JP2020093455A - Copolymerized polybutylene terephthalate for powder laminate molding method - Google Patents

Copolymerized polybutylene terephthalate for powder laminate molding method Download PDF

Info

Publication number
JP2020093455A
JP2020093455A JP2018232725A JP2018232725A JP2020093455A JP 2020093455 A JP2020093455 A JP 2020093455A JP 2018232725 A JP2018232725 A JP 2018232725A JP 2018232725 A JP2018232725 A JP 2018232725A JP 2020093455 A JP2020093455 A JP 2020093455A
Authority
JP
Japan
Prior art keywords
powder
polybutylene terephthalate
copolymerized
pbt
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018232725A
Other languages
Japanese (ja)
Other versions
JP7215129B2 (en
Inventor
稔 岸下
Minoru Kishishita
稔 岸下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Engineering Plastics Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Engineering Plastics Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Engineering Plastics Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2018232725A priority Critical patent/JP7215129B2/en
Publication of JP2020093455A publication Critical patent/JP2020093455A/en
Application granted granted Critical
Publication of JP7215129B2 publication Critical patent/JP7215129B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a copolymerized polybutylene terephthalate for a powder laminate molding method, which can effectively suppress an increase in intrinsic viscosity and an increase in yellow tint during molding and/or reuse of a three-dimensional object by a powder laminate molding apparatus.SOLUTION: Copolymerized polybutylene terephthalate for a powder laminate molding method, contains a terephthalic acid component and a 1,4-butanediol component as main components, has a melting point of 150 to 215°C, and has a terminal carboxyl group amount of 42 to 90 equivalents/ton. It is preferable that the melting point is 170 to 199°C and the terminal carboxyl group amount is 45 to 90 equivalents/ton, particularly 65 to 90 equivalents/ton.SELECTED DRAWING: None

Description

本発明は粉末積層造形法に用いる共重合ポリブチレンテレフタレート(以下、ポリブチレンテレフタレートをPBTと表記する場合がある)に関する。特に、粉末積層造形装置による3次元造形品の造形時及び/又は再使用時における高重合度化による固有粘度の上昇、及び黄色味の増大を効果的に抑制することができる粉末積層造形法用共重合PBTに関する。 The present invention relates to a copolymerized polybutylene terephthalate (hereinafter, the polybutylene terephthalate may be referred to as PBT) used in a powder layered manufacturing method. In particular, for a powder additive manufacturing method capable of effectively suppressing an increase in intrinsic viscosity and an increase in yellow tint due to a high degree of polymerization during modeling and/or reuse of a three-dimensional object manufactured by a powder additive manufacturing apparatus. It relates to copolymerized PBT.

ポリエステルは、その優れた機械的性質と化学的性質から、工業的に重要な位置を占めている。例えば、PBTなどの芳香族ポリエステルは、耐熱性、耐薬品性に優れた樹脂であると共に、成形加工の容易さと経済性から、繊維、フィルム、シート、ボトル、電気電子部品、自動車部品、精密機器部品などの押出用途、射出用途などの分野で広く使用されている。 Polyester occupies an industrially important position because of its excellent mechanical and chemical properties. For example, aromatic polyester such as PBT is a resin having excellent heat resistance and chemical resistance, and is easy to process and is economical, so that fibers, films, sheets, bottles, electric and electronic parts, automobile parts, precision instruments are used. It is widely used in fields such as extrusion of parts and injection.

3次元造形法の一つである粉末積層造形法は、造形部で樹脂などの粉末材料の薄層を加熱手段を用いて加熱・焼結して造形し、それを繰り返して積層体を形成することにより3次元造形品を得る方法である。
加熱手段としては、レーザあるいは赤外線ランプ、キセノンランプ、ハロゲンランプなどが用いられる。
粉末積層造形法は金型を使用する必要がなく、ある程度耐熱性を有するものであれば多様な樹脂粉末を原料として使用することができ、得られる造形品の信頼性も高いことから、近年注目されている技術である。
The powder layered modeling method, which is one of the three-dimensional modeling methods, heats and sinters a thin layer of a powder material such as a resin in a modeling section by using a heating unit to form a model, which is repeated to form a layered product. This is a method of obtaining a three-dimensional modeled product.
A laser, an infrared lamp, a xenon lamp, a halogen lamp or the like is used as the heating means.
The powder additive molding method does not require the use of molds, and various resin powders can be used as raw materials as long as they have heat resistance to some extent, and the reliability of the obtained molded products is high. It is a technology that is being used.

この技術分野においては、例えば以下のような技術が知られている。
特許文献1には、水分を吸収しにくく、耐熱性の高い造形品を得るに適した共重合PBTとして、共重合成分が3〜30モル%で融点が200〜215℃の共重合PBTが開示されている。この特許文献1には共重合PBTの融点の記載はあるが、末端カルボキシル基量についての記載はない。
特許文献2には、温度制御に対してロバスト性を高め、かつ造形品の耐熱性を向上させるため、融点の異なる二つの樹脂、例えば共重合PBTとホモPBT、を組み合わせて使用する技術が開示されている。この特許文献2にも用いた共重合PBTの融点の記載はあるが、末端カルボキシル基量の記載はない。
In this technical field, for example, the following techniques are known.
Patent Document 1 discloses a copolymerized PBT having a copolymerization component of 3 to 30 mol% and a melting point of 200 to 215° C. as a copolymerized PBT that is difficult to absorb water and is suitable for obtaining a shaped article having high heat resistance. Has been done. This Patent Document 1 describes the melting point of the copolymerized PBT, but does not describe the amount of terminal carboxyl groups.
Patent Document 2 discloses a technique in which two resins having different melting points, for example, a copolymerized PBT and a homo PBT, are used in combination in order to enhance robustness against temperature control and to improve heat resistance of a molded article. Has been done. This Patent Document 2 also describes the melting point of the copolymerized PBT used, but does not describe the amount of terminal carboxyl groups.

PBTなどの結晶性樹脂の粉末を用いて、粉末積層造形法により3次元造形を行う場合、該樹脂粉末を融点近傍の温度に加熱して造形を行う。造形装置の設計にもよるが、造形の際に余剰となって回収した粉末(回収粉末)は、初期に投入した粉末(初期粉末)と混合して造形に再使用される。 When three-dimensional modeling is performed by a powder layered modeling method using powder of a crystalline resin such as PBT, the resin powder is heated to a temperature near the melting point for modeling. Although it depends on the design of the modeling apparatus, the powder (recovered powder) recovered as an excess during the modeling is mixed with the powder (initial powder) initially charged and reused for modeling.

造形時の造形エリアの温度に関しては、例えば、特許文献1には樹脂の融点より5〜15℃程度低い温度に設定することや、具体的に融点208℃の樹脂の造形において、造形エリアの温度を190℃とする例が記載されている。この場合、融点より18℃低い温度エリアで造形することとなる。また特許文献2には、例えば融点208℃の樹脂の造形において、造形エリアの温度を190℃、保管エリアの温度を175℃とすることが記載されている。 Regarding the temperature of the molding area at the time of molding, for example, in Patent Document 1, the temperature of the molding area is set to a temperature lower by about 5 to 15° C. than the melting point of the resin, or specifically, when molding a resin having a melting point of 208° C. Is set to 190°C. In this case, modeling is performed in a temperature area that is 18° C. lower than the melting point. Further, in Patent Document 2, for example, in molding a resin having a melting point of 208° C., it is described that the temperature of the molding area is 190° C. and the temperature of the storage area is 175° C.

このように、粉末積層造形法では、樹脂粉末は融点より20℃前後低い温度の造形エリアで熱処理を受ける。
なお、特許文献1,2には造形エリアは窒素などの不活性雰囲気下が好ましい旨記載されている。
また、造形に費やされる時間はその積層数や大きさによって変わり得るが、例えば10〜20時間程度である。
As described above, in the powder layered manufacturing method, the resin powder is subjected to the heat treatment in the modeling area having a temperature lower by about 20° C. than the melting point.
Note that Patent Documents 1 and 2 describe that the modeling area is preferably under an inert atmosphere such as nitrogen.
The time spent for modeling may vary depending on the number of stacked layers and the size thereof, but is, for example, about 10 to 20 hours.

国際公開第2016/121013号International Publication No. 2016/121013 国際公開第2017/179139号International Publication No. 2017/179139

PBTのような結晶性樹脂は、上記の通り融点近傍の温度で保持する熱処理を受けた場合には、固相状態で重合が進むいわゆる固相重縮合が生じる結果、樹脂の固有粘度が高くなってしまう。また、加熱により黄変を起こすなどの好ましくない物性の変化を起こす。このため、初期粉末であっても、造形過程で受ける熱により、得られる造形品に物性の変化、黄変といった問題が起こる可能性がある上に、回収粉末は初期粉末よりも固有粘度が高く、黄色味帯びたものとなる。また、固有粘度が上昇し、黄変を起こした回収粉末を新規粉末と混合して再使用すると、回収粉末の固有粘度は新規粉末の固有粘度より高く、固有粘度差があるため、造形のための溶融時に粘度むらひいては溶融むらが発生し、造形に不具合が生じる。また、熱処理の温度が高くなると、造形品の黄色味が増してしまい、色むらも発生しやすくなる。 When a crystalline resin such as PBT is subjected to heat treatment at a temperature near the melting point as described above, so-called solid phase polycondensation occurs in which polymerization proceeds in a solid phase state, resulting in an increase in intrinsic viscosity of the resin. Will end up. In addition, it causes undesirable changes in physical properties such as yellowing due to heating. For this reason, even with the initial powder, the heat generated during the molding process may cause problems such as changes in physical properties and yellowing of the obtained molded product, and the recovered powder has a higher intrinsic viscosity than the initial powder. , Becomes yellowish. In addition, when the recovered powder that has increased intrinsic viscosity and yellowed is mixed and reused with the new powder, the recovered powder has a higher intrinsic viscosity than the new powder and there is a difference in the intrinsic viscosity. When melted, uneven viscosity occurs, which results in uneven melting, which causes a problem in modeling. In addition, when the temperature of the heat treatment increases, the yellowness of the molded product increases, and color unevenness easily occurs.

本発明は、このような問題を解決するべく、熱処理を受けても固有粘度の上昇が少なく、また黄変の少ないPBT粉末を提供することを課題とする。
即ち、本発明は、粉末積層造形装置による3次元造形品の造形時及び/又は再使用時における高重合度化に起因する固有粘度の上昇、及び黄色味の増大を効果的に抑制することができる粉末積層造形法用共重合PBTを提供することを課題とする。
In order to solve such a problem, it is an object of the present invention to provide a PBT powder having a small increase in intrinsic viscosity even when subjected to a heat treatment and a small yellowing.
That is, the present invention can effectively suppress an increase in intrinsic viscosity and an increase in yellowness due to a high degree of polymerization during modeling and/or reuse of a three-dimensional modeled article by a powder layered modeling apparatus. An object of the present invention is to provide a copolymerizable PBT for a powder layered manufacturing method that can be used.

本発明者は上記課題を解決すべく鋭意研究を重ねた結果、融点及び末端カルボキシル基量が所定の範囲内にある共重合PBTにより、これらの課題を解決することができることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that these problems can be solved by a copolymerized PBT having a melting point and an amount of terminal carboxyl groups within a predetermined range, and the present invention has been made. It came to completion.

