JP2020091283A - Gas sensor and gas concentration measurement method - Google Patents

Gas sensor and gas concentration measurement method Download PDF

Info

Publication number
JP2020091283A
JP2020091283A JP2019209534A JP2019209534A JP2020091283A JP 2020091283 A JP2020091283 A JP 2020091283A JP 2019209534 A JP2019209534 A JP 2019209534A JP 2019209534 A JP2019209534 A JP 2019209534A JP 2020091283 A JP2020091283 A JP 2020091283A
Authority
JP
Japan
Prior art keywords
measured
gas
chamber
pump current
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019209534A
Other languages
Japanese (ja)
Inventor
裕一郎 近藤
Yuichiro Kondo
裕一郎 近藤
森 伸彦
Nobuhiko Mori
伸彦 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to US16/695,471 priority Critical patent/US11467122B2/en
Priority to CN201911170095.0A priority patent/CN111220675A/en
Priority to DE102019008218.4A priority patent/DE102019008218A1/en
Publication of JP2020091283A publication Critical patent/JP2020091283A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

To provide a gas sensor and gas concentration measurement method capable of preventing reduction of measurement accuracy due to delay of a measurement time.SOLUTION: In a gas sensor 10, a preliminary vacant chamber 21, an oxygen density adjustment chamber 18, and a measurement vacant chamber 20 are formed in a structure 14 made of a solid electrolyte while they are communicated with each other in the sequence from a gas introduction port 16 in this order. The gas sensor measures a measurement pump current Ip3 of the measurement vacant chamber 20 while switching a preliminary pump cell 80 of the preliminary vacant chamber 21 between ON and OFF in a constant cycle. By rapidly determining a stationary value of the measurement pump current Ip3 on the basis of the peak value of a time change rate dIp3/dt of the measurement pump current Ip3, the switching cycle of ON/OFF of the preliminary pump cell 80 is accelerated.SELECTED DRAWING: Figure 2

Description

本発明は、酸素イオン伝導性の固体電解質を用いたガスセンサ及びガス濃度測定方法に関する。 TECHNICAL FIELD The present invention relates to a gas sensor and a gas concentration measuring method using an oxygen ion conductive solid electrolyte.

従来より、排気ガスのような酸素の存在下に共存する窒素酸化物(NO)やアンモニア(NH)等の複数の成分の濃度を測定するガスセンサが提案されている。 Conventionally, gas sensors have been proposed that measure the concentrations of a plurality of components such as nitrogen oxides (NO) and ammonia (NH 3 ) that coexist in the presence of oxygen such as exhaust gas.

例えば、特許文献1には、酸素イオン伝導性の固体電解質に、拡散抵抗部を隔てて、予備空室、主空室、副空室及び測定空室を設けるとともに、それぞれの空室にポンピング電極を設けたガスセンサが記載されている。このガスセンサでは、予備空室の予備ポンプセルの駆動(ON)又は停止(OFF)を切り換えることで、予備空室内でNHからNOへの酸化反応の進行又は停止を切り換える。そして、予備空室から主空室へのNH及びNOの拡散速度差により生じる測定空室内の測定電極のポンプ電流(以下、測定ポンプ電流Ip3とも呼ぶ。)の変化に基づいて、NH及びNOのガス濃度を測定する。 For example, in Patent Document 1, a spare electrolyte chamber, a main chamber, a sub chamber, and a measurement chamber are provided in a solid electrolyte having oxygen ion conductivity with a diffusion resistance portion therebetween, and a pumping electrode is provided in each chamber. A gas sensor provided with is described. In this gas sensor, the drive (ON) or stop (OFF) of the spare pump cell in the spare chamber is switched to switch the progress or stop of the oxidation reaction from NH 3 to NO in the spare chamber. Then, based on the change in the pump current (hereinafter, also referred to as the measured pump current Ip3) of the measurement electrode in the measurement chamber caused by the difference in the diffusion rate of NH 3 and NO from the preliminary chamber to the main chamber, NH 3 and The gas concentration of NO is measured.

国際公開第2017/222002号International Publication No. 2017/222002

特許文献1に記載されたガスセンサでは、一定時間ごとに予備空室の予備ポンプセルのON又はOFFを切り換えながら測定ポンプ電流Ip3を取得する。その予備ポンプセルのON又はOFFの切換の際に、測定ポンプ電流Ip3は過渡的に変動した後、定常値に落ち着く。したがって、測定ポンプ電流Ip3を取得するためには、定常値に落ち着くまで時間を待つ必要があり、予備ポンプセルの動作状態の切換周期を測定ポンプ電流Ip3が定常値に落ち着くまでの時間よりも長く設定している。 The gas sensor described in Patent Document 1 acquires the measured pump current Ip3 while switching the standby pump cell in the standby chamber on or off at regular intervals. When the spare pump cell is switched on or off, the measured pump current Ip3 transiently fluctuates and then settles to a steady value. Therefore, in order to obtain the measured pump current Ip3, it is necessary to wait a time until the measured pump current Ip3 settles to a steady value, and the switching cycle of the operation state of the auxiliary pump cell is set longer than the time until the measured pump current Ip3 settles to the steady value. is doing.

しかしながら、流入する排気ガスの状態は刻々と変化する。そのため、切換周期の間に測定対象ガスの濃度が変動すると、測定ポンプ電流Ip3の定常値も変動してしまうことがある。その結果、予備ポンプセルをONとしたときの測定ポンプ電流Ip3onが反映する目的成分ガスの濃度と、予備ポンプセルをOFFとしたとき測定ポンプ電流Ip3offが反映する目的成分ガスの濃度と、が異なってしまう場合がある。このように、予備ポンプセルの1サイクルの切換周期の間に測定空室内の目的成分の濃度が大きく変動してしまうと、測定の前提条件が整わなくなり、測定精度が低下してしまうという問題がある。 However, the state of the inflowing exhaust gas changes every moment. Therefore, if the concentration of the measurement target gas fluctuates during the switching cycle, the steady value of the measured pump current Ip3 may fluctuate. As a result, the concentration of the target component gas reflected by the measured pump current Ip3on when the spare pump cell is turned on differs from the concentration of the target component gas reflected by the measured pump current Ip3off when the spare pump cell is turned off. There are cases. As described above, if the concentration of the target component in the measurement chamber fluctuates greatly during the switching cycle of one cycle of the auxiliary pump cell, the preconditions for the measurement are not satisfied, and the measurement accuracy deteriorates. ..

本発明は、測定ポンプ電流Ip3の測定時刻の遅延による測定精度の低下を防止できるガスセンサ及びガス濃度測定方法を提供することを目的とする。 It is an object of the present invention to provide a gas sensor and a gas concentration measuring method capable of preventing a decrease in measurement accuracy due to a delay in measurement time of the measurement pump current Ip3.

本発明の一観点は、酸素の存在下に複数成分の濃度を測定するガスセンサであって、酸素イオン伝導性の固体電解質からなる構造体と、前記構造体に形成され、被測定ガスが導入されるガス導入口と、予備ポンプ電極を有し、前記ガス導入口に連通した予備空室と、ポンプ電極を有し、前記予備空室に連通した酸素濃度調整室と、測定電極を有し、前記酸素濃度調整室に連通した測定空室と、前記予備ポンプ電極の電圧に基づいて前記予備空室内の酸素濃度を制御する予備酸素濃度制御手段と、前記予備酸素濃度制御手段の動作の下に、外側ポンプ電極と前記測定電極とに流れる測定ポンプ電流(Ip3)を検出する特定成分測定手段と、前記予備酸素濃度制御手段の第1動作時における前記特定成分測定手段からの測定ポンプ電流(Ip3on)と前記予備酸素濃度制御手段の第2動作時における前記特定成分測定手段からの測定ポンプ電流(Ip3off)との変化量(ΔIp3)、及び前記測定ポンプ電流(Ip3on)及び前記測定ポンプ電流(Ip3off)の一方に基づいて、被測定ガス中の目的成分の濃度を取得する目的成分取得手段と、を備え、前記特定成分測定手段は、前記予備酸素濃度制御手段の第1動作と第2動作との動作切換の際の前記測定ポンプ電流(Ip3)の時間変化率のピーク値に基づいて前記測定ポンプ電流(Ip3on)の定常値又は前記測定ポンプ電流(Ip3off)の定常値を求める、ガスセンサにある。 One aspect of the present invention is a gas sensor for measuring the concentration of a plurality of components in the presence of oxygen, a structure composed of an oxygen ion conductive solid electrolyte, formed in the structure, the gas to be measured is introduced. A gas introduction port having a spare pump electrode, a spare chamber communicating with the gas supply port, a pump electrode, an oxygen concentration adjusting chamber communicating with the spare chamber, and a measuring electrode, Under the operation of the measurement chamber that communicates with the oxygen concentration adjusting chamber, the preliminary oxygen concentration control unit that controls the oxygen concentration in the preliminary chamber based on the voltage of the preliminary pump electrode, and the operation of the preliminary oxygen concentration control unit. , A specific component measuring means for detecting a measured pump current (Ip3) flowing through the outer pump electrode and the measuring electrode, and a measured pump current (Ip3on from the specific component measuring means during the first operation of the preliminary oxygen concentration control means). ) And the measured pump current (Ip3off) from the specific component measuring means during the second operation of the preliminary oxygen concentration control means (ΔIp3), the measured pump current (Ip3on) and the measured pump current (Ip3off). ), the target component acquiring means for acquiring the concentration of the target component in the gas to be measured, wherein the specific component measuring means includes a first operation and a second operation of the preliminary oxygen concentration control means. In the gas sensor, the steady value of the measurement pump current (Ip3on) or the steady value of the measurement pump current (Ip3off) is obtained based on the peak value of the time rate of change of the measurement pump current (Ip3) when the operation is switched. ..

また、本発明の別の一観点は、酸素イオン伝導性の固体電解質からなる構造体と、前記構造体に形成され、被測定ガスが導入されるガス導入口と、予備ポンプ電極を有し、前記ガス導入口に連通した予備空室と、ポンプ電極を有し、前記予備空室に連通した酸素濃度調整室と、測定電極を有し、前記酸素濃度調整室に連通した測定空室と、前記予備ポンプ電極の電圧に基づいて前記予備空室内の酸素濃度を制御する予備酸素濃度制御手段と、前記予備酸素濃度制御手段の動作の下に、外側ポンプ電極と前記測定電極とに流れる測定ポンプ電流(Ip3)を検出する特定成分測定手段と、前記予備酸素濃度制御手段の第1動作時における前記特定成分測定手段からの測定ポンプ電流(Ip3on)と前記予備酸素濃度制御手段の第2動作時における前記特定成分測定手段からの測定ポンプ電流(Ip3off)との変化量(ΔIp3)、及び前記測定ポンプ電流(Ip3on)及び前記測定ポンプ電流(Ip3off)の一方に基づいて、被測定ガス中の目的成分の濃度を取得する目的成分取得手段と、を有するガスセンサを使用するガス濃度測定方法であって、前記予備酸素濃度制御手段の第1動作と第2動作との切換制御を行う動作切換ステップと、前記特定成分測定手段が、前記予備酸素濃度制御手段の第1動作と第2動作との切換制御に伴う、前記測定ポンプ電流(Ip3)の時間変化率のピーク値を求めるステップと、前記特定成分測定手段が、予め求めた前記測定ポンプ電流(Ip3)の時間変化率のピーク値と前記測定ポンプ電流(Ip3)の定常値との相関関係から、前記測定ポンプ電流(Ip3)の定常値を求めるステップと、前記目的成分取得手段が前記特定成分測定手段からの前記測定ポンプ電流(Ip3)の定常値に基づいて被測定ガス中の目的成分の濃度を取得するステップと、を有する、ガス濃度測定方法にある。 Further, another aspect of the present invention, a structure comprising an oxygen ion conductive solid electrolyte, a gas inlet formed in the structure, the gas to be measured is introduced, and a preliminary pump electrode, A spare chamber communicating with the gas inlet, having a pump electrode, an oxygen concentration adjusting chamber communicating with the spare chamber, a measuring electrode having a measuring chamber communicating with the oxygen concentration adjusting chamber, A preliminary oxygen concentration control unit that controls the oxygen concentration in the preliminary chamber based on the voltage of the preliminary pump electrode, and a measurement pump that flows between the outer pump electrode and the measurement electrode under the operation of the preliminary oxygen concentration control unit. A specific component measuring means for detecting a current (Ip3), and a measured pump current (Ip3on) from the specific component measuring means during the first operation of the preliminary oxygen concentration control means and a second operation of the preliminary oxygen concentration control means. In the measured gas based on the amount of change (ΔIp3) from the measured pump current (Ip3off) from the specific component measuring means, and one of the measured pump current (Ip3on) and the measured pump current (Ip3off). A gas concentration measuring method using a gas sensor having a target component acquisition means for acquiring the concentration of a component, the operation switching step of performing switching control between the first operation and the second operation of the preliminary oxygen concentration control means. A step for the specific component measuring means to obtain a peak value of a time change rate of the measured pump current (Ip3) accompanying the switching control between the first operation and the second operation of the preliminary oxygen concentration control means; The component measuring means calculates the steady-state value of the measurement pump current (Ip3) from the correlation between the peak value of the temporal change rate of the measurement pump current (Ip3) previously obtained and the steady-state value of the measurement pump current (Ip3). A gas concentration, the step of obtaining and the step of obtaining the concentration of the target component in the gas to be measured based on the steady value of the measured pump current (Ip3) from the specific component measuring unit by the target component acquisition unit. There is a measuring method.

上記観点のガスセンサ及びガス濃度測定方法によれば、予備空室の予備ポンプセルの動作状態の切換に伴う測定電極のポンプ電流値(測定ポンプ電流)の時間変化率に着目して、測定電極のポンプ電流値の定常値の予測値を求める。これにより、測定電極のポンプ電流値が落ち着く前にポンプ電流値の定常値を求めることができる。そのため、測定電極のポンプ電流値が定常値に落ち着く前に、予備ポンプセルの動作状態の切換を行うことができ、予備ポンプセルの動作状態の切換周期を短くすることができる。その結果、測定ポンプ電流Ip3の測定時刻の遅延が減少し、測定精度の低下を防止できる。 According to the gas sensor and the gas concentration measuring method of the above aspect, the pump of the measurement electrode is pumped by paying attention to the time change rate of the pump current value (measurement pump current) of the measurement electrode due to the switching of the operating state of the auxiliary pump cell in the auxiliary chamber. Obtain the predicted steady-state value of the current value. This makes it possible to obtain the steady-state value of the pump current value before the pump current value of the measurement electrode settles down. Therefore, the operation state of the auxiliary pump cell can be switched before the pump current value of the measurement electrode settles to the steady value, and the operation cycle of the operation state of the auxiliary pump cell can be shortened. As a result, the delay in the measurement time of the measurement pump current Ip3 is reduced, and the measurement accuracy can be prevented from being degraded.

