JP2020090816A - Stirring and mixing device for mechanical stirring and ground improvement method using the same - Google Patents
Stirring and mixing device for mechanical stirring and ground improvement method using the same Download PDFInfo
- Publication number
- JP2020090816A JP2020090816A JP2018227703A JP2018227703A JP2020090816A JP 2020090816 A JP2020090816 A JP 2020090816A JP 2018227703 A JP2018227703 A JP 2018227703A JP 2018227703 A JP2018227703 A JP 2018227703A JP 2020090816 A JP2020090816 A JP 2020090816A
- Authority
- JP
- Japan
- Prior art keywords
- stirring
- ground improvement
- discharge ports
- ground
- improvement material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003756 stirring Methods 0.000 title claims abstract description 121
- 238000002156 mixing Methods 0.000 title claims abstract description 76
- 238000000034 method Methods 0.000 title claims description 28
- 238000010907 mechanical stirring Methods 0.000 title claims description 25
- 239000000463 material Substances 0.000 claims abstract description 142
- 238000007599 discharging Methods 0.000 claims abstract description 10
- 238000013019 agitation Methods 0.000 claims description 10
- 230000007423 decrease Effects 0.000 claims description 7
- 239000004570 mortar (masonry) Substances 0.000 claims description 6
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 238000010276 construction Methods 0.000 abstract description 24
- 239000002689 soil Substances 0.000 description 47
- 239000004568 cement Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000002265 prevention Effects 0.000 description 5
- 238000009412 basement excavation Methods 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000003864 humus Substances 0.000 description 2
- 239000002440 industrial waste Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000002889 sympathetic effect Effects 0.000 description 1
Landscapes
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
Abstract
Description
本発明は、機械攪拌用の攪拌混合装置およびそれを用いた地盤改良工法に関するものである。 The present invention relates to a stirring and mixing device for mechanical stirring and a ground improvement method using the stirring and mixing device.
機械攪拌式深層混合処理工法において、セメント系固化材を水と混合しスラリー状にした材料を改良材として使用する工法が一般的に用いられている。機械攪拌式深層混合処理工法において、地盤改良材は一般的に回転軸(攪拌軸)の下端部より吐出する手法が用いられている。その施工方法の概要は図10に示すとおりである。 In the mechanical agitation type deep layer mixing treatment method, a method of using a material obtained by mixing a cement-based solidifying material with water to form a slurry as an improving material is generally used. In the mechanical stirring type deep mixing processing method, a method for discharging the ground improvement material from the lower end of the rotating shaft (stirring shaft) is generally used. The outline of the construction method is as shown in FIG.
このようなセメント系深層混合処理工法を利用した従来の地盤改良工事では、次のような問題があった。 The conventional ground improvement work using such a cement-based deep mixing method has the following problems.
一般的に、対象土が軟弱で含水比が高い場合は固化材混合量が多くなる傾向があり、含水比が200%を超えるような土では改良対象土量1m3当たり500kg以上の固化材を用いる場合もある。 Generally, when the target soil is soft and has a high water content, the amount of solidifying material tends to increase.For soil with a water content of more than 200%, solidification material of 500 kg or more per 1 m 3 of the improved soil content should be used. Sometimes used.
水セメント比は80%程度を下限としていることから改良材が多い場合、地盤内への吐出に時間がかかり施工能率が落ちる。 Since the water-cement ratio is around 80% as the lower limit, when there are many improved materials, it takes time to discharge into the ground and the construction efficiency decreases.
対象土が有機質土、腐植土等の超軟弱地盤の場合、一般的なセメントでは必要な強度が得られない。そのため、有機質土や腐植土等に適した高価な特殊地盤改良材が固化材として用いられている。 When the target soil is ultra-soft soil such as organic soil and humus soil, the required strength cannot be obtained with general cement. Therefore, an expensive special ground improvement material suitable for organic soil or humus is used as a solidifying material.
工事費に固化材料費が占める割合が多いため、超軟弱地盤を改良する場合に工事費が大幅に増える。 Since the solidified material cost accounts for a large proportion of the construction cost, the construction cost will increase significantly when improving ultra-soft ground.
地中に投入するスラリー量の概ね80%の土が、盛上がり土として地表に排出され(産業廃棄物)その量は固化材料に比例して多くなる。 About 80% of the amount of the slurry that is put into the ground is discharged to the surface as rising soil (industrial waste), and the amount increases in proportion to the solidified material.
従来技術では、改良材は一般的に回転軸下端部1点より吐出される(図2(a)参照)。攪拌混合は、回転軸から放射状に伸びる板状の攪拌翼が回転軸を中心に回転する動きによるため、内側と外側で混ざりにくい。 In the prior art, the improving material is generally discharged from one point at the lower end of the rotary shaft (see FIG. 2(a)). Stir-mixing is caused by the movement of the plate-shaped stirring blades radially extending from the rotation axis rotating around the rotation axis, and thus mixing inside and outside is difficult.
流動性が高くない材料を攪拌軸下端部より原位置土中に吐出することも検討されたが、そのような材料を吐出する場合、改良対象範囲全体に改良材が拡散しにくいことから、均質に改良するためには攪拌混合に時間を要する。 It was also considered to discharge a material with low fluidity into the soil in situ from the lower end of the agitation shaft.However, when such a material is discharged, it is difficult for the improved material to diffuse over the entire range to be improved, so a homogeneous It takes time to stir and mix for improvement.
低流動性の材料を吐出する場合、流動性が低い故に、回転軸の流路内で材料が閉塞し施工不可となる場合がある。 When a low-fluidity material is discharged, the material may be clogged in the flow path of the rotary shaft due to its low fluidity, making it impossible to perform construction.
低流動性の材料は攪拌混合しにくいため、このような材料を用いると、造成する改良体の品質が不均質になりやすい。 Since low-fluidity materials are difficult to stir and mix, the use of such materials tends to make the quality of the improved body inhomogeneous.
地盤改良材を回転軸内の流路で分岐させる場合、分岐前より分岐後の流路断面積が小さくなると回転軸内での材料閉塞の可能性がある。 When the ground improvement material is branched in the flow path in the rotary shaft, if the flow path cross-sectional area after the branch is smaller than that before the branch, the material may be blocked in the rotary shaft.
そこで、上述した従来技術の問題点に鑑み、本発明の目的は、例えば対象土が軟弱で含水比が高い場合や有機質土の場合でも、従来よりも施工能率が高く、低コストでの施工を可能とし、高品質の改良体を造成することを可能にする、機械攪拌用攪拌混合装置と、それを用いた地盤改良工法を提供することにある。 Therefore, in view of the above-mentioned problems of the conventional technology, the object of the present invention is, for example, even when the target soil is soft and has a high water content ratio or even when it is an organic soil, the construction efficiency is higher than the conventional construction, and construction at a low cost can be performed. An object of the present invention is to provide a stirring/mixing device for mechanical stirring and a ground improvement method using the stirring/mixing device, which makes it possible to produce a high-quality improved body.
このような目的は、地盤改良材の流路を具備する回転軸と、回転軸を介して導かれた地盤改良材を吐出するための複数の吐出口を具備する攪拌翼と、を有し、前記複数の吐出口が回転軸から異なる距離に位置するように攪拌翼に設けられた、機械攪拌用攪拌混合装置によって達成される。 Such an object has a rotating shaft having a flow path of the soil improvement material, and a stirring blade having a plurality of discharge ports for discharging the soil improvement material introduced through the rotation shaft, This is achieved by a stirring and mixing device for mechanical stirring, which is provided on the stirring blade so that the plurality of discharge ports are located at different distances from the rotation axis.
