JP2020090711A - Method of manufacturing electroconductive laminate and use thereof - Google Patents

Method of manufacturing electroconductive laminate and use thereof Download PDF

Info

Publication number
JP2020090711A
JP2020090711A JP2018228673A JP2018228673A JP2020090711A JP 2020090711 A JP2020090711 A JP 2020090711A JP 2018228673 A JP2018228673 A JP 2018228673A JP 2018228673 A JP2018228673 A JP 2018228673A JP 2020090711 A JP2020090711 A JP 2020090711A
Authority
JP
Japan
Prior art keywords
metal
laminate according
transparent substrate
fine lines
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018228673A
Other languages
Japanese (ja)
Other versions
JP7213450B2 (en
Inventor
御子柴 均
Hitoshi Mikoshiba
均 御子柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Touch Panel Laboratories Co Ltd
Original Assignee
Touch Panel Laboratories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Touch Panel Laboratories Co Ltd filed Critical Touch Panel Laboratories Co Ltd
Priority to JP2018228673A priority Critical patent/JP7213450B2/en
Publication of JP2020090711A publication Critical patent/JP2020090711A/en
Application granted granted Critical
Publication of JP7213450B2 publication Critical patent/JP7213450B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Chemically Coating (AREA)

Abstract

SOLUTION: A method of manufacturing an electroconductive laminate includes the following steps of: (1) providing a removable layer on a surface of a transparent substrate, and then forming multiple fine line grooves having a depth reaching the surface of the transparent substrate (fine line groove forming step); (2) irradiating vacuum ultraviolet light to obtain an ultraviolet light-irradiated-substrate in which a hydrophilic group is formed (ultraviolet light irradiation step); (3) applying a catalyst to the ultraviolet light-irradiated-substrate, and then performing plating of a metal A under the condition that the layer is not removed (metal-A plating treatment step); (4) removing the layer together with the metal A on the layer to form multiple fine lines made of the metal A on the surface of the transparent substrate (step of forming fine lines made of the metal A); (5) applying a catalyst to the fine lines made of the metal A and performing plating of a metal B (metal-B plating treatment step).EFFECT: A transparent substrate suitable for a purpose can be used as a base board of an electroconductive laminate without worrying about the level of hydrophobicity of the transparent substrate itself, and further the manufacturing is made possible by a method which allows processing at a relatively low cost and has excellent productivity.SELECTED DRAWING: None

Description

本発明は導電性積層体の製造方法およびその利用に関する。さらに詳しくは、構
造が比較的簡単であり安価に加工でき、かつ生産性に優れた方法で作製することが
可能な導電性積層体の製造方法およびそれを利用したタッチパネル、ELライト、
電磁波シールドフィルムおよび発熱体に関する。
The present invention relates to a method for producing a conductive laminate and its use. More specifically, the method for producing a conductive laminate, which has a relatively simple structure, can be processed at low cost, and can be produced by a method with excellent productivity, and a touch panel, an EL light using the same,
The present invention relates to an electromagnetic wave shield film and a heating element.

導電性積層体は、比較的簡単な構造を有し、安価であり、かつ加工性に優れてい
ることからタッチパネル、ELライト、電磁波シールドフィルムや発熱体などの材
料として利用されている。
例えば、タッチパネルは比較的簡単な構造を有し、安価であり、指入力が可能で
あることから市場が拡大し、広い分野で利用されている。殊に静電容量式タッチパ
ネルは携帯電話型の小型のものを中心として、その利用が広がっている。現在一般
に市販されている静電容量式タッチパネルは、その多くがITO膜(インジウム・
錫酸化物膜)からなる導電性フィルムを電極基板として使用したものである。IT
O膜からなる導電性フィルムを使用したタッチパネルは小型のものに限られ、大型
画面のものに使用することは不適当である。
The electroconductive laminate has a relatively simple structure, is inexpensive, and is excellent in processability, and thus is used as a material for a touch panel, an EL light, an electromagnetic wave shielding film, a heating element, or the like.
For example, a touch panel has a relatively simple structure, is inexpensive, and allows finger input, so the market has expanded and is used in a wide range of fields. In particular, the capacitive touch panel has been widely used, mainly for small mobile phone type. Most of the capacitive touch panels currently on the market are mostly ITO films (indium
A conductive film composed of a tin oxide film) is used as an electrode substrate. IT
A touch panel using a conductive film made of an O film is limited to a small touch panel, and it is inappropriate to use it for a large screen.

一方タッチパネルは、比較的大型画面用の需要が多いことから、それに対応した
大型サイズの導電性フィルムの開発が進められている。大型サイズの導電性フィル
ムを得る方法の1つは、透明フィルムの表面に導電性金属の微細線を多数形成させ
る方法である。この方法は、例えば透明フィルムの表面に、導電性金属(具体的に
はCu、Ag、Auなど)の微粉末を含むインク(ドープ)を使用してグラビアオ
フセット印刷法などの印刷法により微細線を形成する方法、あるいは透明フィルム
全面に形成した金属膜(具体的にはCuなど)を使用してフォトリソグラフィ、エ
ッチング加工法により、導電性金属の微細線を形成させる方法である。
これらの加工法により形成された導電性金属の微細線は、1つの線の幅が細くて
数μm、通常細くて5μm程度である。また上記方法のうち、グラビアオフセット
印刷法などの印刷法では加工枚数が増えると線幅が広がる問題があり、フォトリソ
グラフィ、エッチング加工法では、加工公差が±2μm程度あり、さらに微細線化
すると断線する恐れがある。導電性金属の微細線は、その製造過程で断線した部分
が発生しないこと、また使用中に断線や破損が起らないことが要求される。現在の
グラビアオフセット印刷法などの印刷法、フォトリソグラフィ、エッチング加工法
では、断線のない導電性金属の微細線を形成させる方法、実用的使用において断線
や破損の起らない導電性金属の微細線を大型画面上に形成させる工業的方法として
は、技術的に限界があった。
下記特許文献1には、導電性金属線の断線や破損が一部で起ったとしても、全体
として導電性の特性を損失しない方法として、多数の導電性金属線を形成させる際
隣接する2〜6本、好ましくは3〜5本が一組の導電ラインを形成するように、網
状化したパターンを形成する方法および導電性金属線フィルムが提案されている。
このフィルムは、導電性金属線を或る程度細く形成させ、仮に一部断線や破損が起
こったとしても、網状化パターンにより導電性の損失を補填しようとするものであ
る。
On the other hand, touch panels are in great demand for relatively large screens, so large-sized conductive films corresponding to them are being developed. One of the methods for obtaining a large size conductive film is a method of forming a large number of fine lines of conductive metal on the surface of a transparent film. In this method, for example, fine lines are printed on the surface of a transparent film by a printing method such as a gravure offset printing method using an ink (dope) containing fine powder of a conductive metal (specifically, Cu, Ag, Au, etc.). Or a method of forming fine lines of a conductive metal by photolithography and an etching method using a metal film (specifically Cu) formed on the entire surface of the transparent film.
The fine line of the conductive metal formed by these processing methods has a width of a few lines which is as small as a few μm, and usually is about 5 μm. Among the above methods, the printing method such as the gravure offset printing method has a problem that the line width becomes wider as the number of processed sheets increases, and the photolithography and etching processing methods have a processing tolerance of about ±2 μm. There is a risk of The fine lines of conductive metal are required to have no broken parts in the manufacturing process and to be free from breakage or damage during use. Current printing methods such as gravure offset printing, photolithography, and etching methods are used to form fine lines of conductive metal that have no breaks, and fine lines of conductive metal that do not break or break during practical use. There was a technical limit as an industrial method for forming a film on a large screen.
In Patent Document 1 below, as a method for preventing the loss of the conductive property as a whole even if the disconnection or breakage of the conductive metal wire occurs in a part, the two adjacent metal wires are formed when the conductive metal wires are formed. A method of forming a reticulated pattern and a conductive metal wire film have been proposed so that ~6, preferably 3-5, form a set of conductive lines.
This film is intended to make conductive metal wires thinner to a certain extent and to compensate for the loss of conductivity by a reticulated pattern even if some wire breakage or damage occurs.