第1実施形態に係るガスセンサの一構造例を示す断面図である。It is sectional drawing which shows one structural example of the gas sensor which concerns on 1st Embodiment. 図1のガスセンサのブロック図である。It is a block diagram of the gas sensor of FIG. 図1のガスセンサにおいて、予備ポンプセルをOFFにした場合の反応を模式的に示す説明図である。It is explanatory drawing which shows typically the reaction at the time of turning off a preliminary|backup pump cell in the gas sensor of FIG. 図1のガスセンサにおいて、予備ポンプセルをONにした場合の反応を模式的に示す説明図である。It is explanatory drawing which shows typically the reaction at the time of turning ON a spare pump cell in the gas sensor of FIG. 図1のガスセンサにおける、測定ポンプ電流Ip3の取得処理を示すフローチャートである。It is a flow chart which shows acquisition processing of measurement pump current Ip3 in a gas sensor of Drawing 1. 予備ポンプセルをOFFからONにした際の測定ポンプ電流Ip3の変化及びその時間変化率を模式的に示す図である。It is a figure which shows typically the change of the measured pump current Ip3 at the time of turning on a spare pump cell, and its time change rate. 被測定ガスのNO濃度0ppmとした条件の下での、予備ポンプセルの動作状態の切換に伴う測定ポンプ電流Ip3の変化の測定結果を示すグラフである。7 is a graph showing a measurement result of a change in the measured pump current Ip3 accompanying the switching of the operating state of the auxiliary pump cell under the condition that the NO concentration of the measured gas is 0 ppm. 図7の測定ポンプ電流Ip3の時間変化率を示すグラフである。8 is a graph showing a time change rate of the measured pump current Ip3 of FIG. 7. 図8の測定ポンプ電流Ip3の時間変化率のピーク値とNH濃度との相関関係を示すグラフである。9 is a graph showing the correlation between the peak value of the rate of change over time of the measured pump current Ip3 in FIG. 8 and the NH 3 concentration. 被測定ガスのNO濃度500ppmとした条件の下での、予備ポンプセルの動作状態の切換に伴う測定ポンプ電流Ip3の変化の測定結果を示すグラフである。6 is a graph showing a measurement result of a change in the measured pump current Ip3 due to switching of the operating state of the auxiliary pump cell under the condition that the NO concentration of the gas to be measured is 500 ppm. 図10の測定ポンプ電流Ip3の時間変化率を示すグラフである。It is a graph which shows the time change rate of the measured pump current Ip3 of FIG. 図11の時間変化率のピーク値とNH濃度との相関関係を示すグラフである。It is a graph showing the correlation between the peak value and the NH 3 concentration in the time rate of change of FIG. FT−IR法による被測定ガス中のNH濃度の変化の測定結果と、予備ポンプセルの動作切換周期を1秒(1Hz)とした場合の図1のガスセンサによるNH濃度の検出値をシミュレーションで求めた結果(実験例3)と、を示すグラフである。Simulation results of the measurement results of changes in the NH 3 concentration in the measured gas by the FT-IR method and the detected values of the NH 3 concentration by the gas sensor of FIG. 1 when the operation switching cycle of the auxiliary pump cell was 1 second (1 Hz) It is a graph which shows the obtained result (Experimental example 3). FT−IR法による被測定ガス中のNH濃度の変化の測定結果と、予備ポンプセルの動作切換周期を4秒(0.25Hz)とした場合の図1のガスセンサによるNH濃度の検出値をシミュレーションで求めた結果(比較例)と、を示すグラフである。The measurement result of the change of the NH 3 concentration in the measured gas by the FT-IR method and the detected value of the NH 3 concentration by the gas sensor of FIG. 1 when the operation switching period of the auxiliary pump cell is 4 seconds (0.25 Hz) are shown. It is a graph which shows the result (comparative example) calculated|required by simulation. 第2実施形態に係る測定ポンプ電流Ip3の取得処理を示すフローチャートである。It is a flow chart which shows acquisition processing of measurement pump current Ip3 concerning a 2nd embodiment.

以下、本発明に係るガスセンサ及びガス濃度測定方法の実施形態例について、図1〜図15を参照しながら説明する。なお、本明細書において、数値範囲を示す「〜」は、その前後に記載される数値を下限値又は上限値として含む意味として使用される。 Hereinafter, embodiments of a gas sensor and a gas concentration measuring method according to the present invention will be described with reference to FIGS. 1 to 15. In addition, in this specification, "-" which shows a numerical range is used as the meaning which includes the numerical value described before and after that as a lower limit or an upper limit.

(第1実施形態)
本実施形態に係るガスセンサ10は、図1及び図2に示すように、センサ素子12を有する。センサ素子12は、酸素イオン伝導性の固体電解質からなる構造体14と、該構造体14に形成され、被測定ガスが導入されるガス導入口16と、構造体14内に形成され、ガス導入口16に連通する酸素濃度調整室18と、構造体14内に形成され、酸素濃度調整室18に連通する測定空室20とを有する。
(First embodiment)
The gas sensor 10 according to the present embodiment has a sensor element 12 as shown in FIGS. 1 and 2. The sensor element 12 includes a structure 14 made of a solid electrolyte having oxygen ion conductivity, a gas inlet 16 formed in the structure 14 and into which a gas to be measured is introduced, and a gas introduction port formed in the structure 14. It has an oxygen concentration adjusting chamber 18 communicating with the port 16 and a measurement chamber 20 formed in the structure 14 and communicating with the oxygen concentration adjusting chamber 18.

酸素濃度調整室18は、ガス導入口16側に設けられた主空室18aと、主空室18aに連通する副空室18bとを有する。測定空室20は、副空室18bに連通している。なお、酸素濃度調整室18は、主空室18aのみで構成されてもよい。 The oxygen concentration adjusting chamber 18 has a main vacant chamber 18a provided on the gas introduction port 16 side and a sub vacant chamber 18b communicating with the main vacant chamber 18a. The measurement chamber 20 communicates with the sub chamber 18b. The oxygen concentration adjusting chamber 18 may be composed of only the main empty chamber 18a.

さらに、このガスセンサ10は、構造体14のうち、ガス導入口16と主空室18aとの間に、予備空室21を有する。主空室18aは、予備空室21を介してガス導入口16と連通している。 Further, the gas sensor 10 has a spare chamber 21 between the gas inlet 16 and the main chamber 18a in the structure 14. The main vacant chamber 18 a communicates with the gas introduction port 16 via the spare vacant chamber 21.

このような複数の空室18a、18b、20、21を有する構造体14は、例えば、セラミックスよりなる複数層の基板を積層して構成される。具体的には、センサ素子12の構造体14は、第1基板22aと、第2基板22bと第3基板22cと、第1固体電解質層24と、スペーサ層26と、第2固体電解質層28とよりなる6つの層が、下から順に積層されてなる。各層は、例えばジルコニア(ZrO)等の酸素イオン伝導性の固体電解質によって構成される。 The structure 14 having such a plurality of vacant chambers 18a, 18b, 20, 21 is formed by laminating a plurality of layers of substrates made of ceramics, for example. Specifically, the structure 14 of the sensor element 12 includes a first substrate 22a, a second substrate 22b, a third substrate 22c, a first solid electrolyte layer 24, a spacer layer 26, and a second solid electrolyte layer 28. Six layers consisting of are laminated in order from the bottom. Each layer is composed of an oxygen ion conductive solid electrolyte such as zirconia (ZrO 2 ).

センサ素子12の一端には、ガス導入口16が設けられている。ガス導入口16は、第2固体電解質層28の下面28bと第1固体電解質層24の上面24aとの間に形成されている。 A gas inlet 16 is provided at one end of the sensor element 12. The gas inlet 16 is formed between the lower surface 28b of the second solid electrolyte layer 28 and the upper surface 24a of the first solid electrolyte layer 24.

第2固体電解質層28の下面28bと第1固体電解質層24の上面24aとの間には、さらに、第1拡散律速部30と、予備空室21と、第2拡散律速部32と、酸素濃度調整室18と、第3拡散律速部34と、測定空室20とが形成されている。酸素濃度調整室18を構成する主空室18aと副空室18bとの間には第4拡散律速部36が設けられている。 Between the lower surface 28b of the second solid electrolyte layer 28 and the upper surface 24a of the first solid electrolyte layer 24, there is further provided a first diffusion rate controlling part 30, a preliminary chamber 21, a second diffusion rate controlling part 32, and oxygen. A concentration adjusting chamber 18, a third diffusion controlling part 34, and a measurement chamber 20 are formed. A fourth diffusion rate controlling unit 36 is provided between the main chamber 18a and the sub chamber 18b that form the oxygen concentration adjusting chamber 18.

ガス導入口16と、第1拡散律速部30と、予備空室21と、第2拡散律速部32と、主空室18aと、第4拡散律速部36と、副空室18bと、第3拡散律速部34と、測定空室20とは、この順に連通するように隣接して形成されている。ガス導入口16から測定空室20に至る部位を、ガス流通部とも称する。 The gas inlet 16, the first diffusion control part 30, the auxiliary chamber 21, the second diffusion control part 32, the main chamber 18a, the fourth diffusion control part 36, the sub chamber 18b, and the third The diffusion-controlling part 34 and the measurement chamber 20 are formed adjacent to each other so as to communicate with each other in this order. The portion from the gas inlet 16 to the measurement chamber 20 is also referred to as a gas distribution unit.

ガス導入口16と、予備空室21と、主空室18aと、副空室18bと、測定空室20とは、スペーサ層26を厚み方向に貫通するようにして形成されている。それらの空室18a、18b、20、21の上部には、第2固体電解質層28の下面28bが露出し、下部には第1固体電解質層24の上面24aが露出している。また空室18a、18b、20、21の側部は、スペーサ層26又は拡散律速部30、32、34、36で区画されている。 The gas inlet 16, the spare chamber 21, the main chamber 18a, the sub chamber 18b, and the measurement chamber 20 are formed so as to penetrate the spacer layer 26 in the thickness direction. The lower surface 28b of the second solid electrolyte layer 28 is exposed at the upper part of the chambers 18a, 18b, 20, 21 and the upper surface 24a of the first solid electrolyte layer 24 is exposed at the lower part. The side portions of the vacant chambers 18a, 18b, 20 and 21 are partitioned by the spacer layer 26 or the diffusion rate controlling portions 30, 32, 34 and 36.

第1拡散律速部30、第3拡散律速部34及び第4拡散律速部36は、いずれも2本の横長なスリットを備えている。すなわち、スリットは、図の紙面に垂直な方向に長く伸びたスリット状の開口を上部及び下部に有している。また、第2拡散律速部32は、1本の横長のスリットを備えている。 The first diffusion control part 30, the third diffusion control part 34, and the fourth diffusion control part 36 are each provided with two horizontally long slits. That is, the slit has slit-shaped openings extending in a direction perpendicular to the plane of the drawing in the upper and lower portions. Further, the second diffusion control part 32 is provided with one horizontally long slit.

また、センサ素子12の他端(ガス導入口16が設けられた端部と反対側の端部)には、基準ガス導入空間38が設けられている。基準ガス導入空間38は、第3基板22cの上面22c1と、スペーサ層26の下面26bとの間に形成されている。また、基準ガス導入空間38の側部は第1固体電解質層24の側面で区画されている。基準ガス導入空間38には、基準ガスとして、例えば酸素や大気が導入される。 A reference gas introduction space 38 is provided at the other end of the sensor element 12 (the end opposite to the end where the gas introduction port 16 is provided). The reference gas introduction space 38 is formed between the upper surface 22c1 of the third substrate 22c and the lower surface 26b of the spacer layer 26. The side portion of the reference gas introduction space 38 is partitioned by the side surface of the first solid electrolyte layer 24. For example, oxygen or the atmosphere is introduced into the reference gas introduction space 38 as a reference gas.

ガス導入口16は、外部空間に対して開口している部位であり、該ガス導入口16を通じて外部空間からセンサ素子12内に被測定ガスが取り込まれる。 The gas introduction port 16 is a portion open to the external space, and the gas to be measured is taken into the sensor element 12 from the external space through the gas introduction port 16.

第1拡散律速部30は、ガス導入口16から予備空室21に導入される被測定ガスに、所定の拡散抵抗を付与する部位である。予備空室21については後述する。 The first diffusion control part 30 is a part that imparts a predetermined diffusion resistance to the gas to be measured that is introduced from the gas inlet 16 into the spare chamber 21. The spare vacant chamber 21 will be described later.

第2拡散律速部32は、予備空室21から主空室18aに導入される被測定ガスに、所定の拡散抵抗を付与する部位である。 The second diffusion control part 32 is a part that imparts a predetermined diffusion resistance to the gas to be measured introduced from the spare chamber 21 into the main chamber 18a.

主空室18aは、ガス導入口16から導入された被測定ガス中の酸素分圧を調整するための空間として設けられている。酸素分圧は、主ポンプセル40が作動することによって調整される。 The main chamber 18a is provided as a space for adjusting the oxygen partial pressure in the gas to be measured introduced from the gas inlet 16. The oxygen partial pressure is adjusted by the operation of the main pump cell 40.

主ポンプセル40は、主ポンプ電極42と、外側ポンプ電極44と、これらに挟まれた酸素イオン伝導性の固体電解質とで構成される電気化学的ポンプセルであり、主電気化学ポンピングセルとも呼ぶ。主ポンプ電極42は、主空室18aを区画する第1固体電解質層24の上面24a、第2固体電解質層28の下面28b、及びスペーサ層26の側面のそれぞれの略全面に設けられている。外側ポンプ電極44は、第2固体電解質層28の上面に形成されている。外側ポンプ電極44の位置は、主ポンプ電極42と対応する領域に外部空間に露出する態様で設けると好適である。主ポンプ電極42は、被測定ガス中の窒素酸化物(NO)成分に対する還元能力を弱めた材料で構成することが好ましい。例えば、平面視して矩形状の多孔質サーメット電極として構成することができる。 The main pump cell 40 is an electrochemical pump cell including a main pump electrode 42, an outer pump electrode 44, and an oxygen ion conductive solid electrolyte sandwiched therebetween, and is also called a main electrochemical pumping cell. The main pump electrode 42 is provided on each of the upper surface 24 a of the first solid electrolyte layer 24, the lower surface 28 b of the second solid electrolyte layer 28, and the side surface of the spacer layer 26, which partition the main empty space 18 a. The outer pump electrode 44 is formed on the upper surface of the second solid electrolyte layer 28. The position of the outer pump electrode 44 is preferably provided in a region corresponding to the main pump electrode 42 so as to be exposed to the external space. The main pump electrode 42 is preferably made of a material having a reduced reducing ability for nitrogen oxide (NO) components in the gas to be measured. For example, it can be configured as a rectangular porous cermet electrode in plan view.