すなわち、本発明は、
粉末積層造形法に使用される、主成分としてテレフタル酸成分及び1,4−ブタンジオール成分を含む共重合ポリブチレンテレフタレートであって、融点が150〜215℃、末端カルボキシル基量が42〜90当量/トンであることを特徴とする粉末積層造形法用共重合ポリブチレンテレフタレート、
に存する。
That is, the present invention is
A copolymerized polybutylene terephthalate containing a terephthalic acid component and a 1,4-butanediol component as main components, which is used in the powder layering method, and has a melting point of 150 to 215° C. and a terminal carboxyl group amount of 42 to 90 equivalents. /Ton, copolymer polybutylene terephthalate for powder lamination manufacturing method,
Exist in.

本発明はまた、
この粉末積層造形法用共重合ポリブチレンテレフタレートを5〜100質量%含むことを特徴とする粉末積層造形法用ポリブチレンテレフタレート系組成物、
この粉末積層造形法用共重合ポリブチレンテレフタレート又は粉末積層造形法用ポリブチレンテレフタレート系組成物よりなる粉末積層造形法用粉末材料、
この粉末積層造形法用粉末材料を用いて粉末積層造形法により造形品を製造する造形方法、
この粉末積層造形法用粉末材料を用いた造形品、
に存する。
The present invention also provides
A polybutylene terephthalate-based composition for powder lamination molding, comprising 5 to 100% by mass of the copolymerized polybutylene terephthalate for powder lamination molding,
A powder material for a powder laminating method comprising a copolymerized polybutylene terephthalate for the powder laminating method or a polybutylene terephthalate-based composition for the powder laminating method,
A molding method for manufacturing a molded article by the powder lamination molding method using the powder material for the powder lamination molding method,
A shaped article using the powder material for the powder layering method,
Exist in.

本発明の共重合PBTは、不活性ガス雰囲気下又は空気雰囲気下で融点に近い熱処理を長時間受けても、固有粘度の上昇及び黄色味の増大を抑制することができる。とりわけ、本発明の効果は不活性ガス雰囲気下で熱処理を受ける場合に好ましく発揮される。
このような本発明の共重合PBTを粉末積層造形法に用いて余剰の粉末を回収して再使用する場合にも、これらの好ましくない物性の変化は少なく、回収粉末を初期粉末と混合して用いても安定した造形を行って、高品質の造形品を得ることができる。
The copolymerized PBT of the present invention can suppress an increase in intrinsic viscosity and an increase in yellowness even when subjected to a heat treatment at a temperature close to the melting point in an inert gas atmosphere or an air atmosphere for a long time. In particular, the effects of the present invention are preferably exhibited when heat treatment is performed in an inert gas atmosphere.
Even when such a copolymerized PBT of the present invention is used in a powder layered manufacturing method to recover and reuse an excessive powder, these undesirable physical property changes are small, and the recovered powder is mixed with the initial powder. Even if it is used, stable modeling can be performed and a high quality molded article can be obtained.

以下に本発明を実施するための最良の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の代表例であり、本発明はこれらの内容に限定されるものではない。 BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention will be described in detail below, but the description of the constituent elements described below is a representative example of the embodiment of the present invention, and the present invention is limited to these contents. Not a thing.

[粉末積層造形法用共重合PBT]
本発明の粉末積層造形法用共重合PBT(以下、「本発明の共重合PBT」と称す場合がある。)は、主成分としてテレフタル酸成分及び1,4−ブタンジオール成分を含む共重合PBTであって、融点が150〜215℃、末端カルボキシル基量が42〜90当量/トンであることを特徴とする。
好ましくは、粉末積層造形法による造形に使用されていない(使用履歴のない)共重合PBTである。
[Copolymerized PBT for powder additive manufacturing]
The copolymerized PBT for the powder layered manufacturing method of the present invention (hereinafter sometimes referred to as “copolymerized PBT of the present invention”) is a copolymerized PBT containing a terephthalic acid component and a 1,4-butanediol component as main components. And has a melting point of 150 to 215° C. and a terminal carboxyl group content of 42 to 90 equivalents/ton.
Preferred is a copolymerized PBT that has not been used for modeling by the powder layered modeling method (has no history of use).

<共重合PBTの組成>
本発明の共重合PBTは、ジカルボン酸成分の主成分(65モル%以上)がテレフタル酸成分で、ジオール成分の主成分(65モル%以上)が1,4−ブタンジオールであるポリエステルであって、そのジカルボン酸成分の35モル%以下がテレフタル酸以外の成分及び/又はジオール成分の35モル%以下が1,4−ブタンジオール成分以外の成分である共重合成分を含むPBTである。
即ち、本発明の共重合PBTは、全ジカルボン酸成分に由来する構成単位100モル%のうち65モル%以上がテレフタル酸成分に由来する構成単位で、35モル%以下がテレフタル酸以外のジカルボン酸成分に由来する構成単位であり、全ジオール成分に由来する構成単位100モル%のうちの65モル%以上が1,4−ブタンジオールに由来する構成単位で、35モル%以下が1,4−ブタンジオール以外のジオール成分に由来する構成単位である共重合ポリエステルである。
<Composition of copolymerized PBT>
The copolymerized PBT of the present invention is a polyester in which the main component (65 mol% or more) of the dicarboxylic acid component is a terephthalic acid component and the main component (65 mol% or more) of the diol component is 1,4-butanediol. PBT containing a copolymerization component in which 35 mol% or less of the dicarboxylic acid component is a component other than terephthalic acid and/or 35 mol% or less of the diol component is a component other than the 1,4-butanediol component.
That is, in the copolymerized PBT of the present invention, 65 mol% or more out of 100 mol% of the constituent units derived from all dicarboxylic acid components are constituent units derived from the terephthalic acid component, and 35 mol% or less are dicarboxylic acids other than terephthalic acid. Constituent units derived from the components, 65 mol% or more of 100 mol% of the constituent units derived from all the diol components are constituent units derived from 1,4-butanediol, and 35 mol% or less are 1,4- It is a copolyester which is a constitutional unit derived from a diol component other than butanediol.

共重合成分としては、ジカルボン酸成分としてイソフタル酸、ナフタレンジカルボン酸、コハク酸など(これらの誘導体であってもよい。)を、ジオール成分として、エチレングリコール、ジエチレングリコール、1,3−プロパンジオール、1,4−シクロヘキサンジメタノール、2,4−ジエチル−1,5−ペンタンジオール、ブチルエチルプロパンジオール、スピログリコール、トリシクロデカンジメタノール、9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレンなどを挙げることができるが、これらに限定されるものではない。
これらの共重合成分の中ではイソフタル酸が工業的に入手しやすくポリマー製造も容易に行えることなどから、特に好ましく使用される。これらの共重合成分は同時に複数用いることもできる。
As the copolymerization component, isophthalic acid, naphthalenedicarboxylic acid, succinic acid and the like (may be derivatives thereof) as the dicarboxylic acid component, and ethylene glycol, diethylene glycol, 1,3-propanediol as the diol component, 1 ,4-Cyclohexanedimethanol, 2,4-diethyl-1,5-pentanediol, butylethylpropanediol, spiroglycol, tricyclodecanedimethanol, 9,9-bis[4-(2-hydroxyethoxy)phenyl] Examples thereof include fluorene, but are not limited thereto.
Among these copolymerization components, isophthalic acid is particularly preferably used because it is industrially available and the polymer can be easily produced. A plurality of these copolymerization components can be used at the same time.

共重合成分としてイソフタル酸成分を含む共重合PBTの場合、全ジカルボン酸成分100モル%中にテレフタル酸成分を65〜95モル%、特に70〜90モル%、最も好ましくは75〜85モル%、イソフタル酸成分を5〜35モル%、特に10〜30モル%、最も好ましくは15〜25モル%含むことが、耐熱性と造形時に適度な結晶性を発現する観点から好ましい。 In the case of a copolymerized PBT containing an isophthalic acid component as a copolymerization component, the terephthalic acid component is 65 to 95 mol%, particularly 70 to 90 mol%, and most preferably 75 to 85 mol% in 100 mol% of all dicarboxylic acid components, It is preferable that the isophthalic acid component is contained in an amount of 5 to 35 mol %, particularly 10 to 30 mol %, and most preferably 15 to 25 mol %, from the viewpoint of exhibiting heat resistance and appropriate crystallinity during molding.

<共重合PBTの物性>
本発明の共重合PBTの融点は150〜215℃である。融点が150℃未満では、得られる造形品の耐熱性が低く好ましくない。融点は好ましくは、160℃以上、さらに好ましくは170℃以上、最も好ましくは180℃以上である。
<Physical properties of copolymerized PBT>
The melting point of the copolymerized PBT of the present invention is 150 to 215°C. If the melting point is less than 150°C, the heat resistance of the obtained shaped article is low, which is not preferable. The melting point is preferably 160°C or higher, more preferably 170°C or higher, most preferably 180°C or higher.

一方、融点が215℃以下であるのは以下の理由による。
共重合成分を含まないホモPBT(融点225℃)は不活性ガス雰囲気下でも固相重縮合が進行しやすいが、共重合することによって固相重縮合の進行を遅らせることができる。その程度は融点が215℃以下になる範囲で顕著で、固有粘度の上昇及び黄色味の増大を効果的に抑制することができる。この観点から、本発明の共重合PBTの融点は好ましくは210℃以下、さらに好ましくは199℃以下、特に好ましくは195℃以下、最も好ましくは190℃以下である。
On the other hand, the melting point is 215° C. or lower for the following reason.
Homo-PBT (melting point 225° C.) containing no copolymerization component easily undergoes solid phase polycondensation even in an inert gas atmosphere, but copolymerization can delay the progress of solid phase polycondensation. The degree is remarkable in the range where the melting point is 215° C. or lower, and the increase in intrinsic viscosity and the increase in yellowness can be effectively suppressed. From this point of view, the melting point of the copolymerized PBT of the present invention is preferably 210° C. or lower, more preferably 199° C. or lower, particularly preferably 195° C. or lower, most preferably 190° C. or lower.

共重合PBTの融点が上記所望の範囲にあると、得られる造形品は優れた耐熱性と強度をも併せ持つという効果も得ることができる。 When the melting point of the copolymerized PBT is within the above-mentioned desired range, it is possible to obtain the effect that the obtained shaped article has both excellent heat resistance and strength.

共重合PBTの融点は、後掲の実施例の項に記載の方法で測定される。 The melting point of the copolymerized PBT is measured by the method described in the section of Examples below.