そこで本発明者は導電性金属の微細線を透明フィルムの表面に形成する手段と
して、グラビアオフセット印刷法などの印刷法、フォトリソグラフィ、エッチング
加工法以外の方法について研究を進めた。その1つの方法として、無電解めっき法
に着目した。プラスチック表面に無電解めっき法により金属めっきする方法はそれ
自体知られている方法である。この方法は、多くの場合プラスチック表面に金属め
っきにより皮膜を形成することを目的としており、金属微細線を精密に設計したパ
ターンで形成させることを意図したものではない。
本発明者は、透明フィルムの疎水性表面に親水性の微細線のパターンを形成させ
さらにこの親水性微細線上に触媒を付着させることができれば、この微細線上に導
電性金属の微細線を施すことが可能であるとの推定のもとに研究を重ねた結果、下
記の知見が得られた。
(i)疎水性表面を有する透明フィルムの表面に、フォトマスクを介して、一定波
長の紫外光を照射すると、親水性基を有する多数の微細線のパターンが形成される
こと
(ii)形成された微細線上に触媒を容易に付与することができること
(iii)触媒を付与された微細線パターン上に無電解メッキ処理すれば、多数の導
電性金属の微細線パターンが透明フィルム上に形成されること、および
(iv)かくして形成された導電性フィルムは、微細線が細くても断線や破損が極め
て少なく、精密な導電性金属の微細線パターンを有していること
本発明者は、前記知見に基づいて
『(1)疎水性表面を有する透明フィルムの表面に、フォトマスクを介して真空紫
外光を照射して、該透明フィルムの表面に親水性基を有する多数の微細線が形成さ
れた紫外光照射フィルムを得る工程(紫外光照射工程)、
(2)得られた紫外光照射フィルムの多数の微細線上に触媒を付与する工程(触媒
付与工程)および
(3)次いで得られた触媒が付与された多数の微細線に導電性金属メッキ処理を施
す工程(メッキ処理工程)よりなることを特徴とする導電性フィルムの製造方法』
を見出し先に提案した(特願2016−015837号明細書参照)。
Therefore, the present inventor has conducted research on methods other than printing methods such as a gravure offset printing method, photolithography, and an etching method as means for forming fine lines of a conductive metal on the surface of a transparent film. As one of the methods, we focused on the electroless plating method. The method of metal plating on the plastic surface by electroless plating is a method known per se. In most cases, this method is intended to form a film on a plastic surface by metal plating, and is not intended to form fine metal wires with a precisely designed pattern.
The present inventor forms a pattern of hydrophilic fine lines on a hydrophobic surface of a transparent film, and if a catalyst can be attached to the hydrophilic fine lines, the fine lines of a conductive metal are applied to the fine lines. As a result of repeated studies based on the assumption that it is possible, the following findings were obtained.
(I) When a surface of a transparent film having a hydrophobic surface is irradiated with ultraviolet light of a certain wavelength through a photomask, a large number of fine line patterns having hydrophilic groups are formed (ii) Formation It is possible to easily apply the catalyst to the fine lines that have been formed. (iii) If electroless plating is performed on the fine line pattern that has been given the catalyst, many fine line patterns of conductive metal are formed on the transparent film. And (iv) the conductive film thus formed has a fine line pattern of a conductive metal with extremely small breakage or damage even if the fine line is thin. Based on the above findings, "(1) a surface of a transparent film having a hydrophobic surface is irradiated with vacuum ultraviolet light through a photomask, and a large number of fine lines having a hydrophilic group on the surface of the transparent film. A step of obtaining an ultraviolet light irradiation film on which is formed (ultraviolet light irradiation step),
(2) A step of applying a catalyst to a large number of fine lines of the obtained ultraviolet light irradiation film (catalyst applying step), and (3) a conductive metal plating treatment is applied to the obtained large number of fine lines to which a catalyst is added. A method for producing a conductive film, characterized by comprising the step of applying (plating step)”
Was proposed to the heading (see Japanese Patent Application No. 2016-015837).