主ポンプセル40は、センサ素子12の外部に備わる第1可変電源46により、第1ポンプ電圧Vp1を印加して、外側ポンプ電極44と主ポンプ電極42との間に第1ポンプ電流Ip1を流すことにより、主空室18a内の酸素を外部に汲み出し、あるいは、外部空間の酸素を主空室18a内に汲み入れることが可能となっている。 The main pump cell 40 applies a first pump voltage Vp1 by a first variable power supply 46 provided outside the sensor element 12 to flow a first pump current Ip1 between the outer pump electrode 44 and the main pump electrode 42. This makes it possible to pump out oxygen in the main chamber 18a to the outside or pump oxygen in the external space into the main chamber 18a.

また、センサ素子12は、電気化学的センサセルである第1酸素分圧検出センサセル50を有する。この第1酸素分圧検出センサセル50は、主ポンプ電極42と、基準電極48と、これらの電極に挟まれた酸素イオン伝導性の第1固体電解質層24とによって構成される。基準電極48は、第1固体電解質層24と第3基板22cとの間に形成された電極であり、外側ポンプ電極44と同様の多孔質サーメットからなる。基準電極48は、平面視して矩形状に形成されている。また、基準電極48の周囲には、多孔質アルミナからなり、且つ、基準ガス導入空間38につながる基準ガス導入層52が設けられている。基準電極48の表面には、基準ガス導入空間38の基準ガスが基準ガス導入層52を介して導入されるようになっている。第1酸素分圧検出センサセル50は、主空室18a内の雰囲気と基準ガス導入空間38の基準ガスとの間の酸素濃度差に起因して主ポンプ電極42と基準電極48との間に第1起電力V1を発生させる。 Further, the sensor element 12 has a first oxygen partial pressure detection sensor cell 50 which is an electrochemical sensor cell. The first oxygen partial pressure detection sensor cell 50 includes a main pump electrode 42, a reference electrode 48, and an oxygen ion conductive first solid electrolyte layer 24 sandwiched between these electrodes. The reference electrode 48 is an electrode formed between the first solid electrolyte layer 24 and the third substrate 22c, and is made of the same porous cermet as the outer pump electrode 44. The reference electrode 48 is formed in a rectangular shape in plan view. A reference gas introduction layer 52 made of porous alumina and connected to the reference gas introduction space 38 is provided around the reference electrode 48. The reference gas in the reference gas introduction space 38 is introduced into the surface of the reference electrode 48 via the reference gas introduction layer 52. The first oxygen partial pressure detection sensor cell 50 is disposed between the main pump electrode 42 and the reference electrode 48 due to the oxygen concentration difference between the atmosphere in the main chamber 18a and the reference gas in the reference gas introduction space 38. 1 Electromotive force V1 is generated.

第1酸素分圧検出センサセル50において生じる第1起電力V1は、主空室18aに存在する雰囲気の酸素分圧に応じて変化する。センサ素子12は、上記の第1起電力V1によって、主ポンプセル40の第1可変電源46をフィードバック制御する。これにより、第1可変電源46が主ポンプセル40に印加する第1ポンプ電圧Vp1を、主空室18aの雰囲気の酸素分圧に応じて制御することができる。 The first electromotive force V1 generated in the first oxygen partial pressure detection sensor cell 50 changes according to the oxygen partial pressure of the atmosphere existing in the main chamber 18a. The sensor element 12 feedback-controls the first variable power supply 46 of the main pump cell 40 by the first electromotive force V1. As a result, the first pump voltage Vp1 applied to the main pump cell 40 by the first variable power supply 46 can be controlled according to the oxygen partial pressure of the atmosphere in the main chamber 18a.

第4拡散律速部36は、主空室18aでの主ポンプセル40の動作により酸素濃度(酸素分圧)が制御された被測定ガスに所定の拡散抵抗を付与して、該被測定ガスを副空室18bに導く部位である。 The fourth diffusion rate controlling unit 36 imparts a predetermined diffusion resistance to the measured gas whose oxygen concentration (oxygen partial pressure) is controlled by the operation of the main pump cell 40 in the main empty chamber 18a, and subordinates the measured gas. This is a part that leads to the vacant chamber 18b.

副空室18bは、予め主空室18aにおいて酸素濃度(酸素分圧)が調整された後、第4拡散律速部36を通じて導入された被測定ガスに対して、さらに補助ポンプセル54による酸素分圧の調整を行うための空間として設けられている。これにより、副空室18b内の酸素濃度を高精度に一定に保つことができ、精度の高いNOx濃度測定が可能となる。 In the sub-chamber 18b, after the oxygen concentration (oxygen partial pressure) in the main chamber 18a is adjusted in advance, the oxygen partial pressure by the auxiliary pump cell 54 is further added to the measured gas introduced through the fourth diffusion control section 36. It is provided as a space for making adjustments. As a result, the oxygen concentration in the sub-chamber 18b can be kept constant with high precision, and the NOx concentration can be measured with high precision.

補助ポンプセル54は、電気化学的ポンプセルであり、第2固体電解質層28の下面28bの副空室18bに面する略全域に設けられた補助ポンプ電極56と、外側ポンプ電極44と、第2固体電解質層28とによって構成される。なお、補助ポンプ電極56についても、主ポンプ電極42と同様に、被測定ガス中のNOx成分に対する還元能力を弱めた材料を用いて形成される。 The auxiliary pump cell 54 is an electrochemical pump cell, and is provided on the lower surface 28b of the second solid electrolyte layer 28 in a substantially entire area facing the sub-chamber 18b, the outer pump electrode 56, and the second solid electrode. And an electrolyte layer 28. The auxiliary pump electrode 56 is also formed of a material having a reduced ability to reduce NOx components in the gas to be measured, like the main pump electrode 42.

補助ポンプセル54は、補助ポンプ電極56と外側ポンプ電極44との間に所望の第2ポンプ電圧Vp2を印加することにより、副空室18b内の雰囲気中の酸素を外部空間に汲み出し、あるいは、外部空間から副空室18bに汲み入れることができる。 By applying a desired second pump voltage Vp2 between the auxiliary pump electrode 56 and the outer pump electrode 44, the auxiliary pump cell 54 pumps out oxygen in the atmosphere in the sub-chamber 18b to the external space or externally. It can be pumped into the sub-chamber 18b from the space.

また、副空室18b内における雰囲気中の酸素分圧を制御するために、補助ポンプ電極56と、基準電極48と、第2固体電解質層28と、スペーサ層26と、第1固体電解質層24とによって、電気化学的なセンサセルが構成される。すなわち、補助ポンプ制御用の第2酸素分圧検出センサセル58が構成されている。 Further, in order to control the oxygen partial pressure in the atmosphere in the sub-chamber 18b, the auxiliary pump electrode 56, the reference electrode 48, the second solid electrolyte layer 28, the spacer layer 26, and the first solid electrolyte layer 24. And form an electrochemical sensor cell. That is, the second oxygen partial pressure detection sensor cell 58 for controlling the auxiliary pump is configured.

第2酸素分圧検出センサセル58は、副空室18b内の雰囲気と基準ガス導入空間38の基準ガスとの間の酸素濃度差に起因して、補助ポンプ電極56と基準電極48との間に第2起電力V2を発生させる。この第2酸素分圧検出センサセル58で生じる第2起電力V2は、副空室18bに存在する雰囲気の酸素分圧に応じて変化する。 The second oxygen partial pressure detection sensor cell 58 is provided between the auxiliary pump electrode 56 and the reference electrode 48 due to the oxygen concentration difference between the atmosphere in the sub-chamber 18b and the reference gas in the reference gas introduction space 38. The second electromotive force V2 is generated. The second electromotive force V2 generated in the second oxygen partial pressure detection sensor cell 58 changes according to the oxygen partial pressure of the atmosphere existing in the sub-chamber 18b.

センサ素子12は、上記の第2起電力V2に基づいて、第2可変電源60を制御することにより、補助ポンプセル54のポンピングを行う。これにより、副空室18b内の雰囲気中の酸素分圧は、NOxの測定に実質的な影響がない低い分圧にまで制御されるようになっている。 The sensor element 12 controls the second variable power source 60 based on the second electromotive force V2 to pump the auxiliary pump cell 54. As a result, the oxygen partial pressure in the atmosphere inside the sub-chamber 18b is controlled to a low partial pressure that does not substantially affect the measurement of NOx.

また、これとともに、補助ポンプセル54の第2ポンプ電流Ip2が、第2酸素分圧検出センサセル58の第2起電力V2の制御に用いられるようになっている。具体的には、第2ポンプ電流Ip2は、制御信号として第2酸素分圧検出センサセル58に入力される。その結果、第2起電力V2が制御され、第4拡散律速部36を通じて副空室18b内に導入される被測定ガス中の酸素分圧の勾配が常に一定になるように制御される。ガスセンサ10をNOxセンサとして使用する際には、主ポンプセル40と補助ポンプセル54との働きによって、副空室18b内での酸素濃度は、各条件の所定の値に精度よく保たれる。 Along with this, the second pump current Ip2 of the auxiliary pump cell 54 is used to control the second electromotive force V2 of the second oxygen partial pressure detection sensor cell 58. Specifically, the second pump current Ip2 is input to the second oxygen partial pressure detection sensor cell 58 as a control signal. As a result, the second electromotive force V2 is controlled so that the gradient of the oxygen partial pressure in the measured gas introduced into the sub-chamber 18b through the fourth diffusion control section 36 is controlled to be always constant. When the gas sensor 10 is used as a NOx sensor, the oxygen concentration in the sub-chamber 18b is accurately maintained at a predetermined value under each condition by the functions of the main pump cell 40 and the auxiliary pump cell 54.

第3拡散律速部34は、副空室18bで補助ポンプセル54の動作により酸素濃度(酸素分圧)が制御された被測定ガスに所定の拡散抵抗を付与して、該被測定ガスを測定空室20に導く部位である。 The third diffusion rate controlling unit 34 imparts a predetermined diffusion resistance to the measured gas whose oxygen concentration (oxygen partial pressure) is controlled by the operation of the auxiliary pump cell 54 in the sub-chamber 18b to measure the measured gas. This is a part that leads to the chamber 20.

NOx濃度の測定は、主として、測定空室20に設けられた測定用ポンプセル61の動作により行われる。測定用ポンプセル61は、測定電極62と、外側ポンプ電極44と、第2固体電解質層28と、スペーサ層26と、第1固体電解質層24とによって構成された電気化学的ポンプセルである。測定電極62は、測定空室20内の例えば第1固体電解質層24の上面24aに設けられ、被測定ガス中のNOx成分に対する還元能力を主ポンプ電極42よりも高めた材料で構成される。測定電極62は、例えば多孔質サーメット電極とすることができる。また、測定電極62は、雰囲気中に存在するNOxを還元するNOx還元触媒としても機能する材料を用いることが好ましい。 The measurement of the NOx concentration is performed mainly by the operation of the measurement pump cell 61 provided in the measurement chamber 20. The measurement pump cell 61 is an electrochemical pump cell configured by the measurement electrode 62, the outer pump electrode 44, the second solid electrolyte layer 28, the spacer layer 26, and the first solid electrolyte layer 24. The measurement electrode 62 is provided, for example, on the upper surface 24a of the first solid electrolyte layer 24 in the measurement chamber 20, and is made of a material having a higher reducing ability for the NOx component in the measurement gas than the main pump electrode 42. The measurement electrode 62 can be, for example, a porous cermet electrode. Further, it is preferable that the measurement electrode 62 uses a material that also functions as a NOx reduction catalyst that reduces NOx existing in the atmosphere.

測定用ポンプセル61は、測定空室20内において、測定電極62の周囲で窒素酸化物を分解することで酸素を生じさせる。さらに、測定用ポンプセル61は、測定電極62で発生した酸素を、汲み出し、その酸素の発生量を測定ポンプ電流Ip3、すなわち、センサ出力として検出することができる。 The measurement pump cell 61 decomposes nitrogen oxide around the measurement electrode 62 in the measurement chamber 20 to generate oxygen. Further, the measuring pump cell 61 can pump out oxygen generated at the measuring electrode 62 and detect the amount of generated oxygen as the measuring pump current Ip3, that is, the sensor output.

また、測定空室20内の測定電極62の周囲の酸素分圧を検出するために、第1固体電解質層24と、測定電極62と、基準電極48とによって電気化学的なセンサセル、すなわち、測定用ポンプ制御用の第3酸素分圧検出センサセル66が構成されている。第3酸素分圧検出センサセル66で検出された第3起電力V3に基づいて、第3可変電源68が制御される。 Further, in order to detect the oxygen partial pressure around the measurement electrode 62 in the measurement chamber 20, the first solid electrolyte layer 24, the measurement electrode 62, and the reference electrode 48 form an electrochemical sensor cell, that is, measurement. A third oxygen partial pressure detection sensor cell 66 for controlling the pump is configured. The third variable power supply 68 is controlled based on the third electromotive force V3 detected by the third oxygen partial pressure detection sensor cell 66.

副空室18bに導かれた被測定ガスは、酸素分圧が制御された状況下で第3拡散律速部34を通じて測定空室20内の測定電極62に到達する。測定電極62の周囲の被測定ガス中の窒素酸化物は、還元されて酸素を発生する。ここで発生した酸素は、測定用ポンプセル61によってポンピングされる。その際、第3酸素分圧検出センサセル66にて検出された第3起電力V3が一定となるように第3可変電源68の第3ポンプ電圧Vp3が制御される。測定電極62の周囲において発生する酸素の量は、被測定ガス中の窒素酸化物濃度に比例する。したがって、測定用ポンプセル61の測定ポンプ電流Ip3を用いて被測定ガス中の窒素酸化物濃度を算出することができる。すなわち、測定用ポンプセル61は、測定空室20内の特定成分(NO)の濃度を測定する特定成分測定手段104を構成する。 The gas to be measured guided to the sub-chamber 18b reaches the measurement electrode 62 in the measurement chamber 20 through the third diffusion rate controlling unit 34 under the condition that the oxygen partial pressure is controlled. Nitrogen oxide in the measured gas around the measurement electrode 62 is reduced to generate oxygen. The oxygen generated here is pumped by the measuring pump cell 61. At that time, the third pump voltage Vp3 of the third variable power supply 68 is controlled so that the third electromotive force V3 detected by the third oxygen partial pressure detection sensor cell 66 becomes constant. The amount of oxygen generated around the measuring electrode 62 is proportional to the nitrogen oxide concentration in the gas to be measured. Therefore, the measurement pump current Ip3 of the measurement pump cell 61 can be used to calculate the nitrogen oxide concentration in the measured gas. That is, the measurement pump cell 61 constitutes the specific component measuring means 104 for measuring the concentration of the specific component (NO) in the measurement chamber 20.