また、本発明の共重合PBTの末端カルボキシル基量は42〜90当量/トンである。
この末端カルボキシル基量は通常の製造条件で得られる共重合PBTの末端カルボキシル基量より高く、このような末端カルボキシル基量の共重合PBTを製造するには後述の通り、製造条件等に工夫を要するものであるが、本発明者は、共重合PBTの末端カルボキシル基量がこの範囲内にあると、熱処理、特に不活性ガス雰囲気下での熱処理において固有粘度の上昇を効果的に抑制することができることを知見した。かかる効果が発揮される理由は定かではないが、この場合
熱処理による重縮合の進行とジオール成分による解重合の進行、カルボキシル末端とジオール末端のバランスの崩れが組み合わされて起こることによるとも考えられる。
The amount of terminal carboxyl groups of the copolymerized PBT of the present invention is 42 to 90 equivalents/ton.
The amount of this terminal carboxyl group is higher than the amount of the terminal carboxyl group of the copolymerized PBT obtained under normal production conditions, and in order to produce such a copolymerized PBT having such an amount of terminal carboxyl group, the production conditions and the like should be devised as described below. Although it is required, the present inventor effectively suppresses an increase in intrinsic viscosity during heat treatment, particularly in an inert gas atmosphere, when the amount of terminal carboxyl groups of the copolymerized PBT is within this range. It was discovered that The reason why such an effect is exerted is not clear, but in this case, it is also considered that the progress of polycondensation due to the heat treatment, the progress of depolymerization due to the diol component, and the unbalance between the carboxyl terminal and the diol terminal occur in combination.

本発明における共重合PBTの末端カルボキシル基量は好ましくは45〜90当量/トン、より好ましくは65〜90当量/トンである。末端カルボキシル基量がかかる範囲内にあると、本発明の効果が顕著に発揮される。 The amount of terminal carboxyl groups of the copolymerized PBT in the present invention is preferably 45 to 90 equivalents/ton, more preferably 65 to 90 equivalents/ton. When the amount of terminal carboxyl groups is within such a range, the effect of the present invention is remarkably exhibited.

また、本発明者は、更に分子量の影響を考慮すると、共重合PBTの総末端基量に対する末端カルボキシル基量の割合が本発明の効果に影響することを知見した。ここで、総末端基量は、ポリマーの末端基数の合計であり、概ね末端カルボキシル基、末端ヒドロキシル基、及び末端ビニル基の合計となる。 Further, the present inventor has found that, when the influence of the molecular weight is further considered, the ratio of the amount of terminal carboxyl groups to the total amount of terminal groups of the copolymerized PBT affects the effect of the present invention. Here, the total amount of terminal groups is the total number of terminal groups of the polymer, and is approximately the total of terminal carboxyl groups, terminal hydroxyl groups, and terminal vinyl groups.

本発明の共重合PBTの末端カルボキシル基量は総末端基量に対して、42〜90%、特に45〜90%、とりわけ65〜90%であることが好ましい。総末端基量に対する末端カルボキシル基量の割合がかかる範囲内にあると、本発明の効果がより一層顕著に発揮される。 The amount of terminal carboxyl groups of the copolymerized PBT of the present invention is preferably 42 to 90%, particularly 45 to 90%, and especially 65 to 90% based on the total amount of terminal groups. When the ratio of the amount of terminal carboxyl groups to the total amount of terminal groups is within such a range, the effect of the present invention is more remarkably exhibited.

共重合PBTの末端カルボキシル基量、総末端基量は、後掲の実施例の項に記載の方法で求められる。 The amount of terminal carboxyl groups and the total amount of terminal groups of the copolymerized PBT can be determined by the method described in the section of Examples below.

また、本発明の共重合PBTのガラス転移温度は30℃以上、49℃以下であることが好ましい。ガラス転移温度が30℃未満であると、得られる造形品が軟化しやすくなるなどの不具合が生じるようになる。本発明の共重合PBTのガラス転移温度は好ましくは32℃以上、さらに好ましくは34℃以上である。一方、ガラス転移温度が49℃を超えると、しばしば造形品に溶融むらが生じてしまう。また、共重合成分によっては、造形品の結晶性が低くなり、耐熱性が劣る傾向にある。本発明の共重合PBTのガラス転移温度の上限は、より好ましくは48℃、さらに好ましくは46℃である。 The glass transition temperature of the copolymerized PBT of the present invention is preferably 30°C or higher and 49°C or lower. When the glass transition temperature is lower than 30° C., the obtained shaped product tends to be softened, which causes problems. The glass transition temperature of the copolymerized PBT of the present invention is preferably 32°C or higher, more preferably 34°C or higher. On the other hand, when the glass transition temperature exceeds 49° C., uneven melting often occurs in the shaped product. In addition, depending on the copolymerization component, the crystallinity of the molded article tends to be low, and the heat resistance tends to be poor. The upper limit of the glass transition temperature of the copolymerized PBT of the present invention is more preferably 48°C, further preferably 46°C.

共重合PBTのガラス転移温度は、後掲の実施例の項に記載の方法で測定される。 The glass transition temperature of the copolymerized PBT is measured by the method described in the section of Examples below.

<共重合PBTの製造方法>
本発明の共重合PBTの製造方法は特に制限されるものではなく、公知の方法を用いることができる。例えば、まずテレフタル酸成分及び1,4−ブタンジオールとともに共重合成分を加え、エステル交換反応及び/又はエステル化反応を行って低重合体を得、次いで得られた低重合体の溶融重縮合反応を行いポリマーを得る方法を用いることができる。これらの反応はバッチ式でも連続式でもよい。
<Method for producing copolymerized PBT>
The method for producing the copolymerized PBT of the present invention is not particularly limited, and a known method can be used. For example, first, a copolymerization component is added together with a terephthalic acid component and 1,4-butanediol, a transesterification reaction and/or an esterification reaction is performed to obtain a low polymer, and then a melt polycondensation reaction of the obtained low polymer is performed. Can be used to obtain a polymer. These reactions may be batch type or continuous type.

テレフタル酸成分としては、テレフタル酸の他、テレフタル酸のアルキルエステル(アルキル基の炭素数は好ましくは1)、ハライド等のテレフタル酸誘導体の1種又は2種以上を用いることができる。共重合成分としてのイソフタル酸成分としても、イソフタル酸の他、イソフタル酸のアルキルエステル(アルキル基の炭素数は好ましくは1)、ハライド等のイソフタル酸誘導体の1種又は2種以上を用いることができる。その他のジカルボン酸成分についても同様である。 As the terephthalic acid component, in addition to terephthalic acid, one or more kinds of terephthalic acid alkyl esters (the carbon number of the alkyl group is preferably 1) and terephthalic acid derivatives such as halides can be used. As the isophthalic acid component as a copolymerization component, in addition to isophthalic acid, one or more isophthalic acid derivatives such as an alkyl ester of isophthalic acid (the carbon number of the alkyl group is preferably 1) and a halide are used. it can. The same applies to other dicarboxylic acid components.

低重合体を得る方法の例としては、一段又は多段の反応装置を用いて、触媒を用いて又は用いずに、常圧又は加圧下でエステル交換反応及び/又はエステル化反応を行う方法が挙げられる。 Examples of the method of obtaining the low polymer include a method of performing a transesterification reaction and/or an esterification reaction under normal pressure or pressure using a single-stage or multi-stage reaction apparatus, with or without a catalyst. Be done.

溶融重縮合方法の例としては、一段又は多段の反応装置を用いて、触媒の存在下、減圧下で加温しながら生成する水やアルコールを系外に留出させる方法が挙げられる。この際用いる重縮合触媒としては、アンチモン、ゲルマニウム、チタン、アルミニウムなどの化合物が挙げられる。 As an example of the melt polycondensation method, there is a method of distilling out water or alcohol produced while heating under reduced pressure in the presence of a catalyst using a single-stage or multi-stage reaction apparatus. Examples of the polycondensation catalyst used at this time include compounds such as antimony, germanium, titanium and aluminum.

また、上記の触媒の他に、正燐酸、亜燐酸、次亜燐酸、ポリ燐酸およびそれらのエステルや金属塩等の燐化合物;水酸化ナトリウム、安息香酸ナトリウム等のナトリウム化合物、酢酸リチウム等のリチウム化合物、水酸化カリウム、酢酸カリウム等のカリウム化合物等のアルカリ金属化合物;酢酸マグネシウム、酢酸カルシウム等のアルカリ土類金属化合物等の反応助剤や、酸化防止剤等の添加剤を使用してもよい。 In addition to the above catalysts, phosphorus compounds such as orthophosphoric acid, phosphorous acid, hypophosphorous acid, polyphosphoric acid and their esters and metal salts; sodium compounds such as sodium hydroxide and sodium benzoate; lithium such as lithium acetate. Compounds, alkali metal compounds such as potassium compounds such as potassium hydroxide and potassium acetate; reaction aids such as alkaline earth metal compounds such as magnesium acetate and calcium acetate, and additives such as antioxidants may be used. ..

反応速度を高めるには、例えば減圧度を高める、昇温速度を速める、反応液面の更新速度を上げるなどの条件を採るとよい。 In order to increase the reaction rate, conditions such as increasing the degree of pressure reduction, increasing the rate of temperature increase, and increasing the rate of updating the reaction liquid surface may be used.

溶融重縮合で得られた共重合PBTは、通常、溶融重縮合槽の底部に設けられた抜き出し口からストランド状又はシート状で抜き出した後、水冷しながら又は水冷後、カッターで切断してペレット状又はチップ状などの粒状体(例えば長さ3〜10mm程度)とする。 The copolymerized PBT obtained by melt polycondensation is usually pelletized by cutting it with a cutter after water-cooling or water-cooling after withdrawing it in a strand or sheet form from an outlet provided at the bottom of the melt polycondensation tank. It is a granular body having a shape of a chip or the like (for example, a length of about 3 to 10 mm).

(重縮合触媒)
本発明の共重合PBTの製造においては、重縮合触媒として特にチタン化合物、例えばテトラブチルチタネートを用いることが望ましい。チタン化合物を用いると、概して触媒活性が高く、触媒に起因する異物の発生も少なく、特に粉末積層造形に適した共重合PBTを製造することができる。チタン化合物は、触媒として、低重合体製造工程と重縮合工程に分けて加えると共重合PBTの製造を特に効果的に行うことができる。添加するチタン化合物の量は、生成する共重合PBTに対して低重合体製造工程でチタン元素換算で10〜40質量ppm、重縮合工程で30〜70質量ppmとして、合計40〜110質量ppmとするのがよい。合計の添加量が40質量ppmを下回るとしばしば重縮合速度が遅くなり、また110質量ppmを超えると、熱処理時の黄色味が強くなる傾向がある。なお、このチタン化合物添加量は少ないほど、熱処理時の黄色味が少なくなる。熱処理の黄色味低減の観点から、好ましいチタン化合物添加量は、チタン元素換算で低重合体製造工程では10〜40質量ppm、重縮合工程では30〜70質量ppm、合計40〜110質量ppmである。
(Polycondensation catalyst)
In the production of the copolymerized PBT of the present invention, it is particularly desirable to use a titanium compound such as tetrabutyl titanate as a polycondensation catalyst. When a titanium compound is used, the catalytic activity is generally high, the generation of foreign matters due to the catalyst is small, and a copolymerized PBT particularly suitable for powder lamination molding can be produced. When the titanium compound is added as a catalyst in the low polymer production step and the polycondensation step separately, the production of the copolymerized PBT can be carried out particularly effectively. The amount of the titanium compound added is 10 to 40 mass ppm in terms of titanium element conversion in the low polymer production step and 30 to 70 mass ppm in the polycondensation step with respect to the produced copolymerized PBT, and the total is 40 to 110 mass ppm. Good to do. When the total addition amount is less than 40 mass ppm, the polycondensation rate is often slowed, and when it exceeds 110 mass ppm, the yellow tint during heat treatment tends to be strong. It should be noted that the smaller the amount of this titanium compound added, the less the yellow tint during heat treatment. From the viewpoint of reducing the yellow tint of the heat treatment, the preferable addition amount of the titanium compound is 10 to 40 mass ppm in the low polymer production process in terms of titanium element, 30 to 70 mass ppm in the polycondensation process, and 40 to 110 mass ppm in total. ..

