducing heavy metal and manufacturing method and foundation material of granulated treatment material
KR20060136325A (en) Solidification method of dredged soils
KR101423123B1 (en) Method for constructing impervious wall of waste landfill pond
JP2020094198A (en) Soil improvement material, and soil improvement method
Giridhar et al. Experimental studies on clay, bentonite and leachate mixer as liner material
KR100266727B1 (en) A construction method of waste landfill liner to have self-sealing & self-healing funtion
KR100356344B1 (en) Founding method of wall for blocking a leachate from a buried wastes
DE19851256C2 (en) Process for solidifying particulate, dusty to coarse-grained, non-hydraulic waste materials
WO2018186388A1 (en) Additive composition for ground improvement
JP2018002914A (en) Ground improving additive, ground improving composition and ground improving method
JP2503771B2 (en) Solidifying material for cohesive soil of volcanic ash

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191211

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240325

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240430