また、ガスセンサ10は、電気化学的なセンサセル70を有する。このセンサセル70は、第2固体電解質層28と、スペーサ層26と、第1固体電解質層24と、第3基板22cと、外側ポンプ電極44と、基準電極48とで構成される。このセンサセル70によって得られる起電力Vrefによりセンサ外部の被測定ガス中の酸素分圧を検出可能となっている。 Moreover, the gas sensor 10 has an electrochemical sensor cell 70. The sensor cell 70 includes a second solid electrolyte layer 28, a spacer layer 26, a first solid electrolyte layer 24, a third substrate 22c, an outer pump electrode 44, and a reference electrode 48. The electromotive force Vref obtained by the sensor cell 70 can detect the oxygen partial pressure in the gas to be measured outside the sensor.

さらに、センサ素子12においては、第2基板22bと第3基板22cとに上下から挟まれた態様にて、ヒータ72が形成されている。ヒータ72は、第1基板22aの下面22a2に設けられた図示しないヒータ電極を介して外部から給電されることにより発熱する。ヒータ72が発熱することによって、センサ素子12を構成する固体電解質の酸素イオン伝導性が高められる。ヒータ72は、予備空室21、酸素濃度調整室18及び測定空室20の全域に亘って埋設されており、センサ素子12の所定の場所を所定の温度に加熱及び保温することができるようになっている。なお、ヒータ72の上下には、第2基板22b及び第3基板22cとの電気的絶縁性を得る目的で、アルミナ等からなるヒータ絶縁層74が形成されている。以下、ヒータ72、ヒータ電極、ヒータ絶縁層74をまとめてヒータ部とも称する。 Further, in the sensor element 12, the heater 72 is formed so as to be sandwiched between the second substrate 22b and the third substrate 22c from above and below. The heater 72 generates heat by being supplied with electric power from the outside via a heater electrode (not shown) provided on the lower surface 22a2 of the first substrate 22a. When the heater 72 generates heat, the oxygen ion conductivity of the solid electrolyte forming the sensor element 12 is enhanced. The heater 72 is buried over the entire area of the spare chamber 21, the oxygen concentration adjusting chamber 18, and the measurement chamber 20, so that a predetermined place of the sensor element 12 can be heated and kept at a predetermined temperature. Is becoming A heater insulating layer 74 made of alumina or the like is formed above and below the heater 72 for the purpose of obtaining electrical insulation from the second substrate 22b and the third substrate 22c. Hereinafter, the heater 72, the heater electrode, and the heater insulating layer 74 are collectively referred to as a heater section.

そして、予備空室21は、後述する駆動制御手段108(図2参照)によって駆動し、駆動中は、ガス導入口16から導入された被測定ガス中の酸素分圧を調整するための空間として機能する。酸素分圧は、予備ポンプセル80が作動することによって調整される。 The spare chamber 21 is driven by the drive control unit 108 (see FIG. 2) described later, and is a space for adjusting the oxygen partial pressure in the measured gas introduced from the gas introduction port 16 during the driving. Function. The oxygen partial pressure is adjusted by operating the auxiliary pump cell 80.

予備ポンプセル80は、第2固体電解質層28の下面28bの予備空室21に面する略全域に設けられた予備ポンプ電極82と、外側ポンプ電極44と、第2固体電解質層28とによって構成される、電気化学的ポンプセルである。 The preliminary pump cell 80 is configured by a preliminary pump electrode 82 provided on the lower surface 28 b of the second solid electrolyte layer 28 substantially in the entire area facing the preliminary chamber 21, an outer pump electrode 44, and the second solid electrolyte layer 28. It is an electrochemical pump cell.

なお、予備ポンプ電極82についても、主ポンプ電極42と同様に、被測定ガス中のNOx成分に対する還元能力を弱めた材料を用いて形成される。 As with the main pump electrode 42, the auxiliary pump electrode 82 is also made of a material having a reduced ability to reduce NOx components in the gas to be measured.

予備ポンプセル80は、予備ポンプ電極82と、外側ポンプ電極44との間に所望の予備電圧Vp0を印加することにより、予備空室21内の雰囲気中の酸素を外部空間に汲み出し、あるいは、外部空間から予備空室21内に酸素を汲み入れることが可能となっている。 The preliminary pump cell 80 pumps out oxygen in the atmosphere in the preliminary vacant chamber 21 to the external space or external space by applying a desired preliminary voltage Vp0 between the preliminary pump electrode 82 and the outer pump electrode 44. Therefore, it is possible to pump oxygen into the spare space 21.

また、ガスセンサ10は、予備空室21内における雰囲気中の酸素分圧を制御するために、予備ポンプ制御用の予備酸素分圧検出センサセル84を有する。この予備酸素分圧検出センサセル84は、予備ポンプ電極82と、基準電極48と、第2固体電解質層28と、スペーサ層26と、第1固体電解質層24とを有する。予備酸素分圧検出センサセル84は、予備空室21内の雰囲気中の酸素濃度と基準ガス中の酸素濃度との差によって生じる、予備ポンプ電極82と基準電極48との間の起電力を予備起電力V0として検出する。 Further, the gas sensor 10 has a preliminary oxygen partial pressure detection sensor cell 84 for controlling a preliminary pump in order to control the oxygen partial pressure in the atmosphere in the preliminary empty chamber 21. This preliminary oxygen partial pressure detection sensor cell 84 has a preliminary pump electrode 82, a reference electrode 48, a second solid electrolyte layer 28, a spacer layer 26, and a first solid electrolyte layer 24. The preliminary oxygen partial pressure detection sensor cell 84 preliminarily generates an electromotive force between the preliminary pump electrode 82 and the reference electrode 48, which is generated by the difference between the oxygen concentration in the atmosphere in the preliminary chamber 21 and the oxygen concentration in the reference gas. It is detected as electric power V0.

なお、この予備酸素分圧検出センサセル84にて検出される予備起電力V0に基づいて電圧制御される予備可変電源86にて、予備ポンプセル80がポンピングを行う。これにより、予備空室21内の雰囲気中の酸素分圧は、NOxの測定に実質的に影響を及ぼさない低い分圧にまで制御されるようになっている。 Note that the auxiliary pump cell 80 performs pumping by the auxiliary variable power supply 86 whose voltage is controlled based on the auxiliary electromotive force V0 detected by the auxiliary oxygen partial pressure detection sensor cell 84. As a result, the oxygen partial pressure in the atmosphere in the spare chamber 21 is controlled to a low partial pressure that does not substantially affect the measurement of NOx.

また、これとともに、その予備ポンプ電流Ip0が、予備酸素分圧検出センサセル84の予備起電力V0の制御に用いられるようになっている。具体的には、予備ポンプ電流Ip0は、制御信号として予備酸素分圧検出センサセル84に入力され、その予備起電力V0が制御されることにより、第1拡散律速部30から予備空室21内に導入される被測定ガス中の酸素分圧の勾配が常に一定となるように制御されている。 Along with this, the preliminary pump current Ip0 is used to control the preliminary electromotive force V0 of the preliminary oxygen partial pressure detection sensor cell 84. Specifically, the preliminary pump current Ip0 is input to the preliminary oxygen partial pressure detection sensor cell 84 as a control signal, and the preliminary electromotive force V0 thereof is controlled, so that the preliminary diffusion current Ip0 is transferred from the first diffusion rate controlling unit 30 into the preliminary chamber 21. The gradient of the oxygen partial pressure in the measured gas introduced is controlled so that it is always constant.

なお、予備空室21は、緩衝空間としても機能する。すなわち、外部空間における被測定ガスの圧力変動によって生じる被測定ガスの濃度変動を打ち消すことが可能である。このような被測定ガスの圧力変動としては、例えば自動車の排気ガスの排気圧の脈動等が挙げられる。 The spare vacant chamber 21 also functions as a buffer space. That is, it is possible to cancel the fluctuation in the concentration of the gas to be measured caused by the fluctuation in the pressure of the gas to be measured in the external space. Examples of such pressure fluctuations of the gas to be measured include pulsation of exhaust pressure of exhaust gas of an automobile.

さらに、ガスセンサ10は、図2に模式的に示すように、酸素濃度調整室18内の酸素濃度を制御する酸素濃度制御手段100(主酸素濃度制御手段)と、センサ素子12の温度を制御する温度制御手段102と、測定空室20内の特定成分(NO又はNH)の濃度を測定する特定成分測定手段104と、予備酸素濃度制御手段106と、駆動制御手段108と、目的成分取得手段110とを有する。 Further, the gas sensor 10 controls the temperature of the oxygen concentration control means 100 (main oxygen concentration control means) for controlling the oxygen concentration in the oxygen concentration adjusting chamber 18 and the temperature of the sensor element 12, as schematically shown in FIG. Temperature control means 102, specific component measuring means 104 for measuring the concentration of a specific component (NO or NH 3 ) in the measurement chamber 20, preliminary oxygen concentration control means 106, drive control means 108, target component acquisition means. 110 and.

なお、酸素濃度制御手段100、温度制御手段102、特定成分測定手段104、予備酸素濃度制御手段106、駆動制御手段108及び目的成分取得手段110は、例えば1つ又は複数のCPU(中央処理ユニット)と記憶装置等を有する1以上の電子回路により構成される。電子回路は、例えば記憶装置に記憶されているプログラムをCPUが実行することにより、所定の機能が実現されるソフトウェア機能部でもある。もちろん、複数の電子回路を機能に合わせて接続したFPGA(Field-Programmable Gate Array)等の集積回路等で構成してもよい。 The oxygen concentration control means 100, the temperature control means 102, the specific component measurement means 104, the preliminary oxygen concentration control means 106, the drive control means 108, and the target component acquisition means 110 are, for example, one or a plurality of CPUs (central processing units). And one or more electronic circuits having a storage device and the like. The electronic circuit is also a software function unit in which a predetermined function is realized by the CPU executing a program stored in a storage device, for example. Of course, an integrated circuit such as an FPGA (Field-Programmable Gate Array) in which a plurality of electronic circuits are connected according to their functions may be used.

ガスセンサ10は、上述した酸素濃度調整室18、酸素濃度制御手段100及び温度制御手段102及び特定成分測定手段104に加えて、予備空室21、予備酸素濃度制御手段106、駆動制御手段108及び目的成分取得手段110を具備することで、NO(酸化窒素)及びNH(アンモニア)の各濃度を取得することができる。 The gas sensor 10 includes, in addition to the oxygen concentration adjusting chamber 18, the oxygen concentration controlling means 100, the temperature controlling means 102, and the specific component measuring means 104, the spare chamber 21, the spare oxygen concentration controlling means 106, the drive controlling means 108, and the purpose. By providing the component acquisition means 110, it is possible to acquire each concentration of NO (nitrogen oxide) and NH 3 (ammonia).

酸素濃度制御手段100は、予め設定された酸素濃度の条件と、第1酸素分圧検出センサセル50(図1参照)において生じる第1起電力V1とに基づいて、第1可変電源46をフィードバック制御し、酸素濃度調整室18内の酸素濃度を上記条件に従った濃度に調整する。 The oxygen concentration control means 100 feedback-controls the first variable power supply 46 based on a preset oxygen concentration condition and the first electromotive force V1 generated in the first oxygen partial pressure detection sensor cell 50 (see FIG. 1). Then, the oxygen concentration in the oxygen concentration adjusting chamber 18 is adjusted to the concentration according to the above conditions.

温度制御手段102は、予め設定されたセンサ温度の条件と、センサ素子12の温度を計測する温度センサ(図示せず)からの計測値とに基づいて、ヒータ72をフィードバック制御することにより、センサ素子12の温度を上記条件に従った温度に調整する。 The temperature control unit 102 feedback-controls the heater 72 based on a preset sensor temperature condition and a measurement value from a temperature sensor (not shown) that measures the temperature of the sensor element 12, thereby the sensor The temperature of the element 12 is adjusted to the temperature according to the above conditions.

ガスセンサ10は、これらの酸素濃度制御手段100及び温度制御手段102によって、酸素濃度調整室18内のNOを分解させることなく、NHが全てNOに変換されるように、酸素濃度調整室18内の状態を制御する。 The gas sensor 10 is controlled by the oxygen concentration control means 100 and the temperature control means 102 so that all NH 3 is converted to NO without decomposing NO in the oxygen concentration control chamber 18. Control the state of.

特定成分測定手段104は、測定電極62と外側ポンプ電極44との間に流れる測定ポンプ電流Ip3を検出して出力する。また、特定成分測定手段104は、予備ポンプセル80の切り換え後の測定ポンプ電流Ip3の時間変化率dIp3/dtを求めて、そのピーク値を検出する。さらに、特定成分測定手段104は、第2マップ114を参照して、測定ポンプ電流Ip3の時間変化率dIp3/dtのピーク値から測定ポンプ電流Ip3の定常値までの変化量ΔIp3を求め、その変化量ΔIp3を、切換前の測定ポンプ電流Ip3に加算することで、測定ポンプ電流Ip3の定常値(予測値)を求める。なお、第2マップ114は、予備ポンプセル80のONとOFFとの動作切換に伴う測定ポンプ電流Ip3の時間変化率dIp3/dtのピーク値で特定されるポイント毎に、測定ポンプ電流Ip3の定常値までの変化量ΔIp3との関係が登録されているデータ群を含む。また、第2マップ114は、予備ポンプセル80のONとOFFとの動作切換に伴う測定ポンプ電流Ip3の時間変化率dIp3/dtのピーク値で特定されるポイント毎に、被測定ガス中のNH濃度との関係が登録されたデータ群をさらに備えていてもよい。第2マップ114に登録されるデータ群は、予め実験又はシミュレーションにより求めた関係が用いられる。 The specific component measuring means 104 detects and outputs the measurement pump current Ip3 flowing between the measurement electrode 62 and the outer pump electrode 44. Further, the specific component measuring means 104 obtains the time change rate dIp3/dt of the measured pump current Ip3 after the switching of the auxiliary pump cell 80, and detects the peak value thereof. Furthermore, the specific component measuring means 104 refers to the second map 114 to obtain the change amount ΔIp3 from the peak value of the time change rate dIp3/dt of the measured pump current Ip3 to the steady value of the measured pump current Ip3, and the change thereof. The steady value (predicted value) of the measured pump current Ip3 is obtained by adding the amount ΔIp3 to the measured pump current Ip3 before switching. The second map 114 shows that the steady-state value of the measured pump current Ip3 is set at each point specified by the peak value of the time change rate dIp3/dt of the measured pump current Ip3 that accompanies the ON/OFF switching of the auxiliary pump cell 80. Up to the change amount ΔIp3 are included in the data group. Further, the second map 114 shows that NH 3 in the gas to be measured is specified for each point specified by the peak value of the time rate of change dIp3/dt of the measured pump current Ip3 due to the ON/OFF switching of the auxiliary pump cell 80. It may further include a data group in which the relationship with the density is registered. As the data group registered in the second map 114, the relationship obtained in advance by experiments or simulations is used.