上記攪拌混合装置において、回転軸が具備する流路は、その途中で複数の個別流路に分岐していることが好ましく、この場合、複数の個別流路は、前記攪拌翼が具備する複数の吐出口に対し個別に通じている。 In the above stirring/mixing device, the flow path included in the rotating shaft is preferably branched into a plurality of individual flow paths in the middle thereof, and in this case, the plurality of individual flow paths include a plurality of individual flow paths provided in the stirring blade. It communicates with the outlet individually.
また上記攪拌混合装置において、回転軸が具備する複数の個別流路は、それぞれ、地盤改良材が通過する過程で断面積が減少しない寸法を有していることが好ましい。 Further, in the above stirring and mixing apparatus, it is preferable that each of the plurality of individual flow paths provided in the rotary shaft has a size such that the cross-sectional area does not decrease in the process of the ground improvement material passing through.
また上記攪拌混合装置において、複数の個別流路には、地盤改良材が通過する部分の断面積に差を付けてもよい。 In addition, in the above stirring and mixing device, the plurality of individual flow paths may have different cross-sectional areas at the portions through which the ground improvement material passes.
また上記攪拌混合装置の回転軸が具備する流路において、複数の個別流路に分かれる分岐部入口にはテーパー加工が施されていることが好ましい。 In addition, in the flow path provided in the rotary shaft of the stirring/mixing apparatus, it is preferable that the inlet of the branch portion that is divided into a plurality of individual flow paths is tapered.
また上記攪拌混合装置は、複数の吐出口に個別に通ずる複数の個別流路を時間差を付けて繰返し開閉するための開閉手段を更に有してもよい。 Further, the stirring and mixing device may further include an opening/closing means for repeatedly opening/closing a plurality of individual flow paths that individually communicate with the plurality of discharge ports with a time difference.
また、前述した目的は、
地盤改良材の吐出口を複数具備する攪拌翼を有し、複数の吐出口が異なる径で旋回するように設けられた機械攪拌用攪拌混合装置を用いた地盤改良工法であって、
回転軸と攪拌翼を有する攪拌混合装置を地盤に貫入する過程、地盤から引抜く過程の何れか一方又は両方の過程で、流路を具備する回転軸を介して地盤改良材を圧送し、
異なる径で旋回する複数の吐出口のそれぞれから地盤改良材を吐出する、
ことを特徴とする地盤改良工法によって達成される。
Moreover, the above-mentioned purpose is
A ground improvement method using a mechanical stirring agitation mixing device provided with a stirring blade having a plurality of ground improvement material discharge ports, wherein the plurality of discharge ports are swirled with different diameters,
In the process of penetrating the stirring and mixing device having a rotating shaft and stirring blades into the ground, or in one or both of the processes of pulling out from the ground, the ground improving material is pressure-fed through the rotating shaft having the flow path,
Discharge the ground improvement material from each of a plurality of discharge ports that rotate with different diameters,
It is achieved by the ground improvement method characterized by the above.
上記地盤改良工法では、複数の吐出口から地盤改良材を不連続で吐出するようにしてもよい。 In the above ground improvement method, the ground improvement material may be discharged discontinuously from a plurality of discharge ports.
また上記地盤改良工法では、地盤改良材として例えばモルタルのような骨材を持つ低流動性の材料を用いてもよい。 In the ground improvement method, a low fluidity material having an aggregate such as mortar may be used as the ground improvement material.
本発明に係る機械攪拌用攪拌混合装置は回転軸と攪拌翼を有しており、攪拌翼は、回転軸の流路を介して導かれた地盤改良材を吐出するための複数の吐出口を具備している。複数の吐出口は、回転軸内の流路に繋がっていて、回転軸から異なる距離に位置するように(すなわち異なる旋回径になるように)攪拌翼に設けられている。
このような構成を採用し、回転軸から異なる距離にある複数(例えば2〜4ヶ所)の吐出口から地盤改良材を対象地盤内に投入することで、攪拌翼による攪拌混合域における内側から外側まで均等に地盤改良材を行き渡らせることができ、均質な改良体を効率よく構築することが可能になる。また、図2(a)に示すような1ヶ所からの吐出に比べて、攪拌混合時間を大幅に短縮することができる。図2(b)参照。
したがって本発明によれば、混合材料として例えばモルタルなどの低流動性の材料を使用する場合でも、攪拌翼で効率的な混合攪拌を行うことができる。
また、本発明に係る機械攪拌用攪拌混合装置では、使用機械として既存の深層混合処理機械を用いることができ、施工機本体の改造の必要がない。
The mechanical stirring stirring and mixing device according to the present invention has a rotating shaft and a stirring blade, and the stirring blade has a plurality of discharge ports for discharging the ground improvement material guided through the flow path of the rotating shaft. It has. The plurality of discharge ports are connected to the flow path in the rotating shaft, and are provided in the stirring blade so as to be located at different distances from the rotating shaft (that is, have different swirling diameters).
By adopting such a configuration, and by introducing the ground improvement material into the target ground from a plurality of (for example, 2 to 4) discharge ports located at different distances from the rotation axis, from the inside to the outside in the stirring and mixing area by the stirring blades. The ground improvement material can be evenly distributed up to, and a homogeneous improved body can be efficiently constructed. Further, the stirring and mixing time can be significantly shortened as compared with the discharge from one location as shown in FIG. 2(a). See Figure 2(b).
Therefore, according to the present invention, even when a low-fluidity material such as mortar is used as the mixed material, efficient mixing and stirring can be performed with the stirring blade.
In addition, in the stirring and mixing apparatus for mechanical stirring according to the present invention, the existing deep layer mixing processing machine can be used as a machine to be used, and it is not necessary to modify the construction machine body.
また本発明では、回転軸が具備する流路は、その途中で複数の個別流路に分岐しており、複数の個別流路は、攪拌翼が具備する複数の吐出口に対し個別に通じている。すなわち、回転軸が具備する流路は、その途中から複数に枝分かれした流路となっており、枝分かれした複数の流路は、対応するそれぞれの吐出口に個別に繋がっている。このような分岐構造を採用することにより、地盤改良材の分割投入(複数の吐出口からの地盤改良材の吐出)をスムーズに行うことができる。
また、複数の吐出口に個別に繋がる複数の個別流路を回転軸内に設けることで、地盤改良材の送出圧力が複数の吐出口のすべてに十分に伝わるので、すべての吐出口から確実に地盤改良材を吐出させることができる。
Further, in the present invention, the flow path included in the rotating shaft is branched into a plurality of individual flow paths in the middle thereof, and the plurality of individual flow paths are individually connected to the plurality of discharge ports included in the stirring blade. There is. That is, the flow path provided in the rotary shaft is a flow path branched into a plurality of paths from the middle thereof, and the plurality of branched flow paths are individually connected to the corresponding discharge ports. By adopting such a branch structure, it is possible to smoothly perform the divided introduction of the ground improvement material (discharge of the ground improvement material from the plurality of discharge ports).
Also, by providing multiple individual flow paths in the rotary shaft that are individually connected to multiple outlets, the delivery pressure of the ground improvement material is sufficiently transmitted to all of the multiple outlets, ensuring reliable delivery from all outlets. The ground improvement material can be discharged.