(本発明の共重合PBTを得るための工夫)
融点が150〜215℃、末端カルボキシル基量が42〜90当量/トンで、好ましくは総末端基量に対する末端カルボキシル基量の割合が42〜90%、ガラス転移温度が30〜49℃である本発明の共重合PBTを製造する方法としては、共重合PBTの製造条件を選択することにより溶融重縮合で直接上記物性を満たす共重合PBTを得る方法が挙げられる。その条件はプロセスや装置によって様々であるので一概に定めることはできないが、例えば、比較的大きな規模のPBT製造装置(例えば、10m重合槽)を用いて、触媒量、製造温度や減圧度などの調整を行い、重縮合を行う方法などが挙げられる。
(Device for obtaining the copolymerized PBT of the present invention)
A material having a melting point of 150 to 215° C., an amount of terminal carboxyl groups of 42 to 90 equivalents/ton, preferably a ratio of the amount of terminal carboxyl groups to the total amount of terminal groups of 42 to 90%, and a glass transition temperature of 30 to 49° C. Examples of the method for producing the copolymerized PBT of the invention include a method for directly obtaining the copolymerized PBT satisfying the above physical properties by melt polycondensation by selecting the production conditions for the copolymerized PBT. Since the conditions vary depending on the process and equipment, it cannot be unconditionally determined, but for example, using a relatively large-scale PBT production equipment (for example, 10 m 3 polymerization tank), the amount of catalyst, the production temperature, the degree of pressure reduction, etc. And a method of carrying out polycondensation.

従来、一般に共集合を含むPBTの重縮合工程の末期は245℃程度の温度、0.13〜0.4kPa程度の圧力で行われている。このような従来の一般的なPBTの製造条件で工業的な規模(例えば4m重合槽)で得られる共重合PBTの末端カルボキシ基量は通常20〜40当量/トン程度であり、本発明の規定範囲より外れて小さい。
これに対して、本発明の共重合PBTの製造において、重縮合工程の末期温度は、例えば255℃程度の温度として従来法よりも高くし、重縮合時の圧力は0.4kPa超えるより常圧側に設定して行うことが好ましい。また、重縮合反応時間は2〜3時間程度とすることが好ましい。
Conventionally, the final stage of the polycondensation step of PBT including co-assembly is generally performed at a temperature of about 245° C. and a pressure of about 0.13 to 0.4 kPa. The amount of terminal carboxy groups of the copolymerized PBT obtained on the industrial scale (for example, 4 m 3 polymerization tank) under such conventional general PBT production conditions is usually about 20 to 40 equivalents/ton. Smaller than the specified range.
On the other hand, in the production of the copolymerized PBT of the present invention, the end temperature of the polycondensation step is set to a temperature of, for example, about 255° C., which is higher than that in the conventional method, and the pressure during the polycondensation exceeds 0.4 kPa at a normal pressure side. It is preferable to set to. The polycondensation reaction time is preferably about 2 to 3 hours.

(共重合PBTの粉末化)
上記工程により製造された共重合PBTは、粉末積層造形法に供するため粉末化する。粉末化手段は問わず、例えばボールミル、ジェットミル、スタンプミルあるいは凍結粉砕などの手段を採ることができる。特にジェットミルは粉砕効果が高く好ましく採用される。粉砕後の粒径は、篩い分けや流体分級を含む分級手段により平均粒径として例えば20〜150μmとするのがよい。
(Powderization of copolymerized PBT)
The copolymerized PBT produced by the above steps is pulverized for use in the powder layered manufacturing method. Regardless of the powdering means, for example, a ball mill, a jet mill, a stamp mill, freeze pulverization, or the like can be used. In particular, the jet mill has a high crushing effect and is preferably used. The particle size after pulverization is preferably 20 to 150 μm as an average particle size by classification means including sieving and fluid classification.

<共重合PBTへの配合剤>
本発明の共重合PBTは、その製造段階又は製造した後に、必要に応じて、結晶核剤、酸化防止剤、着色防止剤、顔料、染料、紫外線吸収剤、離型剤、易滑剤、難燃剤、帯電防止剤、無機粒子及び有機粒子などを配合してコンパウンドとすることができる。また、本発明の趣旨を損なわない範囲で他のポリエステルなどのポリマーを配合してもよい。
<Compounding agent for copolymerized PBT>
The copolymerized PBT of the present invention has a crystal nucleating agent, an antioxidant, a coloring preventing agent, a pigment, a dye, an ultraviolet absorber, a release agent, a slip agent, a flame retardant, if necessary, at the production stage or after the production. , An antistatic agent, inorganic particles, organic particles and the like can be blended to form a compound. Further, other polymers such as polyester may be blended within a range not impairing the gist of the present invention.

[粉末積層造形法用PBT系組成物]
本発明の粉末積層造形法用PBT系組成物は、本発明の共重合PBTを50〜100質量%含むものである。
即ち、本発明の粉末積層造形法用PBT系組成物は、本発明の共重合PBTのみからなるものであってもよく、本発明の共重合PBTと、上記した配合剤や本発明の共重合PBT以外のポリエステルなどの他のポリマーを50質量%以下の割合で含むものであってもよい。
[PBT-based composition for powder additive manufacturing method]
The PBT-based composition for the powder layered manufacturing method of the present invention contains 50 to 100% by mass of the copolymerized PBT of the present invention.
That is, the PBT composition for the powder layered manufacturing method of the present invention may be composed only of the copolymerized PBT of the present invention, and the copolymerized PBT of the present invention and the above-mentioned compounding agent or the copolymerization of the present invention. It may contain other polymer such as polyester other than PBT in a proportion of 50% by mass or less.

[粉末積層造形法用粉末材料]
本発明の粉末積層造形法用粉末材料は、本発明の共重合PBT又はこの共重合PBTを含む本発明の粉末積層造形法用PBT系組成物よりなり、その粒径は平均粒径として前述の通り20〜150μmであることが好ましく、より好ましくは35〜150μmである。平均粒径が上記下限以上であれば、粉末材料の流動性、取り扱い性に優れ、また、製造コストの面でも好ましい。平均粒径が上記上限以下であれば、造形精度を高めることができ好ましい。
[Powder Material for Powder Additive Manufacturing]
The powder material for powder additive manufacturing method of the present invention comprises the copolymerized PBT of the present invention or the PBT composition for powder additive additive manufacturing method of the present invention containing the copolymerized PBT, and the particle diameter thereof is the above-mentioned average particle diameter. It is preferably 20 to 150 μm, more preferably 35 to 150 μm. When the average particle diameter is at least the above lower limit, the powder material is excellent in fluidity and handleability, and is also preferable in terms of manufacturing cost. When the average particle diameter is not more than the above upper limit, the molding accuracy can be improved, which is preferable.

本発明の共重合PBTを粉末積層造形法の造形原料として供する場合、本発明の共重合PBTを主体として、例えば50質量%以上を含む造形原料として用いてよいことはもちろんであるが、比較的少量でも造形安定化に関して効果を発揮することができる。
従って、本発明の粉末積層造形法用粉末材料は、本発明の共重合PBTを通常5〜100質量%、好ましくは10〜100質量%、より好ましくは20〜100質量%、更に好ましくは30〜100質量%、最も好ましくは50〜100質量%含有する造形原料として粉末積層造形に供することができる。
When the copolymerized PBT of the present invention is used as a modeling raw material for a powder layered modeling method, it is needless to say that the copolymerized PBT of the present invention may be mainly used as a modeling raw material containing, for example, 50% by mass or more. Even in a small amount, it is possible to exert an effect on the stabilization of modeling.
Therefore, the powder material for the powder layered manufacturing method of the present invention usually contains the copolymerized PBT of the present invention in an amount of 5 to 100% by mass, preferably 10 to 100% by mass, more preferably 20 to 100% by mass, and further preferably 30 to As a modeling raw material containing 100% by mass, most preferably 50 to 100% by mass, it can be subjected to powder layered modeling.

[造形方法]
本発明の造形方法は、上記の本発明の粉末積層造形法用粉末材料を用いて粉末積層造形法により本発明の造形品を製造する方法である。
[Modeling method]
The modeling method of the present invention is a method for producing the molded article of the present invention by the powder additive manufacturing method using the powder material for the powder additive manufacturing method of the present invention.

本発明における粉末積層造形法は、通常の粉末積層造形装置を用いて常法に従って行うことができる。 The powder additive manufacturing method in the present invention can be carried out according to a conventional method using an ordinary powder additive manufacturing apparatus.

即ち、例えば、造形ステージと、粉末材料の薄膜をこの造形ステージ上に形成する薄膜形成手段と、形成された薄膜にレーザを照射するなどして加熱することで、粉末材料の粒子を溶融結合させて造形物層を形成する加熱手段と、造形ステージを積層方向(上下方向)に移動させる移動手段と、これらを制御して薄膜形成、加熱、ステージの移動を繰り返し行うことで、造形物層を積層させる制御手段とを有する粉末積層造形装置を用い、例えば、レーザ加熱の場合、以下の工程(1)〜(4)を経て造形を行うことができる。
(1) 粉末材料の薄層を形成する工程
(2) 予備加熱された薄層にレーザ光を選択的に照射して、粉末材料が溶融結合してなる造形物層を形成する工程
あるいは、予備加熱された薄層に選択的に溶融促進剤(樹脂の溶融を促進する成分)、表面装飾剤(層のアウトラインを形成させる成分)を噴霧し、その後に赤外線ランプ、キセノンランプ、ハロゲンランプを全体に照射して、粉末材料が溶融結合してなる造形物層を形成する工程の場合もある。
(3) 造形ステージを形成された造形物層の厚み分だけ下降させる工程
(4) 工程(1)〜工程(3)をこの順に複数回繰り返し、造形物層を積層する工程
That is, for example, the particles of the powder material are melt-bonded by heating the molding stage, a thin film forming means for forming a thin film of the powder material on the molding stage, and irradiating the formed thin film with a laser. The heating means for forming the modeled layer by moving the modeled stage and the moving means for moving the modeled stage in the stacking direction (vertical direction) and the thin film formation, heating, and movement of the stage are controlled repeatedly to form the modeled layer. For example, in the case of laser heating, modeling can be performed through the following steps (1) to (4) using a powder lamination molding apparatus having a control unit for stacking.
(1) A step of forming a thin layer of powder material (2) A step of selectively irradiating a preheated thin layer with a laser beam to form a shaped article layer formed by melting and bonding the powder material, or a preliminary step The heated thin layer is selectively sprayed with a melting accelerator (a component that accelerates the melting of the resin) and a surface decoration agent (a component that forms the outline of the layer), and then an infrared lamp, xenon lamp, and halogen lamp are used as a whole. In some cases, the step of irradiating the surface with the powder material is performed to form a shaped article layer formed by fusion bonding of the powder materials.
(3) A step of lowering the modeling stage by the thickness of the formed modeling layer (4) A step of repeating the steps (1) to (3) a plurality of times in this order to stack the modeling layers

工程(1)では、前記粉末材料の薄層を形成する。例えば、粉末供給部から供給された前記粉末材料を、リコータによって造形ステージ上に平らに敷き詰める。薄層は、造形ステージ上に直接形成されるか、既に敷き詰められている粉末材料又は既に形成されている造形物層の上に接するように形成される。 In step (1), a thin layer of the powder material is formed. For example, the powder material supplied from the powder supply unit is spread flat on a modeling stage by a recoater. The thin layer may be formed directly on the build stage, or may be formed on top of the powder material that has already been spread or the build layer that has already been formed.