本発明者は、前記した先に提案した方法において更なる改良について研究を進め
た。その結果、紫外光照射工程において、透明基材表面上に本来疎水性機能を有す
る樹脂を積層した後、真空紫外光を照射し、その樹脂表面に親水性基からなる多数
の微細線を形成すること、更にめっき処理工程において、触媒が付与された多数の
微細線に金属A、金属Bを順次積層することにより、透明基材自体の疎水性のレベ
ルを気にすることなく導電性積層体の基板として利用できることが分かった。更に
触媒が付与された多数の微細線に金属A、金属Bを順次積層することにより、真空
紫外光の遮蔽部へのめっき皮膜付着を抑制できることが分かった。すなわち、透明
基材表面上に本来疎水性機能を有する樹脂を積層し、その樹脂表面に親水性基から
なる多数の微細線が形成され、かつその微細線上に金属A、金属Bが順次積層され
た導電性積層体は、タッチパネル、ELライト、電磁波シールドフィルムや発熱体
の材料として極めて有効に利用できることを見出し、先に提案した。
The present inventor conducted research on further improvement in the above-mentioned method proposed previously. As a result, in the ultraviolet light irradiation process, after laminating a resin that originally has a hydrophobic function on the surface of the transparent substrate, it is irradiated with vacuum ultraviolet light and a large number of fine lines composed of hydrophilic groups are formed on the resin surface. By forming and by sequentially laminating metal A and metal B on a large number of fine wires to which a catalyst has been added in the plating process, the conductivity of the transparent substrate can be improved without worrying about the hydrophobic level of the transparent substrate itself. It has been found that it can be used as a substrate for a laminate. Further, it has been found that the metal A and the metal B are sequentially laminated on a large number of fine wires to which a catalyst is applied, so that the adhesion of the plating film to the vacuum ultraviolet light shielding portion can be suppressed. That is, a resin originally having a hydrophobic function is laminated on the surface of a transparent substrate, a large number of fine lines made of hydrophilic groups are formed on the resin surface, and metal A and metal B are sequentially laminated on the fine lines. We found that the conductive laminate can be used very effectively as a material for a touch panel, an EL light, an electromagnetic wave shielding film, and a heating element, and proposed it earlier.

すなわち、先に提案した発明によれば下記導電性積層体およびそれを利用した部
品・部材(タッチパネル、ELライト、電磁波シールドフィルム、発熱体)が提供
される(特願2018−208814号明細書参照)。
(I)透明基材表面に、本来疎水性機能を有する樹脂を積層し、かつその樹脂表面
に親水性基からなる多数の微細線が形成され、かつその微細線上には金属A、金属
Bが順次積層されていることを特徴とする導電性積層体。
(II)前記親水性基からなる多数の微細線は、前記本来疎水性機能を有する樹脂の
表面に真空紫外光を照射することにより形成されたものである前記(I)項記載の
導電性積層体。
(III)前記本来疎水性機能を有する樹脂は、ポリエチレンテレフタレート(PE
T)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリシ
クロオレフィン(PCO)、ポリパラキシリレン(PPX)またはフッ素樹脂より
なることを特徴とする前記(I)項記載の導電性積層体。
(IV)前記透明基材は、ポリエチレンテレフタレート(PET)、ポリエチレンナ
フタレート(PEN)、ポリカーボネート(PC)、ポリメチルメタアクリレート
(PMMA)、ポリシクロオレフィン(PCO)またはガラスより形成されている
前記(I)項記載の導電性積層体。
(V)前記多数の微細線は、1〜50μmの幅を有する前記(I)項記載の導電性
積層体。
(VI)前記多数の微細線は、ギャップ間隔(隣り合う2つの微細線の中心の間隔)
が5〜3000μmである前記(I)項記載の導電性積層体。
(VII)前記金属Aは、パラジウム(Pd)、ニッケル(Ni)、銀(Ag)また
は金(Au)である前記(I)項記載の導電性積層体。
(VIII)前記金属Bは、銅(Cu)、ニッケル(Ni)、銀(Ag)または金(A
u)である前記(I)項記載の導電性積層体。
(IX)前記(I)項記載の導電性積層体を使用したタッチパネル。
(X)前記(I)項記載の導電性積層体を使用したELライト。
(XI)前記(I)項記載の導電性積層体を使用した電磁波シールドフィルム。
(XII)前記(I)項記載の導電性積層体を使用した発熱体。
That is, according to the previously proposed invention, the following conductive laminated body and components/members (touch panel, EL light, electromagnetic wave shielding film, heating element) using the same are provided (Japanese Patent Application No. 2018-208814). reference).
(I) A resin having an originally hydrophobic function is laminated on the surface of a transparent substrate, and a large number of fine lines made of hydrophilic groups are formed on the resin surface, and metal A and metal B are formed on the fine lines. A conductive laminated body characterized by being sequentially laminated.
(II) The conductive multi-layer according to the above item (I), wherein the numerous fine lines composed of the hydrophilic group are formed by irradiating the surface of the resin originally having a hydrophobic function with vacuum ultraviolet light. body.
(III) The resin having an originally hydrophobic function is polyethylene terephthalate (PE
T), polyethylene naphthalate (PEN), polycarbonate (PC), polycycloolefin (PCO), polyparaxylylene (PPX) or fluororesin, which is characterized in that the conductive laminate according to the above item (I). ..
(IV) The transparent substrate is formed of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polymethylmethacrylate (PMMA), polycycloolefin (PCO) or glass. The electroconductive laminate according to item I).
(V) The conductive laminate according to item (I), wherein the large number of fine lines have a width of 1 to 50 μm.
(VI) The plurality of fine lines have a gap interval (a gap between the centers of two adjacent fine lines).
Is from 5 to 3000 μm, the electroconductive laminate according to the item (I).
(VII) The conductive laminate according to item (I), wherein the metal A is palladium (Pd), nickel (Ni), silver (Ag) or gold (Au).
(VIII) The metal B is copper (Cu), nickel (Ni), silver (Ag) or gold (A).
u) The conductive laminate according to item (I) above.
(IX) A touch panel using the conductive laminate according to the item (I).
(X) An EL light using the conductive laminate according to the item (I).
(XI) An electromagnetic wave shielding film using the electroconductive laminate according to the item (I).
(XII) A heating element using the conductive laminated body according to the item (I).

前記提案した発明によれば、透明基材自体の疎水性のレベルを気にすることなく
目的に合った透明基材を導電性積層体の基板として利用でき、更に比較的安価で加
工できかつ生産性に優れた方法で作製することが可能な導電性積層体およびそれを
利用したタッチパネル、ELライト、電磁波シールドフィルムおよび発熱体を提供
することが可能となる。
According to the proposed invention, a transparent base material suitable for the purpose can be used as a substrate of the conductive laminate without worrying about the level of hydrophobicity of the transparent base material itself, and it can be processed at a relatively low cost. It is possible to provide a conductive laminate that can be manufactured by a method with excellent productivity, and a touch panel, an EL light, an electromagnetic wave shielding film and a heating element that use the conductive laminate.

特開2013−54708号公報(特許第5734799号)JP, 2013-54708, A (patent No. 5734799).

本発明は、前記提案に対して更に改良を加え、加工を簡素にし、かつ製品の品質
の向上を目的とすることにより到達したものである。
すなわち、本発明によれば下記導電性積層体の製造方法およびその利用が提供さ
れる。
(I) (1)透明基材表面に、除去可能な層を設け、次いで該層に透明基材
表面にまで達する深さの多数の微細線の溝を形成する工程(微細線溝形
成工程)、
(2)該層を有する透明基材表面に、真空紫外光を照射して、親水性基が形
成された紫外光照射基材を得る工程(紫外光照射工程)、
(3)紫外光照射基材に触媒付与し、次いで該層が除去されない条件で金属
Aのめっき処理を施す工程(金属Aのめっき処理工程)、
(4)該層を該層上の金属Aと共に除去し、透明基材表面に金属Aからなる
多数の微細線を形成する工程(金属Aからなる微細線形成工程)、
(5)金属Aからなる微細線に触媒付与し、金属Bのめっき処理を施す工程
(金属Bのめっき処理工程)よりなることを特徴とする導電性積層体の
製造方法。

(II)前記真空紫外光は150〜200nmの波長を有する前記(I)記載の導電
性積層体の製造方法。

(III)前記透明基材は、ポリエチレンテレフタレート(PET)、ポリエチレン
ナフタレート(PEN)、ポリカーボネート(PC)、ポリメチルメタアクリレー
ト(PMMA)、ポリシクロオレフィン(PCO)またはガラスより形成されたフ
ィルム、シート或いはこれらの複合体である前記(I)記載の導電性積層体の製造
方法。

(IV)前記金属Aおよび金属Bからなる多数の微細線は、1〜50μmの幅を有す
る前記(I)記載の導電性積層体の製造方法。

(V)前記金属Aおよび金属Bからなる多数の微細線は、ギャップ間隔(隣り合う
2つの微細線の中心の間隔)が5〜3000μmである前記(I)記載の導電性積
層体の製造方法。

(VI)前記触媒はパラジウム(Pd)である前記(I)記載の導電性積層体の製造
方法。

(VII)前記金属Aのめっき処理は、パラジウム(Pd)、ニッケル(Ni)、銀
(Ag)または金(Au)を使用した無電解めっき処理である前記(I)記載の導
電性積層体の製造方法。

(VIII)前記金属Bのめっき処理は、銅(Cu)、ニッケル(Ni)、銀(Ag)
または金(Au)を使用した無電解めっき処理である前記(I)記載の導電性積層
体の製造方法。

(IX)透明基材の表面に親水性基を有する多数の微細線が形成されかつその微細線
上には、金属A、金属Bが順次積層されていることを特徴とする導電性積層体。

(X)前記親水性基を有する多数の微細線は、前記透明基材に真空紫外光を照射す
ることにより形成されたものである前記(IX)記載の導電性積層体。

(XI)前記透明基材は、ポリエチレンテレフタレート(PET)、ポリエチレンナ
フタレート(PEN)、ポリカーボネート(PC)、ポリメチルメタアクリレート
(PMMA)、ポリシクロオレフィン(PCO)またはガラスより形成されたフィ
ルム、シート或いはこれらの複合体である前記(IX)記載の導電性積層体。

(XII)前記金属Aおよび金属Bからなる多数の微細線は、1〜50μmの幅を有
する前記(IX)記載の導電性積層体。

(XIII)前記金属Aおよび金属Bからなる多数の微細線は、ギャップ間隔(隣り合
う2つの微細線の中心の間隔)が5〜3000μmである前記(IX)記載の導電性
積層体。

(XIV)前記金属Aは、Pd(パラジウム)、ニッケル(Ni)、銀(Ag)また
は金(Au)である前記(IX)記載の導電性積層体。

(XV)前記金属Bは、銅(Cu)、ニッケル(Ni)、銀(Ag)または金(Au
)である前記(IX)記載の導電性積層体。

(XVI)前記(IX)記載の導電性積層体を使用したタッチパネル。

(XVII)前記(IX)記載の導電性積層体を使用したELライト。

(XVIII)前記(IX)記載の導電性積層体を使用した電磁波シールドフィルム。

(XIX)前記(IX)記載の導電性積層体を使用した発熱体。
The present invention has been achieved by further improving the above proposal, aiming at simplification of processing and improvement of product quality.
That is, according to the present invention, the following method for producing a conductive laminate and its use are provided.
(I) (1) A removable layer is provided on the surface of a transparent substrate, and then the transparent substrate is formed on the layer.
Process for forming a large number of fine wire grooves that reach the surface (fine wire groove shape)
Process),
(2) The surface of the transparent substrate having the layer is irradiated with vacuum ultraviolet light to form hydrophilic groups.
A step of obtaining the formed ultraviolet light irradiation base material (ultraviolet light irradiation step),
(3) Metal is applied to the UV-irradiated substrate under a condition that the catalyst is not applied and then the layer is not removed.
A plating process (metal A plating process),
(4) The layer is removed together with the metal A on the layer, and the metal A is formed on the surface of the transparent substrate.
A step of forming a large number of fine lines (step of forming fine lines made of metal A),
(5) A step of applying a catalyst to a fine wire made of metal A and plating the metal B
(Metal B plating treatment step)
Production method.

(II) The method for producing a conductive laminate as described in (I), wherein the vacuum ultraviolet light has a wavelength of 150 to 200 nm.

(III) The transparent substrate is a film formed of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polymethylmethacrylate (PMMA), polycycloolefin (PCO) or glass. The method for producing a conductive laminate as described in (I) above, which is a sheet or a composite thereof.

(IV) The method for producing a conductive laminate according to (I), wherein the large number of fine lines made of the metal A and the metal B have a width of 1 to 50 μm.

(V) A large number of fine wires made of the metal A and the metal B have a gap distance (a distance between the centers of two adjacent fine wires) of 5 to 3000 μm. Method.

(VI) The method for producing a conductive laminate according to (I), wherein the catalyst is palladium (Pd).

(VII) The conductive laminate according to (I), wherein the plating treatment of the metal A is an electroless plating treatment using palladium (Pd), nickel (Ni), silver (Ag) or gold (Au). Manufacturing method.