また本発明において、回転軸が具備する複数の個別流路は、それぞれ、地盤改良材が通過する過程で断面積(通過面積)が減少しない寸法に設定されている。ここでいう「断面積」とは、流路における地盤改良材の通過部分の断面積である。
これにより、回転軸内を地盤改良材が通過する過程において断面積(通過面積)が減少することが無いので(つまり流路が途中で狭まることが無いので)、回転軸内で流路を分岐させても改良材通過時の抵抗が発生しにくく、回転軸内における地盤改良材の流量が安定する。
したがって、このような流路を具備する回転軸を介して地盤改良材を複数の吐出口に導くことで、対象地盤への改良材の分割投入(複数の吐出口からの地盤改良材の吐出)を滞りなくスムーズに行うことができる。図1及び図2(b)参照。
Further, in the present invention, each of the plurality of individual flow paths provided in the rotary shaft is set to a size such that the cross-sectional area (passage area) does not decrease in the course of the ground improvement material passing through. The "cross-sectional area" here is the cross-sectional area of the passage portion of the ground improvement material in the flow path.
As a result, since the cross-sectional area (passage area) does not decrease in the process of the ground improvement material passing through the rotary shaft (that is, the flow passage does not narrow in the middle), the flow passage is branched within the rotary shaft. Even if it is done, resistance is unlikely to occur when passing through the improvement material, and the flow rate of the ground improvement material in the rotating shaft becomes stable.
Therefore, by guiding the ground improvement material to the plurality of discharge ports via the rotary shaft having such a flow path, the improvement material is dividedly put into the target ground (discharge of the ground improvement material from the plurality of discharge ports). Can be done smoothly and smoothly. See FIGS. 1 and 2(b).
また本発明において、回転軸が具備する流路では、複数の個別流路に分かれる分岐部入口にテーパー加工が施されている。このテーパー加工は、回転軸内で流動する地盤改良材が受ける抵抗を軽減する役割を担っている。
このようなテーパー加工を施すことで、個別流路に分かれる分岐部入口での抵抗が減って(すなわち地盤改良材を圧送するための圧力の損失が減って)、地盤改良材の流れがさらにスムーズになってその流量が安定し、また、回転軸内における材料閉塞の頻度をさらに低下させることができる。図3参照。
このような特徴は、低流動性の材料を使用する場合に特に有効である。
Further, in the present invention, in the flow path provided on the rotating shaft, the inlet of the branch portion which is divided into a plurality of individual flow paths is tapered. This taper processing plays a role of reducing the resistance received by the ground improvement material flowing in the rotating shaft.
By performing such taper processing, the resistance at the branch inlet that divides into the individual flow paths is reduced (that is, the pressure loss for pumping the ground improvement material is reduced), and the flow of the ground improvement material is smoother. As a result, the flow rate becomes stable, and the frequency of material blockage in the rotary shaft can be further reduced. See FIG.
Such a feature is particularly effective when using a low flow material.
また本発明において、回転軸が具備する複数の個別流路は、その断面積を等しく設定して、地盤改良材の流量が各個別流路で同じになるようにしてもよく、あるいは、その断面積に差を設けて流量に違いを持たせてもよい。
後者のように、地盤改良材が通過する部分の断面積に差が生じるように、複数の個別流路の各寸法を設定した場合には、複数の吐出口における吐出量に違いを持たせることが可能である。図4参照。
このような特徴は、複数の吐出口に異なる吐出量を設定したい場合に有益である。
Further, in the present invention, the plurality of individual passages included in the rotary shaft may be set to have the same cross-sectional area so that the flow rate of the ground improvement material is the same in each individual passage, or The areas may be provided with a difference so that the flow rates may be different.
When the dimensions of multiple individual flow paths are set so that there are differences in the cross-sectional area of the portion through which the ground improvement material passes, as in the latter case, the discharge volumes at the multiple discharge ports must be different. Is possible. See FIG.
Such a feature is useful when it is desired to set different ejection amounts to a plurality of ejection ports.
また本発明では、複数の吐出口に個別に通ずる複数の個別流路を、時間差を付けて繰返し開閉するための「開閉手段」を更に設けてもよい。
このような時間差式の開閉手段は、例えば供回り防止翼を利用することで実現できる。例えば供回り防止翼取り付け部に個別流路を開閉可能な流路開閉部を設け、この流路開閉部を通じて、複数の吐出口への地盤改良材の分配を行う。
具体的には、分岐した個別流路を遮断するように供回り防止翼を回転軸に装着し、一部の個別流路のみ地盤改良材が通過できる開口部(穴)を供回り防止翼に設ける。図5、図6参照。これにより、複数の個別流路のなかで、通過できる流路が刻々と変化し、各流路が時間差で一時的に遮断されることにより不連続で材料吐出される。
すべての吐出口から同時に連続で吐出される場合、一か所の吐出口が閉塞すると他の吐出口より材料が吐出されるため閉塞が解消されないが、各流路を一時的に遮断することにより閉塞した吐出口に圧力が集中し、閉塞している吐出口から詰まった改良材が押し出されることにより閉塞状態を解消することができる。
Further, in the present invention, “opening/closing means” may be further provided for repeatedly opening/closing a plurality of individual flow paths that individually communicate with a plurality of discharge ports with a time difference.
Such a time difference type opening/closing means can be realized by utilizing, for example, a non-rotation prevention blade. For example, a passage opening/closing portion capable of opening/closing an individual passage is provided in the attachment prevention blade attachment portion, and the ground improvement material is distributed to a plurality of discharge ports through the passage opening/closing portion.
Specifically, the anti-rotation blades are attached to the rotating shaft so as to block the branched individual flow passages, and only some of the individual flow passages have openings (holes) through which the ground improvement material can pass as the anti-rotation blades. Set up. See FIGS. 5 and 6. As a result, among the plurality of individual flow paths, the flow paths that can pass through change every moment, and the flow paths are temporarily blocked with a time difference, so that the material is discharged discontinuously.
In case of continuous discharge from all discharge ports at the same time, if one discharge port is blocked, the material will be discharged from the other discharge port and the blockage will not be eliminated, but by temporarily blocking each flow path The pressure is concentrated on the blocked discharge port, and the blocked improving material is pushed out from the blocked discharge port, whereby the blocked state can be eliminated.
また本発明では、造成する改良体の仕様等に応じて、分岐した個別流路の内、いずれかを意図的に封鎖してもよい。例えば、最内の吐出口に通ずる個別流路を封鎖することにより、中空の改良体を造成することも可能である。図7参照。 Further, in the present invention, one of the branched individual flow paths may be intentionally blocked depending on the specifications of the improved body to be constructed. For example, it is also possible to create a hollow improved body by closing the individual flow path leading to the innermost discharge port. See FIG.
また、複数の吐出口の一又は二以上の位置を変えることにより、改良体の内側と外側に強度差をつけることも可能である。 It is also possible to make a difference in strength between the inside and outside of the improved body by changing one or more positions of the plurality of ejection ports.
また本発明では、攪拌翼の段数は特に限定されず、一段でもよく、二段以上の複数段設けてもよい。攪拌翼を多段(例えば2〜4段)設けることにより吐出口を増やすことができ(図8参照)、吐出口が増えることで材料をさらに均等に分布させることが可能である。 Further, in the present invention, the number of stages of the stirring blades is not particularly limited, and may be one stage or a plurality of stages of two or more stages. The number of discharge ports can be increased by providing the stirring blades in multiple stages (for example, 2 to 4 stages) (see FIG. 8), and the material can be more evenly distributed by increasing the number of discharge ports.