薄層の厚さは、造形物層の厚さに準じて設定できる。薄層の厚さは、製造しようとする3次元造形物の精度に応じて任意に設定することができるが、通常0.01〜0.3mm程度である。 The thickness of the thin layer can be set according to the thickness of the modeled article layer. The thickness of the thin layer can be arbitrarily set according to the accuracy of the three-dimensional model to be manufactured, but is usually about 0.01 to 0.3 mm.

工程(2)では、形成された薄層のうち、造形物層を形成すべき位置にレーザを選択的に照射し、照射された位置の粉末材料を溶融結合させる。これにより、隣接する粉末材料が溶融し合って溶融結合体を形成し、造形物層となる。このとき、レーザのエネルギーを受け取った粉末材料は、すでに形成された層とも溶融結合するため、隣接する層間の接着も生じる。レーザが照射されなかった粉末材料は余剰粉末として回収され、回収粉末として再利用される。
あるいは、レーザを選択的に照射する代わりに、選択的に溶融促進剤(樹脂の溶融を促進する成分)、表面装飾剤(層のアウトラインを形成させる成分)を噴霧し、その後に赤外線ランプ、キセノンランプ、ハロゲンランプを全体に照射して、粉末材料を溶融結合させる。レーザの場合と同様に溶融結合されなかった粉末材料は余剰粉末として回収され、回収粉末として再利用される。
In the step (2), a laser is selectively irradiated to the position where the shaped object layer is to be formed among the formed thin layers, and the powder material at the irradiated position is melt-bonded. As a result, the adjacent powder materials are fused to each other to form a melt-bonded body to form a shaped article layer. At this time, the powder material which has received the energy of the laser is also melt-bonded with the already formed layer, so that adhesion between adjacent layers also occurs. The powder material that has not been irradiated with the laser is recovered as a surplus powder and reused as a recovered powder.
Alternatively, instead of selectively irradiating a laser, a melting accelerator (a component that accelerates the melting of the resin) and a surface decoration agent (a component that forms the outline of the layer) are selectively sprayed, followed by an infrared lamp and xenon. The powder material is melt-bonded by irradiating the whole of the lamp and the halogen lamp. As in the case of the laser, the powder material that has not been melt-bonded is recovered as a surplus powder and reused as a recovered powder.

工程(3)では、工程(2)で形成された造形物層の厚さ分だけ造形ステージを下降させて次の工程(1)にそなえる。 In the step (3), the modeling stage is lowered by the thickness of the modeling object layer formed in the step (2) to prepare for the next step (1).

なお、余剰粉末の物性は、これをサンプリングして確認することができる。粉末積層造形法においては、例えば供給槽、造形槽、余剰粉末受け槽を備え、この余剰粉末受け槽に落下した余剰粉末を回収して供給槽につながる経路に戻す場合がある。この経路の途中でサンプリングを行うことができる。
あるいは、造形が終了し、冷却後に造形槽に残存する余剰粉末、例えば造形物近傍の粉末のサンプリングを行うことができる。
The physical properties of the excess powder can be confirmed by sampling it. In the powder lamination molding method, for example, a supply tank, a molding tank, and an excess powder receiving tank are provided, and excess powder dropped in this excess powder receiving tank may be recovered and returned to a path connected to the supply tank. Sampling can be done in the middle of this path.
Alternatively, it is possible to sample the surplus powder remaining in the modeling tank after the modeling is completed and cooled, for example, the powder in the vicinity of the modeled object.

本発明の共重合PBTは、粉末積層造形法による造形時の熱履歴を経ても固有粘度の上昇、黄色味の増加が抑制されるものであるが、このような本発明の特徴的な効果は、とりわけ不活性ガス雰囲気下で熱処理を行う場合により好ましく発揮される。よって、本発明の共重合PBTは、不活性ガス雰囲気下での粉末積層造形法に好適である。この場合、不活性ガス雰囲気とは、熱処理を行う空間における共重合PBT起因以外のガスに占める不活性ガスの割合(体積%)が90%以上、好ましくは92%以上、より好ましくは95%以上、さらに好ましくは98%以上、最も好ましくは99%以上である状態を指す。また、不活性ガスとしては、窒素、アルゴンなどが挙げられる。 The copolymerized PBT of the present invention suppresses an increase in intrinsic viscosity and an increase in yellowishness even after undergoing a thermal history at the time of modeling by the powder lamination molding method, but such a characteristic effect of the present invention is Especially, it is more preferable to perform the heat treatment in an inert gas atmosphere. Therefore, the copolymerized PBT of the present invention is suitable for the powder layered manufacturing method under an inert gas atmosphere. In this case, the inert gas atmosphere means that the ratio (volume %) of the inert gas in the gas other than the copolymerized PBT in the space for heat treatment is 90% or more, preferably 92% or more, more preferably 95% or more. , More preferably 98% or more, most preferably 99% or more. Further, examples of the inert gas include nitrogen and argon.

また、本発明の共重合PBTの効果は空気雰囲気下で熱処理を行う場合にも発揮される。従って、本発明の共重合PBTは空気雰囲気下での粉末積層造形法にも用いることができる。この場合、固有粘度の上昇の抑制は不活性ガス雰囲気の場合と同等又はそれ以上に発揮できることが多い。黄色味の増大の抑制に関しては、絶対値は不活性ガス雰囲気下の場合より大きくなるものの、本発明の要件を満たさない共重合PBTを使用した場合と比べると明らかにその増加は少なく、顕著に効果が認められる。
粉末積層造形法においては近年、その装置コストの低減や取り扱いの簡便さを目的として、不活性ガス雰囲気に変えて空気雰囲気のもとで造形を行う試みもある。本発明の共重合PBTの効果はこの場合にも有効に発揮される。なお、空気雰囲気とは、酸素が21体積%前後で残りの大部分が窒素ガス等の不活性ガスである自然界に存在する空気を指す。
Further, the effect of the copolymerized PBT of the present invention is exhibited even when heat treatment is performed in an air atmosphere. Therefore, the copolymerized PBT of the present invention can also be used in a powder layered manufacturing method under an air atmosphere. In this case, the increase in the intrinsic viscosity can often be suppressed to the same level as or higher than that in the inert gas atmosphere. Regarding the suppression of the increase in yellowness, the absolute value is larger than that in the case of an inert gas atmosphere, but the increase is obviously smaller than that in the case of using the copolymerized PBT which does not satisfy the requirements of the present invention, and the increase is remarkable. The effect is recognized.
In recent years, in the powder layered modeling method, there has been an attempt to carry out modeling under an air atmosphere instead of an inert gas atmosphere for the purpose of reducing the cost of the apparatus and simplifying the handling. The effect of the copolymerized PBT of the present invention is also effectively exhibited in this case. The air atmosphere refers to air existing in the natural world in which oxygen is around 21% by volume and most of the rest is an inert gas such as nitrogen gas.

本発明の共重合PBTの効果は、不活性ガス雰囲気と空気雰囲気の中間の酸素濃度の雰囲気下でも有効に発揮されることはもちろんであり、本発明の技術思想はこれらの範囲にも及ぶ。 The effect of the copolymerized PBT of the present invention can be effectively exhibited even in an atmosphere having an oxygen concentration intermediate between an inert gas atmosphere and an air atmosphere, and the technical idea of the present invention extends to these ranges.

また、粉末積層造形時の造形エリアの温度については、用いる共重合PBTの融点より5〜20℃程度低い温度である事が好ましく、造形時間は、造形品の大きさによって様々である。 Further, the temperature of the modeling area during the powder layered modeling is preferably about 5 to 20° C. lower than the melting point of the copolymerized PBT to be used, and the modeling time varies depending on the size of the modeled product.

以下、実施例により本発明を更に詳細に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

[物性の評価]
<融点の測定>
ポリエステル試料5〜7mgを切り出して計量し、サンプルパンに詰め、測定用パンを作成した。示差走査熱量計(メトラー・トレド社「DSC 822e」)を用いて窒素雰囲気下、昇温速度10℃/分で−10℃から300℃まで昇温した。次いで300℃で3分間保持した後、降温速度10℃/分で300℃から−10℃まで降温し、−10℃で3分間保持した後、引き続き、昇温速度10℃/分で−10℃から300℃まで昇温した。2回目の昇温測定で得られたDSC曲線の解析を行い、吸熱ピークの頂点の温度を融点とした。なお、融点が複数の吸熱ピークとなる場合は、大きい方の吸熱ピーク温度とした。
[Evaluation of physical properties]
<Measurement of melting point>
5 to 7 mg of a polyester sample was cut out, weighed, and packed in a sample pan to prepare a measuring pan. Using a differential scanning calorimeter (“DSC 822e” manufactured by METTLER TOLEDO), the temperature was raised from −10° C. to 300° C. at a heating rate of 10° C./min in a nitrogen atmosphere. Then, after holding at 300° C. for 3 minutes, the temperature was lowered from 300° C. to −10° C. at a temperature lowering rate of 10° C./min, and after holding at −10° C. for 3 minutes, subsequently, at a temperature rising rate of 10° C./min, −10° C. To 300° C. The DSC curve obtained by the second heating measurement was analyzed, and the temperature at the apex of the endothermic peak was taken as the melting point. When the melting point has a plurality of endothermic peaks, the larger endothermic peak temperature was used.

<末端カルボキシル基量の測定>
ポリエステル試料を粉砕した後、熱風乾燥機を用いて120℃で15分間乾燥し、デシケーター内で室温まで冷却した試料から0.1gを精秤して試験管に採取した。ベンジルアルコール3mLを加えて、乾燥窒素ガスを吹き込みながら195℃、3分間で溶解させ、次いで、クロロホルム5mLを徐々に加えて室温まで冷却した。この溶液にフェノールレッド指示薬を1〜2滴加え、乾燥窒素ガスを吹き込みながら撹拌下に、0.1Nの水酸化ナトリウムのベンジルアルコール溶液で滴定し、黄色から赤色に変じた時点で終了とした。また、ブランクとして、ポリエステル試料を溶解させずに同様の操作を実施し、以下の式(1)によって末端カルボキシル基量を算出した。
末端カルボキシル量(当量/トン)=(a−b)×0.1×f/w …(1)
(ここで、aは滴定に要した0.1Nの水酸化ナトリウムのベンジルアルコール溶液の量(μL)、bはブランクでの滴定に要した0.1Nの水酸化ナトリウムのベンジルアルコール溶液の量(μL)、wはポリエステル試料の量(g)、fは0.1Nの水酸化ナトリウムのベンジルアルコール溶液の力価である。)
<Measurement of the amount of terminal carboxyl group>
After crushing the polyester sample, it was dried at 120° C. for 15 minutes using a hot air dryer, and 0.1 g was accurately weighed from the sample cooled to room temperature in a desiccator and collected in a test tube. 3 mL of benzyl alcohol was added, and the mixture was dissolved at 195° C. for 3 minutes while blowing dry nitrogen gas, and then 5 mL of chloroform was gradually added and cooled to room temperature. One to two drops of phenol red indicator was added to this solution, and the mixture was titrated with a benzyl alcohol solution of 0.1N sodium hydroxide while stirring while blowing dry nitrogen gas, and the reaction was terminated when the color changed from yellow to red. Further, as a blank, the same operation was carried out without dissolving the polyester sample, and the amount of terminal carboxyl groups was calculated by the following formula (1).
Terminal carboxyl amount (equivalent/ton)=(ab)×0.1×f/w (1)
(Here, a is the amount of a 0.1 N sodium hydroxide benzyl alcohol solution required for titration (μL), and b is the amount of a 0.1 N sodium hydroxide benzyl alcohol solution required for titration with a blank ( μL), w is the amount (g) of polyester sample, and f is the titer of 0.1N sodium hydroxide in benzyl alcohol.)