予備酸素濃度制御手段106は、予め設定された酸素濃度の条件と、予備酸素分圧検出センサセル84(図1参照)において生じる予備起電力V0とに基づいて、予備可変電源86をフィードバック制御することにより、予備空室21内の酸素濃度を、条件に従った濃度に調整する。 The preliminary oxygen concentration control unit 106 feedback-controls the preliminary variable power supply 86 based on the preset oxygen concentration condition and the preliminary electromotive force V0 generated in the preliminary oxygen partial pressure detection sensor cell 84 (see FIG. 1). Thus, the oxygen concentration in the spare chamber 21 is adjusted to the concentration according to the conditions.

そして、目的成分取得手段110は、予備酸素濃度制御手段106の第1動作による特定成分測定手段104からのセンサ出力と、予備酸素濃度制御手段106の第2動作による特定成分測定手段104からのセンサ出力との差に基づいて、NO及びNHの各濃度を取得する。 Then, the target component acquisition unit 110 outputs the sensor output from the specific component measuring unit 104 according to the first operation of the preliminary oxygen concentration control unit 106 and the sensor output from the specific component measuring unit 104 according to the second operation of the preliminary oxygen concentration control unit 106. Each concentration of NO and NH 3 is acquired based on the difference from the output.

ここで、予備酸素濃度制御手段106により予備ポンプ電極82に印加される予備電圧Vp0によって、被測定ガス中のNO及びNHは以下のように変化する。 Here, by the preliminary voltage Vp0 applied to the preliminary pump electrode 82 by the preliminary oxygen concentration control means 106, NO and NH 3 in the gas to be measured change as follows.

まず、第1の電圧範囲では、予備空室21内のNHがNHのままに保たれる。予備空室21内のNHはNHのまま、第2拡散律速部32を通過して酸素濃度調整室18内に到達する。また、予備空室21内のNOはNOのまま第2拡散律速部32を通過して酸素濃度調整室18内に到達する。 First, in the first voltage range, NH 3 in the spare chamber 21 is kept as NH 3 . NH 3 in the spare chamber 21 remains in the NH 3 state and passes through the second diffusion rate controlling unit 32 to reach the oxygen concentration adjusting chamber 18. Further, NO in the spare chamber 21 passes through the second diffusion rate controlling unit 32 as it is, and reaches the oxygen concentration adjusting chamber 18.

第2の電圧範囲では、予備空室21内のNHがNOに酸化されて第2拡散律速部32を通過して酸素濃度調整室18に到達する。また、NOはNOのまま第2拡散律速部32を通過して酸素濃度調整室18に到達する。 In the second voltage range, NH 3 in the spare chamber 21 is oxidized into NO, passes through the second diffusion control part 32, and reaches the oxygen concentration adjusting chamber 18. Further, NO passes through the second diffusion rate controlling unit 32 as it is, and reaches the oxygen concentration adjusting chamber 18.

予備酸素濃度制御手段106は、第1動作時において第1電圧Vaを予備電圧Vp0として印加し、第2動作時において第2電圧Vbを予備電圧Vp0として出力する。なお、被測定ガスの酸素濃度によっては、予備空室21内に酸素を汲み入れる場合もあり、その場合には、第1電圧Vaは負の値をとってもよい。予備空室21内の酸素の汲み出し又は汲み入れを行わない場合には、第1電圧VaをVoffとしてもよい。 The preliminary oxygen concentration control means 106 applies the first voltage Va as the preliminary voltage Vp0 during the first operation, and outputs the second voltage Vb as the preliminary voltage Vp0 during the second operation. In addition, depending on the oxygen concentration of the gas to be measured, oxygen may be pumped into the spare chamber 21, and in that case, the first voltage Va may take a negative value. When oxygen is not pumped out or pumped into the spare chamber 21, the first voltage Va may be Voff.

上記のように、第1動作時にはNH成分がNHのまま第2拡散律速部32を通過して測定ポンプ電流(センサ出力)Ip3に反映される。また、第2動作時にはNH成分がNOとして第2拡散律速部32を通過して測定ポンプ電流(センサ出力)Ip3に反映される。NHは、NOよりも素早く第2拡散律速部32を拡散できるため、第1動作時と第2動作時とで、測定ポンプ電流(センサ出力)Ip3が変化する。それらの差分の大きさは、被測定ガス中のNHの濃度を反映したものとなる。すなわち、NHとNOの拡散速度差を利用して、測定ポンプ電流(センサ出力)Ip3をNO成分とNH成分とに分解できる。したがって、ガスセンサ10は、予備酸素濃度制御手段106の第1動作と第2動作による特定成分測定手段104からのセンサ出力との差に基づいて、NO及びNHの濃度を求める。 As described above, during the first operation, the NH 3 component remains NH 3 and passes through the second diffusion rate controlling unit 32, and is reflected in the measured pump current (sensor output) Ip3. Further, during the second operation, the NH 3 component passes through the second diffusion rate controlling unit 32 as NO and is reflected in the measured pump current (sensor output) Ip3. Since NH 3 can diffuse through the second diffusion rate controlling unit 32 faster than NO, the measured pump current (sensor output) Ip3 changes between the first operation and the second operation. The magnitude of the difference reflects the concentration of NH 3 in the measured gas. That is, the measured pump current (sensor output) Ip3 can be decomposed into the NO component and the NH 3 component by utilizing the diffusion speed difference between NH 3 and NO. Therefore, the gas sensor 10 obtains the concentrations of NO and NH 3 based on the difference between the sensor output from the specific component measuring unit 104 according to the first operation and the second operation of the preliminary oxygen concentration control unit 106.

次に、ガスセンサ10の処理動作について、図3及び図4を参照しつつ説明する。 Next, the processing operation of the gas sensor 10 will be described with reference to FIGS. 3 and 4.

まず、駆動制御手段108によって予備酸素濃度制御手段106が第1動作している期間では、図3に示すように、ガス導入口16を通じて導入したNHは、酸素濃度調整室18まで到達する。酸素濃度調整室18では、酸素濃度制御手段100によって、NHを全てNOに変換するように制御されることから、予備空室21から酸素濃度調整室18に流入したNHは酸素濃度調整室18内でNHからNOに酸化される反応が起こり、酸素濃度調整室18内の全てのNHがNOに変換される。したがって、ガス導入口16を通じて導入されたNHは、第1拡散律速部30及び第2拡散律速部32をNHの拡散係数(例えば、2.2cm/sec)で通過し、酸素濃度調整室18内でNOに変換された後は、第3拡散律速部34をNOの拡散係数(例えば、1.8cm/sec)で通過して、隣接する測定空室20内に移動する。 First, while the preliminary oxygen concentration control unit 106 is in the first operation by the drive control unit 108, as shown in FIG. 3, NH 3 introduced through the gas introduction port 16 reaches the oxygen concentration adjustment chamber 18. In the oxygen concentration adjusting chamber 18, since the oxygen concentration controlling means 100 controls to convert all NH 3 into NO, the NH 3 flowing into the oxygen concentration adjusting chamber 18 from the reserve chamber 21 is oxygen concentration adjusting chamber. A reaction occurs in which NH 3 is oxidized to NO in 18 and all NH 3 in the oxygen concentration adjusting chamber 18 is converted to NO. Therefore, NH 3 introduced through the gas inlet 16 passes through the first diffusion rate controlling unit 30 and the second diffusion rate controlling unit 32 with a diffusion coefficient of NH 3 (for example, 2.2 cm 2 /sec) to adjust the oxygen concentration. After being converted into NO in the chamber 18, it passes through the third diffusion control part 34 with a diffusion coefficient of NO (for example, 1.8 cm 2 /sec) and moves into the adjacent measurement space 20.

一方、駆動制御手段108によって予備酸素濃度制御手段106が第2動作している期間では、図4に示すように、予備空室21内でNHからNOの酸化反応が起こり、ガス導入口16を通じて導入された全てのNHがNOに変換される。したがって、NHは第1拡散律速部30をNHの拡散係数で通過するが、予備空室21より奥にある第2拡散律速部32以降はNOの拡散係数で通過して測定空室20に移動する。 On the other hand, during the period in which the preliminary oxygen concentration control unit 106 is in the second operation by the drive control unit 108, as shown in FIG. 4, an oxidation reaction of NH 3 to NO occurs in the preliminary vacant chamber 21, and the gas introduction port 16 All NH 3 introduced through is converted to NO. Therefore, NH 3 passes through the first diffusion-controlling part 30 with the diffusion coefficient of NH 3 , but after the second diffusion-controlling part 32 behind the spare space 21, it passes with the diffusion coefficient of NO, and the measurement space 20. Move to.

すなわち、予備酸素濃度制御手段106が第1動作状態から第2動作状態に切り換わることで、NHの酸化反応が起こる場所が酸素濃度調整室18から予備空室21に移動する。 That is, when the preliminary oxygen concentration control unit 106 switches from the first operating state to the second operating state, the place where the NH 3 oxidation reaction occurs moves from the oxygen concentration adjusting chamber 18 to the preliminary vacant chamber 21.

NHの酸化反応が起こる場所が酸素濃度調整室18から予備空室21に移動することは、被測定ガス中のNHが第2拡散律速部32を通過する際の状態がNHからNOに変わることに等しい。そして、NO、NHは各々異なる拡散係数を持つため、第2拡散律速部32をNOで通過するか、NHで通過するかの違いは、測定空室20に流れ込むNOの量の違いとして現れ、測定用ポンプセル61に流れる測定ポンプ電流Ip3を変化させる。 The fact that the location where the NH 3 oxidation reaction occurs moves from the oxygen concentration adjusting chamber 18 to the preliminary vacant chamber 21 means that the state when NH 3 in the measured gas passes through the second diffusion control part 32 is from NH 3 to NO. Is equivalent to changing to. Since NO and NH 3 have different diffusion coefficients, the difference between passing NO in the second diffusion control part 32 and passing in NH 3 is the difference in the amount of NO flowing into the measurement chamber 20. The measured pump current Ip3 that appears and flows through the measuring pump cell 61 is changed.

この場合、予備ポンプセル80の第2動作を行っている際の測定ポンプ電流Ip3(Vb)と、予備ポンプセル80の第1動作時の測定ポンプ電流Ip3(Va)の変化量ΔIp3は、被測定ガス中のNHの濃度によって一義的に定まる。そのため、測定ポンプ電流Ip3(Vb)又はIp3(Va)と、測定ポンプ電流Ip3の変化量ΔIp3とからNOとNHの各濃度を算出することができる。 In this case, the change amount ΔIp3 between the measured pump current Ip3 (Vb) during the second operation of the auxiliary pump cell 80 and the measured pump current Ip3 (Va) during the first operation of the auxiliary pump cell 80 is the measured gas. It is uniquely determined by the concentration of NH 3 in the solution. Therefore, the concentrations of NO and NH 3 can be calculated from the measured pump current Ip3 (Vb) or Ip3 (Va) and the change amount ΔIp3 of the measured pump current Ip3.

目的成分取得手段110は、予備ポンプセル80の第1動作時の測定ポンプ電流Ip3(Va)と、第1動作時及び第2動作時の測定ポンプ電流Ip3の変化量ΔIp3との第1マップ112に基づいてNO及びNHの各濃度を求める。第1マップ112は、予め実験又はシミュレーションで求めた変化量ΔIp3とNH濃度との相関関係を示すデータ群であり、複数の異なるNO濃度に対応する複数組のデータ群により構成される。目的成分取得手段110は、予備ポンプセル80のOFF時の測定ポンプ電流Ip3offに基づいて、いずれのNO濃度に対応する変化量ΔIp3とNH濃度との相関関係を用いればよいかを割り出し、該当する変化量ΔIp3に基づいて、NH濃度を同定する。 The target component acquisition means 110 uses the first map 112 of the measured pump current Ip3 (Va) during the first operation of the auxiliary pump cell 80 and the variation ΔIp3 of the measured pump current Ip3 during the first operation and the second operation. Based on this, the concentrations of NO and NH 3 are obtained. The first map 112 is a data group showing a correlation between the change amount ΔIp3 and the NH 3 concentration obtained in advance by an experiment or a simulation, and is composed of a plurality of data groups corresponding to a plurality of different NO concentrations. Based on the measured pump current Ip3off when the auxiliary pump cell 80 is OFF, the target component acquisition means 110 determines which NO concentration the change ΔIp3 corresponding to the correlation with the NH 3 concentration should be used, and applies it. The NH 3 concentration is identified based on the change amount ΔIp3.

また、目的成分取得手段110は、予め実験又はシミュレーションにより、変化量ΔIp3とNH濃度との関係を求めておき、予備ポンプセル80のON時とOFF時の変化量ΔIp3からNH濃度を求めてもよい。そして、予備ポンプセル80のOFF時におけるセンサ出力から得られるNO濃度、すなわち、NOとNHの濃度の全てをNOに変換した総NO濃度から、上述して求めたNH濃度を差し引いてNO濃度を求めてもよい。 Further, the target component acquisition means 110 obtains the relationship between the variation ΔIp3 and the NH 3 concentration in advance by an experiment or a simulation, and obtains the NH 3 concentration from the variation ΔIp3 when the auxiliary pump cell 80 is ON and OFF. Good. Then, the NO concentration obtained by subtracting the NH 3 concentration obtained above is subtracted from the NO concentration obtained from the sensor output when the auxiliary pump cell 80 is OFF, that is, the total NO concentration obtained by converting all the concentrations of NO and NH 3 into NO. May be asked.

ここで、以上のようなガスセンサ10の特定成分測定手段104における、測定ポンプ電流Ip3(センサ出力)の取得処理及び目的成分取得手段110による目的成分の取得処理について図5のフローチャート及び図6の模式図を参照しつつ説明する。 Here, the acquisition process of the measured pump current Ip3 (sensor output) and the acquisition process of the target component by the target component acquisition unit 110 in the specific component measurement unit 104 of the gas sensor 10 as described above are illustrated in the flowchart of FIG. Description will be given with reference to the drawings.

まず、図5のステップS10において、ガスセンサ10は、予備ポンプセル80をONに切り換える(第2動作)。これにより、予備空室21内において被測定ガス中のNHがNOに変換されて第2拡散律速部32を通過し、第2拡散律速部32でのNOとNHの拡散係数の相違に基づき、測定用ポンプセル61に流れる測定ポンプ電流Ip3が変化する。 First, in step S10 of FIG. 5, the gas sensor 10 switches the auxiliary pump cell 80 to ON (second operation). As a result, NH 3 in the gas to be measured is converted into NO in the spare chamber 21 and passes through the second diffusion control part 32, and the difference in diffusion coefficient between NO and NH 3 in the second diffusion control part 32 becomes. Based on this, the measured pump current Ip3 flowing through the measuring pump cell 61 changes.

ここで、予備ポンプセル80の動作状態をOFFからONに切り換えると、測定ポンプ電流Ip3は、図6に示すように、NOガスの拡散抵抗、測定電極表面での電極反応抵抗、及び各ポンプ電圧制御の遅れによる過渡的な変化を行った後、定常値に落ち着く。測定ポンプ電流Ip3の時間変化率dIp3/dtは、切換直後に大きく、時間経過とともに一定値に落ち着くように変化する。また、測定ポンプ電流Ip3の時間変化率dIp3/dtは、予備ポンプセル80のON時の測定ポンプ電流Ip3onと、予備ポンプセル80のOFF時の測定ポンプ電流Ip3offとの差である変化量ΔIp3に略比例する。そこで、本実施形態では、測定ポンプ電流Ip3の時間変化率dIp3/dtに着目する。 Here, when the operating state of the auxiliary pump cell 80 is switched from OFF to ON, the measured pump current Ip3 is, as shown in FIG. 6, NO gas diffusion resistance, electrode reaction resistance on the measurement electrode surface, and each pump voltage control. After making a transient change due to the delay of, settles to a steady value. The time change rate dIp3/dt of the measured pump current Ip3 is large immediately after the switching, and changes so as to settle to a constant value over time. The time change rate dIp3/dt of the measured pump current Ip3 is substantially proportional to the amount of change ΔIp3 which is the difference between the measured pump current Ip3on when the auxiliary pump cell 80 is ON and the measured pump current Ip3off when the auxiliary pump cell 80 is OFF. To do. Therefore, in this embodiment, attention is paid to the time change rate dIp3/dt of the measured pump current Ip3.

すなわち、図5のステップS20において、特定成分測定手段104は、測定ポンプ電流Ip3onの時間変化率dIp3/dtのピーク値を取得する。測定ポンプ電流Ip3onの時間変化率dIp3/dtのピーク値は、図6に示すように、予備ポンプセル80の動作状態の切換から0.5秒以内に現れ、測定ポンプ電流Ip3onが定常値に落ち着くまでの2秒程度の時間よりも素早く結果が得られる。 That is, in step S20 of FIG. 5, the specific component measuring unit 104 acquires the peak value of the time change rate dIp3/dt of the measured pump current Ip3on. As shown in FIG. 6, the peak value of the time change rate dIp3/dt of the measured pump current Ip3on appears within 0.5 seconds after the switching of the operating state of the auxiliary pump cell 80 until the measured pump current Ip3on reaches a steady value. The result can be obtained faster than about 2 seconds.

その後、図5のステップS30において、特定成分測定手段104は、ステップS20で取得した測定ポンプ電流Ip3onの時間変化率dIp3/dtの過渡的なピーク値と、予め実験又はシミュレーションにより求めた時間変化率dIp3/dtのピーク値と測定ポンプ電流Ip3onの定常値との相関関係に基づいて、測定ポンプ電流Ip3onの定常値の予測値を求める。 After that, in step S30 of FIG. 5, the specific component measuring unit 104 determines the transient peak value of the time change rate dIp3/dt of the measured pump current Ip3on acquired in step S20 and the time change rate previously obtained by experiment or simulation. Based on the correlation between the peak value of dIp3/dt and the steady-state value of the measured pump current Ip3on, the predicted value of the steady-state value of the measured pump current Ip3on is obtained.

その後、ステップS40において、ガスセンサ10は、予備ポンプセル80をOFFに切り換える(第1動作)。ステップS10〜ステップS30までの予備ポンプセル80をONにし続ける時間は、測定ポンプ電流Ip3が定常値に落ち着くまでの時間(例えば、2秒程度)よりも短くすることができ、例えば0.5秒程度とすることができる。 Then, in step S40, the gas sensor 10 switches off the auxiliary pump cell 80 (first operation). The time during which the standby pump cell 80 is continuously turned on from step S10 to step S30 can be shorter than the time until the measured pump current Ip3 settles to a steady value (for example, about 2 seconds), for example, about 0.5 seconds. Can be

予備ポンプセル80の動作状態がONからOFFに切り換わることにより、予備空室21内において被測定ガス中のNHがそのまま、第2拡散律速部32を通過し、図3に示すように、酸素濃度調整室18においてNOに変換される。第2拡散律速部32でのNOとNHの拡散係数の相違に基づき、測定用ポンプセル61に流れる測定ポンプ電流Ip3が変化する。 When the operation state of the auxiliary pump cell 80 is switched from ON to OFF, NH 3 in the measured gas in the auxiliary chamber 21 passes through the second diffusion rate controlling unit 32 as it is, and as shown in FIG. It is converted to NO in the concentration adjusting chamber 18. The measurement pump current Ip3 flowing in the measurement pump cell 61 changes based on the difference in the diffusion coefficient between NO and NH 3 in the second diffusion control unit 32.

その際に、予備ポンプセル80の動作状態をONからOFFに切り換えることにより、測定ポンプ電流Ip3はNOガスの拡散抵抗、測定電極表面での電極反応抵抗、及び各ポンプ電圧制御の遅れによる過渡的な変化を行った後、定常値に落ち着く。また、測定ポンプ電流Ip3の時間変化率dIp3/dtは、予備ポンプセル80のOFF時の測定ポンプ電流Ip3offと、予備ポンプセル80のON時の測定ポンプ電流Ip3onとの差である変化量ΔIp3に略比例する。ステップS50において、特定成分測定手段104は測定ポンプ電流Ip3offの時間変化率dIp3/dtの過渡ピーク値を測定する。 At this time, by switching the operating state of the auxiliary pump cell 80 from ON to OFF, the measured pump current Ip3 is transient due to the diffusion resistance of NO gas, the electrode reaction resistance on the surface of the measurement electrode, and the delay of each pump voltage control. After making a change, settles to a steady value. The time change rate dIp3/dt of the measured pump current Ip3 is approximately proportional to the amount of change ΔIp3 which is the difference between the measured pump current Ip3off when the backup pump cell 80 is OFF and the measured pump current Ip3on when the backup pump cell 80 is ON. To do. In step S50, the specific component measuring unit 104 measures the transient peak value of the time change rate dIp3/dt of the measured pump current Ip3off.

次のステップS60において、特定成分測定手段104は、ステップS50で取得した測定ポンプ電流Ip3の時間変化率dIp3/dtの過渡的なピーク値と、予め実験又はシミュレーションにより求めた時間変化率dIp3/dtのピーク値と測定ポンプ電流Ip3の定常値との相関関係に基づいて、測定ポンプ電流Ip3offの定常値の予測値を求める。 In the next step S60, the specific component measuring means 104, the transient peak value of the time change rate dIp3/dt of the measured pump current Ip3 obtained in step S50, and the time change rate dIp3/dt previously obtained by experiment or simulation. The predicted value of the steady-state value of the measured pump current Ip3off is obtained based on the correlation between the peak value of 1 and the steady-state value of the measured pump current Ip3.

次のステップS70において、目的成分取得手段110は、ステップS30で求めた測定ポンプ電流Ip3onと、ステップS60で求めた測定ポンプ電流Ip3offと、それらの変化量ΔIp3とに基づいて、目的成分であるNH濃度及びNO濃度を取得する。 In the next step S70, the target component acquisition means 110 determines the target component NH based on the measured pump current Ip3on obtained in step S30, the measured pump current Ip3off obtained in step S60, and their variation ΔIp3. 3 concentration and NO concentration are acquired.

すなわち、目的成分取得手段110は、予備ポンプセル80のOFF時の測定ポンプ電流Ip3offに基づいて、第1マップ112のいずれのNO濃度に対応する変化量ΔIp3とNH濃度との相関関係を用いればよいかを割り出し、該当する変化量ΔIp3に基づいて、NH濃度を同定する。そして、目的成分取得手段110は、予備ポンプセル80のOFF時におけるセンサ出力から得られるNO濃度、すなわちNOとNHの濃度の全てをNOに変換した総NO濃度から、上述して求めたNH濃度を差し引いてNO濃度を求める。 That is, if the target component acquisition means 110 uses the correlation between the change amount ΔIp3 and the NH 3 concentration corresponding to any NO concentration in the first map 112, based on the measured pump current Ip3off when the preliminary pump cell 80 is OFF. Whether it is good or not is determined, and the NH 3 concentration is identified based on the corresponding change amount ΔIp3. Then, NH 3 target component acquiring unit 110, the NO concentration obtained from the sensor output at the time of OFF of the pre-pump cell 80, namely that all the concentrations of NO and NH 3 from the total NO concentration converted to NO, obtained by the above-described The NO concentration is obtained by subtracting the concentration.

その後、ステップS80において、ガスセンサ10は、測定終了の入力の有無を調べる。測定終了の入力がない場合は、ステップS10に移行する。この場合、ステップS40からステップS10に切り換わるまでの時間は、測定ポンプ電流Ip3が定常値になるまでの時間よりも短くてよく、例えば0.5秒程度とすることができる。 After that, in step S80, the gas sensor 10 checks whether or not there is an input for ending the measurement. If there is no input of measurement end, the process proceeds to step S10. In this case, the time taken to switch from step S40 to step S10 may be shorter than the time taken for the measured pump current Ip3 to reach a steady value, and can be set to, for example, about 0.5 seconds.

一方、ステップS80において、測定終了の入力があると判断された場合には、ガスセンサ10は、測定を終了する。 On the other hand, if it is determined in step S80 that there is an input to end the measurement, the gas sensor 10 ends the measurement.

以上のように、本実施形態のガスセンサ10によれば、予備ポンプセル80の動作の切換周期を短くできるため、測定ポンプ電流Ip3の測定時刻の遅延による測定精度の低下を防止できる。 As described above, according to the gas sensor 10 of the present embodiment, the switching cycle of the operation of the auxiliary pump cell 80 can be shortened, so that the measurement accuracy can be prevented from lowering due to the delay of the measurement time of the measurement pump current Ip3.

(実験例1)
以下、本実施形態のガスセンサ10を用いた実験例について説明する。実験例1では、ガスセンサ10に対して、NO濃度が0ppmで、NH濃度が0ppm、100ppm、200ppm、300ppm、400ppm及び500ppmの6種類の被測定ガスを供給し、予備ポンプセル80の動作状態をOFFからONに切り換えた際の、測定ポンプ電流Ip3の時間変化率を求めた。
(Experimental example 1)
Hereinafter, an experimental example using the gas sensor 10 of the present embodiment will be described. In Experimental Example 1, six kinds of measured gases having NO concentration of 0 ppm and NH 3 concentration of 0 ppm, 100 ppm, 200 ppm, 300 ppm, 400 ppm and 500 ppm were supplied to the gas sensor 10, and the operation state of the auxiliary pump cell 80 was changed. The time rate of change of the measured pump current Ip3 when switching from OFF to ON was obtained.

図7に示すように、実験例1では時刻15秒において予備ポンプセル80の動作状態を切り換えた。被測定ガス中のNH濃度に関わらず、2秒程度で測定ポンプ電流Ip3onが定常値に収束することが確認できた。また、測定ポンプ電流Ip3の傾きは、NH濃度が高いほど大きくなる傾向が確認できた。 As shown in FIG. 7, in Experimental Example 1, the operation state of the auxiliary pump cell 80 was switched at time 15 seconds. It was confirmed that the measured pump current Ip3on converges to a steady value in about 2 seconds regardless of the NH 3 concentration in the measured gas. Further, it was confirmed that the slope of the measured pump current Ip3 tends to increase as the NH 3 concentration increases.

各被測定ガスに対する測定ポンプ電流Ip3の時間変化率を求めると、図8に示すように、予備ポンプセル80の切換時刻15秒の約0.5秒後に時間変化率のピーク値が表れ、そのピーク値は、切換後の測定ポンプ電流Ip3onの変化が大きなものほど、大きな値を取る。また、測定ポンプ電流Ip3の時間変化率と切換後の測定ポンプ電流Ip3の変化量ΔIp3との間には一定の相関があることが確認できた。したがって、測定ポンプ電流Ip3の時間変化率を取得することにより、測定ポンプ電流Ip3が定常値に収束する前に、その定常値を求めることができる。 When the rate of change of the measured pump current Ip3 with respect to each gas to be measured is obtained, as shown in FIG. 8, a peak value of the rate of time change appears about 0.5 seconds after the switching time of the standby pump cell 80 of 15 seconds, and the peak value thereof appears. The larger the change in the measured pump current Ip3on after switching, the larger the value. Further, it was confirmed that there is a certain correlation between the rate of change of the measured pump current Ip3 with time and the amount of change ΔIp3 of the measured pump current Ip3 after switching. Therefore, by obtaining the time change rate of the measured pump current Ip3, the steady value can be obtained before the measured pump current Ip3 converges to the steady value.

測定ポンプ電流Ip3の時間変化率dIp3/dtは、図9に示すように、被測定ガス中のNH濃度に略比例して変化する。したがって、測定ポンプ電流Ip3の時間変化率dIp3/dtから直接被測定ガス中のNH濃度を求めることもできる。 As shown in FIG. 9, the time change rate dIp3/dt of the measured pump current Ip3 changes substantially in proportion to the NH 3 concentration in the measured gas. Therefore, the NH 3 concentration in the measured gas can be directly obtained from the time change rate dIp3/dt of the measured pump current Ip3.

(実験例2)
次に、実験例2では、ガスセンサ10に対して、NO濃度が500ppmで、NH濃度が0ppm、100ppm、200ppm、300ppm、400ppm及び500ppmの6種類の被測定ガスを供給し、予備ポンプセル80の動作状態をOFFからONに切り換えた際の、測定ポンプ電流Ip3の時間変化率を求めた。
(Experimental example 2)
Next, in Experimental Example 2, six types of measured gases having NO concentration of 500 ppm and NH 3 concentration of 0 ppm, 100 ppm, 200 ppm, 300 ppm, 400 ppm, and 500 ppm were supplied to the gas sensor 10, and the preliminary pump cell 80 The time rate of change of the measured pump current Ip3 when the operating state was switched from OFF to ON was obtained.

図10に示すように、NO濃度が500ppmとした場合であっても、測定ポンプ電流Ip3の傾きは、NH濃度が高いほど大きくなる傾向が確認できた。また、図11に示すように、測定ポンプ電流Ip3の時間変化率dIp3/dtのピーク値は、切換後の測定ポンプ電流Ip3onの変化が大きなものほど、大きな値を取ることが確認できた。したがって、実験例2により、NOが混在する被測定ガスにおいても、測定ポンプ電流Ip3の時間変化率dIp3/dtのピーク値から、測定ポンプ電流Ip3on(定常値)が求まることが確認できた。また、測定ポンプ電流Ip3の時間変化率dIp3/dtのピーク値は0.5秒程度で求めることができ、測定ポンプ電流Ip3が定常値に収束するまで待機することなく、測定ポンプ電流Ip3onを求められる。 As shown in FIG. 10, even when the NO concentration was 500 ppm, it was confirmed that the slope of the measured pump current Ip3 tended to increase as the NH 3 concentration increased. Further, as shown in FIG. 11, it was confirmed that the peak value of the time change rate dIp3/dt of the measured pump current Ip3 takes a larger value as the changed change of the measured pump current Ip3on becomes larger. Therefore, it was confirmed from Experimental Example 2 that the measured pump current Ip3on (steady value) can be obtained from the peak value of the time change rate dIp3/dt of the measured pump current Ip3 even in the measured gas in which NO is mixed. Further, the peak value of the time change rate dIp3/dt of the measured pump current Ip3 can be obtained in about 0.5 seconds, and the measured pump current Ip3on is obtained without waiting until the measured pump current Ip3 converges to a steady value. Be done.

さらに、図12に示すように、NOが混在する被測定ガスにおいても、測定ポンプ電流Ip3の時間変化率dIp3/dtのピーク値と、被測定ガス中のNH濃度との間に相関関係があることが確認できた。したがって、NOが500ppmでのNH濃度は、図12の相関関係に基づいて、測定ポンプ電流Ip3の時間変化率dIp3/dtから直接求めることもできる。 Further, as shown in FIG. 12, even in the measured gas in which NO is mixed, there is a correlation between the peak value of the time change rate dIp3/dt of the measured pump current Ip3 and the NH 3 concentration in the measured gas. I was able to confirm that there is. Therefore, the NH 3 concentration when NO is 500 ppm can also be directly obtained from the time change rate dIp3/dt of the measured pump current Ip3 based on the correlation of FIG.

(実験例3及び比較例)
本実施形態のガスセンサ10及びガス濃度測定方法による効果を確認するべく、予備ポンプセル80の動作状態の切換周期を4秒(0.25Hz)とした場合(比較例)と、1秒(1Hz)とした場合(実験例3)の測定結果の差を、シミュレーション計算により確認した。被測定ガスのNO濃度及びNH濃度は、FT−IR法で測定した結果を図13及び図14にそれぞれ実線で示す。
(Experimental Example 3 and Comparative Example)
In order to confirm the effect of the gas sensor 10 and the gas concentration measuring method of the present embodiment, the case where the switching cycle of the operation state of the auxiliary pump cell 80 is set to 4 seconds (0.25 Hz) (comparative example) and 1 second (1 Hz). The difference in the measurement results in the case (Experimental Example 3) was confirmed by simulation calculation. The NO concentration and NH 3 concentration of the measured gas are the results measured by the FT-IR method, and are shown by solid lines in FIGS. 13 and 14, respectively.

ここで、測定ポンプ電流Ip3on及び測定ポンプ電流Ip3offは、近似的にFT−IR法によるNO濃度とNH濃度とにそれぞれ固有の係数を乗じて加算して求めることとした。すなわち、測定ポンプ電流Ip3offは、測定したい時刻t1におけるFT−IR法によるNO濃度(t1)及びNH濃度(t1)にそれぞれ所定の係数を乗じて加算して求めた。また、測定ポンプ電流Ip3onは、時刻t1よりも切換周期の半周期分前の時刻t2のFT−IR法によるNO濃度(t2)、NH濃度(t2)にそれぞれ所定の係数を乗じて加算して求めた。なお、ここでは測定ポンプ電流Ip3on及び測定ポンプ電流Ip3offのばらつきに着目するため、NO濃度とNH濃度に乗ずる係数の値そのものは適当なものでよい。上記の方法で求めた測定ポンプ電流Ip3off及び測定ポンプ電流Ip3onに対して、第1マップ112に基づいて求めたNO濃度及びNH濃度を図13及び図14にプロットした。 Here, the measured pump current Ip3on and the measured pump current Ip3off are approximately obtained by multiplying the NO concentration and the NH 3 concentration by the FT-IR method by the respective unique coefficients and adding them. That is, the measurement pump current Ip3off, respectively were obtained by adding by multiplying a predetermined coefficient NO concentration by FT-IR method at time t1 to be measured (t1) and NH 3 concentration (t1). The measured pump current Ip3on is obtained by multiplying the NO concentration (t2) and the NH 3 concentration (t2) by the FT-IR method at time t2, which is a half cycle before the time t1, before the time t1 by multiplying them by a predetermined coefficient. I asked. Note that here, since attention is paid to variations in the measured pump current Ip3on and the measured pump current Ip3off, the values themselves of the coefficients by which the NO concentration and the NH 3 concentration are multiplied may be appropriate. The NO concentration and the NH 3 concentration obtained based on the first map 112 are plotted in FIGS. 13 and 14 with respect to the measured pump current Ip3off and the measured pump current Ip3on obtained by the above method.

図13の実験例3のように切換周期が1秒(1Hz)の場合には、NO濃度及びNH濃度の測定時刻の遅れが0.5秒に抑えられ、測定精度の低下が抑制されることがわかる。 When the switching cycle is 1 second (1 Hz) as in Experimental Example 3 in FIG. 13, the delay of the measurement time of the NO concentration and the NH 3 concentration is suppressed to 0.5 seconds, and the deterioration of the measurement accuracy is suppressed. I understand.

一方、図14の比較例のように、切換周期が4秒(0.25Hz)の場合には、NO濃度及びNH濃度の測定時刻の遅れが2秒程度となり、FT−IR法で求めた測定結果に対して、大きな誤差が生じることがわかる。 On the other hand, as in the comparative example of FIG. 14, when the switching cycle is 4 seconds (0.25 Hz), the delay of the measurement time of the NO concentration and the NH 3 concentration is about 2 seconds, which is obtained by the FT-IR method. It can be seen that a large error occurs in the measurement result.

以上に説明した本実施形態のガスセンサ10及びガス濃度測定方法は、以下の効果を奏する。 The gas sensor 10 and the gas concentration measuring method of the present embodiment described above have the following effects.

本実施形態のガスセンサ10及びガス濃度測定方法において、予備酸素濃度制御手段106(予備ポンプセル80)は、測定ポンプ電流Ip3が定常値に収束するまでの待機時間よりも短い周期で第1動作(OFF)と第2動作(ON)との動作切換を行う。これにより、測定周期が短くなるため、測定時刻の遅れによる測定精度の低下を抑制できる。 In the gas sensor 10 and the gas concentration measuring method of the present embodiment, the preliminary oxygen concentration control means 106 (preliminary pump cell 80) performs the first operation (OFF) in a cycle shorter than the standby time until the measured pump current Ip3 converges to the steady value. ) And the second operation (ON). As a result, the measurement cycle is shortened, so that it is possible to suppress a decrease in measurement accuracy due to a delay in measurement time.

(第2実施形態)
ガスセンサ10の特定成分測定手段104における、測定ポンプ電流Ip3(センサ出力)の取得処理及び目的成分取得手段110による目的成分の取得処理の、別の例について説明する。
(Second embodiment)
Another example of the acquisition processing of the measured pump current Ip3 (sensor output) in the specific component measuring means 104 of the gas sensor 10 and the acquisition processing of the target component by the target component acquiring means 110 will be described.

図9及び図12に示すように、測定ポンプ電流Ip3の時間変化率dIp3/dtのピーク値は、被測定ガス中のNH濃度と相関関係を有する。そこで、本実施形態では、特定成分測定手段104は、測定ポンプ電流Ip3の時間変化率dIp3/dtのピーク値と被測定ガス中のNH濃度との相関関係から、直接NH濃度を求める。 As shown in FIGS. 9 and 12, the peak value of the time change rate dIp3/dt of the measured pump current Ip3 has a correlation with the NH 3 concentration in the measured gas. Therefore, in this embodiment, the specific component measurement unit 104, the correlation between the NH 3 concentration of the peak value and the measurement gas time rate of change DIP3 / dt of the measuring pumping current Ip3, directly obtained NH 3 concentration.

図15のフローチャートに示すように、ステップS110において、ガスセンサ10は、予備ポンプセル80の動作状態をONに切り換える。その後、ステップS120において、特定成分測定手段104は、測定ポンプ電流Ip3onの時間変化率dIp3/dtのピーク値を求める。 As shown in the flowchart of FIG. 15, in step S110, the gas sensor 10 switches the operation state of the auxiliary pump cell 80 to ON. Then, in step S120, the specific component measuring unit 104 obtains the peak value of the time change rate dIp3/dt of the measured pump current Ip3on.

その後、ステップS130において、特定成分測定手段104は、第2マップ114を参照して、測定ポンプ電流Ip3の時間変化率dIp3/dtのピーク値から、被測定ガス中のNH濃度を求める。 After that, in step S130, the specific component measuring unit 104 refers to the second map 114 to obtain the NH 3 concentration in the measured gas from the peak value of the time change rate dIp3/dt of the measured pump current Ip3.

次いで、ステップS140において、ガスセンサ10は、予備ポンプセル80の動作状態をOFFに切り換える。その後、ステップS150において、特定成分測定手段104は、測定ポンプ電流Ip3offの時間変化率dIp3/dtのピーク値を取得する。 Next, in step S140, the gas sensor 10 switches the operation state of the auxiliary pump cell 80 to OFF. Then, in step S150, the specific component measuring unit 104 acquires the peak value of the time change rate dIp3/dt of the measured pump current Ip3off.

次に、ステップS160において、特定成分測定手段104は、ステップS150で取得した測定ポンプ電流Ip3の時間変化率dIp3/dtのピーク値から、定常値の測定ポンプ電流Ip3off(予測値)を求める。 Next, in step S160, the specific component measuring unit 104 obtains a steady-state measured pump current Ip3off (predicted value) from the peak value of the time change rate dIp3/dt of the measured pump current Ip3 acquired in step S150.

その後、ステップS170において、目的成分取得手段110が、測定ポンプ電流Ip3off(予測値)から、総NO濃度を求め、この総NO濃度から、ステップS130で求めたNH濃度を減ずることにより、被測定ガス中の目的成分であるNO濃度を取得する。 Then, in step S170, the target component acquisition unit 110 obtains the total NO concentration from the measured pump current Ip3off (predicted value), and subtracts the NH 3 concentration obtained in step S130 from this total NO concentration, thereby measuring The NO concentration that is the target component in the gas is acquired.

次に、ステップS180において、ガスセンサ10は、測定終了の入力の有無を検出し、測定終了の入力がない場合には、ステップS110に戻って測定を継続し、測定終了の入力が為されている場合には、測定を終了する。 Next, in step S180, the gas sensor 10 detects the presence/absence of a measurement end input, and if there is no measurement end input, the flow returns to step S110 to continue the measurement, and the measurement end input is performed. In that case, the measurement is terminated.

以上のように、本実施形態のガスセンサ10及びガス濃度測定方法において、特定成分測定手段104は、予め実験的に測定した、予備酸素濃度制御手段106(予備ポンプセル80)の第1動作時と第2動作時との動作切換に伴う測定ポンプ電流Ip3の時間変化率dIp3/dtのピーク値で特定されるポイント毎に被測定ガス中の特定成分の濃度との関係が登録された第2マップ114を使用し、実使用中の予備酸素濃度制御手段106(予備ポンプセル80)の動作切換における特定成分測定手段104からの測定ポンプ電流Ip3の時間変化率dIp3/dtのピーク値と、第2マップ114とを比較して、被測定ガス中の特定成分(NH)の濃度を取得してもよい。 As described above, in the gas sensor 10 and the gas concentration measuring method of the present embodiment, the specific component measuring means 104 is experimentally measured in advance, and the preliminary oxygen concentration control means 106 (preliminary pump cell 80) is in the first operation and in the first operation. The second map 114 in which the relationship with the concentration of the specific component in the measured gas is registered at each point specified by the peak value of the time change rate dIp3/dt of the measured pump current Ip3 due to the switching of the operation between the two operations. , The peak value of the time change rate dIp3/dt of the measured pump current Ip3 from the specific component measuring means 104 in the operation switching of the preliminary oxygen concentration control means 106 (preliminary pump cell 80) in actual use, and the second map 114. The concentration of the specific component (NH 3 ) in the measurement gas may be acquired by comparing with.

上記において、本発明について好適な実施形態を挙げて説明したが、本発明は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、種々の改変が可能なことは言うまでもない。 Although the present invention has been described above with reference to the preferred embodiments, the present invention is not limited to the above embodiments, and it goes without saying that various modifications can be made without departing from the spirit of the present invention. Yes.

10…ガスセンサ 12…センサ素子
14…構造体 16…ガス導入口
18…酸素濃度調整室 20…測定空室
21…予備空室 42…主ポンプ電極
44…外側ポンプ電極 48…基準電極
62…測定電極 100…酸素濃度制御手段
104…特定成分測定手段 106…予備酸素濃度制御手段
108…駆動制御手段 110…目的成分取得手段
112…第1マップ 114…第2マップ
10... Gas sensor 12... Sensor element 14... Structure 16... Gas inlet 18... Oxygen concentration adjusting chamber 20... Measurement chamber 21... Spare chamber 42... Main pump electrode 44... Outer pump electrode 48... Reference electrode 62... Measurement electrode 100... Oxygen concentration control means 104... Specific component measuring means 106... Preliminary oxygen concentration control means 108... Drive control means 110... Target component acquisition means 112... First map 114... Second map

Claims (10)

酸素の存在下に複数成分の濃度を測定するガスセンサであって、
酸素イオン伝導性の固体電解質からなる構造体と、
前記構造体に形成され、被測定ガスが導入されるガス導入口と、
予備ポンプ電極を有し、前記ガス導入口に連通した予備空室と、
ポンプ電極を有し、前記予備空室に連通した酸素濃度調整室と、
測定電極を有し、前記酸素濃度調整室に連通した測定空室と、
前記予備ポンプ電極の電圧に基づいて前記予備空室内の酸素濃度を制御する予備酸素濃度制御手段と、
前記予備酸素濃度制御手段の動作の下に、外側ポンプ電極と前記測定電極とに流れる測定ポンプ電流(Ip3)を検出する特定成分測定手段と、
前記予備酸素濃度制御手段の第1動作時における前記特定成分測定手段からの測定ポンプ電流(Ip3on)と前記予備酸素濃度制御手段の第2動作時における前記特定成分測定手段からの測定ポンプ電流(Ip3off)との変化量(ΔIp3)、及び前記測定ポンプ電流(Ip3on)及び前記測定ポンプ電流(Ip3off)の一方に基づいて、被測定ガス中の目的成分の濃度を取得する目的成分取得手段と、を備え、
前記特定成分測定手段は、前記予備酸素濃度制御手段の第1動作と第2動作との動作切換の際の前記測定ポンプ電流(Ip3)の時間変化率のピーク値に基づいて前記測定ポンプ電流(Ip3on)の定常値又は前記測定ポンプ電流(Ip3off)の定常値を求める、ガスセンサ。
A gas sensor for measuring the concentration of multiple components in the presence of oxygen,
A structure composed of a solid electrolyte having oxygen ion conductivity,
A gas inlet formed in the structure, the gas to be measured is introduced,
A spare chamber having a spare pump electrode and communicating with the gas inlet,
An oxygen concentration adjusting chamber having a pump electrode and communicating with the spare chamber,
Having a measurement electrode, and a measurement chamber communicating with the oxygen concentration adjustment chamber,
Preliminary oxygen concentration control means for controlling the oxygen concentration in the preliminary chamber based on the voltage of the preliminary pump electrode,
Specific component measuring means for detecting a measured pump current (Ip3) flowing through the outer pump electrode and the measuring electrode under the operation of the preliminary oxygen concentration control means;
The measured pump current (Ip3on) from the specific component measuring unit during the first operation of the preliminary oxygen concentration control unit and the measured pump current (Ip3off) from the specific component measuring unit during the second operation of the preliminary oxygen concentration control unit. ) With the change amount (ΔIp3), and one of the measured pump current (Ip3on) and the measured pump current (Ip3off), the target component acquisition means for acquiring the concentration of the target component in the measured gas. Prepare,
The specific component measuring means determines the measured pump current (Ip3) based on the peak value of the time change rate of the measured pump current (Ip3) at the time of switching the operation between the first operation and the second operation of the preliminary oxygen concentration control means. A gas sensor for obtaining a steady value of Ip3on) or a steady value of the measured pump current (Ip3off).
請求項1記載のガスセンサであって、前記予備酸素濃度制御手段は、前記測定ポンプ電流が定常値に収束するまでの待機時間よりも短い周期で第1動作と第2動作との動作切換を行う、ガスセンサ。 The gas sensor according to claim 1, wherein the preliminary oxygen concentration control means switches the operation between the first operation and the second operation in a cycle shorter than a standby time until the measured pump current converges to a steady value. , Gas sensor. 請求項1又は2記載のガスセンサであって、
前記特定成分測定手段は、
予め実験的に測定した、前記予備酸素濃度制御手段の第1動作と第2動作との動作切換に伴う前記測定ポンプ電流(Ip3)の時間変化率のピーク値で特定されるポイントと被測定ガス中の特定成分の濃度との関係が登録されたマップを使用し、
実使用中の前記予備酸素濃度制御手段の動作切換における前記特定成分測定手段からの前記測定ポンプ電流(Ip3)の時間変化率のピーク値と、前記マップとを比較して、前記被測定ガス中の特定成分の濃度を取得する、ガスセンサ。
The gas sensor according to claim 1 or 2, wherein
The specific component measuring means,
A point specified by the peak value of the time change rate of the measured pump current (Ip3) accompanying the operation switching between the first operation and the second operation of the preliminary oxygen concentration control means, which is experimentally measured in advance, and the gas to be measured. Use the map that registered the relationship with the concentration of specific components in
In the gas under measurement, the peak value of the time change rate of the measured pump current (Ip3) from the specific component measuring means in the operation switching of the preliminary oxygen concentration control means during actual use is compared with the map. A gas sensor that obtains the concentration of a specific component of.
請求項3記載のガスセンサであって、前記特定成分はNHである、ガスセンサ。 The gas sensor according to claim 3, wherein the specific component is NH 3 . 請求項1〜4のいずれか1項に記載のガスセンサであって、
前記酸素濃度調整室は、主空室と副空室とを備え、前記主空室は前記予備空室に連通し、前記副空室は前記測定空室に連通する、ガスセンサ。
The gas sensor according to any one of claims 1 to 4, wherein:
The gas sensor, wherein the oxygen concentration adjusting chamber includes a main vacant chamber and a sub vacant chamber, the main vacant chamber communicating with the preliminary vacant chamber, and the sub vacant chamber communicating with the measurement vacant chamber.
酸素イオン伝導性の固体電解質からなる構造体と、前記構造体に形成され、被測定ガスが導入されるガス導入口と、予備ポンプ電極を有し、前記ガス導入口に連通した予備空室と、ポンプ電極を有し、前記予備空室に連通した酸素濃度調整室と、測定電極を有し、前記酸素濃度調整室に連通した測定空室と、前記予備ポンプ電極の電圧に基づいて前記予備空室内の酸素濃度を制御する予備酸素濃度制御手段と、前記予備酸素濃度制御手段の動作の下に、外側ポンプ電極と前記測定電極とに流れる測定ポンプ電流(Ip3)を検出する特定成分測定手段と、前記予備酸素濃度制御手段の第1動作時における前記特定成分測定手段からの測定ポンプ電流(Ip3on)と前記予備酸素濃度制御手段の第2動作時における前記特定成分測定手段からの測定ポンプ電流(Ip3off)との変化量(ΔIp3)、及び前記測定ポンプ電流(Ip3on)及び前記測定ポンプ電流(Ip3off)の一方に基づいて、被測定ガス中の目的成分の濃度を取得する目的成分取得手段と、を有するガスセンサを使用するガス濃度測定方法であって、
前記予備酸素濃度制御手段の第1動作と第2動作との切換制御を行う動作切換ステップと、
前記特定成分測定手段が、前記予備酸素濃度制御手段の第1動作と第2動作との切換制御に伴う、前記測定ポンプ電流(Ip3)の時間変化率のピーク値を求めるステップと、
前記特定成分測定手段が、予め求めた前記測定ポンプ電流(Ip3)の時間変化率のピーク値と前記測定ポンプ電流(Ip3)の定常値との相関関係から、前記測定ポンプ電流(Ip3)の定常値を求めるステップと、
前記目的成分取得手段が前記特定成分測定手段からの前記測定ポンプ電流(Ip3)の定常値に基づいて被測定ガス中の目的成分の濃度を取得するステップと、
を有する、ガス濃度測定方法。
A structure made of an oxygen ion conductive solid electrolyte, a gas inlet formed in the structure, into which a gas to be measured is introduced, and a spare pump electrode, and a spare chamber communicating with the gas inlet. An oxygen concentration adjusting chamber having a pump electrode and communicating with the spare chamber, a measuring chamber having a measuring electrode and communicating with the oxygen concentration adjusting chamber, and the spare unit based on the voltage of the spare pump electrode. Preliminary oxygen concentration control means for controlling the oxygen concentration in the chamber, and specific component measuring means for detecting the measured pump current (Ip3) flowing through the outer pump electrode and the measurement electrode under the operation of the preliminary oxygen concentration control means. And a measured pump current (Ip3on) from the specific component measuring means during the first operation of the preliminary oxygen concentration control means and a measured pump current from the specific component measuring means during the second operation of the preliminary oxygen concentration control means. And a target component acquisition means for acquiring the concentration of the target component in the gas to be measured, based on the amount of change (ΔIp3) from (Ip3off) and one of the measured pump current (Ip3on) and the measured pump current (Ip3off). A method for measuring gas concentration using a gas sensor having,
An operation switching step of performing switching control between the first operation and the second operation of the preliminary oxygen concentration control means;
A step in which the specific component measuring means obtains a peak value of a time change rate of the measured pump current (Ip3) accompanying switching control between the first operation and the second operation of the preliminary oxygen concentration control means;
From the correlation between the peak value of the temporal change rate of the measured pump current (Ip3) and the steady value of the measured pump current (Ip3), the specific component measuring means determines the steady state of the measured pump current (Ip3). The step of finding the value,
The target component acquiring unit acquires the concentration of the target component in the gas to be measured based on a steady value of the measurement pump current (Ip3) from the specific component measuring unit,
And a gas concentration measuring method.
請求項6記載のガス濃度測定方法であって、前記予備酸素濃度制御手段の前記第1動作と前記第2動作との切換制御が、前記測定ポンプ電流(Ip3)が定常値に収束するまでの時間よりも短い周期で繰り返し行われる、ガス濃度測定方法。 The gas concentration measuring method according to claim 6, wherein switching control between the first operation and the second operation of the preliminary oxygen concentration control means is performed until the measured pump current (Ip3) converges to a steady value. A gas concentration measurement method that is repeatedly performed in a cycle shorter than time. 請求項6記載のガス濃度測定方法であって、前記特定成分測定手段が、予め実験的に測定した、前記予備酸素濃度制御手段の第1動作と第2動作との動作切換に伴う前記測定ポンプ電流(Ip3)の時間変化率のピーク値で特定されるポイントと被測定ガス中の特定成分の濃度との関係が登録された第2マップを使用し、実使用中の前記予備酸素濃度制御手段の動作切換における前記特定成分測定手段からの前記測定ポンプ電流(Ip3)の時間変化率のピーク値と、前記第2マップとを比較して、前記被測定ガス中の特定成分の濃度を取得する特定成分取得ステップを有する、ガス濃度測定方法。 7. The gas concentration measuring method according to claim 6, wherein the specific component measuring means is experimentally measured in advance, and the measuring pump is accompanied by switching between the first operation and the second operation of the preliminary oxygen concentration control means. Using the second map in which the relationship between the point specified by the peak value of the time change rate of the current (Ip3) and the concentration of the specific component in the measured gas is registered, the preliminary oxygen concentration control means in actual use is used. The peak value of the rate of change over time of the measured pump current (Ip3) from the specific component measuring means in the operation switching of step 2 is compared with the second map to obtain the concentration of the specific component in the measured gas. A gas concentration measuring method having a specific component acquisition step. 請求項8記載のガス濃度測定方法であって、前記特定成分はNHである、ガス濃度測定方法。 The gas concentration measuring method according to claim 8, wherein the specific component is NH 3 . 請求項6〜9のいずれか1項に記載のガス濃度測定方法であって、
前記酸素濃度調整室は、主空室と副空室とを備え、前記主空室は前記予備空室に連通し、前記副空室は前記測定空室に連通する、ガス濃度測定方法。
The gas concentration measuring method according to any one of claims 6 to 9,
The gas concentration measuring method, wherein the oxygen concentration adjusting chamber includes a main vacant chamber and a sub vacant chamber, the main vacant chamber communicating with the preliminary vacant chamber, and the sub vacant chamber communicating with the measurement vacant chamber.
JP2019209534A 2018-11-27 2019-11-20 Gas sensor and gas concentration measurement method Pending JP2020091283A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/695,471 US11467122B2 (en) 2018-11-27 2019-11-26 Gas sensor and gas concentration measurement method
CN201911170095.0A CN111220675A (en) 2018-11-27 2019-11-26 Gas sensor and gas concentration measuring method
DE102019008218.4A DE102019008218A1 (en) 2018-11-27 2019-11-26 Gas sensor and a method for measuring a gas concentration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018221537 2018-11-27
JP2018221537 2018-11-27

Publications (1)

Publication Number Publication Date
JP2020091283A true JP2020091283A (en) 2020-06-11

Family

ID=71012738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019209534A Pending JP2020091283A (en) 2018-11-27 2019-11-20 Gas sensor and gas concentration measurement method

Country Status (1)

Country Link
JP (1) JP2020091283A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114965578A (en) * 2022-06-08 2022-08-30 北京智感度衡科技有限公司 Nitrogen-oxygen sensor probe, calibration circuit, calibration method and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114965578A (en) * 2022-06-08 2022-08-30 北京智感度衡科技有限公司 Nitrogen-oxygen sensor probe, calibration circuit, calibration method and system

Similar Documents

Publication Publication Date Title
US8197652B2 (en) NOx sensor
JP5253165B2 (en) Gas sensor and nitrogen oxide sensor
CN110609073B (en) Gas sensor and gas concentration measuring method
JP6058153B2 (en) Method for operating a solid electrolyte sensor element including a pump cell
JP5653955B2 (en) Method for manufacturing sensor element for gas sensor, method for inspecting electrical characteristics, and pretreatment method
US20090242402A1 (en) NOx SENSOR
JP2011038958A (en) Gas sensor
JP5186472B2 (en) Hydrogen gas concentration detection system and gas sensor element having the same
JP2004354400A (en) Gas sensor and nitrogen oxide sensor
CN110320261B (en) Gas sensor and control method for gas sensor
JP2020091283A (en) Gas sensor and gas concentration measurement method
JP2008233046A (en) Sensor control unit
JP5189537B2 (en) Gas sensor and method for controlling electrode potential of gas sensor
US11467122B2 (en) Gas sensor and gas concentration measurement method
JP5876430B2 (en) Sensor element processing method
JP7022011B2 (en) Gas sensor and its manufacturing method
EP2803991B1 (en) Hydrocarbon gas sensor
JP2020153931A (en) Gas sensor, specific gas density detection method and sensor element
JP2016090264A (en) Gas sensor device
WO2021033709A1 (en) Gas sensor
JP4563606B2 (en) Multilayer sensor element
CN110455864B (en) Air-fuel ratio detection device and air-fuel ratio detection method
JP2009244113A (en) Gas sensor
JP2007198900A (en) Device and method for determining deterioration of sensor element
JP2016166780A (en) Sensor control device and sensor control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240130