また本発明で利用可能な地盤改良材の具体例としては、例えばモルタルのような骨材を持つ低流動性の材料が挙げられる。
このような低流動性の材料を、含水比が高く土粒子の少ない有機質土等の軟弱地盤の改良において地盤改良材として使うことにより、有機質土内の間隙に骨材分の土粒子が増え、地盤中への材料投入量をセメント系固化材と比較して大幅に減らすことができる。
また、低流動性の材料を地盤改良材として使うことにより、有機質土に適した高価な特殊地盤改良材を固化材として使用しなくても強度発現が望める。
また、地盤中への材料投入量が減る結果、工事費の中で構成比率の高い材料費を縮減することができる。
また、モルタルのような低流動性の材料の骨材として盛り上がり土を使用することにより、発生土の産業廃棄物処分費も削減することが可能となる。
また、地盤中への材料投入量が減ることで、盛り上がり土も併せて減ることから、残土処分費も削減できる。
また、地盤中への材料投入量がセメント系固化材と比較して大幅に減ることにより、攪拌時間が短縮して施工能率が上がり、その結果、工期を短縮することが可能になる。
As a specific example of the ground improvement material that can be used in the present invention, there is a low fluidity material having an aggregate such as mortar.
By using such a low-fluidity material as a soil improvement material in the improvement of soft soil such as organic soil having a high water content and few soil particles, the soil particles of the aggregate increase in the gaps in the organic soil, The amount of material input into the ground can be greatly reduced compared to cement-based solidifying materials.
Further, by using a low-fluidity material as the ground improvement material, strength can be expected without using an expensive special ground improvement material suitable for organic soil as the solidification material.
In addition, as a result of reducing the amount of material input into the ground, it is possible to reduce the material cost that has a high percentage of the construction cost.
Further, by using the raised soil as an aggregate of a low-fluidity material such as mortar, it is possible to reduce the industrial waste disposal cost of the generated soil.
In addition, since the amount of material input into the ground is reduced, the amount of swelling soil is also reduced, and the cost of disposal of residual soil can be reduced.
Further, the amount of material input into the ground is significantly reduced as compared with the cement-based solidifying material, whereby the stirring time is shortened and the construction efficiency is increased, and as a result, the construction period can be shortened.
また、上述した機械攪拌用攪拌混合装置を利用して地盤改良工事を実施することで、
例えば対象土が軟弱で含水比が高い場合や有機質土の場合でも、従来よりも施工能率が高く、低コストでの施工が可能となり、また、高品質の改良体を造成することが可能となる。
In addition, by carrying out ground improvement work using the above-mentioned mechanical agitation mixing device,
For example, even if the target soil is soft and has a high water content, or even if it is an organic soil, the construction efficiency will be higher than before and it will be possible to construct at a lower cost, and it will be possible to create a high-quality improved body. ..
(攪拌混合装置の第1実施形態)
第1実施形態の機械攪拌用攪拌混合装置11は、図1に概略的に示すような断面形状を有しており、図9に示すような施工機械が配置された施工現場において、リーダーや回転駆動装置などを具備する施工機本体91に取り付けて利用する。このような施工機本体が具備するリーダーに沿って攪拌混合装置を吊り下げ、回転駆動装置の回転力を攪拌混合装置の回転軸に付与することで、攪拌混合装置の全体を回転させながら原地盤中に貫入したり引抜くことができる。
(First Embodiment of Stirring Mixer)
The stirring and mixing apparatus 11 for mechanical stirring of the first embodiment has a cross-sectional shape as schematically shown in FIG. 1, and is used in a construction site where a construction machine as shown in FIG. It is used by being attached to a construction machine body 91 equipped with a drive device and the like. By suspending the stirring/mixing device along the leader provided in the construction machine body and imparting the rotational force of the rotary drive device to the rotating shaft of the stirring/mixing device, the entire mixing/mixing device is rotated while the base ground is being rotated. Can be penetrated or withdrawn.
本実施形態の機械攪拌用攪拌混合装置11は、図1に示すように、主として、
・地盤改良材の流路23を具備する回転軸21(攪拌軸)と、
・この回転軸と一体となって回動可能に設けられた攪拌翼41,42を
有している。
As shown in FIG. 1, the stirring and mixing apparatus 11 for mechanical stirring of the present embodiment mainly
A rotating shaft 21 (stirring shaft) having a flow path 23 for ground improvement material,
-It has stirring blades 41 and 42 that are rotatably provided integrally with this rotating shaft.
攪拌翼41,42は、水平方向に延びるように回転軸21の下方に所定の間隔を隔てて設けられ、地盤を掘削し、掘削土と地盤改良材を攪拌混合する役割を担う。 The stirring blades 41, 42 are provided below the rotary shaft 21 at a predetermined interval so as to extend in the horizontal direction, and have a role of excavating the ground and stirring and mixing the excavated soil and the ground improvement material.
また、攪拌翼41は、図1、図2(b)に示すように、
・回転軸21内の流路23から分岐した個別流路31,32,33に通ずる流路45と、
・回転軸21を介して導かれた地盤改良材を吐出するための複数の吐出口1,2,3を
具備している。
攪拌翼41における吐出口1,2,3の位置関係は、図2(b)に示すとおりである。
Further, the stirring blade 41, as shown in FIGS. 1 and 2(b),
A flow channel 45 that communicates with the individual flow channels 31, 32, 33 branched from the flow channel 23 in the rotary shaft 21
-It has a plurality of discharge ports 1, 2, and 3 for discharging the ground improvement material guided through the rotary shaft 21.
The positional relationship between the discharge ports 1, 2, and 3 in the stirring blade 41 is as shown in FIG. 2(b).
なお、攪拌翼41が具備する吐出口の数は複数である限り特に限定されず、本実施形態では一例として、攪拌翼41に3つの吐出口を設けている。 The number of discharge ports provided in the stirring blade 41 is not particularly limited as long as it is plural, and in the present embodiment, the stirring blade 41 is provided with three discharge ports as an example.
攪拌翼41が具備する吐出口1,2,3は、図2(b)に示すように、回転軸21から異なる距離に位置する。 The discharge ports 1, 2, and 3 included in the stirring blade 41 are located at different distances from the rotating shaft 21, as shown in FIG.
本実施形態では、
回転軸21から吐出口1(第1の吐出口)までの距離をD1、
回転軸21から吐出口2(第2の吐出口)までの距離をD2、
回転軸21から吐出口3(第3の吐出口)までの距離をD3とした場合に、
D1<D2<D3 となるように、吐出口1、2、3が攪拌翼41に設けられている。
In this embodiment,
The distance from the rotary shaft 21 to the discharge port 1 (first discharge port) is D1,
The distance from the rotary shaft 21 to the discharge port 2 (second discharge port) is D2,
When the distance from the rotary shaft 21 to the discharge port 3 (third discharge port) is D3,
The discharge ports 1, 2, and 3 are provided in the stirring blade 41 so that D1<D2<D3.
なお、吐出口1,2,3の旋回軌跡の間隔は必ずしも等間隔である必要はなく、造成する改良体の仕様に応じて吐出口を設ける位置を変えることも可能である。このように吐出口の位置を変えることにより、例えば、造成する改良体の内側と外側に強度差をつけることも可能である。 The intervals of the swirling trajectories of the discharge ports 1, 2 and 3 do not necessarily have to be equal, and the positions at which the discharge ports are provided can be changed according to the specifications of the improved body to be constructed. By changing the position of the discharge port in this manner, it is possible to make a difference in strength between the inside and the outside of the improved body to be formed.