(VIII) The plating treatment of the metal B is copper (Cu), nickel (Ni), silver (Ag)
Alternatively, the method for producing a conductive laminate according to (I) above, which is an electroless plating process using gold (Au).

(IX) A conductive laminate, wherein a large number of fine lines having hydrophilic groups are formed on the surface of a transparent substrate, and metal A and metal B are sequentially laminated on the fine lines.

(X) The conductive laminated body according to (IX), wherein the numerous fine lines having the hydrophilic group are formed by irradiating the transparent substrate with vacuum ultraviolet light.

(XI) The transparent substrate is a film formed of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polymethylmethacrylate (PMMA), polycycloolefin (PCO) or glass, The electroconductive laminate according to (IX) above, which is a sheet or a composite thereof.

(XII) The conductive laminated body according to (IX), wherein the large number of fine lines composed of the metal A and the metal B have a width of 1 to 50 μm.

(XIII) The conductive laminated body according to (IX), wherein the large number of fine lines made of the metal A and the metal B have a gap interval (a space between centers of two adjacent fine lines) of 5 to 3000 μm.

(XIV) The conductive laminate according to (IX), wherein the metal A is Pd (palladium), nickel (Ni), silver (Ag) or gold (Au).

(XV) The metal B is copper (Cu), nickel (Ni), silver (Ag) or gold (Au).
) The electroconductive laminate according to (IX) above.

(XVI) A touch panel using the conductive laminate according to (IX).

(XVII) An EL light using the conductive laminate according to (IX).

(XVIII) An electromagnetic wave shielding film using the conductive laminate according to the above (IX).

(XIX) A heating element using the conductive laminate according to (IX).

本発明の導電性積層体は、透明基材表面に親水性基からなる多数の微細線が形成
され、かつその微細線上には金属A、金属Bが順次積層されている構造を有するも
のである。
前記透明基材としては、ポリエチレンテレフタレート(PET)、ポリエチレン
ナフタレート(PEN)、ポリカーボネート(PC)、ポリメチルメタアクリレー
ト(PMMA)、ポリシクロオレフィン(PCO)またはガラスより形成されたフ
ィルム、シート或いはこれらの複合体が好ましいがこれらの中でPET、PEN、
PC、PCOが特に好ましい。
前記透明基材の表面に、先ず除去可能な層を設け、次に該層に透明基材表面にま
で達する深さの多数の微細線の溝を形成する。除去可能な層としてフォトレジスト
が挙げられる。透明基材表面にフォトレジストを形成し、フォトマスク越しに紫外
光を照射後、現像を行うことにより、フォトレジストに透明基材表面にまで達する
深さの多数の微細線が形成される。この方法は金属膜のエッチングを行う方法と比
較して簡素であり、かつ加工精度が良い。
次いでに該層を有する透明基材表面に真空紫外光を照射して、親水性基を形成す
る。次に金属Aのめっき処理を施した後、該層を該層上の金属Aと共に除去する。
結果として、透明基材表面に多数の親水性基からなる微細線を下地とした金属Aの
微細線が形成されることになる。次に金属A上に金属Bが積層される。
最初に透明基材上の該層に多数の微細線溝が形成されているため、紫外光照射工
程、金属Aのめっき処理工程共に簡素になり、かつ製品の品質が向上する。
多数の微細線の幅は、1〜50μm、好ましくは1〜40μm、特に好ましくは
1〜30μmである。多数の微細線のギャップ間隔(隣り合う微細線の中心線の間
隔)が5〜3000μm、好ましくは10〜2500μmとなるように設計される
ことが望ましい。
The conductive laminate of the present invention has a structure in which a large number of fine lines made of hydrophilic groups are formed on the surface of a transparent substrate, and metal A and metal B are sequentially laminated on the fine lines. ..
As the transparent substrate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polymethylmetaacrylate (PMMA), polycycloolefin (PCO) or a film or sheet formed of glass is used. Alternatively, these composites are preferable, but PET, PEN,
PC and PCO are particularly preferable.
First, a removable layer is provided on the surface of the transparent substrate, and then a number of fine line grooves having a depth reaching the surface of the transparent substrate are formed in the layer. The removable layer may be photoresist. By forming a photoresist on the surface of the transparent substrate, irradiating it with ultraviolet light through the photomask, and then performing development, a large number of fine lines with a depth reaching the surface of the transparent substrate are formed on the photoresist. This method is simpler and has better processing accuracy than the method of etching a metal film.
Then, the surface of the transparent substrate having the layer is irradiated with vacuum ultraviolet light to form a hydrophilic group. Next, after the metal A is plated, the layer is removed together with the metal A on the layer.
As a result, fine lines of the metal A are formed on the surface of the transparent substrate with fine lines made of a large number of hydrophilic groups as an underlying layer. Next, the metal B is laminated on the metal A.
First, since a large number of fine line grooves are formed in the layer on the transparent substrate, both the ultraviolet light irradiation process and the metal A plating process are simplified, and the product quality is improved.
The width of a large number of fine lines is 1 to 50 μm, preferably 1 to 40 μm, and particularly preferably 1 to 30 μm. It is desirable that the gap between a large number of fine lines (distance between the center lines of adjacent fine lines) is designed to be 5 to 3000 μm, preferably 10 to 2500 μm.

真空紫外光の波長は、150〜200nmの範囲であればよい。
真空紫外光の照射は、微細線の親水性基の割合が充分に親水性を有する量である
ことが肝要である。
親水性基からなる微細線を形成させるための真空紫外光の照射の割合は、照射す
る前の透明基材表面の疎水性の割合によっても好ましい値が変化する。すなわち、
照射前の透明基材表面のぬれ張力の特性値に対して照射後の親水性基からなる微
細線のぬれ張力の特性値が10mN/m以上、好ましくは15mN/m以上高くな
るように、真空紫外光を照射することが有利である。
前記微細線上に積層される金属Aとして、パラジウム(Pd)、ニッケル(Ni
)、銀(Ag)または金(Au)が望ましく、金属Bとして、銅(Cu)、ニッケ
ル(Ni)、銀(Ag)または金(Au)が望ましい。
本発明の前記した導電性積層体は、その導電性の機能を用いて種々の部品・部材
の材料として利用できるが、とりわけタッチパネル、ELライト、電磁波シールド
フィルム、或いは発熱体として使用することができる。
以下実施例を掲げて本発明を詳述する。
実施例1及び比較例1
The wavelength of vacuum ultraviolet light may be in the range of 150 to 200 nm.
It is important for the irradiation with vacuum ultraviolet light that the ratio of the hydrophilic groups in the fine lines is such that the hydrophilic groups are sufficiently hydrophilic.
A preferable value of the irradiation rate of vacuum ultraviolet light for forming fine lines composed of a hydrophilic group also changes depending on the hydrophobicity rate of the transparent substrate surface before irradiation. That is,
In order that the characteristic value of the wetting tension of the fine wire made of the hydrophilic group after irradiation is higher than the characteristic value of the wetting tension of the transparent substrate surface before irradiation by 10 mN/m or more, preferably 15 mN/m or more, Irradiating with vacuum ultraviolet light is advantageous.
As the metal A laminated on the fine line, palladium (Pd), nickel (Ni
), silver (Ag) or gold (Au), and the metal B is preferably copper (Cu), nickel (Ni), silver (Ag) or gold (Au).
The above-mentioned conductive laminate of the present invention can be used as a material for various parts/members by utilizing its conductive function, but can be particularly used as a touch panel, an EL light, an electromagnetic wave shielding film, or a heating element. ..
The present invention is described in detail below with reference to examples.
Example 1 and Comparative Example 1

[試験用透明基材]
帝人株式会社製「ポリカーボネートフィルム ピュアエース C110−10
0」を、実施例1の透明基材として用いた。透明基材の片面に、除去可能な層とし
て、ニッコー・マテリアルズ株式会社製「ドライフィルム ALPHO 25A3
10」をラミネートした。次にフォトマスク越しに紫外光を照射後、炭酸ナトリウ
ム水溶液を用いて現像を行い、除去可能な層に透明基材表面にまで達する深さの多
数の微細線の溝を形成した。
実施例1の透明基材の微細線溝を形成した面に、真空紫外光(150−200n
m)を、合成石英ガラス板(信越石英株式会社製SUPRASIL−F310、厚
さ2.8mm)越しに、大気中で5分間照射した。

[触媒付与溶液、無電解ニッケルめっき浴および無電解銅めっき浴]

触媒付与溶液の組成を下表に示す。

無電解ニッケルめっき浴の組成を下表に示す。

無電解銅めっき浴の組成を下表に示す。
[Transparent base material for test]
Teijin Limited "Polycarbonate film Pure Ace C110-10
0” was used as the transparent substrate of Example 1. As a removable layer on one side of the transparent substrate, "Dry Film ALPHO 25A3" manufactured by Nikko Materials Co., Ltd.
10" was laminated. Next, after irradiating with ultraviolet light through the photomask, development was performed using an aqueous solution of sodium carbonate, and a groove having a large number of fine lines reaching the transparent substrate surface was formed in the removable layer.
Vacuum ultraviolet light (150-200n) was applied to the surface of the transparent substrate of Example 1 where the fine line grooves were formed.
m) was irradiated for 5 minutes in the atmosphere through a synthetic quartz glass plate (SUPRASIL-F310 manufactured by Shin-Etsu Quartz Co., Ltd., thickness 2.8 mm).

[Catalyst application solution, electroless nickel plating bath and electroless copper plating bath]

The composition of the catalyst application solution is shown in the table below.

The composition of the electroless nickel plating bath is shown in the table below.

The composition of the electroless copper plating bath is shown in the table below.

実施例1の透明基材を上記触媒付与溶液に40℃で5分間浸漬後、室温で1分間
水洗した。
次に、無電解ニッケルめっき浴にpH8.0、70℃で1分間浸漬後水洗した。
次に、水酸化ナトリウム水溶液(3%)に、45℃で10分間浸漬後水洗し、除
去可能な層をニッケル皮膜共に除去することにより、透明基材上にニッケルの微細
線を形成した。
次に、パラジウムイオン酸性水溶液に10秒間浸漬後水洗した。
引き続いて、無電解銅めっき浴に25℃で12分間浸漬後、室温で1分間水洗し
た。
透明基材を乾燥後、光学顕微鏡にて、銅めっき皮膜の付着状態を観察した。元々
除去可能な層の微細線溝があった個所にのみ銅めっき皮膜が付着しており、それ以
外には銅めっき皮膜が付着していないことが確認された。銅めっき皮膜の線幅は約
5μm、ニッケル皮膜と銅めっき皮膜を合わせた厚さは約0.4μmであった。
一方、東レ株式会社製ポリプロピレンフィルム「トレファンBO #50−25
00H」を比較例1の試験用透明基材として用いた。比較例1の透明基材にはドラ
イフィルムが密着しないため、比較例1の透明基材の片面に真空紫外光(150−
200nm)を、フォトマスク(クロムマスク、基板:信越石英株式会社製SUP
RASIL−F310、厚さ2.8mm)越しに、大気中で5分間照射した。
次に、比較例1の透明基材を上記触媒付与溶液に40℃で5分間浸漬後、室温で
1分間水洗した。
次に、無電解ニッケルめっき浴にpH8.0、70℃で1分間浸漬後水洗した。
次に、水酸化ナトリウム水溶液(0.4%)に1分間浸漬後水洗した。
次に、パラジウムイオン酸性水溶液に10秒間浸漬後水洗した。
引き続いて、無電解銅めっき浴に25℃で12分間浸漬後、室温で1分間水洗し
た。比較例1の透明基材には、真空紫外光の透過部、遮蔽部に係らず銅めっき皮膜
は付着していなかった。
The transparent substrate of Example 1 was immersed in the above catalyst-applying solution at 40° C. for 5 minutes and then washed with water at room temperature for 1 minute.
Next, it was immersed in an electroless nickel plating bath at pH 8.0 and 70° C. for 1 minute and washed with water.
Next, by immersing in a sodium hydroxide aqueous solution (3%) at 45° C. for 10 minutes and then washing with water to remove the removable layer together with the nickel film, fine nickel wires were formed on the transparent substrate.
Next, it was immersed in a palladium ion acidic aqueous solution for 10 seconds and washed with water.
Subsequently, it was immersed in an electroless copper plating bath at 25° C. for 12 minutes and then washed at room temperature for 1 minute with water.
After the transparent substrate was dried, the state of adhesion of the copper plating film was observed with an optical microscope. It was confirmed that the copper plating film adhered only to the part where the fine line groove of the removable layer was originally present, and the copper plating film did not adhere to other parts. The line width of the copper plating film was about 5 μm, and the combined thickness of the nickel film and the copper plating film was about 0.4 μm.
On the other hand, polypropylene film “Trefan BO #50-25 manufactured by Toray Industries, Inc.
"00H" was used as the transparent test substrate of Comparative Example 1. Since the dry film does not adhere to the transparent base material of Comparative Example 1, vacuum ultraviolet light (150-
Photomask (chrome mask, substrate: SUP manufactured by Shin-Etsu Quartz Co., Ltd.)
Irradiation was carried out for 5 minutes in the atmosphere through RASIL-F310, thickness 2.8 mm).
Next, the transparent substrate of Comparative Example 1 was immersed in the above catalyst-applying solution at 40° C. for 5 minutes and then washed with water at room temperature for 1 minute.
Next, it was immersed in an electroless nickel plating bath at pH 8.0 and 70° C. for 1 minute and washed with water.
Next, it was immersed in a sodium hydroxide aqueous solution (0.4%) for 1 minute and then washed with water.
Next, it was immersed in a palladium ion acidic aqueous solution for 10 seconds and washed with water.
Subsequently, it was immersed in an electroless copper plating bath at 25° C. for 12 minutes and then washed at room temperature for 1 minute with water. No copper plating film was adhered to the transparent base material of Comparative Example 1 regardless of the vacuum ultraviolet light transmitting portion and the shielding portion.

図1は、除去可能な層の微細溝形成工程を示すものである。 FIG. 1 shows a step of forming fine grooves in a removable layer.

図2は、真空紫外光照射工程を示すものである。 FIG. 2 shows a vacuum ultraviolet light irradiation step.

図3は、金属Aのめっき処理工程を示すものである。 FIG. 3 shows a metal A plating process.

図4は、金属Aからなる微細線形成工程を示すものである。 FIG. 4 shows a step of forming fine lines made of metal A.

図5は、金属Bのめっき処理工程を示すものである。 FIG. 5 shows a metal B plating process.

1: 透明基材
2: 除去可能な層
3: 親水性基
4: 金属A
5: 金属B
1: Transparent substrate 2: Removable layer 3: Hydrophilic group 4: Metal A
5: Metal B

Claims (19)

(1)透明基材表面に、除去可能な層を設け、次いで該層に透明基材表面にまで達
する深さの多数の微細線の溝を形成する工程(微細線溝形成工程)、
(2)該層を有する透明基材表面に、真空紫外光を照射して、親水性基が形成され
た紫外光照射基材を得る工程(紫外光照射工程)、
(3)紫外光照射基材に触媒付与し、次いで該層が除去されない条件で金属Aのめ
っき処理を施す工程(金属Aのめっき処理工程)、
(4)該層を該層上の金属Aと共に除去し、透明基材表面に金属Aからなる多数の
微細線を形成する工程(金属Aからなる微細線形成工程)、
(5)金属Aからなる微細線に触媒付与し、金属Bのめっき処理を施す工程(金属
Bのめっき処理工程)よりなることを特徴とする導電性積層体の製造方法。
(1) A removable layer is provided on the surface of the transparent substrate, and then the layer reaches the surface of the transparent substrate.
A step of forming a large number of fine wire grooves having a depth of
(2) The surface of the transparent substrate having the layer is irradiated with vacuum ultraviolet light to form a hydrophilic group.
A step of obtaining an ultraviolet light irradiation base material (ultraviolet light irradiation step),
(3) Applying a catalyst to the ultraviolet light irradiation base material, and then applying the metal A under the condition that the layer is not removed.
Step of performing plating treatment (metal A plating treatment step),
(4) The layer is removed together with the metal A on the layer, and a large number of the metal A is formed on the surface of the transparent substrate.
A step of forming fine lines (step of forming fine lines made of metal A),
(5) A step of applying a catalyst to a fine wire made of metal A and plating the metal B (metal
B plating process)), The manufacturing method of the electroconductive laminated body characterized by the above-mentioned.
前記真空紫外光は150〜200nmの波長を有する請求項1記載の導電性積層
体の製造方法。
The method for producing a conductive laminate according to claim 1, wherein the vacuum ultraviolet light has a wavelength of 150 to 200 nm.
前記透明基材は、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレ
ート(PEN)、ポリカーボネート(PC)、ポリメチルメタアクリレート(PMM
A)、ポリシクロオレフィン(PCO)またはガラスより形成されたフィルム、シー
ト或いはこれらの複合体である請求項1記載の導電性積層体の製造方法。
The transparent substrate is polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polymethylmethacrylate (PMM).
The method for producing a conductive laminate according to claim 1, which is a film, sheet or composite thereof formed of A), polycycloolefin (PCO) or glass.
前記金属Aおよび金属Bからなる多数の微細線は、1〜50μmの幅を有する請求
項1記載の導電性積層体の製造方法。
The method for producing a conductive laminate according to claim 1, wherein the large number of fine lines made of the metal A and the metal B have a width of 1 to 50 μm.
前記金属Aおよび金属Bからなる多数の微細線は、ギャップ間隔(隣り合う2つの
微細線の中心の間隔)が5〜3000μmである請求項1記載の導電性積層体の製造
方法。
The method for producing a conductive laminate according to claim 1, wherein the large number of fine lines made of the metal A and the metal B have a gap interval (a gap between centers of two adjacent fine lines) of 5 to 3000 μm.
前記触媒はパラジウム(Pd)である請求項1記載の導電性積層体の製造方法。
The method for producing a conductive laminate according to claim 1, wherein the catalyst is palladium (Pd).
前記金属Aのめっき処理は、パラジウム(Pd)、ニッケル(Ni)、銀(Ag)
または金(Au)を使用した無電解めっき処理である請求項1記載の導電性積層体の
製造方法。
The metal A is plated with palladium (Pd), nickel (Ni), silver (Ag).
Alternatively, the method for producing a conductive laminate according to claim 1, which is an electroless plating process using gold (Au).
前記金属Bのめっき処理は、銅(Cu)、ニッケル(Ni)、銀(Ag)または
金(Au)を使用した無電解めっき処理である請求項1記載の導電性積層体の製造
方法。
The method for producing a conductive laminate according to claim 1, wherein the plating treatment of the metal B is an electroless plating treatment using copper (Cu), nickel (Ni), silver (Ag) or gold (Au).
透明基材の表面に親水性基を有する多数の微細線が形成されかつその微細線上に
は、金属A、金属Bが順次積層されていることを特徴とする導電性積層体。
A conductive laminated body characterized in that a large number of fine lines having a hydrophilic group are formed on the surface of a transparent substrate, and metal A and metal B are sequentially laminated on the fine lines.
前記親水性基を有する多数の微細線は、前記透明基材に真空紫外光を照射すること
により形成されたものである請求項9記載の導電性積層体。
The electroconductive laminate according to claim 9, wherein the large number of fine lines having the hydrophilic group are formed by irradiating the transparent substrate with vacuum ultraviolet light.
前記透明基材は、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレ
ート(PEN)、ポリカーボネート(PC)、ポリメチルメタアクリレート(PMM
A)、ポリシクロオレフィン(PCO)またはガラスより形成されたフィルム、シー
ト或いはこれらの複合体である請求項9記載の導電性積層体。
The transparent substrate is polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polymethylmethacrylate (PMM).
The conductive laminate according to claim 9, which is a film, sheet or composite thereof formed from A), polycycloolefin (PCO) or glass.
前記金属Aおよび金属Bからなる多数の微細線は、1〜50μmの幅を有する請求
項9記載の導電性積層体。
The electroconductive laminate according to claim 9, wherein the large number of fine lines made of the metal A and the metal B have a width of 1 to 50 μm.
前記金属Aおよび金属Bからなる多数の微細線は、ギャップ間隔(隣り合う2つの
微細線の中心の間隔)が5〜3000μmである請求項9記載の導電性積層体。
The conductive laminated body according to claim 9, wherein the plurality of fine wires made of the metal A and the metal B have a gap distance (a distance between the centers of two adjacent fine wires) of 5 to 3000 µm.
前記金属Aは、Pd(パラジウム)、ニッケル(Ni)、銀(Ag)または金(A
u)である請求項9記載の導電性積層体。
The metal A is Pd (palladium), nickel (Ni), silver (Ag) or gold (A
The electroconductive laminate according to claim 9, which is u).
前記金属Bは、銅(Cu)、ニッケル(Ni)、銀(Ag)または金(Au)であ
る請求項9記載の導電性積層体。
The electroconductive laminate according to claim 9, wherein the metal B is copper (Cu), nickel (Ni), silver (Ag) or gold (Au).
請求項9記載の導電性積層体を使用したタッチパネル。
A touch panel using the conductive laminate according to claim 9.
請求項9記載の導電性積層体を使用したELライト。
An EL light using the conductive laminate according to claim 9.
請求項9記載の導電性積層体を使用した電磁波シールドフィルム。
An electromagnetic wave shield film using the conductive laminate according to claim 9.
請求項9記載の導電性積層体を使用した発熱体。

A heating element using the conductive laminate according to claim 9.

JP2018228673A 2018-12-06 2018-12-06 Method for manufacturing conductive laminate Active JP7213450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018228673A JP7213450B2 (en) 2018-12-06 2018-12-06 Method for manufacturing conductive laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018228673A JP7213450B2 (en) 2018-12-06 2018-12-06 Method for manufacturing conductive laminate

Publications (2)

Publication Number Publication Date
JP2020090711A true JP2020090711A (en) 2020-06-11
JP7213450B2 JP7213450B2 (en) 2023-01-27

Family

ID=71012430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018228673A Active JP7213450B2 (en) 2018-12-06 2018-12-06 Method for manufacturing conductive laminate

Country Status (1)

Country Link
JP (1) JP7213450B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125552A (en) * 1991-11-07 1993-05-21 Okuno Seiyaku Kogyo Kk Method for plating transparent conductive film with gold
JP2008007840A (en) * 2006-06-30 2008-01-17 Seiko Epson Corp Manufacturing method of plated substrate
JP2017133082A (en) * 2016-01-29 2017-08-03 株式会社タッチパネル研究所 Method for manufacturing conductive film and conductive film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125552A (en) * 1991-11-07 1993-05-21 Okuno Seiyaku Kogyo Kk Method for plating transparent conductive film with gold
JP2008007840A (en) * 2006-06-30 2008-01-17 Seiko Epson Corp Manufacturing method of plated substrate
JP2017133082A (en) * 2016-01-29 2017-08-03 株式会社タッチパネル研究所 Method for manufacturing conductive film and conductive film

Also Published As

Publication number Publication date
JP7213450B2 (en) 2023-01-27

Similar Documents

Publication Publication Date Title
KR101812606B1 (en) Method for manufacturing transparent printed circuit and method for manufacturing transparent touch panel
US7578048B2 (en) Patterns of conductive objects on a substrate coated with inorganic compounds and method of producing thereof
KR102034363B1 (en) Manufacturing method of ultra thin metal layer printed circuit board
US20090165296A1 (en) Patterns of conductive objects on a substrate and method of producing thereof
US7992293B2 (en) Method of manufacturing a patterned conductive layer
WO2010024175A1 (en) Laminate and process for producing the laminate
TW201342152A (en) Touch sensor with decoration, method for manufacturing the same and touch sensor used in the same
WO2003045125A1 (en) Electromagnetic wave shielded light-transmissive window material and manufacturing method thereof
JP2017133082A (en) Method for manufacturing conductive film and conductive film
KR20070106669A (en) Circuit board and the method of its fabrication
KR101796525B1 (en) A method for preparing touch screen panel and a touch screen panel prepared from the same
JP3502979B2 (en) Transparent member for electromagnetic wave shielding and method of manufacturing the same
JP2020090711A (en) Method of manufacturing electroconductive laminate and use thereof
TW202219726A (en) Touch sensor module and method of fabricating the same
CN111902885B (en) Conductive film, touch panel sensor, and touch panel
JP2020077695A (en) Conductive laminate and use thereof
JP2006191012A (en) Process for producing light transmitting electromagnetic wave shielding film, light transmitting electromagnetic wave shielding film, and filter for display
WO2003045127A1 (en) Electromagnetic wave shielded light-transmissive material and manufacturing method thereof
KR101412990B1 (en) Method for manufacturing touch screen panel
KR20160126192A (en) Method of manufacturing transparent printed circuit board
JP2023094084A (en) Method for manufacturing conductive laminate and use thereof
JP2022173067A (en) Touch display device and forming method thereof
KR101537258B1 (en) Method for forming metal patterns of printed circuit board
KR20150043118A (en) Method for forming metal patterns of printedcircuit board
JP2021077576A (en) Transparent conductive sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221227

R150 Certificate of patent or registration of utility model

Ref document number: 7213450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350