JP2020091213A - Surface contamination density measurement system - Google Patents

Surface contamination density measurement system Download PDF

Info

Publication number
JP2020091213A
JP2020091213A JP2018228846A JP2018228846A JP2020091213A JP 2020091213 A JP2020091213 A JP 2020091213A JP 2018228846 A JP2018228846 A JP 2018228846A JP 2018228846 A JP2018228846 A JP 2018228846A JP 2020091213 A JP2020091213 A JP 2020091213A
Authority
JP
Japan
Prior art keywords
surface contamination
contamination density
density measuring
self
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018228846A
Other languages
Japanese (ja)
Other versions
JP7005476B2 (en
Inventor
篤史 高橋
Atsushi Takahashi
篤史 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2018228846A priority Critical patent/JP7005476B2/en
Publication of JP2020091213A publication Critical patent/JP2020091213A/en
Application granted granted Critical
Publication of JP7005476B2 publication Critical patent/JP7005476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

To provide a surface contamination density measurement system capable of ensuring desired measurement accuracy regardless of the measurer by unmanning each operation of sampling and surface contamination density measurement while reducing the exposure risk of measurer by eliminating the need to enter the control area of the measurer.SOLUTION: A surface contamination density measurement system 100 includes: a self-propelled sampling unit 1 that moves autonomously within the controlled area on the basis of map information and sampling at a predetermined point; and a surface contamination density measuring device 30 that is installed out of the measurement area and measures the surface contamination density of the sample collected by the self-propelled sampling device.SELECTED DRAWING: Figure 8

Description

本発明は、放射線関連施設の表面汚染密度を計測する表面汚染密度測定システムに関する。 The present invention relates to a surface contamination density measuring system for measuring the surface contamination density of a radiation-related facility.

原子力発電所をはじめとする放射線関連施設は定期的に管理区域内の汚染状況を測定することが法律で義務付けられている。しかし、この法定測定を有人で行う場合、高線量の作業場所で試料採取を行う際に測定者が被ばくするリスクがあった。また、測定記録の作成までには、試料採取、表面汚染密度測定、測定結果の入力と複数の作業ステップがあるが、試料採取と表面汚染密度測定の作業は巧拙の個人差が大きく、測定結果に誤差が発生しやすかった。 Radiation-related facilities such as nuclear power plants are required by law to regularly measure the pollution status in the controlled area. However, when this legal measurement is performed by a man, there is a risk that the measurer will be exposed when sampling is performed at a high dose work place. In addition, there are multiple work steps for sampling, surface contamination density measurement, input of measurement results and preparation of measurement records. The error was easy to occur.

これらの問題を解決する省人化システムとしては、特許文献1や特許文献2が知られている。 Patent Literature 1 and Patent Literature 2 are known as labor-saving systems for solving these problems.

特許文献1は、要約書の解決手段欄で「測定エリア内を自走しながら、表面汚染測定用プローブを床面に下降近接させて行う直接法による床面汚染計測と同一プローブでのスミヤ濾紙を用いた間接法による床面汚染計測との2通りの床面Fに対する放射線計測が行えるばかりでなく、所定測定点での放射線計測後は、サーベイエリアへの自走と共に車輪に対する車輪汚染検知プローブによる放射線サーベイと除染水ノズルから除染水を噴射させることによる放射性物質の除染が行えるので、人的作業を要することなく、管理レベルの異なる複数の測定エリアに渡って放射線計測を実施できるようになる。」と記載されるように、走行ルート上の床面の汚染状況を直接法と間接法の2通りで測定する、走行式放射線モニタを開示する。この走行式放射線モニタは、同文献の段落0018等で説明されるように、カメラによる状況監視を行いながら移動する。 Patent Document 1 describes "Smear filter paper with the same probe as the floor contamination measurement by the direct method in which the probe for surface contamination measurement is lowered and brought close to the floor while self-propelled in the measurement area in the solution section of the abstract. In addition to performing two types of radiation measurement on the floor surface F, including the floor contamination measurement by the indirect method using the method, after the radiation measurement at the predetermined measurement points, the wheel contamination detection probe for the wheels as well as self-propelled to the survey area. Decontamination of radioactive substances by spraying decontamination water from a radiation survey and decontamination water nozzles, so radiation measurement can be performed across multiple measurement areas with different management levels without requiring human work. As described above, a traveling-type radiation monitor for measuring the contamination state of a floor surface on a traveling route by two methods, a direct method and an indirect method, is disclosed. This traveling radiation monitor moves while monitoring the situation with a camera, as described in paragraph 0018 of the same document.

また、特許文献2は、要約書の解決手段欄で「床面汚染測定ロボットは、本体部と、本体部に設けられて本体部を床面上で走行させる移動手段と、本体部の下面側に設けられて床面の放射線を検出する放射線検出手段とを備えている。本体部は上面視で円形に形成されている。放射線検出手段及び移動手段は、上面視で本体部の外周面より内側に取り付けられ、本体部の外周面からはみ出ないように設けられている。」と記載されるように、床面の汚染状況を直接法により測定する、床面汚染測定ロボットを開示する。この床面汚染測定ロボットは、各部を上記の配置とすることで、同文献の段落0020等で説明されるように、障害物との衝突によって移動不能となることを防止する。 Further, Japanese Patent Application Laid-Open No. 2004-242242 describes, in a solution section of an abstract, "The floor surface contamination measuring robot includes a main body portion, a moving means that is provided in the main body portion, and that moves the main body portion on the floor surface, and a lower surface side of the main body portion. And a radiation detecting means for detecting radiation on the floor surface. The main body part is formed in a circular shape in a top view. The radiation detecting means and the moving means are arranged from the outer peripheral surface of the main body part in a top view. It is mounted inside and is provided so as not to protrude from the outer peripheral surface of the main body portion.", a floor surface contamination measuring robot for measuring the floor surface contamination state by a direct method is disclosed. By arranging the respective parts as described above, this floor contamination measuring robot prevents the robot from becoming immovable due to collision with an obstacle, as described in paragraph 0020 of the same document.

特開2005−24345号公報JP, 2005-24345, A 特開2016−148585号公報JP, 2016-148585, A

放射線関連施設において表面汚染密度を測定する際は、専門知識を有する測定者が測定場所を選定し汚染検査を行う。施設の床面などの汚染状況を調べる場合にはスミア濾紙を用いた間接法により測定を行う場合が多い。直接法による汚染検査を行う場合には測定場所において測定に影響のないバックグラウンド値が得られることが前提条件であり、バックグラウンド値が確保できない場合には遮へい物を必要とする。また、有人での測定では高線量の作業場所に立入る際に被ばくするリスクがあり、表面汚染密度の測定においても身体汚染につながる可能性がある。 When measuring the surface contamination density in a radiation-related facility, a measurer with specialized knowledge selects a measurement location and conducts a contamination inspection. In many cases, the indirect method using smear filter paper is used to check the contamination of the floor of the facility. When performing a contamination inspection by the direct method, it is a prerequisite that a background value that does not affect the measurement can be obtained at the measurement site, and if the background value cannot be secured, a shield is required. In addition, there is a risk of exposure when entering a work place with a high dose in human measurements, which may lead to body contamination in the measurement of surface contamination density.