回転軸21は、攪拌混合装置11が回転駆動される際に回転中心となる軸部であり、
図1に示すように、
・その内部に設けられた地盤改良材の流路23,31,32,33、
・その下端に設けられた掘削ヘッド35、
などを具備している。
The rotating shaft 21 is a shaft portion that serves as a center of rotation when the stirring and mixing device 11 is rotationally driven,
As shown in Figure 1,
・Flow path 23, 31, 32, 33 of ground improvement material provided therein,
・Drilling head 35 provided at the lower end thereof,
It is equipped with
回転軸21が具備する流路23は、図1に示すように、その途中で分岐して3つの個別流路31,32,33に分かれている。個別流路31,32,33は、攪拌翼41が具備する吐出口1、2、3(図2(b)参照)に対し1対1で個別に通じている。すなわち、回転軸21が具備する流路23は、その途中から複数に枝分かれした流路となっており、枝分かれした個別流路31,32,33は、対応するそれぞれの吐出口1、2、3に個別に繋がっている。 As shown in FIG. 1, the flow path 23 included in the rotary shaft 21 is branched in the middle to be divided into three individual flow paths 31, 32, and 33. The individual flow paths 31, 32, and 33 communicate with the discharge ports 1, 2, and 3 (see FIG. 2B) of the stirring blade 41 individually in a one-to-one relationship. That is, the flow path 23 included in the rotary shaft 21 is a flow path that is branched into a plurality of paths from the middle thereof, and the branched individual flow paths 31, 32, and 33 are respectively associated with the corresponding discharge ports 1, 2, 3, and 3. Are individually connected to.
また本実施形態において、回転軸21が具備する個別流路31,32,33は、それぞれ、地盤改良材が通過する過程で断面積が減少しない寸法を有している。ここでいう「断面積」とは、流路における地盤改良材の通過部分の断面積である。 In addition, in the present embodiment, the individual flow paths 31, 32, and 33 included in the rotary shaft 21 have dimensions such that their cross-sectional areas do not decrease in the course of the ground improvement material passing through. The "cross-sectional area" here is the cross-sectional area of the passage portion of the ground improvement material in the flow path.
例えば、図1に示す実施形態において、
b−b断面における個別流路31,32,33の断面積の総和は、
a−a断面における流路23の断面積とほぼ同じ又はこれよりも大きい。
For example, in the embodiment shown in FIG.
The sum of the cross-sectional areas of the individual flow paths 31, 32, 33 in the bb cross section is
It is almost the same as or larger than the cross-sectional area of the flow path 23 in the aa cross section.
このような特徴により、回転軸21内を地盤改良材が通過する過程において断面積(通過面積)が減少することが無いので(つまり地盤改良材が流動する過程で流路が狭まることが無いので)、回転軸21内で流路を分岐させても改良材通過時の抵抗が発生しにくく、回転軸内における地盤改良材の流量が安定する。
したがって、このような流路を具備する回転軸21を介して地盤改良材を複数の吐出口に導くことで、対象地盤への改良材の分割投入(複数の吐出口からの地盤改良材の吐出)を滞りなくスムーズに行うことができる。
Due to such characteristics, the cross-sectional area (passage area) does not decrease in the process of the ground improvement material passing through the rotary shaft 21 (that is, the flow path does not narrow in the process of the ground improvement material flowing. ), resistance is less likely to occur when the improvement material passes through even if the flow path is branched in the rotary shaft 21, and the flow rate of the ground improvement material in the rotary shaft is stabilized.
Therefore, by guiding the ground improvement material to the plurality of discharge ports via the rotary shaft 21 having such a flow path, the improvement material is dividedly charged into the target ground (the discharge of the ground improvement material from the plurality of discharge ports). ) Can be performed smoothly and smoothly.
また、回転軸21が具備する流路において、個別流路31,32,33に分かれる分岐部入口37には、図3に例示するようなテーパー加工を施すことが望ましい。このテーパー加工は、回転軸21内で流動する地盤改良材が受ける抵抗を軽減する役割を担っている。このようなテーパー加工を施すことで、個別流路31,32,33に分かれる分岐部入口37での抵抗が減って(すなわち地盤改良材を圧送するための圧力の損失が減って)、地盤改良材の流れがさらにスムーズになり、回転軸21内における材料閉塞の頻度をさらに低下させることができる。このような特徴は、低流動性の材料を使用する場合に特に有効である。 Further, in the flow path included in the rotating shaft 21, it is desirable that the branch portion inlet 37 that is divided into the individual flow paths 31, 32, and 33 be tapered as illustrated in FIG. This taper processing plays a role of reducing the resistance received by the ground improvement material flowing in the rotating shaft 21. By performing such taper processing, the resistance at the branch inlet 37, which is divided into the individual flow paths 31, 32, and 33, is reduced (that is, the pressure loss for pumping the ground improvement material is reduced), and the ground improvement is performed. The flow of material becomes smoother, and the frequency of material blockage in the rotary shaft 21 can be further reduced. Such a feature is particularly effective when using a low flow material.
(攪拌混合装置を用いた地盤改良)
上述した構成の攪拌混合装置を例えば図9に示すような施工機本体91に取り付ける。
そして、回転軸21を回転駆動装置により回転させながら地盤(地盤土壌)中に貫入させると、この回転軸21の回転駆動により該回転軸21の下端の掘削ヘッド35で地盤を掘削しながら攪拌翼41,42が地盤中に貫入する。
そして、攪拌混合装置の下端が目標の改良深度に達したら、攪拌翼41,42を回動させて所定の速度で攪拌を行いながら攪拌混合装置を引き抜く。
攪拌混合装置の貫入・引き抜きの手順やタイミングは、図10に例示する様な従来の機械攪拌式深層混合処理工法と同様である。
(Soil improvement using a stirring mixer)
The stirring/mixing device having the above-described configuration is attached to the construction machine body 91 as shown in FIG. 9, for example.
When the rotary shaft 21 is rotated by the rotary drive device and penetrates into the ground (ground soil), the rotary drive of the rotary shaft 21 excavates the ground by the excavation head 35 at the lower end of the rotary shaft 21 and the stirring blade. 41 and 42 penetrate into the ground.
Then, when the lower end of the stirring/mixing device reaches the target improvement depth, the stirring blades 41, 42 are rotated to withdraw the stirring/mixing device while stirring at a predetermined speed.
The procedure and timing of the penetration/withdrawal of the stirring and mixing apparatus are the same as those of the conventional mechanical stirring type deep layer mixing processing method as illustrated in FIG.
そして、攪拌混合装置を地盤に貫入する過程、攪拌混合装置を地盤から引抜く過程の何れか一方又は両方の過程において、複数の吐出口を通じて地盤改良材を地盤内に投入する。すなわち、攪拌翼41に設けた吐出口1,2,3より地盤改良材を掘削された地盤中に略均等に供給すると共に、掘削土と地盤改良材を攪拌翼41,42の回転駆動により攪拌混合する。 Then, in one or both of the process of penetrating the stirring and mixing device into the ground and the process of pulling out the stirring and mixing device from the ground, the ground improvement material is introduced into the ground through the plurality of discharge ports. That is, the soil improvement material is supplied to the excavated ground substantially evenly through the discharge ports 1, 2, 3 provided in the stirring blade 41, and the excavated soil and the soil improvement material are stirred by the rotational driving of the stirring blades 41, 42. Mix.
対象地盤に投入する地盤改良材は、ポンプによって圧送されて回転軸内の流路23に送り込まれ、その流路の途中で分岐した複数の個別流路31,32,33を通り、更に攪拌翼41内の流路45を経て吐出口1,2,3に導かれて各吐出口から吐出され、地盤内における攪拌翼の攪拌混合域(攪拌翼の回動域)に投入される。 The ground improvement material to be put into the target ground is pumped by the pump and sent into the flow path 23 in the rotating shaft, passes through the plurality of individual flow paths 31, 32, 33 branched in the middle of the flow path, and further the stirring blades. It is guided to the discharge ports 1, 2 and 3 via the flow path 45 in 41 and discharged from each discharge port, and is thrown into the stirring/mixing zone of the stirring blade (rotation zone of the stirring blade) in the ground.