なお、0.1Nの水酸化ナトリウムのベンジルアルコール溶液の力価(f)は以下の方法で求めた。
試験管にメタノール5mLを採取し、フェノールレッドのエタノール溶液を指示薬として1〜2滴加え、0.1Nの水酸化ナトリウムのベンジルアルコール溶液0.4mLで変色点まで滴定し、次いで力価既知の0.1Nの塩酸水溶液を標準液として0.2mL採取して加え、再度、0.1Nの水酸化ナトリウムのベンジルアルコール溶液で変色点まで滴定した(以上の操作は、乾燥窒素ガス吹き込み下で行った。)。以下の式(2)によって力価(f)を算出した。
力価(f)=
0.1N塩酸水溶液の力価×0.1N塩酸水溶液の採取量(μL)/
0.1N水酸化ナトリウムのベンジルアルコール溶液の滴定量(μL)…(2)
The titer (f) of 0.1N sodium hydroxide in benzyl alcohol was determined by the following method.
5 mL of methanol was collected in a test tube, 1 to 2 drops of an ethanol solution of phenol red was added as an indicator, titration was performed with 0.4 mL of a benzyl alcohol solution of 0.1 N sodium hydroxide until the color change point, and then a titer of 0 was obtained. 0.2 mL of a 1 N hydrochloric acid aqueous solution as a standard solution was sampled and added, and again titrated to a discoloration point with a 0.1 N sodium hydroxide benzyl alcohol solution (the above operation was performed under blowing dry nitrogen gas). ..). The titer (f) was calculated by the following formula (2).
Titer (f)=
Titer of 0.1N hydrochloric acid aqueous solution×Amount of 0.1N hydrochloric acid aqueous solution (μL)/
Titration (μL) of benzyl alcohol solution of 0.1N sodium hydroxide (2)

<末端ヒドロキシル基量、末端ビニル基量の測定>
ポリエステル試料を粉砕した後、約20mgを重クロロホルム/ヘキサフルオロイソプロパノール=7/3混合溶媒0.75mLに溶かし、重ピリジン25μLを添加し、外径5mmのNMR試料管に移した。Bruker社製AVANCE400分光計を用い、室温でH−NMRスペクトルを測定した。化学シフトの基準はTMSのシグナルを0.00ppmとした。得られたスペクトルを常法に従って解析し、末端ヒドロキシル基量、末端ビニル基量を各々当量/トンで算出した。
<Measurement of the amount of terminal hydroxyl group and the amount of terminal vinyl group>
After crushing the polyester sample, about 20 mg was dissolved in 0.75 mL of a heavy chloroform/hexafluoroisopropanol=7/3 mixed solvent, 25 μL of heavy pyridine was added, and the sample was transferred to an NMR sample tube having an outer diameter of 5 mm. 1 H-NMR spectrum was measured at room temperature using an AVANCE400 spectrometer manufactured by Bruker. As a standard of chemical shift, the signal of TMS was set to 0.00 ppm. The obtained spectrum was analyzed according to a conventional method, and the amount of terminal hydroxyl groups and the amount of terminal vinyl groups were calculated in terms of equivalents/ton.

<総末端基量の算出>
上記の末端カルボキシル基量、末端ヒドロキシル基量、末端ビニル基量の測定結果から、下記式(3)で総末端基量を算出した。
総末端基量(当量/トン)=
末端カルボキシル基量(当量/トン)+末端ヒドロキシル基量(当量/トン)
+末端ビニル基量(当量/トン) …(3)
<Calculation of total amount of end groups>
The total amount of terminal groups was calculated by the following formula (3) from the measurement results of the amount of terminal carboxyl groups, the amount of terminal hydroxyl groups, and the amount of terminal vinyl groups.
Total amount of end groups (equivalent/ton)=
Amount of terminal carboxyl group (equivalent/ton) + amount of terminal hydroxyl group (equivalent/ton)
+Amount of terminal vinyl group (equivalent/ton) (3)

<ガラス転移温度の測定>
樹脂温度250℃、金型温度60℃で、幅5mm、長さ50mm、厚み1mmの試験片を射出成形した。得られた試験片を固体粘弾性測定装置RSA−III(TA Instruments社)を用いて、測定モード:Dynamic Temp Sweep、周波数:1Hz、温度:0〜120℃(3℃/分)、ひずみ:0.05%で測定し、得られたTanδのピークをガラス転移温度とした。
<Measurement of glass transition temperature>
A test piece having a width of 5 mm, a length of 50 mm and a thickness of 1 mm was injection molded at a resin temperature of 250° C. and a mold temperature of 60° C. The obtained test piece is measured using a solid viscoelasticity measuring device RSA-III (TA Instruments), measurement mode: Dynamic Temp Sweep, frequency: 1 Hz, temperature: 0 to 120° C. (3° C./minute), strain: 0 It was measured at 0.05%, and the obtained Tan δ peak was defined as the glass transition temperature.

<固有粘度、黄色味の測定>
(熱処理条件)
不活性ガス雰囲気下又は空気雰囲気下で、それぞれの樹脂粉末において融点より20℃低い温度で10時間保持し、その熱処理の前後でそれぞれ固有粘度及び黄色味を測定した。
<Measurement of intrinsic viscosity and yellowness>
(Heat treatment conditions)
Under an inert gas atmosphere or an air atmosphere, each resin powder was held at a temperature 20° C. lower than the melting point for 10 hours, and the intrinsic viscosity and the yellow tint were measured before and after the heat treatment.

(固有粘度の測定)
ポリエステル試料約0.25gを、フェノール/1,1,2,2−テトラクロロエタン(重量比1/1)の混合溶媒約25mLに、濃度が1.00g/dLとなるように溶解させた後、30℃まで冷却し、30℃において全自動溶液粘度計(センテック社製「DT553」)にて、試料溶液の落下速度、溶媒のみの落下秒数をそれぞれ測定し、下記式(4)により固有粘度を算出した。
固有粘度=((1+4Kηsp0.5−1)/(2KC) …(4)
ここで、ηsp=η/η−1であり、ηは試料溶液の落下秒数、ηは溶媒のみの落下秒数、Cは試料溶液濃度(g/dL)、Kはハギンズの定数である。Kは0.33を採用した。なお、試料の溶解条件は、110℃で30分間とした。
熱処理後の固有粘度と熱処理前の固有粘度との差は、0.45以下が好ましく、より好ましくは0.40以下、さらに好ましくは0.35以下、最も好ましくは0.30以下である。
(Measurement of intrinsic viscosity)
About 0.25 g of a polyester sample was dissolved in about 25 mL of a mixed solvent of phenol/1,1,2,2-tetrachloroethane (weight ratio 1/1) to a concentration of 1.00 g/dL, After cooling to 30° C., the dropping speed of the sample solution and the dropping seconds of only the solvent were measured with a fully automatic solution viscometer (“DT553” manufactured by Sentec Co., Ltd.) at 30° C., and the intrinsic viscosity was calculated by the following formula (4). Was calculated.
Intrinsic viscosity=((1+4K H η sp ) 0.5 −1)/(2K H C) (4)
Here, η sp =η/η 0 -1, where η is the number of seconds of dropping the sample solution, η 0 is the number of seconds of dropping only the solvent, C is the concentration of the sample solution (g/dL), and K H is the Huggins value. It is a constant. K H adopted the 0.33. The sample was dissolved at 110° C. for 30 minutes.
The difference between the intrinsic viscosity after heat treatment and the intrinsic viscosity before heat treatment is preferably 0.45 or less, more preferably 0.40 or less, still more preferably 0.35 or less, and most preferably 0.30 or less.

(黄色味の測定)
ペレット状のポリエステル試料を内径30mm、深さ12mmの円柱状の粉体測定用セルに充填し、測色色差計Z300A(日本電色工業(株)社製)を使用して、JIS Z8730の参考例1に記載されるLab表示系におけるハンターの色差式の色座標によるb値を、反射法により、測定セルを90度ずつ回転させて4箇所測定した値の単純平均値として求めた。b値がプラスの方向になるほど黄色味が強くなり、マイナスの方向になるほど青みが強くなる。
熱処理後のb値と熱処理前のb値との差は1.2以下が好ましく、より好ましくは1.1以下、さらに好ましくは0.8以下である。
(Measurement of yellowness)
A pellet-shaped polyester sample was filled in a cylindrical powder measuring cell having an inner diameter of 30 mm and a depth of 12 mm, and a colorimetric color difference meter Z300A (manufactured by Nippon Denshoku Industries Co., Ltd.) was used to refer to JIS Z8730. The b value based on the color coordinates of the Hunter color difference formula in the Lab display system described in Example 1 was obtained as a simple average value of the values measured at four locations by rotating the measurement cell by 90 degrees by the reflection method. The more the b value is in the positive direction, the stronger the yellow color is, and the more negative the b value is, the more the bluish color is.
The difference between the b value after the heat treatment and the b value before the heat treatment is preferably 1.2 or less, more preferably 1.1 or less, and further preferably 0.8 or less.

[実施例1]
撹拌装置、窒素導入口、加熱装置、温度計、留出管を備えたエステル反応槽に、テレフタル酸ジメチル793.6質量部、イソフタル酸75.4質量部、1,4-ブタンジオール613.8質量部、及び触媒としてテトラブチルチタネート(生成するポリマーに対してチタン元素換算で33質量ppm)を加えた。
次いで、撹拌下、液温を150℃から90分かけて210℃まで昇温し、210℃で90分保持した。この間、生成するメタノール及び水を留出させつつ、合計180分エステル交換反応及びエステル化反応を行った。
[Example 1]
793.6 parts by mass of dimethyl terephthalate, 75.4 parts by mass of isophthalic acid and 613.8 parts of 1,4-butanediol were placed in an ester reaction tank equipped with a stirrer, a nitrogen inlet, a heating device, a thermometer, and a distillation tube. Parts by mass, and tetrabutyl titanate as a catalyst (33 mass ppm in terms of titanium element based on the produced polymer) were added.
Then, the liquid temperature was raised from 150° C. to 210° C. over 90 minutes with stirring, and the temperature was maintained at 210° C. for 90 minutes. During this period, the transesterification reaction and the esterification reaction were performed for a total of 180 minutes while distilling the produced methanol and water.