この課題に対し、特許文献1は走行ルートを記憶させた自走式放射線モニタを用いることで、表面汚染密度測定を無人化することを可能としている。しかし、この方法ではあらかじめ走行ルートを記憶する必要があり、作業場所の状況と記憶させた走行ルートに差異が生じた場合には、カメラを用いた有人の遠隔操作も必要であるため、省人効果が薄れてしまう。また、本体のタイヤ部分が汚染した際の除染機構を備えているが、散水による除染であるため専用の場所に移動する必要があり、移動中に汚染を伝播させる可能性がある。 To solve this problem, Patent Document 1 makes it possible to unmanned the surface contamination density measurement by using a self-propelled radiation monitor that stores a traveling route. However, with this method, it is necessary to store the travel route in advance, and if there is a difference between the situation of the work place and the stored travel route, manned remote control using a camera is also required, which saves labor. The effect diminishes. Further, although it has a decontamination mechanism when the tire portion of the main body is contaminated, it is necessary to move to a dedicated place because it is decontamination by watering, and there is a possibility that the pollution is propagated during the movement.

また、特許文献2の床面汚染測定システムにおいては、特許文献1と同様にあらかじめ移動ルートを記憶させることにより自走して表面汚染密度の測定を行う。測定方法は直接法であり、汚染の程度を閾値で評価して分布図を作成することができる。しかし、遮へい物が搭載されていないことから放射線量のある作業環境ではバックグランウンドの影響により検出限界値が大きくなるため、汚染の有無を判定できない。また、直接法の測定においてはGM管式サーベイメーターを例に挙げると、検出部の移動速度は数cm/秒程度が推奨されており、広いフロア全体を測定しようとした場合に時間を要してしまう。 Further, in the floor surface contamination measuring system of Patent Document 2, as in Patent Document 1, the moving route is stored in advance and the surface contamination density is measured by self-propelled. The measurement method is a direct method, and it is possible to create a distribution map by evaluating the degree of contamination with a threshold value. However, since no shield is installed, the detection limit value becomes large due to the influence of the background in a work environment with a radiation dose, and therefore the presence or absence of contamination cannot be determined. In the direct method, taking a GM tube type survey meter as an example, it is recommended that the moving speed of the detection part be about several cm/sec, and it takes time when trying to measure the entire large floor. Will end up.

このように、特許文献1、特許文献2は何れも、本体部に表面汚染密度を測定する手段を備えているが、遮へい物は設けられておらず、放射線量のある作業場所においては測定手段の使用が制限される。また、特許文献1、特許文献2は何れも、移動ルートを事前に記憶させることにより、自走を可能としているが、作業場所の状況と記憶させた走行ルートに差異が生じた際に移動経路を修正する機構はなく、正しい測定ポイントでの測定が行えない可能性がある。 As described above, in both Patent Documents 1 and 2, the main body is provided with a means for measuring the surface contamination density, but no shield is provided, and the measuring means is used in a work place with a radiation dose. The use of is restricted. Further, in both Patent Document 1 and Patent Document 2, self-propelling is possible by storing the moving route in advance, but when the situation of the work place and the stored traveling route differ, the moving route There is no mechanism that corrects, and it may not be possible to measure at the correct measurement point.

そこで、本発明は、試料採取と表面汚染密度測定の各作業を、高線量の管理区域内を自律走行する自走式試料採取装置と、低線量の測定エリア外に設置した表面汚染密度測定装置と、に分担させ、測定者の管理区域への立ち入りを不要とすることで、測定者の被ばくリスクを抑制するだけではなく、試料採取と表面汚染密度測定の各作業を無人化することで、測定者に拘わらず高精度の表面汚染密度測定を実現できる表面汚染密度測定システムを提供することを目的とする。 Therefore, in the present invention, each work of sampling and surface contamination density measurement is performed by a self-propelled sampler that autonomously travels in a high-dose control area, and a surface contamination-density measurement apparatus installed outside a low-dose measurement area. By not dividing the exposure risk of the measurer by eliminating the need for the measurer to enter the controlled area, by unmanning each work of sampling and surface contamination density measurement, It is an object of the present invention to provide a surface contamination density measuring system capable of realizing highly accurate surface contamination density measurement regardless of the person who measures it.

上記目的を達成するために、本発明の表面汚染密度測定システムは、地図情報に基づいて管理区域内を自律移動し、所定の場所で試料採取する自走式試料採取装置と、測定エリア外に設置され、前記自走式試料採取装置が採取した前記採取試料の表面汚染密度を測定する表面汚染密度測定装置と、を備えたものとした。 In order to achieve the above object, the surface contamination density measurement system of the present invention is a self-propelled sampling device that autonomously moves within a controlled area based on map information and samples at a predetermined location, and outside the measurement area. A surface contamination density measuring device that is installed and measures the surface contamination density of the sample collected by the self-propelled sampler.

本発明によれば、測定者が管理区域に立入ることなく、正確な測定点で試料採取を行うことができ、測定記録の作成までを無人化できる。これにより、被ばく低減、身体汚染防止につながるとともに、作業効率向上につながる。 ADVANTAGE OF THE INVENTION According to this invention, a measurer can sample a sample at an accurate measurement point without entering a controlled area, and it is possible to automate the preparation of a measurement record. This leads to reduction of exposure, prevention of body pollution, and improvement of work efficiency.

一実施例に係る自走式試料採取器の概略斜視図。The schematic perspective view of the self-propelled sampler concerning one Example. 図1の自走式試料採取器の底面図。The bottom view of the self-propelled sampler of FIG. 図1の自走式試料採取器の試料採取部の側面図。FIG. 2 is a side view of a sampling portion of the self-propelled sampling device in FIG. 1. 図1の自走式試料採取器の試料採取部の上面図。FIG. 2 is a top view of a sampling portion of the self-propelled sampling device in FIG. 1. 図1の自走式試料採取器の側面図。The side view of the self-propelled sampler of FIG. 一実施例に係る表面汚染密度測定装置の概略斜視図。1 is a schematic perspective view of a surface contamination density measuring device according to an embodiment. 図6の表面汚染密度測定装置の上面図。The top view of the surface contamination density measuring apparatus of FIG. 一実施例に係る表面汚染密度測定システムの概略斜視図。1 is a schematic perspective view of a surface contamination density measuring system according to an embodiment.

以下、本発明の一実施例に係る表面汚染密度測定システム100を、図面を用いて説明する。 A surface contamination density measuring system 100 according to an embodiment of the present invention will be described below with reference to the drawings.

図8は、原子力発電所をはじめとする放射線関連施設の表面汚染密度を測定する、本実施例の表面汚染密度測定システム100の概略斜視図である。この表面汚染密度測定システム100は、試料採取と表面汚染密度測定の各作業を、試料採取装置と試料分析装置に分担したシステムであり、具体的には、高線量の管理区域内を自律走行しながら、指定された場所で試料採取する自走式試料採取装置1と、測定に影響のないバックグラウンド値が得られる、低線量の測定エリア外で採取試料の表面汚染密度を測定する表面汚染密度測定装置30からなるシステムである。以下では、自走式試料採取装置1と表面汚染密度測定装置30を個々に説明した後、両者を併せた表面汚染密度測定システム100の運用方法を説明する。
<自走式試料採取装置1>
図1は、本実施例の表面汚染密度測定システム100を構成する、自走式試料採取装置1の概略斜視図である。この自走式試料採取装置1は、市販されている多くのロボット掃除機のように、上面視で円形形成された本体2を備えており、その内部に後述する各種機器が設けられている。
FIG. 8 is a schematic perspective view of a surface contamination density measuring system 100 of the present embodiment, which measures the surface contamination density of radiation related facilities such as a nuclear power plant. This surface contamination density measuring system 100 is a system in which each work of sampling and measuring surface contamination density is shared by a sampling device and a sample analysis device. Specifically, it autonomously runs in a high-dose controlled area. However, the self-propelled sampling device 1 that samples at a designated place, and the surface contamination density that measures the surface contamination density of the collected sample outside the low-dose measurement area where a background value that does not affect the measurement can be obtained It is a system including a measuring device 30. In the following, the self-propelled sampling device 1 and the surface contamination density measuring device 30 will be described individually, and then the operation method of the surface contamination density measuring system 100 that combines the two will be described.
<Self-propelled sampling device 1>
FIG. 1 is a schematic perspective view of a self-propelled sampling device 1 that constitutes a surface contamination density measuring system 100 of this embodiment. This self-propelled sampling device 1 is provided with a main body 2 formed in a circular shape in a top view like many commercially available robot cleaners, and various devices to be described later are provided therein.

本体2の外周面には、外部環境を観測し、壁や障害物との衝突を防止するための、環境センサ3(赤外線センサ3a、超音波センサ3b、カメラセンサ3c)が設けられている。なお、図1では、環境センサとして、本体2の前面に一対の赤外線センサ3a、超音波センサ3b、カメラセンサ3cを設けた構成を例示しているが、本体2の後面にも同様にセンサを設けてもよく、また、環境センサ3として、ジャイロセンサー、距離サンサーなどを組み合わせて使用してもよい。 An environmental sensor 3 (infrared sensor 3a, ultrasonic sensor 3b, camera sensor 3c) is provided on the outer peripheral surface of the main body 2 for observing the external environment and preventing a collision with a wall or an obstacle. In addition, in FIG. 1, as the environment sensor, a configuration in which a pair of infrared sensor 3a, ultrasonic sensor 3b, and camera sensor 3c are provided on the front surface of the main body 2 is illustrated. A gyro sensor, a distance sensor, or the like may be used in combination as the environment sensor 3.

本体2の上面には、測定者が操作するためのボタンや液晶画面を備えた操作パネル4が設けられている。さらに、本体2の内部には制御装置5が設けられている。この制御装置5は、半導体メモリなどの記憶装置と、この記憶装置に読み込まれたプログラムを実行することで所望の機能を実現するCPU等の演算装置と、を備えた計算機である。そして、この制御装置5により、後述する駆動機構6bの制御や、各センサから得られるデータを逐次重ね合わせていき、重ね合わせの際のスキャンデータの移動量から本体2の自己位置と移動量を逐次推定する、マッピングAIを実現する。 On the upper surface of the main body 2, there is provided an operation panel 4 having buttons and a liquid crystal screen for the operator to operate. Further, a control device 5 is provided inside the main body 2. The control device 5 is a computer including a storage device such as a semiconductor memory and an arithmetic device such as a CPU that realizes a desired function by executing a program read in the storage device. Then, the control device 5 controls the drive mechanism 6b, which will be described later, and sequentially superimposes the data obtained from each sensor, and determines the self-position and the movement amount of the main body 2 from the movement amount of the scan data at the time of the superposition. The mapping AI, which is sequentially estimated, is realized.

図2は、自走式試料採取装置1の底面図である。ここに示すように、自走式試料採取装置1は、本体2の底面の左右両側に設けられた車輪6aと、本体2の内部に設けられた駆動機構6bからなる移動装置6を備えている。駆動機構6bは、モータ、変速機器等を組み合わせたものであり、制御装置5が駆動機構6bを介して左右の車輪6aの回転速度を変化させることで前後左右への自律移動が可能となる。 FIG. 2 is a bottom view of the self-propelled sampling device 1. As shown here, the self-propelled sampling device 1 includes wheels 6 a provided on both left and right sides of the bottom surface of the main body 2 and a moving device 6 including a drive mechanism 6 b provided inside the main body 2. .. The drive mechanism 6b is a combination of a motor, a speed change device and the like, and the control device 5 changes the rotational speed of the left and right wheels 6a via the drive mechanism 6b to enable autonomous movement in the front, rear, left and right directions.

また、本体2の底面には、自走中の走行不能を検知する走行センサ3dとしても機能する補助輪や、表面汚染密度測定装置30と電気的に接続するための接続部7が設けられている。そして、この接続部7を介して、制御装置5は表面汚染密度測定装置30との通信が可能となり、また、本体2の内部の図示しない充電池は表面汚染密度測定装置30からの給電により充電が可能となる。 Further, the bottom surface of the main body 2 is provided with an auxiliary wheel that also functions as a traveling sensor 3d that detects inability to travel while traveling, and a connecting portion 7 for electrically connecting to the surface contamination density measuring device 30. There is. Then, the control device 5 can communicate with the surface contamination density measuring device 30 via the connection portion 7, and the rechargeable battery (not shown) inside the main body 2 is charged by the power supply from the surface contamination density measuring device 30. Is possible.

さらに、本体2の内部には、放射線関連施設の表面汚染密度を間接法により測定するための試料採取部10が設けられている。この試料採取部10は、スミア濾紙11を取り付けた濾紙圧着具12を本体2の底部から突出させ、作業場所の床面にスミア濾紙11を圧着する機構を持つ。 Further, inside the main body 2, a sampling section 10 for measuring the surface contamination density of the radiation-related facility by the indirect method is provided. The sample collecting unit 10 has a mechanism in which a filter paper crimping tool 12 to which a smear filter paper 11 is attached is projected from the bottom of the main body 2 and the smear filter paper 11 is crimped to the floor surface of the work place.

図3は、自走式試料採取装置1の試料採取部10の側面図である。ここに示すように、試料採取部10は、採取前濾紙格納部10a、濾紙圧着部10b、採取後濾紙格納部10cの三領域に区画されている。採取前濾紙格納部10aは、専用ホルダーに装着した未使用のスミア濾紙11aを複数格納できる領域である。濾紙圧着部10bは、濾紙圧着具12と圧着用モータ12aを備えた領域であり、圧着用モータ12aの回転力を濾紙圧着具12の上下運動に変換し、濾紙圧着具12を突出させてスミア濾紙11bを床面に圧着し、その場所の試料を採取する。採取後濾紙格納部10cは、試料採取済みのスミア濾紙11cを複数格納できる領域である。 FIG. 3 is a side view of the sample collecting unit 10 of the self-propelled sample collecting apparatus 1. As shown here, the sample collecting unit 10 is divided into three regions: a pre-collection filter paper storage unit 10a, a filter paper pressure bonding unit 10b, and a post-collection filter paper storage unit 10c. The pre-collection filter paper storage unit 10a is an area in which a plurality of unused smear filter papers 11a mounted in a dedicated holder can be stored. The filter paper crimping portion 10b is an area provided with the filter paper crimping tool 12 and the crimping motor 12a. The rotational force of the crimping motor 12a is converted into the vertical movement of the filter paper crimping tool 12, and the filter paper crimping tool 12 is projected to smear. The filter paper 11b is pressure-bonded to the floor surface, and a sample at that location is collected. The post-collection filter paper storage unit 10c is an area capable of storing a plurality of sampled smear filter papers 11c.

図4は、自走式試料採取装置1の試料採取部10の上面図であり、専用ホルダーに装着したスミア濾紙11を、採取前濾紙格納部10aから濾紙圧着部10bに、さらに、濾紙圧着部10bから採取後濾紙格納部10cに順次移送する様子を示している。スミア濾紙11の移送は、濾紙圧着具12を引き上げた状態で、試料採取部10の下部に設けた回転機構13を所望の方向に回転させることで実行する。より具体的には、採取前濾紙格納部10aから濾紙圧着部10bへの移送は、両領域の境界に回転軸を持つ回転機構13aを時計方向に回転させることで実行され、濾紙圧着部10bから採取後濾紙格納部10cへの移送は、両領域の境界に回転軸を持つ回転機構13bを反時計回りに回転させることで実行される。 FIG. 4 is a top view of the sample collecting unit 10 of the self-propelled sample collecting device 1, in which the smear filter paper 11 mounted on the dedicated holder is transferred from the pre-collection filter paper storing unit 10a to the filter paper crimping unit 10b and further to the filter paper crimping unit. It shows a state of sequentially transferring from 10b to the filter paper storage unit 10c after collection. The smear filter paper 11 is transferred by rotating the rotating mechanism 13 provided in the lower portion of the sample collecting unit 10 in a desired direction with the filter paper crimping tool 12 being pulled up. More specifically, the transfer from the pre-collection filter paper storage unit 10a to the filter paper pressure bonding unit 10b is performed by rotating the rotating mechanism 13a having a rotation axis at the boundary between both regions in the clockwise direction, and the transfer from the filter paper pressure bonding unit 10b is performed. The transfer to the filter paper storage unit 10c after collection is performed by rotating the rotation mechanism 13b having a rotation axis at the boundary between both regions counterclockwise.

なお、図3に示したように、採取前濾紙格納部10aには未使用のスミア濾紙11aが多数格納されているため、濾紙圧着部10bのスミア濾紙11bが採取後濾紙格納部10cに格納された後、採取前濾紙格納部10aから濾紙圧着部10bに未使用のスミア濾紙11aを補充することができる。 As shown in FIG. 3, since many unused smear filter papers 11a are stored in the pre-collection filter paper storage unit 10a, the smear filter papers 11b of the filter paper crimping unit 10b are stored in the post-collection filter paper storage unit 10c. After that, the unused smear filter paper 11a can be replenished from the pre-collection filter paper storage unit 10a to the filter paper pressure bonding unit 10b.

図5は、自走式試料採取装置1の側面図であり、車輪6aと補助輪(走行センサ3d)の除染のための構成を説明するものである。ここに示すように、車輪6aと補助輪は本体2の底面から露出するように設けられており、この結果、床面と本体2の底面との間には数十mm程度の間隔がある。本体2の内部には、車輪6aと補助輪に付着した汚染を除去する除染装置8を設けており、除染装置8を車輪6aや補助輪に押し当て表面を拭き取ることで両者を除染することができる。除染装置8による除染は、例えば、巻き取り式の化学雑巾(レーヨン不織布等の静電気によって除染効果をもつ布)等を用いた乾式にて行う。試料採取後に車輪6aに一定時間押し当てられ、移動しながら車輪6aと補助輪を除染する。除染後は化学雑巾等の使用部が巻き取られる。 FIG. 5 is a side view of the self-propelled sampling device 1, and illustrates a configuration for decontaminating the wheel 6a and the auxiliary wheel (travel sensor 3d). As shown here, the wheels 6a and the auxiliary wheels are provided so as to be exposed from the bottom surface of the main body 2, and as a result, there is a space of several tens of mm between the floor surface and the bottom surface of the main body 2. Inside the main body 2, there is provided a decontamination device 8 for removing the contaminants adhering to the wheels 6a and the auxiliary wheels. The decontamination device 8 is pressed against the wheels 6a and the auxiliary wheels to wipe off the surfaces of them. can do. The decontamination by the decontamination device 8 is performed, for example, by a dry method using a take-up type chemical rag (a cloth having a decontamination effect by static electricity such as rayon nonwoven fabric). After the sample is collected, the wheel 6a is pressed for a certain period of time, and the wheel 6a and the auxiliary wheel are decontaminated while moving. After decontamination, the used parts such as chemical rags are rolled up.

特許文献1では、車輪を除染するために除染水を用いていたため、除染可能な場所が限定されていたが、本実施例の自走式試料採取装置1では、上記の除染装置8を用いることで、任意の場所で車輪を除染することができる。
<表面汚染密度測定装置30>
図6は、本実施例の表面汚染密度測定システム100を構成する、表面汚染密度測定装置30の概略斜視図である。この表面汚染密度測定装置30は、測定者の被ばくリスクが低い低線量の管理区域外に商用電源と接続した状態で設置されるものであり、主に、中央の本体31と、その左右の分析前試料皿格納部32aと分析後試料皿格納部32cで構成される。
In Patent Document 1, since decontamination water is used to decontaminate the wheels, the decontamination place is limited, but in the self-propelled sampling apparatus 1 of the present embodiment, the decontamination device described above is used. By using 8, the wheel can be decontaminated at any place.
<Surface contamination density measuring device 30>
FIG. 6 is a schematic perspective view of the surface contamination density measuring device 30 that constitutes the surface contamination density measuring system 100 of the present embodiment. This surface contamination density measuring device 30 is installed in a state connected to a commercial power source outside a low-dose controlled area where the risk of exposure to the measurer is low, and mainly consists of a central body 31 and left and right analysis thereof. It is composed of a front sample dish storage section 32a and a post-analysis sample dish storage section 32c.

本体31の前面には、測定者が操作するボタンや液晶画面からなる操作パネル39と、自走式試料採取装置1の接続部7と電気的に接続するための接続部34が設けられている。また、本体31の前面には、自走式試料採取装置1が接続部34に近づく際の経路となるスロープ38が設けられており、接続部34とスロープ38の間の台上には、開閉式の開口機構を備えた試料搬入部37が設けられている。そして、自走式試料採取装置1と接続された表面汚染密度測定装置30には、試料搬入部37を介して試料採取済のスミア濾紙11cが搬入され、また、接続部34を介してマッピングAIによる推定採取場所が入力される。 On the front surface of the main body 31, there are provided an operation panel 39 composed of buttons operated by a measurer and a liquid crystal screen, and a connecting portion 34 for electrically connecting to the connecting portion 7 of the self-propelled sampling device 1. .. Further, on the front surface of the main body 31, there is provided a slope 38 that serves as a path when the self-propelled sampling device 1 approaches the connection portion 34, and a slope between the connection portion 34 and the slope 38 is opened and closed. A sample carry-in section 37 having a formal opening mechanism is provided. Then, the smear filter paper 11c that has been sampled is carried into the surface contamination density measuring device 30 connected to the self-propelled sample collecting device 1 via the sample carrying-in part 37, and mapping AI is carried out via the connecting part 34. The estimated collection place by is input.

また、本体31の内部には、分析装置35と、分析装置35の分析結果を記録する記録作成部36が設けられている。分析装置35は、搬入されたスミア濾紙11cから、表面汚染密度を測定する装置であり、例えば、ガスフローカウンター、プラスチックシンチレーター、ZnSシンチレーター等を組み合わせて使用する。一方、記録作成部36は、分析装置35の分析結果を、採取試料の推定採取場所と併せて記録する。なお、汚染密度測定装置30の本体31は、外部PCやタブレット端末と有線または無線で接続でき、相互に情報通信することができる。 Further, inside the main body 31, an analysis device 35 and a record creation unit 36 for recording the analysis result of the analysis device 35 are provided. The analysis device 35 is a device that measures the surface contamination density from the smear filter paper 11c that has been carried in, and is used in combination with, for example, a gas flow counter, a plastic scintillator, a ZnS scintillator, or the like. On the other hand, the record creating unit 36 records the analysis result of the analyzer 35 together with the estimated collection place of the collected sample. The main body 31 of the pollution density measuring device 30 can be connected to an external PC or a tablet terminal by wire or wirelessly, and can communicate information with each other.

図7は、汚染密度測定装置30の上面図である。ここに示すように、表面汚染密度測定装置30の本体31の内部には、正逆双方向に回転する移送部32bが設けられている。この移送部32bは外周部に試料皿を移送するためのくぼみを複数持ち、自走式試料採取装置1から試料搬入部37を介して搬入されたスミア濾紙11cを、試料皿に載せた状態で所望の位置に移送することができる。
<表面汚染密度測定システム100>
上記した自走式試料採取装置1と表面汚染密度測定装置30からなる本実施例の表面汚染密度測定システム100の具体的な運用方法を、以下で順次詳細に説明する。
<自走式試料採取装置1の測定地点への自律移動>
まず、図8のように、自走式試料採取装置1と表面汚染密度測定装置30の接続部同士を接続させた状態で、外部PC等から表面汚染密度測定装置30に、表面汚染密度測定に必要な情報(放射線関連施設の地図情報や試料採取地点情報)を入力する。これにより、自走式試料採取装置1は、表面汚染密度測定装置30を介して、測定範囲や試料採取場所を認識することができる。
FIG. 7 is a top view of the contamination density measuring device 30. As shown here, inside the main body 31 of the surface contamination density measuring device 30, a transfer unit 32b that rotates in both forward and reverse directions is provided. The transfer section 32b has a plurality of dents for transferring the sample dish to the outer periphery thereof, and the smear filter paper 11c loaded from the self-propelled sample collecting device 1 via the sample loading section 37 is placed on the sample dish. It can be transferred to a desired position.
<Surface contamination density measuring system 100>
A specific operation method of the surface contamination density measuring system 100 of this embodiment, which includes the self-propelled sampling device 1 and the surface contamination density measuring device 30 described above, will be sequentially described in detail below.
<Autonomous movement of the self-propelled sampling device 1 to the measurement point>
First, as shown in FIG. 8, in a state where the connecting portions of the self-propelled sampling device 1 and the surface contamination density measuring device 30 are connected to each other, an external PC or the like is used to measure the surface contamination density by the surface contamination density measuring device 30. Enter the necessary information (map information of radiation related facilities and sample collection point information). As a result, the self-propelled sampling device 1 can recognize the measurement range and the sampling place via the surface contamination density measuring device 30.

測定範囲や試料採取場所を認識すると、自走式試料採取装置1の制御装置5は、移動装置6を制御して試料採取場所への自律移動を開始する。自律移動時には、赤外線センサ3a、超音波センサ3b、カメラセンサ3c、走行センサ3dから得た情報を制御装置5で統合し、障害物の回避と、マッピングAIによる自己位置推定を並列処理する。これにより、周辺環境に変化があった場合でも、障害物などを回避しつつ、目的地に移動することができる。なお、制御装置5は、自走式試料採取装置1の推定自己位置を連続的に記録した移動経路を記憶しており、万が一、車輪6a等で汚染を伝播させた場合にも除染の必要な範囲を絞り込むことができる。
<自走式試料採取装置1による試料採取>
自走式試料採取装置1が試料採取場所へ到着すると、図3の破線で示したように、試料採取部10から床面に向けて濾紙圧着具12を突出させる。そして、濾紙圧着具12によりスミア濾紙11bを床面に圧着した状態で、自走式試料採取装置1を同心円状に移動させることで、この試料採取場所での試料採取を行う。一定範囲での試料採取が完了すると(例えば、100cm程度移動が完了した後に)、濾紙圧着具12を本体部に格納する。そして、試料採取部10内では、図4に示したように、試料採取に使用したスミア濾紙11bを採取後濾紙格納部10cに移送するとともに、採取前濾紙格納部10aから移送された未使用のスミア濾紙11aが濾紙圧着具12に取り付けられる。スミア濾紙11の交換作業が完了すると、自走式試料採取装置1は次の試料採取場所へ自律移動し、上記の試料採取作業を再び実行する。
<表面汚染密度測定装置30による表面汚染密度測定>
測定者等により指定された全ての場所での試料採取が完了すると、自走式試料採取装置1は、管理区域外に設置された表面汚染密度測定装置30のスロープ38を登り、自身の接続部7を表面汚染密度測定装置30の接続部34に自ら接続する。接続部が相互に接続されると、表面汚染密度測定装置30の試料搬入部37が開き、試料採取済みのスミア濾紙11cが自走式試料採取装置1から本体31の内部に移送される。
When recognizing the measurement range and the sampling place, the control device 5 of the self-propelled sampling device 1 controls the moving device 6 to start the autonomous movement to the sampling place. At the time of autonomous movement, information obtained from the infrared sensor 3a, the ultrasonic sensor 3b, the camera sensor 3c, and the traveling sensor 3d is integrated by the control device 5, and obstacle avoidance and self-position estimation by the mapping AI are processed in parallel. As a result, even when the surrounding environment changes, it is possible to move to the destination while avoiding obstacles and the like. In addition, the control device 5 stores the moving path in which the estimated self-position of the self-propelled sampling device 1 is continuously recorded, and decontamination is necessary even if the contamination is propagated by the wheel 6a or the like. You can narrow down the range.
<Sampling by the self-propelled sampling device 1>
When the self-propelled sample collecting device 1 arrives at the sample collecting place, the filter paper crimping tool 12 is projected from the sample collecting section 10 toward the floor surface as shown by the broken line in FIG. Then, the smear filter paper 11b is crimped to the floor surface by the filter paper crimping tool 12, and the self-propelled sampling device 1 is moved concentrically to collect a sample at this sampling place. When the sampling in a certain range is completed (for example, after the movement of about 100 cm 2 is completed), the filter paper crimping tool 12 is stored in the main body. Then, in the sample collecting section 10, as shown in FIG. 4, the smear filter paper 11b used for sample collection is transferred to the filter paper storage section 10c after collection and the unused smear filter paper 11b transferred from the pre-collection filter paper storage section 10a. The smear filter paper 11a is attached to the filter paper crimping tool 12. When the replacement work of the smear filter paper 11 is completed, the self-propelled sample collection device 1 autonomously moves to the next sample collection place and executes the above sample collection work again.
<Surface contamination density measurement by surface contamination density measuring device 30>
When the sampling at all places designated by the measurer or the like is completed, the self-propelled sampling device 1 climbs the slope 38 of the surface contamination density measuring device 30 installed outside the controlled area, and connects itself. 7 is connected to the connecting portion 34 of the surface contamination density measuring device 30 by itself. When the connecting parts are connected to each other, the sample carrying-in part 37 of the surface contamination density measuring device 30 is opened, and the smeared filter paper 11c which has been sampled is transferred from the self-propelled sample collecting device 1 to the inside of the main body 31.

図7に示したように、表面汚染密度測定装置30の内部の移送部32bは、左右双方向に回転する機構を持つため、これによって空の試料皿と、分析前後のスミア濾紙11cを載せた試料皿の移送が行われる。具体的には、まず、図7の左側の分析前試料皿格納部32aから供給された空の試料皿が、移送部32bによって、図7の下側の試料搬入部37の下方に移送される。そして、スミア濾紙11cを載せた試料皿は、移送部32bによって、図7の上側の分析装置35の近傍へ移送される。分析装置35によるスミア濾紙11cの分析が完了すると、スミア濾紙11cを載せた試料皿は、移送部32bによって、分析後試料皿格納部32cへと移送される。この一連の動作を、自走式試料採取装置1内の全ての試料(スミア濾紙11c)に対し実行する。
<測定記録作成>
自走式試料採取装置1と表面汚染密度測定装置30の接続部が接続されたときには、自走式試料採取装置1の制御装置5から表面汚染密度測定装置30の記録作成部36へ、外部PC等から入力された地図情報とマッピングAIが検知した実環境との誤差や、試料採取地点の情報が送信される。
As shown in FIG. 7, since the transfer section 32b inside the surface contamination density measuring device 30 has a mechanism that rotates in both left and right directions, an empty sample dish and the smear filter paper 11c before and after the analysis are placed by this. The sample pan is transferred. Specifically, first, the empty sample dish supplied from the pre-analysis sample dish storing section 32a on the left side of FIG. 7 is transferred to the lower side of the sample loading section 37 on the lower side of FIG. 7 by the transfer section 32b. .. Then, the sample dish on which the smear filter paper 11c is placed is transferred to the vicinity of the analyzer 35 on the upper side of FIG. 7 by the transfer section 32b. When the analysis of the smear filter paper 11c by the analyzer 35 is completed, the sample dish on which the smear filter paper 11c is placed is transferred to the post-analysis sample plate storage part 32c by the transfer part 32b. This series of operations is executed for all the samples (smear filter paper 11c) in the self-propelled sampling device 1.
<Measurement record creation>
When the connection part of the self-propelled sample collecting device 1 and the surface contamination density measuring device 30 is connected, the controller 5 of the self-propelled sample collecting device 1 to the record creating part 36 of the surface contamination density measuring device 30 sends an external PC. The error between the map information input from the etc. and the actual environment detected by the mapping AI and the information of the sampling point are transmitted.

また、分析装置35による表面汚染密度の測定が完了したときには、その測定結果は記録作成部36に記憶される。そして、記録作成部36では、事前に入力された管理区域の地図に、実環境との誤差や、管理区域の各所の測定結果を反映させた、測定記録を作成する。ここで作成された測定記録は、表面汚染密度測定装置30と接続された外部PC等に出力され、測定者は外部PCのモニタ等を介して、管理区域の各所の表面汚染密度等を確認することが可能となる。 Further, when the measurement of the surface contamination density by the analyzer 35 is completed, the measurement result is stored in the recording creating unit 36. Then, the record creating unit 36 creates a measurement record in which the error of the actual environment and the measurement result of each place in the management area are reflected on the map of the management area input in advance. The measurement record created here is output to an external PC or the like connected to the surface contamination density measuring device 30, and the measurer confirms the surface contamination density or the like at various places in the controlled area via a monitor or the like of the external PC. It becomes possible.

以上で説明したように、本実施例の表面汚染密度測定システムによれば、試料採取と表面汚染密度測定の各作業を、高線量の管理区域内を自律走行する自走式試料採取装置と、低線量の測定エリア外に設置した表面汚染密度測定装置と、に分担させ、測定者の管理区域への立ち入りを不要とすることで、測定者の被ばくリスクを抑制するだけではなく、試料採取と表面汚染密度測定の各作業を無人化することで、測定者に拘わらず高精度の表面汚染密度測定を実現することができる。 As described above, according to the surface contamination density measurement system of the present embodiment, each work of sampling and surface contamination density measurement, a self-propelled sampling device that autonomously travels in a high-dose controlled area, The surface contamination density measurement device installed outside the low-dose measurement area is shared with the measurement device, eliminating the need for the operator to enter the controlled area, which not only suppresses the exposure risk of the operator but also contributes to sampling. By unmanning each work of surface contamination density measurement, highly accurate surface contamination density measurement can be realized regardless of the person who measures the surface.

100:表面汚染密度測定システム
1:自走式試料採取装置
2:本体
3:環境センサ
3a:赤外線センサ
3b:超音波センサ
3c:カメラセンサ
3d:走行センサ
4:操作パネル
5:制御装置
6:移動装置
6a:車輪
6b:駆動機構
7:接続部
8:除染装置
10:試料採取部
10a:採取前濾紙格納部
10b:濾紙圧着部
10c:採取後濾紙格納部
11、11a、11b、11c:スミア濾紙
12:濾紙圧着具
12a:圧着用モータ
13、13a、13b:回転機構
30:表面汚染密度測定装置
31:本体
32a:分析前試料皿格納部
32b:移送部
32c:分析後試料皿格納部
34:接続部
35:分析装置
36:記録作成部
37:試料搬入部
38:スロープ
39:操作パネル
100: Surface contamination density measuring system 1: Self-propelled sampling device 2: Main body 3: Environmental sensor 3a: Infrared sensor 3b: Ultrasonic sensor 3c: Camera sensor 3d: Running sensor 4: Operation panel 5: Control device 6: Move Device 6a: Wheel 6b: Drive mechanism 7: Connection part 8: Decontamination device 10: Sampling part 10a: Filter paper storage part before sampling 10b: Filter paper crimping part 10c: Filter paper storage part 11, 11a, 11b, 11c after sampling: Smear Filter paper 12: Filter paper crimping tool 12a: Pressing motors 13, 13a, 13b: Rotation mechanism 30: Surface contamination density measuring device 31: Main body 32a: Pre-analysis sample dish storage section 32b: Transfer section 32c: Post-analysis sample dish storage section 34 : Connection part 35: Analytical device 36: Record creation part 37: Sample loading part 38: Slope 39: Operation panel

Claims (10)

地図情報に基づいて管理区域内を自律移動し、所定の場所で試料採取する自走式試料採取装置と、
測定エリア外に設置され、前記自走式試料採取装置が採取した前記採取試料の表面汚染密度を測定する表面汚染密度測定装置と、
を備えたことを特徴とする表面汚染密度測定システム。
A self-propelled sampling device that autonomously moves within the controlled area based on map information and samples at a predetermined location,
A surface contamination density measuring device that is installed outside the measurement area and that measures the surface contamination density of the sample collected by the self-propelled sampling device,
A surface contamination density measuring system comprising:
請求項1に記載の表面汚染密度測定システムにおいて、
前記自走式試料採取装置は、
外部環境を観測する環境センサと、
該環境センサの出力に基づいて、自己位置を推定する制御装置と、
を備えたことを特徴とする表面汚染密度測定システム。
The surface contamination density measuring system according to claim 1,
The self-propelled sampling device,
An environmental sensor that observes the external environment,
A controller for estimating a self-position based on the output of the environment sensor,
A surface contamination density measuring system comprising:
請求項2に記載の表面汚染密度測定システムにおいて、
前記制御装置は、前記環境センサから得られるデータを逐次重ね合わせていき、重ね合わせの際のスキャンデータの移動量から自己位置と移動量を逐次推定するマッピングAIであることを特徴とする表面汚染密度測定システム。
The surface contamination density measuring system according to claim 2,
The controller is a mapping AI that sequentially superimposes data obtained from the environment sensor and sequentially estimates the self-position and the movement amount from the movement amount of scan data at the time of superposition. Density measurement system.
請求項2または請求項3に記載の表面汚染密度測定システムにおいて、
前記制御装置は、
推定した自己位置を連続的に記録した移動経路を記憶していることを特徴とする表面汚染密度測定システム。
The surface contamination density measuring system according to claim 2 or 3,
The control device is
A surface contamination density measuring system characterized by storing a moving path in which the estimated self-position is continuously recorded.
請求項1に記載の表面汚染密度測定システムにおいて、
前記自走式試料採取装置は、
試料採取が完了した後、前記表面汚染密度測定装置に自律移動し、採取した試料を前記表面汚染密度測定装置に移送することを特徴とする表面汚染密度測定システム。
The surface contamination density measuring system according to claim 1,
The self-propelled sampling device,
A surface contamination density measuring system characterized by autonomously moving to the surface contamination density measuring apparatus after the sample collection is completed, and transferring the collected sample to the surface contamination density measuring apparatus.
請求項1に記載の表面汚染密度測定システムにおいて、
前記自走式試料採取装置は、
採取前濾紙格納部、濾紙圧着部、採取後濾紙格納部からなる試料採取部を備えており、
前記採取前濾紙格納部に格納されたスミア濾紙は、前記濾紙圧着部に移送され試料の採取に用いられた後、前記採取後濾紙格納部に格納されることを特徴とする表面汚染密度測定システム。
The surface contamination density measuring system according to claim 1,
The self-propelled sampling device,
It is equipped with a sample collection unit consisting of a filter paper storage unit before collection, a filter paper pressure bonding unit, and a filter paper storage unit after collection,
The smear filter paper stored in the pre-collection filter paper storage unit is transferred to the filter paper crimping unit, used for sampling, and then stored in the post-collection filter paper storage unit. ..
請求項1に記載の表面汚染密度測定システムにおいて、
前記自走式試料採取装置は、
車輪と駆動機構からなる移動装置と、
前記車輪の表面を拭き取る除染装置と、
を備えたことを特徴とする表面汚染密度測定システム。
The surface contamination density measuring system according to claim 1,
The self-propelled sampling device,
A moving device including wheels and a drive mechanism,
A decontamination device for wiping the surface of the wheel,
A surface contamination density measuring system comprising:
請求項1に記載の表面汚染密度測定システムにおいて、
前記表面汚染密度測定装置は、
前記採取試料の表面汚染密度の測定が完了した後、前記自走式試料採取装置から送信された前記採取試料の採取場所と、前記採取試料の測定結果を、前記管理区域の地図に反映させた測定記録を作成することを特徴とする表面汚染密度測定システム。
The surface contamination density measuring system according to claim 1,
The surface contamination density measuring device,
After the measurement of the surface contamination density of the sampled sample was completed, the collection location of the sampled sample transmitted from the self-propelled sampler and the measurement result of the sampled sample were reflected on the map of the controlled area. A surface contamination density measuring system, characterized in that a measurement record is created.
請求項8に記載の表面汚染密度測定システムにおいて、
前記表面汚染密度測定装置は、
前記地図情報と、前記自走式試料採取装置が観測した実環境と、の誤差を、前記管理区域の地図に反映させた測定記録を作成することを特徴とする表面汚染密度測定システム。
The surface contamination density measuring system according to claim 8,
The surface contamination density measuring device,
A surface contamination density measuring system characterized by creating a measurement record in which an error between the map information and an actual environment observed by the self-propelled sampling device is reflected on a map of the controlled area.
請求項1に記載の表面汚染密度測定システムにおいて、
前記表面汚染密度測定装置は、
前記自走式試料採取装置からの採取試料が搬入される試料搬入部と、
空の試料皿が格納される分析前試料皿格納部と、
前記試料皿に載せられた前記採取試料の表面汚染密度を分析する分析装置と、
分析後の試料皿が格納される分析後試料皿格納部と、
これらの間で前記試料皿を移送する移送部と、
を備えたことを特徴とする表面汚染密度測定システム。
The surface contamination density measuring system according to claim 1,
The surface contamination density measuring device,
A sample carry-in section into which a sample collected from the self-propelled sample collecting device is carried in;
A pre-analysis sample dish storage unit in which an empty sample dish is stored;
An analyzer for analyzing the surface contamination density of the collected sample placed on the sample dish,
A post-analysis sample dish storage unit for storing a sample dish after analysis,
A transfer unit for transferring the sample dish between them,
A surface contamination density measuring system comprising:
JP2018228846A 2018-12-06 2018-12-06 Surface contamination density measurement system Active JP7005476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018228846A JP7005476B2 (en) 2018-12-06 2018-12-06 Surface contamination density measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018228846A JP7005476B2 (en) 2018-12-06 2018-12-06 Surface contamination density measurement system

Publications (2)

Publication Number Publication Date
JP2020091213A true JP2020091213A (en) 2020-06-11
JP7005476B2 JP7005476B2 (en) 2022-01-21

Family

ID=71013715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018228846A Active JP7005476B2 (en) 2018-12-06 2018-12-06 Surface contamination density measurement system

Country Status (1)

Country Link
JP (1) JP7005476B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108286U (en) * 1983-01-11 1984-07-21 三菱原子燃料株式会社 Sample supply and discharge device
JPS6063499A (en) * 1983-09-16 1985-04-11 株式会社富士電機総合研究所 Floor-surface decontaminating robot for nuclear power facility
US4736826A (en) * 1985-04-22 1988-04-12 Remote Technology Corporation Remotely controlled and/or powered mobile robot with cable management arrangement
JPH0627243A (en) * 1992-07-09 1994-02-04 Toshiba Corp Surface contamination inspecting apparatus
JPH0996676A (en) * 1995-09-29 1997-04-08 Touden Kogyo Kk Method and apparatus for sampling smear continuously
JP2001305283A (en) * 2000-04-20 2001-10-31 Ishikawajima Harima Heavy Ind Co Ltd Leakage inspection device for radioactive waste liquid storage tank
JP2015219066A (en) * 2014-05-15 2015-12-07 国立研究開発法人農業・食品産業技術総合研究機構 Ground surface radiation measuring apparatus and radiation measuring method using the same
JP2016024020A (en) * 2014-07-18 2016-02-08 東京電力株式会社 Position correction method, movement locus acquisition device and radiation dose mapping method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108286U (en) * 1983-01-11 1984-07-21 三菱原子燃料株式会社 Sample supply and discharge device
JPS6063499A (en) * 1983-09-16 1985-04-11 株式会社富士電機総合研究所 Floor-surface decontaminating robot for nuclear power facility
US4736826A (en) * 1985-04-22 1988-04-12 Remote Technology Corporation Remotely controlled and/or powered mobile robot with cable management arrangement
JPH0627243A (en) * 1992-07-09 1994-02-04 Toshiba Corp Surface contamination inspecting apparatus
JPH0996676A (en) * 1995-09-29 1997-04-08 Touden Kogyo Kk Method and apparatus for sampling smear continuously
JP2001305283A (en) * 2000-04-20 2001-10-31 Ishikawajima Harima Heavy Ind Co Ltd Leakage inspection device for radioactive waste liquid storage tank
JP2015219066A (en) * 2014-05-15 2015-12-07 国立研究開発法人農業・食品産業技術総合研究機構 Ground surface radiation measuring apparatus and radiation measuring method using the same
JP2016024020A (en) * 2014-07-18 2016-02-08 東京電力株式会社 Position correction method, movement locus acquisition device and radiation dose mapping method

Also Published As

Publication number Publication date
JP7005476B2 (en) 2022-01-21

Similar Documents

Publication Publication Date Title
US5324948A (en) Autonomous mobile robot for radiologic surveys
Bird et al. A robot to monitor nuclear facilities: Using autonomous radiation-monitoring assistance to reduce risk and cost
CN110495821B (en) Cleaning robot and control method thereof
EP3441840B1 (en) Method for operating a self-propelled cleaning device
JP6427533B2 (en) Radioactive surface contamination density measuring device and radioactive surface contamination density measuring method using the measuring device
TW201701818A (en) Domestic robot and method for operating a domestic robot
JP7005476B2 (en) Surface contamination density measurement system
CN111398082A (en) Real-time monitoring device and method for content of free silica in industrial and mining dust
Kim et al. Robotic contamination cleaning system
WO2022024630A1 (en) Program, cleaning device, and information processing method
US11972383B2 (en) Systems and methods for tracking and scoring cleaning
CN113116247A (en) Cleaning robot maintenance method, cleaning robot, cleaning system, and storage medium
JPS6063499A (en) Floor-surface decontaminating robot for nuclear power facility
JP2018141767A (en) Tire house contamination inspection device and tire house contamination automatic inspection method
Kim et al. Teleoperated cleaning robots for use in a highly radioactive environment of the DFDF
JPH0634090B2 (en) Traveling device for in-cell inspection device
JP6562342B2 (en) Radioactive material collection device and radioactive material analysis method
JP5888446B1 (en) Floor contamination measurement system
JP4184910B2 (en) Leak detection method
KR102506068B1 (en) Remote decontamination robot equipment and operating system for decontamination of radioactively contaminated concrete surfaces paint coating layer of nuclear facility buildings
JPH10288667A (en) Radioactivity measuring device
KR102580055B1 (en) Containment vessel liner plate remote visual inspection and manipulator driving obstacle detection system
JP7509178B2 (en) AUTONOMOUS DRIVING DEVICE AND AUTONOMOUS DRIVING METHOD
WO2023037801A1 (en) Automated analysis support robot, and automated analysis system
JPS60177247A (en) In-cell inspecting and repairing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220105

R150 Certificate of patent or registration of utility model

Ref document number: 7005476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150