そして、攪拌混合装置の貫入・引抜きの一方又は両方の過程で、攪拌翼41の吐出口1,2,3から地盤改良材が吐出されると、掘削土と地盤改良材が攪拌翼41によって攪拌混合される。このような攪拌混合を経て攪拌混合装置を対象地盤から引き抜くことにより、地盤土壌の所定位置に略円柱状の改良体が造成される。 When the ground improvement material is discharged from the discharge ports 1, 2 and 3 of the stirring blade 41 during one or both of the penetration and withdrawal of the stirring and mixing device, the excavated soil and the ground improvement material are stirred by the stirring blade 41. Mixed. By pulling out the stirring and mixing apparatus from the target ground through such stirring and mixing, a substantially cylindrical improved body is formed at a predetermined position in the ground soil.
なお、攪拌混合装置に適用可能な地盤改良材の種類は特に限定されないが、その具体例としては、例えばモルタルのような骨材を持つ低流動性の材料が挙げられる。
このような低流動性の材料を地盤改良材として使うことにより、有機質土内の間隙に骨材分の土粒子が増え、地盤中への材料投入量をセメント系固化材と比較して減らすことができる。
また、低流動性の材料を地盤改良材として使うことにより、有機質土に適した高価な特殊地盤改良材を固化材として使用しなくても強度発現が望める。
また、地盤中への材料投入量が減る結果、材料費を削減できる。
また、地盤中への材料投入量が減ることで、盛り上がり土も併せて減ることから、残土処分費も削減できる。
また、地盤中への材料投入量がセメント系固化材と比較して減ることにより攪拌時間が短縮できる。
The type of ground improvement material applicable to the stirring and mixing device is not particularly limited, but a specific example thereof is a low fluidity material having an aggregate such as mortar.
By using such a low-fluidity material as a soil improvement material, soil particles in the amount of aggregate will increase in the gaps in the organic soil, and the amount of material input into the soil will be reduced compared to the cement-based solidifying material. You can
Further, by using a low-fluidity material as a soil improvement material, strength can be expected without using an expensive special soil improvement material suitable for organic soil as a solidifying material.
In addition, as a result of reducing the amount of material input into the ground, material cost can be reduced.
In addition, since the amount of material input into the ground is reduced, the amount of swelling soil is also reduced, and the cost of disposal of residual soil can be reduced.
In addition, the amount of material input into the ground is smaller than that of the cement-based solidifying material, so that the stirring time can be shortened.
(攪拌混合装置の第2実施形態)
攪拌混合装置の第2実施形態では、図4に示すように、複数の個別流路の断面寸法に特徴を持たせている。
(Second Embodiment of Stirring Mixer)
In the second embodiment of the stirring and mixing apparatus, as shown in FIG. 4, the sectional dimensions of the plurality of individual channels are characterized.
すなわち、前述した第1実施形態では、回転軸21が具備する個別流路31,32,33は、その断面積を等しく設定して、地盤改良材の流量が各個別流路でほぼ等しくなっているが、第2実施形態における個別流路31,32,33は、地盤改良材が通過する部分の断面積に差を付けている。 That is, in the above-described first embodiment, the cross-sectional areas of the individual flow paths 31, 32, 33 included in the rotary shaft 21 are set to be equal, and the flow rate of the ground improvement material is substantially equal in each individual flow path. However, the individual flow paths 31, 32, 33 in the second embodiment are different in the cross-sectional area of the portion through which the ground improvement material passes.
このように、地盤改良材が通過する部分の断面積に差が生じるように、個別流路31,32,33の各寸法を設定することで、吐出口1,2,3における吐出量に違いを持たせることが可能である。このような特徴は、複数の吐出口に異なる吐出量を設定したい場合に有益である。 In this way, by setting the dimensions of the individual flow paths 31, 32, 33 so that the cross-sectional areas of the portions through which the ground improvement material passes differ, the discharge amounts at the discharge ports 1, 2, 3 differ. It is possible to have Such a feature is useful when it is desired to set different ejection amounts to a plurality of ejection ports.
(攪拌混合装置の第3実施形態)
攪拌混合装置の第3実施形態では、複数の吐出口に個別に通ずる複数の個別流路を、時間差を付けて繰返し開閉するための開閉手段を更に設けている。
(Third Embodiment of Stirring Mixer)
The third embodiment of the stirring and mixing apparatus further includes opening/closing means for repeatedly opening/closing a plurality of individual flow paths that individually communicate with a plurality of discharge ports with a time difference.
原位置地盤が攪拌翼に付着して原位置地盤の土塊が攪拌翼と一緒に回転するいわゆる供回り現象が生じて、攪拌混合の効果を低下させることがあり、このような供回り現象を防止する手段として「供回り防止翼」が知られている。本実施形態では、上述した「個別流路を時間差を付けて繰返し開閉するための開閉手段」を、一例として図5や図6に例示するような供回り防止翼61を利用することで実現している。 The in-situ ground adheres to the agitating blades, and the soil mass of the in-situ ground rotates together with the agitating blades, which may cause a so-called sympathetic rotation phenomenon, which may reduce the effect of agitation and mixing. As a means to do so, a "winging prevention blade" is known. In the present embodiment, the above-mentioned “opening/closing means for repeatedly opening/closing the individual flow paths with a time difference” is realized by using the non-rotating blades 61 as illustrated in FIGS. 5 and 6, for example. ing.
本実施形態の攪拌混合装置が具備する供回り防止翼61は、攪拌翼41と所定の間隙を隔てた位置に設けられ、回転軸21に対して相対的に回動可能に且つ回動自在に取り付けられている。供回り防止翼61は、攪拌翼41よりも外側まで延在している。そのため、攪拌混合装置が地盤内で回動する際には、供回り防止翼61の外端が、掘削孔の孔壁に突き刺さった様な状態となり、攪拌翼41と供回りしない又は供回りし難いようになっている。したがって、攪拌混合装置が地盤内で回動する状況下では、供回り防止翼61が回動しない又は回動し難い状態に維持され、一方で、攪拌翼41は供回り防止翼61に対して相対的に回動し続ける。 The non-rotating blade 61 included in the stirring/mixing device of the present embodiment is provided at a position separated from the stirring blade 41 by a predetermined gap, and is rotatable and rotatable relative to the rotary shaft 21. It is installed. The non-rotating blade 61 extends to the outside of the stirring blade 41. Therefore, when the stirring/mixing device rotates in the ground, the outer end of the non-rotating blade 61 is pierced into the hole wall of the excavation hole, and does not or does not rotate with the stirring blade 41. It's becoming difficult. Therefore, in the situation where the stirring and mixing device rotates in the ground, the non-rotating blade 61 is maintained in a state where it does not rotate or is difficult to rotate, while the stirring blade 41 is not Continue to rotate relatively.
そして本実施形態では、回転軸21に対する供回り防止翼61の取り付け部に、個別流路31,32,33を開閉可能な流路開閉部63を設けている。流路開閉部63には開口部65が形成してあり、この開口部65を通じて、攪拌翼41の吐出口1,2,3への地盤改良材の分配が行われる。 Further, in the present embodiment, a passage opening/closing portion 63 capable of opening/closing the individual passages 31, 32, 33 is provided in the attachment portion of the anti-rotation blade 61 with respect to the rotating shaft 21. An opening 65 is formed in the flow path opening/closing portion 63, and the ground improvement material is distributed to the discharge ports 1, 2, 3 of the stirring blade 41 through the opening 65.