エステル交換反応及びエステル化反応の終了の15分前に、酢酸マグネシウム・四水塩を生成するポリマーに対してマグネシウム金属換算で48質量ppmとなるよう添加し、さらに酸化防止剤(チバ・ガイギー(株)製「Irganox 1010」)(生成するポリマーに対して0.15質量%)を加え、引き続きテトラブチルチタネート(生成するポリマーに対してチタン元素換算で61質量ppm)を添加した。 Fifteen minutes before the completion of the transesterification reaction and the esterification reaction, it was added so as to be 48 mass ppm in terms of magnesium metal with respect to the polymer that produces magnesium acetate tetrahydrate, and an antioxidant (Ciba Geigy ( Co., Ltd. "Irganox 1010") (0.15 mass% with respect to the produced polymer) was added, and then tetrabutyl titanate (61 mass ppm in terms of titanium element based on the produced polymer) was added.

この反応生成物を撹拌装置、窒素導入口、加熱装置、温度計、留出管、減圧用排気口を備えた重縮合反応槽に移送し減圧下、溶融重縮合反応を行った。
溶融重縮合反応は槽内圧力を常圧から0.41KPaまで85分かけて徐々に減圧し、0.41KPaで継続した。反応温度は減圧開始から15分間210℃に保持し、以後255℃まで45分かけて昇温してこの温度で保持した。所定の撹拌トルクに到達した時点で反応を終了した。溶融重縮合反応に要した時間は170分であった。
This reaction product was transferred to a polycondensation reaction tank equipped with a stirrer, a nitrogen inlet, a heating device, a thermometer, a distilling pipe, and a decompression exhaust port, and a melt polycondensation reaction was carried out under reduced pressure.
In the melt polycondensation reaction, the pressure in the tank was gradually reduced from normal pressure to 0.41 KPa over 85 minutes, and continued at 0.41 KPa. The reaction temperature was kept at 210° C. for 15 minutes from the start of depressurization, and thereafter raised to 255° C. over 45 minutes and kept at this temperature. The reaction was terminated when the predetermined stirring torque was reached. The time required for the melt polycondensation reaction was 170 minutes.

次に槽内を減圧状態から窒素で復圧し、次いで加圧にしてポリマーを抜き出した。ポリマーを口金からストランド状にして押出し、冷却水槽内でストランドを冷却した後、ストランドカッターでカッティングしペレット化した。このようにしてイソフタル酸含量が10モル%である共重合PBTを得た。 Next, the inside of the tank was decompressed from the depressurized state with nitrogen and then pressurized to extract the polymer. The polymer was extruded into a strand form from a die, and the strand was cooled in a cooling water tank and then cut with a strand cutter to form a pellet. Thus, a copolymerized PBT having an isophthalic acid content of 10 mol% was obtained.

この共重合PBTは、通常工業的に採用される共重合PBTの製造条件に比べ、重縮合末期の温度を高く、また到達圧力を緩くして製造したものである。 This copolymerized PBT is manufactured by raising the temperature at the end of the polycondensation and making the ultimate pressure looser as compared with the manufacturing conditions of the copolymerized PBT that is usually adopted industrially.

次いで、得られた共重合PBTをジェットミル装置により粉砕し、篩い分けして平均粒径80μmの粉末を得た。
この共重合PBT粉末の融点は208℃、末端カルボキシル基量は45当量/トン、ガラス転移温度は48℃、固有粘度は0.85dL/g、黄色味を示すb値は−1.0であった。
Then, the obtained copolymerized PBT was pulverized by a jet mill device and sieved to obtain a powder having an average particle size of 80 μm.
The melting point of this copolymerized PBT powder was 208° C., the amount of terminal carboxyl groups was 45 equivalents/ton, the glass transition temperature was 48° C., the intrinsic viscosity was 0.85 dL/g, and the b value showing yellow was −1.0. It was

次に、この粉末を窒素雰囲気下(窒素99.9体積%)、融点より20℃低い188℃で、10時間熱処理を行った。この条件は、粉末積層造形法で用いる場合に想定される熱処理条件に含まれるものである。熱処理後の固有粘度は1.20dL/g、b値は0.0であった。これらの結果を表1に示した。 Next, this powder was heat-treated in a nitrogen atmosphere (nitrogen 99.9% by volume) at 188° C., which is 20° C. lower than the melting point, for 10 hours. This condition is included in the heat treatment conditions assumed when used in the powder layered manufacturing method. The intrinsic viscosity after heat treatment was 1.20 dL/g, and the b value was 0.0. The results are shown in Table 1.

[実施例2〜7及び比較例1〜3]
実施例1において、共重合成分の組成及び量を変えたほかは実施例1と同様にして実施例2〜7及び比較例1〜3の共重合PBT及びホモPBTを得た。ただし、実施例2〜3と実施例5〜6においては実施例1における重縮合反応の温度を255℃、減圧の条件を緩くする方向の実施例2、5は0.53KPa、実施例3、6は0.67KPa保持に変更し、また重合時間はそれぞれ実施例2、5は175分、実施例3、6は180分とした。比較例2〜3においては実施例1より小さな装置を用い、重縮合反応温度を245℃、減圧の条件を0.40KPa保持に変更し、また重合時間は180分とした。得られた共重合PBT及びホモPBTの物性と、窒素雰囲気下での熱処理後の物性を表1に示した。
[Examples 2 to 7 and Comparative Examples 1 to 3]
Copolymerized PBTs and homo PBTs of Examples 2 to 7 and Comparative Examples 1 to 3 were obtained in the same manner as in Example 1 except that the composition and amount of the copolymerization component were changed. However, in Examples 2 to 3 and Examples 5 to 6, the temperature of the polycondensation reaction in Example 1 was 255° C., and the conditions of decompressing were loosened in Examples 2 and 5 of 0.53 KPa and Example 3, 6 was changed to hold 0.67 KPa, and the polymerization time was 175 minutes for Examples 2 and 5, and 180 minutes for Examples 3 and 6, respectively. In Comparative Examples 2 to 3, a device smaller than that of Example 1 was used, the polycondensation reaction temperature was changed to 245° C., the reduced pressure condition was changed to 0.40 KPa, and the polymerization time was 180 minutes. Table 1 shows the physical properties of the obtained copolymerized PBT and homo-PBT, and the physical properties after heat treatment in a nitrogen atmosphere.

[実施例8〜10及び比較例4〜5]
実施例8、実施例9、実施例10においては、それぞれ実施例1、実施例4、実施例7で製造した共重合PBTを用いて、空気雰囲気下で熱処理を行った。また、比較例4、比較例5においては、それぞれ比較例1、比較例2で製造したホモPBTを用いて、空気雰囲気下で熱処理を行った。各共重合PBT及びホモPBTの物性と、空気雰囲気下での熱処理後の物性を表2に示した。
[Examples 8 to 10 and Comparative Examples 4 to 5]
In Example 8, Example 9, and Example 10, the copolymerized PBTs produced in Example 1, Example 4, and Example 7, respectively, were used to perform heat treatment in an air atmosphere. Further, in Comparative Examples 4 and 5, heat treatment was performed in an air atmosphere using the homo PBTs produced in Comparative Example 1 and Comparative Example 2, respectively. Table 2 shows the physical properties of each copolymerized PBT and homo-PBT, and the physical properties after heat treatment in an air atmosphere.

Figure 2020093455
Figure 2020093455

Figure 2020093455
Figure 2020093455

[考察]
表1は、共重合PBT及びホモPBTの窒素雰囲気下での熱処理の結果である。
本発明の共重合PBTは実施例1〜7に示す通り、例えば粉末積層造形法による窒素雰囲気下での造形時における融点近傍での長時間の熱履歴と同等の熱処理を受けても、固有粘度の上昇及び黄色味の増大を抑えることができる。従って、この熱処理後の粉末(回収粉末)を初期粉末と混合して粉末積層造形法に供したとしても、両者の物性の差は小さく、粘度むらの発生を抑えることができ、また造形品の黄色味の増大や色むらを抑制できる。
[Discussion]
Table 1 shows the results of heat treatment of copolymerized PBT and homo PBT under a nitrogen atmosphere.
As shown in Examples 1 to 7, the copolymerized PBT of the present invention has an intrinsic viscosity even if it is subjected to a heat treatment equivalent to a long-term heat history near the melting point at the time of modeling under a nitrogen atmosphere by the powder lamination molding method. And the increase in yellowness can be suppressed. Therefore, even if the powder after heat treatment (recovered powder) is mixed with the initial powder and subjected to the powder lamination molding method, the difference in physical properties between the two is small, it is possible to suppress the occurrence of uneven viscosity, and It is possible to suppress an increase in yellowness and color unevenness.

これに対し、比較例1〜3は、本発明で規定した要件の少なくとも一つを欠いたホモPBT又は共重合PBTを用いたもので、所望の効果を発揮することができない例である。比較例1は、末端カルボキシル基量は本発明の範囲内にあるものの、ホモPBTであると共に融点が本発明の範囲より高く、固有粘度の上昇及び黄色味の増大を抑制できない。比較例2は、ホモPBTである上に融点が本発明の範囲より高くまた末端カルボキシル基量がいずれも本発明の範囲より低く、やはり固有粘度の上昇及び黄色味の増大を抑制できない。これらのホモPBTを回収粉末として新規粉末と混合して用いると溶融むらが生じる。比較例3は、共重合PBTであるが末端カルボキシル基量が本発明の範囲より低く、固有粘度の上昇抑制が不十分である。 On the other hand, Comparative Examples 1 to 3 use homo PBT or copolymer PBT lacking at least one of the requirements defined in the present invention, and are examples in which desired effects cannot be exhibited. In Comparative Example 1, although the amount of terminal carboxyl groups is within the range of the present invention, it is homo PBT and has a melting point higher than the range of the present invention, so that an increase in intrinsic viscosity and an increase in yellowness cannot be suppressed. Comparative Example 2 is a homo-PBT and has a melting point higher than the range of the present invention and an amount of terminal carboxyl groups lower than the range of the present invention, so that it is still impossible to suppress an increase in intrinsic viscosity and an increase in yellow tint. When these homo PBTs are used as a recovered powder mixed with a new powder, uneven melting occurs. Comparative Example 3 is a copolymerized PBT, but the amount of terminal carboxyl groups is lower than the range of the present invention, and the increase in intrinsic viscosity is not sufficiently suppressed.

表2は、共重合PBT及びホモPBTの空気雰囲気下での熱処理の結果である。
本発明の共重合PBTを用いた実施例8〜10の場合は、固有粘度の上昇は少ない。b値は窒素雰囲気下の場合より絶対値は大きいが、比較例4、比較例5のホモPBTのそれと比べると明らかに小さく、有利に働いていることが判る。比較例4、比較例5のホモPBTは熱処理後の固有粘度の上昇が大きく、粉末積層造形用の樹脂としてはこの点においても好ましくない。
Table 2 shows the results of heat treatment of copolymerized PBT and homo PBT in an air atmosphere.
In the case of Examples 8 to 10 using the copolymerized PBT of the present invention, the increase in intrinsic viscosity is small. Although the b value has a larger absolute value than that in the nitrogen atmosphere, it is clearly smaller than that of the homo PBTs of Comparative Examples 4 and 5, and it can be seen that the b value works advantageously. The homo-PBTs of Comparative Examples 4 and 5 have a large increase in intrinsic viscosity after heat treatment, and are not preferable in this respect as a resin for powder additive molding.

本発明の共重合PBTは、実施例で示されている通り、不活性ガス雰囲気下又は空気雰囲気下で融点に近い熱処理を長時間受けても、固有粘度の上昇及び黄色味の増大が抑制される。このため、本発明の共重合PBTは、粉末積層造形法による3次元造形の造形材料用途において、造形時や保管時に不活性ガス雰囲気下あるいは空気雰囲気下での長時間にわたる加熱保持状態に晒されても、固有粘度の上昇及び黄色味の増大が抑制され、得られる造形品は高品質であると同時に優れた強度、耐熱性をも発現することができる。また、本発明の共重合PBTを新規粉末として用いて造形を行った際に生じた余剰の共重合PBT粉末を回収して再使用する際も、安定した造形が可能になる。 As shown in the examples, the copolymerized PBT of the present invention suppresses the increase in intrinsic viscosity and the increase in yellowness even when subjected to a heat treatment close to the melting point in an inert gas atmosphere or an air atmosphere for a long time. It Therefore, the copolymerized PBT of the present invention is exposed to a heating and holding state for a long time in an inert gas atmosphere or an air atmosphere during modeling or storage in a three-dimensional modeling material application by the powder lamination molding method. However, an increase in intrinsic viscosity and an increase in yellowishness are suppressed, and the obtained shaped product can exhibit high quality and also exhibit excellent strength and heat resistance. Further, even when the excess copolymerized PBT powder generated when the copolymerized PBT of the present invention is used as a new powder for modeling is recovered and reused, stable modeling becomes possible.

Claims (10)

粉末積層造形法に使用される、主成分としてテレフタル酸成分及び1,4−ブタンジオール成分を含む共重合ポリブチレンテレフタレートであって、融点が150〜215℃、末端カルボキシル基量が42〜90当量/トンであることを特徴とする粉末積層造形法用共重合ポリブチレンテレフタレート。 A copolymerized polybutylene terephthalate containing a terephthalic acid component and a 1,4-butanediol component as main components, which is used in the powder layering method and has a melting point of 150 to 215° C. and a terminal carboxyl group amount of 42 to 90 equivalents. /Ton, Copolymer polybutylene terephthalate for powder lamination modeling. 融点が170〜199℃であることを特徴とする請求項1に記載の粉末積層造形法用共重合ポリブチレンテレフタレート。 The melting point of the copolymer polybutylene terephthalate according to claim 1, which is 170 to 199°C. 末端カルボキシル基量が45〜90当量/トンであることを特徴とする請求項1又は2に記載の粉末積層造形法用共重合ポリブチレンテレフタレート。 The copolymerized polybutylene terephthalate for powder lamination molding method according to claim 1 or 2, wherein the amount of terminal carboxyl groups is 45 to 90 equivalents/ton. 末端カルボキシル基量が65〜90当量/トンであることを特徴とする請求項3に記載の粉末積層造形法用共重合ポリブチレンテレフタレート。 The amount of terminal carboxyl groups is 65 to 90 equivalents/ton, The copolymerization polybutylene terephthalate for powder lamination manufacturing method of Claim 3 characterized by the above-mentioned. テレフタル酸成分以外のジカルボン酸成分として、イソフタル酸、ナフタレンジカルボン酸、およびコハク酸よりなる群から選ばれる少なくとも1種のジカルボン酸成分を含むことを特徴とする請求項1ないし4のいずれか1項に記載の粉末積層造形法用共重合ポリブチレンテレフタレート。 5. The dicarboxylic acid component other than the terephthalic acid component contains at least one dicarboxylic acid component selected from the group consisting of isophthalic acid, naphthalenedicarboxylic acid, and succinic acid. The copolymerized polybutylene terephthalate for the powder layered manufacturing method described in 1. 1,4−ブタンジオール以外のジオール成分として、エチレングリコール、ジエチレングリコール、1,3−プロパンジオール、1,4−シクロヘキサンジメタノール、2,4−ジエチル−1,5−ペンタンジオール、ブチルエチルプロパンジオール、スピログリコール、トリシクロデカンジメタノール、及び9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレンよりなる群から選ばれる少なくとも1種のジオール成分を含むことを特徴とする請求項1ないし5のいずれか1項に記載の粉末積層造形法用共重合ポリブチレンテレフタレート。 As diol components other than 1,4-butanediol, ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-cyclohexanedimethanol, 2,4-diethyl-1,5-pentanediol, butylethylpropanediol, 2. At least one diol component selected from the group consisting of spiroglycol, tricyclodecane dimethanol, and 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene is contained, and the diol component is contained. 5. The copolymerized polybutylene terephthalate for powder lamination manufacturing method according to any one of 5 above. 請求項1ないし6のいずれか1項に記載の粉末積層造形法用共重合ポリブチレンテレフタレートを5〜100質量%含むことを特徴とする粉末積層造形法用ポリブチレンテレフタレート系組成物。 A polybutylene terephthalate-based composition for powder laminating method, comprising 5 to 100% by mass of the copolymerized polybutylene terephthalate for powder laminating method according to any one of claims 1 to 6. 請求項1ないし6のいずれか1項に記載の粉末積層造形法用共重合ポリブチレンテレフタレート又は請求項7に記載の粉末積層造形法用ポリブチレンテレフタレート系組成物よりなる粉末積層造形法用粉末材料。 A powder material for a powder additive manufacturing method comprising the copolymerized polybutylene terephthalate for a powder additive manufacturing method according to any one of claims 1 to 6 or the polybutylene terephthalate composition for a powder additive manufacturing method according to claim 7. .. 請求項8に記載の粉末積層造形法用粉末材料を用いて粉末積層造形法により造形品を製造する造形方法。 A molding method for manufacturing a molded article by the powder lamination molding method using the powder material for the powder lamination molding method according to claim 8. 請求項8に記載の粉末積層造形法用粉末材料を用いた造形品。 A shaped article using the powder material for the powder layered manufacturing method according to claim 8.
JP2018232725A 2018-12-12 2018-12-12 Copolymerized Polybutylene Terephthalate for Powder Additive Manufacturing Active JP7215129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018232725A JP7215129B2 (en) 2018-12-12 2018-12-12 Copolymerized Polybutylene Terephthalate for Powder Additive Manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018232725A JP7215129B2 (en) 2018-12-12 2018-12-12 Copolymerized Polybutylene Terephthalate for Powder Additive Manufacturing

Publications (2)

Publication Number Publication Date
JP2020093455A true JP2020093455A (en) 2020-06-18
JP7215129B2 JP7215129B2 (en) 2023-01-31

Family

ID=71085972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018232725A Active JP7215129B2 (en) 2018-12-12 2018-12-12 Copolymerized Polybutylene Terephthalate for Powder Additive Manufacturing

Country Status (1)

Country Link
JP (1) JP7215129B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339393A (en) * 1992-06-10 1993-12-21 Teijin Ltd Polyester film for lamination with metal sheet
JP2002358837A (en) * 2001-06-01 2002-12-13 Teijin Ltd Flat cable and polyester resin component for coating
JP2009051940A (en) * 2007-08-27 2009-03-12 Nippon Ester Co Ltd Method for producing copolyester, and copolyester obtained thereby
JP2011127048A (en) * 2009-12-21 2011-06-30 Mitsubishi Engineering Plastics Corp Flame-retardant polybutylene terephthalate resin composition
JP2012513319A (en) * 2008-12-22 2012-06-14 ヴァルスパー・ソーシング・インコーポレーテッド Polyester powder composition, method and article
WO2014046296A1 (en) * 2012-09-21 2014-03-27 帝人株式会社 Manufacturing method for composite material
WO2016121013A1 (en) * 2015-01-28 2016-08-04 株式会社日立製作所 Resin powder material, laser powder molding method and device
WO2017179139A1 (en) * 2016-04-13 2017-10-19 株式会社日立製作所 Resin powder, resin molded article, and laser powder molding device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339393A (en) * 1992-06-10 1993-12-21 Teijin Ltd Polyester film for lamination with metal sheet
JP2002358837A (en) * 2001-06-01 2002-12-13 Teijin Ltd Flat cable and polyester resin component for coating
JP2009051940A (en) * 2007-08-27 2009-03-12 Nippon Ester Co Ltd Method for producing copolyester, and copolyester obtained thereby
JP2012513319A (en) * 2008-12-22 2012-06-14 ヴァルスパー・ソーシング・インコーポレーテッド Polyester powder composition, method and article
JP2011127048A (en) * 2009-12-21 2011-06-30 Mitsubishi Engineering Plastics Corp Flame-retardant polybutylene terephthalate resin composition
WO2014046296A1 (en) * 2012-09-21 2014-03-27 帝人株式会社 Manufacturing method for composite material
WO2016121013A1 (en) * 2015-01-28 2016-08-04 株式会社日立製作所 Resin powder material, laser powder molding method and device
WO2017179139A1 (en) * 2016-04-13 2017-10-19 株式会社日立製作所 Resin powder, resin molded article, and laser powder molding device

Also Published As

Publication number Publication date
JP7215129B2 (en) 2023-01-31

Similar Documents

Publication Publication Date Title
EP0921144B1 (en) Polyester, stretch blow molded product formed thereof and method for producing polyester
CN104136485A (en) Process for preparing a high molecular weight heteroaromatic polyester or copolyester
JP2007002246A (en) Polyester resin using specific cocatalyst
EP3130463B1 (en) Multi-layer polyester sheet and molded product thereof
JP2004067997A (en) Method for manufacturing polyester resin
WO2008016114A1 (en) Polyester resin particle and method for producing the same
JP7139917B2 (en) Copolymerized Polybutylene Terephthalate for Powder Additive Manufacturing
WO2003106532A1 (en) Process for producing polyester resin
JP6638462B2 (en) Polyester resin composition for transparent optical film
JP6896998B2 (en) Polyester resin composition and its manufacturing method
JP6795324B2 (en) Compositions for 3D printing containing polyester
TWI754709B (en) Polyester, method for producing the same and shaped article of the same
JP7215129B2 (en) Copolymerized Polybutylene Terephthalate for Powder Additive Manufacturing
JP6689846B2 (en) Crystalline polyester pellets, uses thereof and manufacturing method thereof
JP5444803B2 (en) Method for producing polyethylene terephthalate
JP5956148B2 (en) Method for producing copolymerized aromatic polyester
CN115943040A (en) Powder for powder lamination molding method and method for producing same
JP2005325270A (en) Method for producing polyester
JP3617324B2 (en) Polyester and stretch blow molded article comprising the same
JP4692527B2 (en) Production method of polyester resin, crystallized polyester prepolymer pellet and polyester resin pellet
JP2011046869A (en) Highly crystalline polyester resin
JP2009001716A (en) Method for producing copolyester resin
JP6705287B2 (en) Polyester resin
JP6081835B2 (en) Powder comprising 6,6 &#39;-(alkylenedioxy) di-2-naphthoic acid or its lower alkyl ester and method for producing aromatic polyester using the same
JP4234043B2 (en) Method for crystallizing aliphatic polyester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230102

R150 Certificate of patent or registration of utility model

Ref document number: 7215129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350