具体的には、分岐した個別流路31,32,33を流路開閉部63が遮断するように供回り防止翼61を回転軸21に装着する。供回り防止翼61の流路開閉部63には、一部の個別流路のみ地盤改良材が通過できる開口部65(穴)を設けておく。 Specifically, the rotation prevention blade 61 is attached to the rotating shaft 21 so that the flow path opening/closing portion 63 blocks the branched individual flow paths 31, 32, and 33. An opening 65 (hole) through which the ground improvement material can pass is provided in the flow passage opening/closing portion 63 of the anti-rotation blade 61 only in some of the individual flow passages.
なお、流路開閉部63に設ける開口部65の形状・数は、図5に示すものに特に限定されるものではなく、個別流路を開閉する時間差や個別流路の形状などを考慮して適宜設計変更することが可能である。
例えば、図5に例示する実施形態では、流路開閉部63に開口部65を一つ設け、その開口形状を個別流路31,32,33の断面形状に合わせて略扇形としているが、図6に例示する実施形態のように、開口部65を二つ設け、その開口形状を個別流路31,32,33の断面形状に合わせて略円形としてもよい。
The shape and number of the openings 65 provided in the flow path opening/closing unit 63 are not particularly limited to those shown in FIG. 5, and the time difference for opening/closing the individual flow paths, the shape of the individual flow paths, and the like are taken into consideration. The design can be changed appropriately.
For example, in the embodiment illustrated in FIG. 5, one opening portion 65 is provided in the flow passage opening/closing portion 63, and the opening shape is made substantially fan-shaped in accordance with the cross-sectional shape of the individual flow passages 31, 32, 33. As in the embodiment illustrated in FIG. 6, two openings 65 may be provided and the shape of the openings may be substantially circular according to the cross-sectional shape of the individual channels 31, 32, 33.
このような構成を具備する攪拌混合装置を地盤内で回動させると、一例として図6(a)(b)(c)に順に示すように、供回り防止翼61が動かないように拘束された状況下で、攪拌翼41が供回り防止翼61に対して相対的に回動する。 When the stirring and mixing apparatus having such a configuration is rotated in the ground, as shown in FIG. 6(a)(b)(c) as an example, the anti-rotation blades 61 are constrained so as not to move. Under such a circumstance, the stirring blade 41 rotates relatively to the anti-rotation blade 61.
そして、攪拌翼41が具備する何れかの個別流路が開口部65を臨む位置に到達すると、その個別流路は開放され地盤改良材が通過できる状態となる。したがって、個別流路31,32,33のなかで、通過できる流路が刻々と変化し、各流路が時間差で一時的に遮断されることにより不連続で材料吐出される。 Then, when any of the individual flow paths provided in the stirring blade 41 reaches the position facing the opening 65, the individual flow path is opened and the ground improvement material is allowed to pass therethrough. Therefore, among the individual flow paths 31, 32, 33, the flow paths that can pass through change every moment, and the flow paths are temporarily interrupted with a time difference, so that the material is discharged discontinuously.
なお、吐出口を複数設けた場合において、すべての吐出口から同時に連続で吐出される場合には、一か所の吐出口が閉塞すると他の吐出口より材料が吐出されるため閉塞が解消されないが、各流路を一時的に遮断することにより閉塞した吐出口に圧力が集中し、閉塞している吐出口から詰まった改良材が押し出されることにより閉塞状態を解消することができる。 When a plurality of discharge ports are provided and all the discharge ports are continuously discharged at the same time, if one discharge port is blocked, the material is discharged from the other discharge port, and the blockage cannot be eliminated. However, by temporarily blocking each flow path, the pressure concentrates on the blocked discharge port, and the clogged state can be eliminated by pushing out the improved material clogged from the blocked discharge port.
(攪拌混合装置の他の実施形態) (Other Embodiments of Agitation Mixer)
また本発明では、造成する改良体の仕様等に応じて、分岐した個別流路の内、いずれかを意図的に閉塞してもよい。あるいは、複数の吐出口の内、いずれかを意図的に閉塞してもよい。
例えば図7に示すように、最内の吐出口1(またはこの吐出口に通ずる個別流路31)を閉塞することにより、中空の改良体を造成することが可能である。
図7に例示する実施形態では、最内に位置する吐出口1を閉塞部材で(取り外し可能に)塞いでいる。このように塞ぐことで、吐出口1からは材料が吐出されず、そのため、攪拌翼41による攪拌混合域の内側は未改良となり、また、攪拌混合域の中間及び外側だけが限定的に改良される。その結果、図7においてグレーで着色したような中空状の改良体を造成することができる。
Further, in the present invention, one of the branched individual flow paths may be intentionally closed depending on the specifications of the improved body to be constructed. Alternatively, one of the plurality of ejection ports may be intentionally closed.
For example, as shown in FIG. 7, it is possible to create a hollow improved body by closing the innermost discharge port 1 (or the individual flow path 31 communicating with this discharge port).
In the embodiment illustrated in FIG. 7, the innermost discharge port 1 is (removably) closed with a closing member. By blocking in this way, the material is not discharged from the discharge port 1, and therefore the inside of the stirring and mixing region by the stirring blade 41 is not improved, and only the middle and outside of the stirring and mixing region is improved. It As a result, it is possible to form a hollow improved body which is colored gray in FIG.
また本発明では、吐出口を備えた攪拌翼の段数は特に限定されず、前述した第1実施形態のように一段でもよく、あるいは、図8に例示するように、吐出口を備えた攪拌翼を二段又はそれ以上設けることも可能である。攪拌翼を多段(例えば2〜4段)設けることにより吐出口を増やすことができ、吐出口が増えることで材料をさらに均等に分布させることが可能である。 Further, in the present invention, the number of stages of the stirring blade provided with the discharge port is not particularly limited, and may be one stage as in the above-described first embodiment, or, as illustrated in FIG. 8, the stirring blade provided with the discharge port. It is also possible to provide two or more stages. By providing the stirring blades in multiple stages (for example, 2 to 4 stages), the number of discharge ports can be increased, and by increasing the number of discharge ports, the material can be more evenly distributed.
1 第1の吐出口
2 第2の吐出口
3 第3の吐出口
11 機械攪拌用攪拌混合装置
21 回転軸(攪拌軸)
23 流路
31 個別流路
32 個別流路
33 個別流路
35 掘削ヘッド
37 分岐部入口
41 攪拌翼
42 攪拌翼
45 流路
61 供回り防止翼(開閉手段)
63 流路開閉部
65 開口部(穴)
91 施工機本体
1 First Discharge Port 2 Second Discharge Port 3 Third Discharge Port 11 Mechanical Mixing Mixing Device 21 Rotating Shaft (Stirring Shaft)
23 flow path 31 individual flow path 32 individual flow path 33 individual flow path 35 excavation head 37 branch inlet 41 stirrer blade 42 stirrer blade 45 flow path 61 anti-rotation blade (opening/closing means)
63 flow path opening/closing part 65 opening part (hole)
91 Main body of construction machine
Claims (9)
回転軸を介して導かれた地盤改良材を吐出するための複数の吐出口を具備する攪拌翼と、を有しており、
前記複数の吐出口は、回転軸から異なる距離に位置するように、攪拌翼に設けられている、ことを特徴とする機械攪拌用攪拌混合装置。 A rotating shaft having a flow path for ground improvement material,
And a stirring blade having a plurality of discharge ports for discharging the ground improvement material guided through the rotating shaft,
The agitating and mixing device for mechanical agitation, wherein the plurality of discharge ports are provided on the agitating blade so as to be located at different distances from the rotation axis.
前記複数の個別流路は、前記攪拌翼が具備する複数の吐出口に対し個別に通じている、
ことを特徴とする請求項1に記載の機械攪拌用攪拌混合装置。 The flow path included in the rotating shaft is branched into a plurality of individual flow paths in the middle,
The plurality of individual flow paths individually communicate with the plurality of discharge ports provided in the stirring blade,
The stirring and mixing apparatus for mechanical stirring according to claim 1, characterized in that.
地盤改良材が通過する過程で断面積が減少しない寸法を有する、
ことを特徴とする請求項2に記載の機械攪拌用攪拌混合装置。 The plurality of individual flow paths included in the rotating shaft are respectively
It has dimensions that the cross-sectional area does not decrease in the process of passing the ground improvement material,
The stirring/mixing device for mechanical stirring according to claim 2, wherein
ことを特徴とする請求項2又は3に記載の機械攪拌用攪拌混合装置。 The plurality of individual flow paths are different in the cross-sectional area of the portion where the ground improvement material passes,
The stirring and mixing apparatus for mechanical stirring according to claim 2 or 3, characterized in that.
複数の個別流路に分かれる分岐部入口にテーパー加工が施されている、
ことを特徴とする請求項2乃至4の何れかに記載の機械攪拌用攪拌混合装置。 In the flow path provided by the rotating shaft,
Taper processing is applied to the branch inlet that divides into multiple individual flow paths.
The stirring and mixing device for mechanical stirring according to any one of claims 2 to 4.
回転軸と攪拌翼を有する攪拌混合装置を地盤に貫入する過程、地盤から引抜く過程の何れか一方又は両方の過程で、流路を具備する回転軸を介して地盤改良材を圧送し、
異なる径で旋回する複数の吐出口のそれぞれから地盤改良材を吐出する、
ことを特徴とする地盤改良工法。 A ground improvement method using a mechanical stirring agitation mixing device provided with a stirring blade having a plurality of ground improvement material discharge ports, wherein the plurality of discharge ports are swirled with different diameters,
In the process of penetrating the stirring and mixing device having a rotating shaft and stirring blades into the ground, or in one or both of the processes of pulling out from the ground, the ground improving material is pressure-fed through the rotating shaft having the flow path,
Discharge the ground improvement material from each of a plurality of discharge ports that rotate with different diameters,
A ground improvement method characterized by that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018227703A JP6912062B2 (en) | 2018-12-04 | 2018-12-04 | Stirring mixer for mechanical stirring and ground improvement method using it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018227703A JP6912062B2 (en) | 2018-12-04 | 2018-12-04 | Stirring mixer for mechanical stirring and ground improvement method using it |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020090816A true JP2020090816A (en) | 2020-06-11 |
JP6912062B2 JP6912062B2 (en) | 2021-07-28 |
Family
ID=71013650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018227703A Active JP6912062B2 (en) | 2018-12-04 | 2018-12-04 | Stirring mixer for mechanical stirring and ground improvement method using it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6912062B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022186416A (en) * | 2021-06-04 | 2022-12-15 | 株式会社Kgフローテクノ | Construction method for hard ground hardening layer and apparatus of the same |
JP2023045341A (en) * | 2021-09-21 | 2023-04-03 | 東洋産業株式会社 | Ground improvement body creating device, ground improvement construction method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53156923U (en) * | 1977-05-16 | 1978-12-09 | ||
JP2003041570A (en) * | 2001-07-31 | 2003-02-13 | Fudo Constr Co Ltd | Device for forming solidified pile |
JP2003064658A (en) * | 2001-08-23 | 2003-03-05 | Shin Gijutsu Koei Kk | Agitating device for soil improvement |
JP2008163714A (en) * | 2007-01-05 | 2008-07-17 | Chem Grouting Co Ltd | Liquefaction preventing method |
JP2010285788A (en) * | 2009-06-11 | 2010-12-24 | Flowtechno Corp | Ground hardening layer formation method and apparatus therefor |
JP2015001121A (en) * | 2013-06-17 | 2015-01-05 | 東亜建設工業株式会社 | Ground improvement device and method |
-
2018
- 2018-12-04 JP JP2018227703A patent/JP6912062B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53156923U (en) * | 1977-05-16 | 1978-12-09 | ||
JP2003041570A (en) * | 2001-07-31 | 2003-02-13 | Fudo Constr Co Ltd | Device for forming solidified pile |
JP2003064658A (en) * | 2001-08-23 | 2003-03-05 | Shin Gijutsu Koei Kk | Agitating device for soil improvement |
JP2008163714A (en) * | 2007-01-05 | 2008-07-17 | Chem Grouting Co Ltd | Liquefaction preventing method |
JP2010285788A (en) * | 2009-06-11 | 2010-12-24 | Flowtechno Corp | Ground hardening layer formation method and apparatus therefor |
JP2015001121A (en) * | 2013-06-17 | 2015-01-05 | 東亜建設工業株式会社 | Ground improvement device and method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022186416A (en) * | 2021-06-04 | 2022-12-15 | 株式会社Kgフローテクノ | Construction method for hard ground hardening layer and apparatus of the same |
JP2023045341A (en) * | 2021-09-21 | 2023-04-03 | 東洋産業株式会社 | Ground improvement body creating device, ground improvement construction method |
JP7270905B2 (en) | 2021-09-21 | 2023-05-11 | 東洋産業株式会社 | Soil improvement body construction device, ground improvement method |
Also Published As
Publication number | Publication date |
---|---|
JP6912062B2 (en) | 2021-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2020090816A (en) | Stirring and mixing device for mechanical stirring and ground improvement method using the same | |
KR20150029152A (en) | High Pressure Jet Type Stirring Bit for the Hard Soil Layers | |
KR101904485B1 (en) | Mixing apparatus of high and low pressure injection for soil improving and soil improving construction method using it | |
JP6508692B1 (en) | Construction method of drilling and stirring tools and ground improvement | |
JP6555849B2 (en) | Ground improvement device | |
CN211342843U (en) | Double-channel side jet valve plate drilling tool | |
JP2006283438A (en) | Columnar pile preparing device and columnar pile preparing method | |
JPH03125712A (en) | Poor subsoil improvement method and device | |
JP2007327281A (en) | Stirring/mixing apparatus and soil improvement method using the same | |
JP3423705B2 (en) | Construction method of large diameter improved soil column | |
KR20180088546A (en) | One-body Mixing Axis suppling and mixing the Solidifying Agent in Powdery Form into 1.5 Shot Mode, and The Powdery Mixing Method of Soil Stabilization Using its Mixing Axis installed in front Mast of the Mixing Treatment Equipment | |
KR101511653B1 (en) | A reverse stirring device and high-strength deep cement mixing method using thereof | |
JP4997269B2 (en) | Ground improvement machine | |
JP5597232B2 (en) | Ground improvement device and residual soil discharge suppression body of ground improvement device | |
JP2003041570A (en) | Device for forming solidified pile | |
JPH09296442A (en) | Cast-in-place piling device | |
JPH08144263A (en) | Soil improvement method | |
JP2007056603A (en) | Additive discharging device to soil, and additive discharging method to soil | |
JPS6351515A (en) | Excavator for ground improvement | |
JPH08184030A (en) | Ground improvement method and device thereof | |
JPH02132221A (en) | Method for constructing retaining wall and device therefor | |
JP3423704B2 (en) | Construction method of large diameter improved soil column | |
KR101608960B1 (en) | Jet rotary type underground propulsion apparatus | |
JPS63284311A (en) | Soil hardening improver and stirring blade for soft clayey ground | |
JPS5841225Y2 (en) | stirring bit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210302 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210421 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210531 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210629 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6912062 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |