JP2020089866A - Olefin isomerization catalyst and method for producing the same, method for producing 2-butene and propylene production method using the same - Google Patents

Olefin isomerization catalyst and method for producing the same, method for producing 2-butene and propylene production method using the same Download PDF

Info

Publication number
JP2020089866A
JP2020089866A JP2018230281A JP2018230281A JP2020089866A JP 2020089866 A JP2020089866 A JP 2020089866A JP 2018230281 A JP2018230281 A JP 2018230281A JP 2018230281 A JP2018230281 A JP 2018230281A JP 2020089866 A JP2020089866 A JP 2020089866A
Authority
JP
Japan
Prior art keywords
catalyst
butene
magnesium oxide
weight
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018230281A
Other languages
Japanese (ja)
Inventor
謙 坂本
Ken Sakamoto
謙 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant Catalysts Japan KK
Original Assignee
Clariant Catalysts Japan KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant Catalysts Japan KK filed Critical Clariant Catalysts Japan KK
Priority to JP2018230281A priority Critical patent/JP2020089866A/en
Priority to PCT/JP2019/047552 priority patent/WO2020116548A1/en
Publication of JP2020089866A publication Critical patent/JP2020089866A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/08Alkenes with four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/23Rearrangement of carbon-to-carbon unsaturated bonds
    • C07C5/25Migration of carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/02Metathesis reactions at an unsaturated carbon-to-carbon bond
    • C07C6/04Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

To obtain an olefin isomerization catalyst that has a high conversion rate, has high durability in repeated cycles of isomerization reaction-regeneration, and is available inexpensively.SOLUTION: An olefin isomerization catalyst has at least one alkali metal supported on a support that is made up of magnesium oxide with a purity of 56 wt.% or more and less than 99 wt.%.SELECTED DRAWING: Figure 1

Description

本発明はオレフィン異性化触媒、特に1−ブテンを2ブテンに異性化するための触媒とその製造方法、更にはその触媒を用いた2−ブテンの製造方法、及びプロピレンを得るための方法に関する。 The present invention relates to an olefin isomerization catalyst, particularly a catalyst for isomerizing 1-butene to 2-butene, a method for producing the same, a method for producing 2-butene using the catalyst, and a method for obtaining propylene.

オレフィン異性化触媒、特に天然ガスなどに多く含まれる1−ブテンを2−ブテンに異性化する触媒が注目されている。その理由は、用途の少ない1−ブテンを、用途、使用量が多い2−ブテンに異性化することにより付加価値を高めることにある。2−ブテンの用途としては、例えばオレフィンメタセシス触媒(特許文献1)に2−ブテンとエチレンガスを接触させることによるプロピレンを得る用途がある。 Attention has been focused on an olefin isomerization catalyst, particularly a catalyst for isomerizing 1-butene contained in natural gas and the like in a large amount into 2-butene. The reason is to increase the added value by isomerizing 1-butene, which has few uses, into 2-butene, which has many uses and usage amounts. The use of 2-butene is, for example, the use of obtaining propylene by bringing 2-butene and ethylene gas into contact with an olefin metathesis catalyst (Patent Document 1).

1−ブテンから2−ブテンへの異性化触媒としては、下記のような性能が必要とされている。
(1)異性化効率(転化率)が高く、長時間維持される(劣化速度が小さい)こと、
(2)また一度反応させて劣化した触媒を再生させることにより、異性化触媒を複数回繰り返し使用できること、
(3)入手しやすい安価な原料を使用して触媒を製造できること
(4)触媒製造工程が、危険な工程を伴わず、シンプルな工程であること。
The following performances are required as an isomerization catalyst from 1-butene to 2-butene.
(1) High isomerization efficiency (conversion rate) and being maintained for a long time (degradation rate is low),
(2) It is possible to use the isomerization catalyst repeatedly a plurality of times by once again reacting and regenerating the deteriorated catalyst.
(3) The catalyst can be manufactured using inexpensive raw materials that are easily available. (4) The catalyst manufacturing process is a simple process without any dangerous process.

特に近年は、ポリオレフィン樹脂の大量生産、低価格化に対応できるよう、触媒を安価に供給でき、更に使用済み触媒を繰り返し使用できる触媒が強く求められている。 Particularly in recent years, there has been a strong demand for a catalyst that can be supplied at a low cost and that can be used repeatedly as a used catalyst so as to cope with mass production and cost reduction of polyolefin resins.

1−ブテンから2−ブテンへの異性化触媒としては、従来から金属酸化物を主要成分とする触媒が使用されている。そのような触媒としては、アルミナなどの金属酸化物担体上にカリウムなどのアルカリ金属が担持された構成の触媒(特許文献2)と、酸化マグネシウム担体を用いた触媒(特許文献3)の2種類の形態が知られている。 As a catalyst for isomerizing 1-butene to 2-butene, a catalyst containing a metal oxide as a main component has been used. As such a catalyst, there are two kinds of catalysts (patent document 2) in which an alkali metal such as potassium is supported on a metal oxide carrier such as alumina (patent document 2) and a catalyst using a magnesium oxide carrier (patent document 3). Form is known.

特許文献2には、表面積の大きなγ−アルミナ担体100重量部に対して、アルカリ金属を25重量%以上担持させた触媒により平衡組成に近い高い転化率が示されている。この触媒を得るためには高純度で表面積の大きなγ―アルミナについて、硝酸などの前処理を行った上、25%以上のアルカリを担持させるために多量のアルカリ金属が使用され、それが発火などの事故を起こしやすい問題がある。更にはアルミナ担体を使用した触媒は、コーキングによる劣化を起こしやすいといわれている。これらの理由から、γーアルミナ担体の代わりに、酸化マグネシウムを触媒活性のある担体として使用する例が増加している。 Patent Document 2 shows a high conversion rate close to an equilibrium composition by a catalyst supporting 25% by weight or more of an alkali metal with respect to 100 parts by weight of a γ-alumina carrier having a large surface area. In order to obtain this catalyst, γ-alumina with high purity and large surface area is pretreated with nitric acid and a large amount of alkali metal is used to support 25% or more of alkali. There is a problem that is prone to accidents. Further, it is said that a catalyst using an alumina carrier is likely to be deteriorated by coking. For these reasons, there are an increasing number of examples in which magnesium oxide is used as a carrier having catalytic activity instead of the γ-alumina carrier.

酸化マグネシウムを使用する例としては、硫黄含有量を74ppm以下、鉄含有量を330ppm以下にした高純度酸化マグネシウム触媒が特許文献3(段落[0024])に示されている。しかしながら代表的な酸化マグネシウム製造法である電解法による一般グレードの酸化マグネシウムは、特許文献3で触媒毒とされた硫黄を、硫黄原子換算で数千ppm含有している。そのため硫黄含有量が74ppm以下の高純度に精製する必要があり、安価な異性化触媒を得る上で大きなネックとなっている。 As an example of using magnesium oxide, a high-purity magnesium oxide catalyst having a sulfur content of 74 ppm or less and an iron content of 330 ppm or less is shown in Patent Document 3 (paragraph [0024]). However, the general-grade magnesium oxide produced by the electrolytic method, which is a typical magnesium oxide production method, contains several thousands ppm of sulfur, which is a catalyst poison in Patent Document 3, in terms of sulfur atoms. Therefore, it is necessary to purify the sulfur content to a high purity of 74 ppm or less, which is a major obstacle to obtaining an inexpensive isomerization catalyst.

一方、高純度酸化マグネシウムの代わりに、高濃度硫黄を含有する一般グレードの酸化マグネシウムを使用した異性化触媒が特許文献4に開示されている。この文献中には、使用済の触媒を、酸素ガス濃度が1ppm以下の超高純度窒素ガスを使用して再生する方法により、転化率が79.9%とほぼ平衡転化率に近い値が得られている(特許文献4、段落[0037]、表2)。この方法では、再生後の高い活性は得られたものの、劣化速度が0.108%/時と、高純度酸化マグネシウムに比べ大きい。この劣化速度は、300時間(12.5日)の反応後に79.9%の転化率が50%前後まで低下することを示しており、頻繁な触媒交換が必要となり実用的とは言えない。また超高純度窒素ガスも必要であり、コストの面でも好ましくない。 On the other hand, Patent Document 4 discloses an isomerization catalyst that uses general-grade magnesium oxide containing high-concentration sulfur instead of high-purity magnesium oxide. In this document, a used catalyst is regenerated by using ultra-high purity nitrogen gas having an oxygen gas concentration of 1 ppm or less, and a conversion rate of 79.9%, which is almost equal to the equilibrium conversion rate, is obtained. (Patent Document 4, paragraph [0037], Table 2). Although high activity after regeneration was obtained by this method, the deterioration rate was 0.108%/hour, which is higher than that of high-purity magnesium oxide. This deterioration rate indicates that the conversion rate of 79.9% decreases to around 50% after the reaction for 300 hours (12.5 days), which is not practical because frequent catalyst replacement is required. Also, ultra-high purity nitrogen gas is required, which is not preferable in terms of cost.

以上述べた如く、一般グレード用酸化マグネシウムを使用したオレフィン異性化触媒であって、反応活性が高く、且つ触媒再生後の繰り返し反応時の劣化速度が小さい、換言すれば耐久性の良好なオレフィン異性化触媒は、未だ実現できていないのが実情である。 As described above, an olefin isomerization catalyst using general-grade magnesium oxide, which has a high reaction activity and a low deterioration rate during repeated reactions after catalyst regeneration, in other words, an olefin isomer with good durability. The reality is that chemical catalysts have not been realized yet.

特許第595965号公報Japanese Patent No. 595965 特公昭60−6333号公報Japanese Patent Publication No. 60-6333 特許第4390556号公報Patent No. 4390556 特表2005−506172号公報Japanese Patent Publication No. 2005-506172

本発明の第一の目的は、高い異性化効率を有し、且つ、異性化反応と再生(再活性化)を2回、もしくは3回以上繰り返しても、小さな劣化速度が維持される耐久性の良好な触媒を提供することである。 The first object of the present invention is to have a high isomerization efficiency and to maintain a small deterioration rate even if the isomerization reaction and regeneration (reactivation) are repeated twice or three times or more. To provide a good catalyst.

本発明の第二の目的は、硫黄などの不純物を多く含む一般グレードの酸化マグネシウム原料を使用して、安価で高活性、高耐久性の触媒を製造し、オレフィン異性化反応に提供することである。 A second object of the present invention is to produce an inexpensive, highly active and highly durable catalyst using a general-grade magnesium oxide raw material containing a large amount of impurities such as sulfur, and to provide it to an olefin isomerization reaction. is there.

本発明の他の目的は、以下の記載から明らかとなろう。 Other objects of the present invention will be apparent from the following description.

本発明者等は、上記の実状に鑑み、従来技術の欠点を解決すべく鋭意研究した結果、本発明の課題を解決するための指針として以下の知見を得た。
(1)先ず先行技術である特許文献3、4の内容を分析した。酸化マグネシウム触媒中の硫黄は触媒毒として作用するために、劣化速度の小さな触媒を得るためには、硫黄含有量が74ppmという高純度酸化マグネシウムを使用する必要がある(特許文献3)。
(2)一方、触媒中の硫黄含有量が2300ppm以上の一般グレードの酸化マグネシウムを使用した場合、再生処理用窒素ガス中の酸素濃度を1ppm以下に制御することにより、その劣化速度は改良されるものの、それでも0.108%/時(特許文献4、表2)と、高純度酸化マグネシウムの場合の0.027%/時(特許文献3、表3)に比べると非常に大きく、実用上大きな障害となる。
(3)本発明者らは硫黄含有量が高く安価な一般グレードの酸化マグネシウムを原料として使用しながら、高純度酸化マグネシウムの触媒と同等以上の異性化−再生繰り返し耐久性を有する触媒の開発をターゲットとして検討を行った。
(4)まず一般グレードの酸化マグネシウムを用いて高い転化率を達成する指針を得るために、一般グレードの酸化マグネシウム上に、高純度の酸化マグネシウムを担持させて硫黄成分の露出を小さくしたところ、転化率が向上するとともに、劣化速度も低減した。このことから、酸化マグネシウム中の不純物、その中でも硫黄が活性を低下させているという、特許文献3の結果を支持する結果が得られた。
(5)上記硫黄成分は、酸化マグネシウム中で主として酸性であるSOとして存在することから、その酸性を中和すれば触媒毒としての作用が低減するのではないかと予想した。それを裏付けるために、一般グレードの酸化マグネシウム表面にアルカリ金属を担持してその効果を検討したところ、著しい転化効率の向上が認められた。
(6)更に上記(5)の使用済アルカリ担持触媒の再生処理を行ったところ、2回目の使用時にその劣化速度は殆ど増加せず、更に3回目の使用では逆に劣化速度が小さくなり、耐久性が良化する結果が得られた。
(7)同じようなテストを高純度酸化マグネシウム触媒で行い、一般グレード品との比較を行った。一般グレード品の1回目反応の劣化効率は、高純度酸化マグネシウムに比べ僅かに劣るものの、2回、3回の再生・繰り返し使用では、高純度酸化マグネシウムよりも劣化速度が小さくなる(耐久性が高い)という驚くべき結果を得た。
(8)上記現象のメカニズムを知るために、酸素ガスの昇温脱離−質量分析法で解析したところ、一般グレード酸化マグネシウムにアルカリ金属を担持することにより、酸素吸着量が増加し、それと共に劣化速度が急減する結果を得ることが出来た。このことから、アルカリ金属担持により酸素ガス吸着が増加し、異性化反応時のコーキングを防止することが示唆された。
(9)また、異性化反応終了後の触媒の外観を観察したところ、硫黄含有量の大きな本発明の触媒は、高純度酸化マグネシアの触媒に比べ破壊強度が高いことが見出された。一般グレード品のこの高い破壊強度が、異性化反応時の400℃前後の高温ストレスに対して強い抵抗力となって、触媒の耐久性を向上させる一つの理由となっていると理解された。
(10)上記(8)と(9)の解析結果から、再生後の触媒の劣化速度は、吸着酸素によるコーキング抑制と触媒の破壊強度の向上の両方の寄与が推測された。
(11)以上から、高濃度硫黄を含有する酸化マグネシウムにアルカリ金属を特定量担持することにより、高純度酸化マグネシウムと同等以上の活性、耐久性を有する触媒が得られ、本発明に到達した。
In view of the above situation, the inventors of the present invention have earnestly studied to solve the drawbacks of the prior art, and have obtained the following knowledge as a guideline for solving the problems of the present invention.
(1) First, the contents of Patent Documents 3 and 4 which are prior arts were analyzed. Since sulfur in the magnesium oxide catalyst acts as a catalyst poison, it is necessary to use high-purity magnesium oxide having a sulfur content of 74 ppm in order to obtain a catalyst with a low deterioration rate (Patent Document 3).
(2) On the other hand, when general-grade magnesium oxide having a sulfur content of 2300 ppm or more in the catalyst is used, the deterioration rate is improved by controlling the oxygen concentration in the regenerating nitrogen gas to 1 ppm or less. However, it is still 0.108%/hour (Patent Document 4, Table 2), which is much larger than 0.027%/hour (Patent Document 3, Table 3) in the case of high-purity magnesium oxide, which is large in practical use. It becomes an obstacle.
(3) The inventors of the present invention have developed a catalyst having isomerization-regeneration repetition durability equal to or higher than that of a high-purity magnesium oxide catalyst while using low-grade general-grade magnesium oxide having a high sulfur content as a raw material. We examined it as a target.
(4) First, in order to obtain a guideline for achieving a high conversion rate using general-grade magnesium oxide, high-purity magnesium oxide was supported on general-grade magnesium oxide to reduce the exposure of sulfur components. The conversion rate was improved and the deterioration rate was also reduced. From this, the result which supports the result of patent document 3 that the impurity in magnesium oxide, especially sulfur among them had reduced activity was obtained.
(5) Since the above-mentioned sulfur component exists mainly as SO 3 which is acidic in magnesium oxide, it was expected that neutralizing the acidic would reduce the action as a catalyst poison. In order to support it, the alkali metal was supported on the surface of a general grade magnesium oxide and the effect was examined, and it was confirmed that the conversion efficiency was remarkably improved.
(6) Further, when the used alkali-supported catalyst was regenerated in (5) above, its deterioration rate hardly increased during the second use, and conversely, the deterioration rate decreased during the third use, The result was that the durability was improved.
(7) A similar test was conducted with a high-purity magnesium oxide catalyst, and comparison with a general grade product was performed. The deterioration efficiency of the first reaction of general grade products is slightly inferior to that of high-purity magnesium oxide, but the deterioration rate is lower than that of high-purity magnesium oxide when used twice or three times. High).
(8) In order to know the mechanism of the above phenomenon, when analyzed by thermal desorption-mass spectrometry of oxygen gas, by loading an alkali metal on general-grade magnesium oxide, the amount of oxygen adsorbed increases, and with it It was possible to obtain the result that the deterioration rate decreased sharply. From this, it was suggested that the oxygen gas adsorption was increased by supporting the alkali metal to prevent the coking during the isomerization reaction.
(9) Further, when the appearance of the catalyst after the completion of the isomerization reaction was observed, it was found that the catalyst of the present invention having a large sulfur content had a higher breaking strength than the catalyst of high-purity magnesia oxide. It was understood that this high breaking strength of the general grade product becomes a strong resistance to high temperature stress of about 400° C. during the isomerization reaction, which is one of the reasons for improving the durability of the catalyst.
(10) From the analysis results of the above (8) and (9), it is assumed that the deterioration rate of the catalyst after regeneration contributes to both suppression of coking due to adsorbed oxygen and improvement of fracture strength of the catalyst.
(11) From the above, a catalyst having an activity and durability equal to or higher than that of high-purity magnesium oxide was obtained by carrying a specific amount of an alkali metal on magnesium oxide containing high-concentration sulfur, and the present invention was reached.

すなわち本発明は、以下に関する:
1.酸化マグネシウム純度が56重量%以上かつ99重量%未満である酸化マグネシウム担体上に、少なくとも1種のアルカリ金属が担持されたオレフィン異性化触媒。
2.酸化マグネシウム担体が、硫黄原子重量換算で500ppm以上の硫黄化合物を含有する、上記1に記載のオレフィン異性化触媒。
3.酸化マグネシウム担体が、硫黄原子重量換算で2000ppm以上の硫黄化合物を含有する、上記1に記載のオレフィン異性化触媒。
4.酸化マグネシウム担体が、硫黄原子重量換算で4000ppm以上の硫黄化合物を含有する、上記1に記載のオレフィン異性化触媒。
5.前記の少なくとも1種のアルカリ金属がカリウムおよびナトリウムからなる群から選択される、上記1〜4のいずれか1つに記載のオレフィン異性化触媒。
6.酸化マグネシウム担体100重量部に対して金属換算で0.2〜5重量部の少なくとも1種のアルカリ金属が担体表面上に担持された上記1〜5のいずれか1つに記載のオレフィン異性化触媒。
7.酸化マグネシウム担体100重量部に対して金属換算で0.5〜3重量部の少なくとも1種のアルカリ金属が担体表面上に担持された上記1〜5のいずれか1つに記載のオレフィン異性化触媒。
8.酸化マグネシウム担体100重量部に対して金属換算で0.7〜2.5重量部の少なくとも1種のアルカリ金属が担体表面上に担持された上記1〜5のいずれか1つに記載のオレフィン異性化触媒。
9.TPD−MASS測定法による酸素吸着量が、0.5〜20μmol/g、より好ましくは0.6〜15μmol/g、更に好ましくは0.7〜10μmol/g、特に好ましくは0.8〜4μmol/gである、上記1〜8のいずれか1つに記載のオレフィン異性化触媒。
10.ペレット状、粒状、円柱状、円筒状、もしくは柱状の成型体である、上記1〜9のいずれか1つに記載のオレフィン異性化触媒。
11.オレフィン異性化が、1−ブテンから2−ブテンへの異性化反応である、上記1〜10のいずれか1つに記載のオレフィン異性化触媒。
12.少なくとも25Nの破壊強度を有する、上記1〜11のいずれか1つに記載のオレフィン異性化触媒。
13.a)酸化マグネシウム純度が56重量%以上かつ99重量%未満である酸化マグネシウムを成型して担体を得る工程、
b)工程a)により得られた担体に少なくとも1種のアルカリ金属を噴霧塗布する工程、および
c)工程b)により得られたアルカリ金属が担持された担体を焼成する工程、
を含む、上記1〜12のいずれか1つに記載のオレフィン異性化触媒の製造方法。
14.前記酸化マグネシウムが、海水を原料として電解法により製造された酸化マグネシウムである、上記13に記載のオレフィン異性化触媒の製造方法。
15.1−ブテンを上記1〜12のいずれか1つに記載のオレフィン異性化触媒と接触させることを含む、2−ブテンの製造方法。
16.上記1〜12のいずれか1つに記載の触媒を1−ブテンから2−ブテンへの異性化反応に使用後、その使用された触媒を再生し、再度1−ブテンから2−ブテンへの異性化反応に使用する、上記15に記載の2−ブテンの製造方法。
17.異性化反応と再生処理を交互に2回以上行う、上記16に記載の2−ブテンの製造方法。
18.触媒の再生が、体積換算で10ppm以上、好ましくは1,000ppm以上、より好ましくは10,000ppm以上の酸素を含有する窒素ガス中で触媒を、200℃以上、より好ましくは350℃以上に加熱することを含む、上記16または17に記載の2−ブテンの製造方法。
19.i)上記1〜12のいずれか1つに記載の触媒を充填した反応槽に、1−ブテンを通過させて2−ブテンを得る工程、および
ii)得られた2−ブテンを、エチレンガスと一緒に後段のオレフィンメタセシス触媒を通過させてプロピレンを得る工程、
を含む、プロピレンを製造する方法。
That is, the present invention relates to the following:
1. An olefin isomerization catalyst in which at least one alkali metal is supported on a magnesium oxide carrier having a magnesium oxide purity of 56% by weight or more and less than 99% by weight.
2. The olefin isomerization catalyst according to 1 above, wherein the magnesium oxide carrier contains 500 ppm or more of a sulfur compound in terms of sulfur atom weight.
3. The olefin isomerization catalyst according to 1 above, wherein the magnesium oxide carrier contains 2000 ppm or more of a sulfur compound in terms of sulfur atom weight.
4. The olefin isomerization catalyst according to 1 above, wherein the magnesium oxide carrier contains 4000 ppm or more of a sulfur compound in terms of weight of sulfur atom.
5. The olefin isomerization catalyst according to any one of 1 to 4 above, wherein the at least one alkali metal is selected from the group consisting of potassium and sodium.
6. The olefin isomerization catalyst according to any one of 1 to 5 above, wherein 0.2 to 5 parts by weight of metal of at least one alkali metal is supported on the surface of the carrier based on 100 parts by weight of the magnesium oxide support. ..
7. The olefin isomerization catalyst according to any one of 1 to 5 above, wherein 0.5 to 3 parts by weight of metal, based on 100 parts by weight of the magnesium oxide support, is supported on the surface of at least one alkali metal. ..
8. Olefin isomerization according to any one of 1 to 5 above, in which 0.7 to 2.5 parts by weight of at least one alkali metal in terms of metal is supported on the surface of the carrier based on 100 parts by weight of the magnesium oxide support. Chemical catalyst.
9. The amount of oxygen adsorbed by the TPD-MASS measurement method is 0.5 to 20 μmol/g, more preferably 0.6 to 15 μmol/g, further preferably 0.7 to 10 μmol/g, and particularly preferably 0.8 to 4 μmol/g. The olefin isomerization catalyst according to any one of 1 to 8 above, which is g.
10. The olefin isomerization catalyst according to any one of 1 to 9 above, which is a pelletized, granular, cylindrical, cylindrical, or columnar molded body.
11. The olefin isomerization catalyst according to any one of 1 to 10 above, wherein the olefin isomerization is an isomerization reaction from 1-butene to 2-butene.
12. The olefin isomerization catalyst according to any one of 1 to 11 above, which has a breaking strength of at least 25N.
13. a) a step of molding magnesium oxide having a magnesium oxide purity of 56% by weight or more and less than 99% by weight to obtain a carrier,
b) spray-coating the carrier obtained in step a) with at least one alkali metal; and c) calcining the alkali-metal-supported carrier obtained in step b).
13. The method for producing an olefin isomerization catalyst according to any one of 1 to 12 above, which comprises:
14. 14. The method for producing an olefin isomerization catalyst according to the above 13, wherein the magnesium oxide is magnesium oxide produced by electrolysis using seawater as a raw material.
15. A method for producing 2-butene, which comprises contacting 1-butene with the olefin isomerization catalyst according to any one of 1 to 12 above.
16. After using the catalyst according to any one of the above 1 to 12 for the isomerization reaction of 1-butene to 2-butene, the used catalyst is regenerated and the isomerization of 1-butene to 2-butene is performed again. 16. The method for producing 2-butene as described in 15 above, which is used in the oxidization reaction.
17. 17. The method for producing 2-butene according to the above 16, wherein the isomerization reaction and the regeneration treatment are alternately performed twice or more.
18. For the regeneration of the catalyst, the catalyst is heated to 200° C. or higher, more preferably 350° C. or higher in a nitrogen gas containing 10 ppm or more, preferably 1,000 ppm or more, more preferably 10,000 ppm or more of oxygen in terms of volume. The method for producing 2-butene according to the above 16 or 17, which comprises:
19. i) a step of passing 1-butene to obtain 2-butene in a reaction tank filled with the catalyst according to any one of the above 1 to 12, and ii) the obtained 2-butene with ethylene gas A step of passing olefin metathesis catalyst in the latter stage together to obtain propylene,
A method for producing propylene, comprising:

本発明によれば、オレフィン異性化反応、特に1−ブテンから2−ブテンへの異性化反応の転化率が非常に高く、且つ複数回再生してもその劣化速度が非常に小さな高耐久性の触媒を提供できる。更に、硫黄含有量が数千ppm以上の安価な酸化マグネシウムを担体原料として使用することができ、破壊強度の高い触媒を提供できる。安価な原料の使用と複数回以上の繰り返し使用が可能となることにより、従来の酸化マグネシウム触媒に比べ極めて生産性の高い2−ブテン製造が容易となる。その方法により得られた2−ブテンをエチレンと共に後段のメタセシス触媒に接続することにより、高効率にプロピレンを製造することが可能となる。 According to the present invention, the olefin isomerization reaction, in particular, the conversion rate of the isomerization reaction from 1-butene to 2-butene is very high, and even if it is regenerated a plurality of times, its deterioration rate is very small and highly durable. A catalyst can be provided. Further, inexpensive magnesium oxide having a sulfur content of several thousand ppm or more can be used as a carrier raw material, and a catalyst having high breaking strength can be provided. The use of inexpensive raw materials and the ability to be used multiple times or more facilitates the production of 2-butene, which has extremely high productivity as compared with conventional magnesium oxide catalysts. By connecting 2-butene obtained by the method together with ethylene to a metathesis catalyst in the subsequent stage, propylene can be produced with high efficiency.

図1は流通反応装置による触媒活性の評価方法の概要を示す(流通反応装置による触媒活性の評価)。FIG. 1 shows an outline of a method for evaluating catalytic activity by a flow reactor (evaluation of catalytic activity by a flow reactor). 図2は、一般グレードの酸化マグネシウム担体上のアルカリ金属種類、その担持量と異性化転化率の関係を示す(アルカリ金属の種類、担持量と異性化活性の関係)。FIG. 2 shows the type of alkali metal on a general-grade magnesium oxide carrier, the relationship between the amount of the alkali metal supported and the isomerization conversion rate (the type of alkali metal, the relationship between the amount supported and the isomerization activity). 図3aは、酸素吸着量と転化率の関係を示す(図3a:触媒酸素吸着量と転化率の関係)。FIG. 3a shows the relationship between the oxygen adsorption amount and the conversion rate (FIG. 3a: relationship between the catalytic oxygen adsorption amount and the conversion rate). 図3bは酸素吸着量と劣化速度の関係を示す(図3b:触媒酸素吸着量と劣化速度の関係)。FIG. 3b shows the relationship between the oxygen adsorption amount and the deterioration rate (FIG. 3b: Relationship between the catalytic oxygen adsorption amount and the deterioration rate). 異性化反応回数に対する触媒の劣化速度の変化を示す(触媒反応回数に対する触媒の劣化速度の変化)。The change of the catalyst deterioration rate with respect to the number of isomerization reactions is shown (change of the catalyst deterioration rate with respect to the number of catalyst reactions).

即ち本発明は、オレフィン異性化反応に好適に使用できる触媒であって、純度が56重量%以上99重量%未満であり、好ましくはSOのような硫黄化合物を硫黄原子重量換算で500ppm以上、好ましくは1000ppm以上、より好ましくは2000ppm以上、さらに好ましくは2500ppm以上、よりさらに好ましくは3000ppm、特に好ましくは4000ppm以上、例えば4500ppm以上または5000ppm以上含有する酸化マグネシウムを原料とした担体に、アルカリ金属を、好ましくは担体重量100%に対して、金属換算で0.2〜5重量%のアルカリ金属を、担持した触媒である。なお、硫黄化合物含有量の上限は、市販の酸化マグネシウムに一般的に含まれ得る範囲であれば特に限定はされないが、例えば5400ppm以下であることができる。 That is, the present invention is a catalyst that can be suitably used for an olefin isomerization reaction, and has a purity of 56% by weight or more and less than 99% by weight, preferably a sulfur compound such as SO 3 is 500 ppm or more in terms of sulfur atom weight, Preferably 1000 ppm or more, more preferably 2000 ppm or more, further preferably 2500 ppm or more, even more preferably 3000 ppm, particularly preferably 4000 ppm or more, for example, a carrier made from magnesium oxide containing 4500 ppm or more or 5000 ppm or more, alkali metal, Preferably, the catalyst carries 0.2 to 5% by weight of alkali metal in terms of metal with respect to 100% by weight of the carrier. The upper limit of the sulfur compound content is not particularly limited as long as it is a range that can be generally contained in commercially available magnesium oxide, but can be, for example, 5400 ppm or less.

上記の酸化マグネシウムは、その純度が56重量%以上99重量%未満であれば、特に限定はされない。酸化マグネシウムは、一般にドロマイト鉱石の熱還元法、または海水からの電解法により精錬された原料に大別される。本発明ではいずれの方法の酸化マグネシウムも使用できるが、電解法はその原料調達の制限が少ない点でメリットがあり、現在の世界の生産の主流であり、コスト的にもメリットが大きい。反面、電解法により得られる酸化マグネシウムは、硫黄などの不純物濃度が高い。そのために硫黄濃度が例えば500ppm以上、もしくは2000ppm、または4000ppm以上であっても、オレフィン異性化触媒材料として使用できることが、経済性の点で大変好ましい。 The above magnesium oxide is not particularly limited as long as its purity is 56% by weight or more and less than 99% by weight. Magnesium oxide is generally classified into a raw material refined by a thermal reduction method of dolomite ore or an electrolytic method from seawater. Although magnesium oxide of any method can be used in the present invention, the electrolytic method is advantageous in that there are few restrictions on the raw material procurement, is the mainstream of current world production, and has a large cost advantage. On the other hand, magnesium oxide obtained by the electrolysis method has a high concentration of impurities such as sulfur. Therefore, even if the sulfur concentration is, for example, 500 ppm or more, or 2000 ppm, or 4000 ppm or more, it is very preferable from the economical point of view that it can be used as an olefin isomerization catalyst material.

本発明では、好ましくは電解法により得られた酸化マグネシウム、より好ましくは、海水を原料として電解法により製造された酸化マグネシウムが使用される。 In the present invention, magnesium oxide obtained by an electrolysis method is preferably used, and more preferably magnesium oxide produced by an electrolysis method using seawater as a raw material is used.

本発明の触媒担体として使用する酸化マグネシウムとして99重量%以上の高純度品を使用することも可能ではあるが、経済的な観点から、本発明では純度が99重量%未満のものが使用される。また、上記酸化マグネシウムの純度は56重量%以上、好ましくは70重量%以上、より好ましくは80重量%以上、よりさらに好ましくは90重量%以上、特に好ましくは95重量%以上である。好ましくは、上記酸化マグネシウムとしては、95重量%以上99重量%未満の一般グレード品、より好ましくは96重量%〜98重量%のものが使用される。不純物による予期せぬ原因で製品欠陥の原因となることを避けるために、96%以上の酸化マグネシウムを使用することが特に好ましい。酸化マグネシウム中に含まれる不純物元素としては、硫黄S以外にCa、Si、Fe、Al等が挙げられる。 As the magnesium oxide used as the catalyst carrier of the present invention, it is possible to use a high-purity product of 99% by weight or more, but from the economical viewpoint, the one having a purity of less than 99% by weight is used. .. The purity of magnesium oxide is 56% by weight or more, preferably 70% by weight or more, more preferably 80% by weight or more, even more preferably 90% by weight or more, and particularly preferably 95% by weight or more. Preferably, as the magnesium oxide, a general grade product of 95% by weight or more and less than 99% by weight, more preferably 96% by weight to 98% by weight is used. It is particularly preferred to use 96% or more of magnesium oxide in order to avoid unforeseen causes of product defects due to impurities. In addition to sulfur S, Ca, Si, Fe, Al, etc. are mentioned as an impurity element contained in magnesium oxide.

酸化マグネシウムの一般グレード品としては種々のメーカーにより販売されている製品が本発明において使用可能である。例えばタテホ化学工業(株)製品名 TATEHOMAG、協和化学工業(株)製品名 KYOWAMAG、神島化学工業(株)製品名 スターマグなど、一般グレード品として販売されている製品の中から適宜選択して使用できる。それらの製品中の成分とそれらの組成比は、原料、製造工程における精製などの条件により異なるが、硫黄成分が硫黄原子換算で300ppm以下の場合には高純度品とよばれることが多く、高価格となる。残留硫黄含有量が多くなるにつれ一般に価格が低下し、標準グレード品には2000ppm以上の硫黄が含まれる場合が多い。本発明の酸化マグネシウム原料としては、その価格及び再生後の劣化速度を小さくする上で、例えば、硫黄含有量が硫黄原子重量換算で500ppm以上、好ましくは1000ppm以上、より好ましくは2000ppm以上、さらに好ましくは2500ppm以上、よりさらに好ましくは3000ppm、特に好ましくは4000ppm以上、例えば4500ppm以上または5000ppm以上の硫黄を含有する一般グレードの中から選択して使用することができる。 As general grade products of magnesium oxide, products sold by various manufacturers can be used in the present invention. For example, Tateho Chemical Industry Co., Ltd. product name TATEHOMAG, Kyowa Chemical Industry Co., Ltd. product name KYOWAMAG, Kamijima Chemical Industry Co., Ltd. product name Star Mag, etc. can be appropriately selected and used from products sold as general grade products. .. The components in these products and their composition ratios differ depending on the raw materials and conditions such as purification in the manufacturing process, but when the sulfur component is 300 ppm or less in terms of sulfur atom, it is often called a high-purity product. It will be the price. Generally, the price decreases as the residual sulfur content increases, and standard grade products often contain 2000 ppm or more of sulfur. The magnesium oxide raw material of the present invention has a sulfur content of, for example, 500 ppm or more, preferably 1000 ppm or more, more preferably 2000 ppm or more, and further preferably, in terms of sulfur atom weight, in order to reduce the price and the deterioration rate after regeneration. Can be used by selecting from general grades containing sulfur of 2500 ppm or more, more preferably 3000 ppm, particularly preferably 4000 ppm or more, for example 4500 ppm or more or 5000 ppm or more.

硫黄含有量は、例えば蛍光X線分析法、燃焼法により測定することができる。好ましくは、蛍光X線分析法により測定される。 The sulfur content can be measured, for example, by a fluorescent X-ray analysis method or a combustion method. Preferably, it is measured by a fluorescent X-ray analysis method.

一般グレード用酸化マグネシウムは、通常粉末として供給される。上記酸化マグネシウムは、反応器中での原料オレフィン流体と触媒の接触頻度を高めると共に、圧損を小さくするために、柱状、円盤状、円筒状など種々の形態に成型されることが好ましい。一般的には直径が1〜6mm、長さ(高さ)が2〜20mm程度の円柱状ペレットが好適に用いられる。しかしながらこれに限定されるわけではなく、種々の異形状のペレット、錠剤形状、顆粒状(粒状)及び破砕粒状として使用することもでき、場合によっては噴霧乾燥製造による微粒子状とした触媒とすることもできる。なお、本発明において、上記酸化マグネシウムは、オレフィン異性化触媒としての活性を有し得るが、典型的には上記のように成型されることにより、他の物質(例えばアルカリ金属)を担持する役割も担うことができる。従って、本明細書では上記酸化マグネシウム(好ましくは成形された上記酸化マグネシウム)を「酸化マグネシウム担体」とも呼ぶ。この語句は、本発明における酸化マグネシウム担体がそれ自身では触媒活性を有し得ないことを意味するものではない。 General grade magnesium oxide is usually supplied as a powder. The magnesium oxide is preferably molded into various shapes such as a columnar shape, a disk shape, and a cylindrical shape in order to increase the frequency of contact between the raw material olefin fluid and the catalyst in the reactor and reduce the pressure loss. Generally, a cylindrical pellet having a diameter of 1 to 6 mm and a length (height) of about 2 to 20 mm is preferably used. However, the present invention is not limited to this, and it can be used as various irregularly shaped pellets, tablet shapes, granules (granular) and crushed granules, and in some cases, it can be used as a fine particle catalyst by spray drying production. You can also In the present invention, the magnesium oxide may have an activity as an olefin isomerization catalyst, but typically, it is formed as described above to support another substance (for example, an alkali metal). Can also be responsible. Therefore, in the present specification, the magnesium oxide (preferably the shaped magnesium oxide) is also referred to as “magnesium oxide carrier”. This phrase does not mean that the magnesium oxide support according to the invention may not have catalytic activity by itself.

本発明の酸化マグネシウム担体は、水などの分散媒を添加、混合、混練し、次いで成型を行った後、焼成する方法により製造することができる。分散媒を粉末に添加する際には、混合物が不均一とならないように分割投入することが望ましい。分散媒は成型、焼成工程で一定の形状を維持するための凝集力を付与するために使用することができる。分散媒としては水が好適に使用され、必要によってはアルコール等の有機溶剤、その他の添加剤を使用することもできる。 The magnesium oxide carrier of the present invention can be manufactured by a method in which a dispersion medium such as water is added, mixed and kneaded, molded, and then baked. When the dispersion medium is added to the powder, it is desirable that the mixture be dividedly added so that the mixture does not become non-uniform. The dispersion medium can be used to impart a cohesive force for maintaining a constant shape in the molding and firing steps. Water is preferably used as the dispersion medium, and if necessary, an organic solvent such as alcohol and other additives may be used.

分散媒と混練りされた原料は、次いで成型することができる。成型は、例えば打錠機、ディスクペレッターまたはプランジャー押出機を用いて行うことができる。成型体は次いで焼成することができる。焼成は、例えば、500〜1000℃の温度、好ましくは600〜900℃の温度、より好ましくは700〜800℃の温度で、行うことができる。焼成時間は、例えば30分〜10時間、好ましくは1〜5時間、より好ましくは2〜4時間である。 The raw material kneaded with the dispersion medium can then be molded. Molding can be carried out using, for example, a tableting machine, a disk pelleter or a plunger extruder. The shaped body can then be fired. The calcination can be performed, for example, at a temperature of 500 to 1000°C, preferably 600 to 900°C, more preferably 700 to 800°C. The firing time is, for example, 30 minutes to 10 hours, preferably 1 to 5 hours, more preferably 2 to 4 hours.

成型された酸化マグネシウム上には、少なくとも1種のアルカリ金属が担持される。担持されるアルカリ金属の種類は特に限定されないが、その中でもナトリウムおよび/またはカリウムが特に好ましい。酸化マグネシウム担体上に担持されるアルカリ金属の量は、酸化マグネシウム担体重量100重量部に対して、アルカリ金属換算で0.2〜5重量部が好ましく、より好ましくは0.5〜3重量部であり、更に好ましくは0.7〜2.5重量部であり、特に好ましくは0.9〜2重量部である。本発明では、アルカリ金属の量がこれらの範囲内にある場合に、顕著に高い異性化転化率を達成できることが見出された。 At least one kind of alkali metal is supported on the formed magnesium oxide. The type of the alkali metal to be carried is not particularly limited, but sodium and/or potassium are particularly preferred. The amount of the alkali metal supported on the magnesium oxide carrier is preferably 0.2 to 5 parts by weight, and more preferably 0.5 to 3 parts by weight in terms of alkali metal, based on 100 parts by weight of the magnesium oxide carrier. %, more preferably 0.7 to 2.5 parts by weight, and particularly preferably 0.9 to 2 parts by weight. In the present invention, it has been found that a significantly higher isomerization conversion can be achieved when the amount of alkali metal is within these ranges.

上記アルカリ金属、例えばナトリウム、カリウムの量は、当業者に公知の方法、例えば原子吸光光度法(AAS法)や蛍光エックス線分析(XRF分析)により、測定することができる。原子吸光光度法(AAS法)を用いる場合には、例えば、所定量の調製した触媒を酸に溶解させ、不溶分を濾別後、所定量の水を加え希釈した溶液をAASにてアルカリ金属分を分析できる(例えば、測定に使用するサンプル量は1g、希釈倍率は5000倍とすることができる)。XRF法の場合には、例えば、所定量の触媒を粉砕、ディスクに成型した後、半定量分析を行うことができる(例えば、サンプル量は4g、ディスクの大きさは3cm)。定量性が高いため、原子吸光光度法(AAS法)が好ましい。 The amount of the alkali metal, such as sodium or potassium, can be measured by a method known to those skilled in the art, for example, an atomic absorption photometry (AAS method) or a fluorescent X-ray analysis (XRF analysis). When the atomic absorption spectrophotometry (AAS method) is used, for example, a predetermined amount of the prepared catalyst is dissolved in an acid, the insoluble matter is filtered off, and then a predetermined amount of water is added to dilute the solution with an alkali metal. Minutes can be analyzed (for example, the amount of sample used for measurement can be 1 g, and the dilution factor can be 5000 times). In the case of the XRF method, for example, a predetermined amount of catalyst is crushed and molded into a disk, and then semi-quantitative analysis can be performed (for example, the sample amount is 4 g, and the disk size is 3 cm). The atomic absorption spectrophotometric method (AAS method) is preferable because of its high quantitativeness.

なお、商業的に入手可能な酸化マグネシウム、特に一般グレードの酸化マグネシウムには、ナトリウム等のアルカリ金属が既に数百ppmレベルで含まれている場合があるが、本発明における上記のアルカリ金属量は、そのような潜在的な不純物とは独立して、酸化マグネシウム担体に添加したアルカリ金属の量(添加量)を特定することを意図するものである。 Although commercially available magnesium oxide, particularly general grade magnesium oxide, may already contain alkali metals such as sodium at a level of several hundred ppm, the amount of the alkali metal in the present invention is It is intended to specify the amount (addition amount) of the alkali metal added to the magnesium oxide carrier, independently of such potential impurities.

例えば、本発明の触媒の製造は、ペレット、円柱、円筒その他の形状に成型された酸化マグネシウム担体を、アルカリ金属化合物含有の水溶液により処理、乾燥および/または焼成することにより行われる。アルカリ金属化合物としては、アルカリ金属のギ酸塩、酢酸塩、炭酸塩、硝酸塩、塩酸塩、硫酸塩などの金属塩、アルカリ金属の塩化物等のハロゲン化合物、アルカリ金属の水酸化物などが使用できる。水溶液の処理方法としては、アルカリ金属化合物水溶液に酸化マグネシウム担体を所定時間浸漬した後、取り出し、次いで乾燥および/または焼成させる浸漬法、スプレー装置などを使用して、所定量を均一に噴霧、乾燥/焼成するスプレー法など、公知の方法を好適に使用できる。本発明の1つの好ましい実施態様では、アルカリ金属化合物水溶液を酸化マグネシウム担体上にスプレー法により噴霧塗布し、その後乾燥および/または焼成を行う。 For example, the production of the catalyst of the present invention is carried out by treating, drying and/or calcining a magnesium oxide support molded into pellets, cylinders, cylinders or other shapes with an aqueous solution containing an alkali metal compound. As the alkali metal compound, there can be used alkali metal formate, acetate, carbonate, nitrate, hydrochloride, sulfate and other metal salts, alkali metal chlorides and other halogen compounds, alkali metal hydroxides and the like. .. As a method of treating the aqueous solution, a magnesium oxide carrier is dipped in an aqueous solution of an alkali metal compound for a predetermined time, then taken out, and then dried and/or baked. /A known method such as a spraying method of firing can be preferably used. In one preferred embodiment of the present invention, an aqueous solution of an alkali metal compound is spray-coated on a magnesium oxide carrier by a spray method, followed by drying and/or baking.

アルカリ金属塩水溶液で処理された酸化マグネシウムは、空気中、もしくは真空中、あるいは不活性ガス中で焼成することができるが、空気雰囲気のオーブン中で加熱、焼成する方法が簡便で好ましい。焼成は、例えば、250〜700℃の温度、好ましくは300〜600℃の温度、より好ましくは400〜500℃の温度、特に好ましくは420〜480℃の温度で、行うことができる。また焼成時間は、温度にもよるが2分程度あれば使用可能であるが、好ましくは10分以上、より好ましくは30分以上、3時間以下である。このようにして得られた触媒は、例えばペレット状、粒状、円柱状、円筒状または柱状の形態を有することができる。 Magnesium oxide treated with an aqueous solution of an alkali metal salt can be calcined in air, in vacuum, or in an inert gas, but a method of heating and calcining in an oven in an air atmosphere is simple and preferable. The calcination can be carried out, for example, at a temperature of 250 to 700° C., preferably 300 to 600° C., more preferably 400 to 500° C., and particularly preferably 420 to 480° C. The firing time can be used if it is about 2 minutes depending on the temperature, but it is preferably 10 minutes or longer, more preferably 30 minutes or longer and 3 hours or shorter. The catalyst thus obtained can have, for example, pellet, granular, columnar, cylindrical or columnar morphology.

上記の方法により作成された触媒は、次いで反応前処理に付してもよい。前処理は、触媒を加熱することにより、表面の水やその他の成分を除去し、反応活性を向上させる目的で行われる。オレフィン異性化反応の直前に行うことが特に好ましいが、触媒製造後、異性化反応の前の任意の時点でおこなうことも可能である。本発明の目的のためには、酸素濃度の低い不活性ガス、例えば0.1〜30ppm、好ましくは0.2〜20ppm、例えば0.3ppm〜10ppmの酸素濃度の窒素ガスを、450〜700℃、好ましくは480〜600℃、より好ましくは500〜570℃の温度条件で、30分〜15時間、好ましくは1〜8時間、より好ましくは2〜6時間加熱することができる。または、出口ガスの露点が−50℃以下、好ましくは−80℃になるまで加熱処理することが望ましい。加熱する際の装置は、固定床、流動床など通常の装置を使用でき、特に異性化反応に使用する装置を使用して行うことが好ましい。 The catalyst prepared by the above method may then be subjected to a reaction pretreatment. The pretreatment is performed for the purpose of removing water and other components on the surface by heating the catalyst to improve the reaction activity. It is particularly preferable to carry out immediately before the olefin isomerization reaction, but it can also be carried out at any time after the catalyst production and before the isomerization reaction. For the purposes of the present invention, an inert gas having a low oxygen concentration, for example, a nitrogen gas having an oxygen concentration of 0.1 to 30 ppm, preferably 0.2 to 20 ppm, such as 0.3 ppm to 10 ppm, is used at 450 to 700°C. The heating can be performed at a temperature of preferably 480 to 600° C., more preferably 500 to 570° C. for 30 minutes to 15 hours, preferably 1 to 8 hours, more preferably 2 to 6 hours. Alternatively, it is desirable to perform heat treatment until the dew point of the outlet gas reaches −50° C. or lower, preferably −80° C. As an apparatus for heating, an ordinary apparatus such as a fixed bed or a fluidized bed can be used, and it is particularly preferable to use an apparatus used for an isomerization reaction.

本発明では上述のように製造した触媒、すなわち、56重量%以上99重量%未満の純度を有する酸化マグネシウム担体と少なくとも1種のアルカリ金属とを含む触媒(例えば、上記酸化マグネシウム担体と上記アルカリ金属から実質的になる触媒)を、オレフィンの異性化反応に使用することができる。上記触媒では、上記の少なくとも1種のアルカリ金属は、上記酸化マグネシウム担体上、好ましくは上記酸化マグネシウム担体表面上に、担持された状態にあることができる。 In the present invention, the catalyst produced as described above, that is, a catalyst containing a magnesium oxide carrier having a purity of 56 wt% or more and less than 99 wt% and at least one alkali metal (for example, the magnesium oxide carrier and the alkali metal). Can be used for the olefin isomerization reaction. In the above catalyst, the at least one alkali metal may be supported on the magnesium oxide carrier, preferably on the surface of the magnesium oxide carrier.

本発明の1つの実施態様において、本発明は、酸化マグネシウム純度が56重量%以上かつ99重量%未満であり、好ましくは硫黄を500ppm以上含有する酸化マグネシウムを原料として担体を成型し、含侵法によりアルカリ金属を担持した後、焼成する工程を含む、上記触媒の製造方法に関する。 In one embodiment of the present invention, the present invention provides a magnesium oxide having a purity of magnesium oxide of 56% by weight or more and less than 99% by weight, preferably a raw material of magnesium oxide containing 500 ppm or more of sulfur, and the impregnation method. The present invention relates to a method for producing the above catalyst, which includes a step of carrying an alkali metal and then calcining.

また、本発明の別の実施態様において、本発明は、
a)酸化マグネシウム純度が56重量%以上かつ99重量%未満であり、好ましくは硫黄原子重量換算で500ppm以上の硫黄化合物を含有する酸化マグネシウムを成型して担体を得る工程、
b)工程a)により得られた担体に少なくとも1種のアルカリ金属を噴霧塗布する工程、および
c)工程b)により得られたアルカリ金属が担持された担体を焼成する工程、
を含む、上記触媒の製造方法に関する。
In another embodiment of the present invention, the present invention is
a) a step of molding magnesium oxide having a magnesium oxide purity of 56% by weight or more and less than 99% by weight, preferably 500 ppm or more in terms of sulfur atom weight, to obtain a carrier,
b) spray-coating the carrier obtained in step a) with at least one alkali metal; and c) calcining the alkali-metal-supported carrier obtained in step b).
And a method for producing the above catalyst.

本発明のさらに別の実施態様において、本発明は、
a)酸化マグネシウム純度が56重量%以上かつ99重量%未満であり、好ましくは硫黄原子重量換算で500ppm以上の硫黄化合物を含有する酸化マグネシウムを成型して担体を得る工程、
b)工程a)により得られた担体に少なくとも1種のアルカリ金属を噴霧塗布する工程、および
c)工程b)により得られたアルカリ金属が担持された担体を焼成する工程、
を含む方法によって得られる、オレフィン異性化触媒に関する。
In yet another embodiment of the present invention, the invention comprises
a) a step of molding magnesium oxide having a magnesium oxide purity of 56% by weight or more and less than 99% by weight, preferably 500 ppm or more in terms of sulfur atom weight, to obtain a carrier,
b) spray-coating the carrier obtained in step a) with at least one alkali metal; and c) calcining the alkali-metal-supported carrier obtained in step b).
And an olefin isomerization catalyst obtained by a method comprising

ここで、上記酸化マグネシウムは、海水を原料として電解法により製造された酸化マグネシウムであることができる。 Here, the magnesium oxide may be magnesium oxide produced by electrolysis using seawater as a raw material.

また、本発明の別の実施態様において、本発明は、好ましくは0.5〜20μmol/g、より好ましくは0.6〜15μmol/g、更に好ましくは0.7〜10μmol/g、特に好ましくは0.8〜4μmol/g、例えば0.8〜3μmol/gの酸素吸着量を有する上記オレフィン異性化触媒に関する。上記酸素吸着量は、実施例欄に記載されるようなTPD−MASS測定法(昇温脱離−質量分析法)により測定することができる。本発明では、酸素吸着量が上記の範囲内にある場合、特に0.8〜4μmol/gである場合に、顕著に高い異性化転化率と劣化速度の最小化を同時に達成できることが見出された。 Further, in another embodiment of the present invention, the present invention is preferably 0.5 to 20 μmol/g, more preferably 0.6 to 15 μmol/g, further preferably 0.7 to 10 μmol/g, and particularly preferably It relates to the above olefin isomerization catalyst having an oxygen adsorption amount of 0.8 to 4 μmol/g, for example 0.8 to 3 μmol/g. The oxygen adsorption amount can be measured by the TPD-MASS measurement method (thermal desorption-mass spectrometry) as described in the Example section. In the present invention, it was found that when the oxygen adsorption amount is within the above range, particularly when it is 0.8 to 4 μmol/g, a remarkably high isomerization conversion rate and minimization of deterioration rate can be simultaneously achieved. It was

本発明のさらなる1つの実施態様において、本発明は、少なくとも25Nの破壊強度、好ましくは30N〜100N、より好ましくは40N〜80N、例えば40N〜60Nの破壊強度を有するオレフィン異性化触媒に関する。破壊強度は、例えば、実施例欄に記載されるような荷重試験により測定することができる。 In a further embodiment of the invention, the invention relates to an olefin isomerization catalyst having a puncture strength of at least 25N, preferably 30N-100N, more preferably 40N-80N, such as 40N-60N. The breaking strength can be measured, for example, by a load test as described in Examples.

上述のように製造された触媒、好ましくは活性化前処理を施された上記触媒は、次にオレフィンの異性化反応に使用することができる。本発明の触媒を用いた異性化反応に付されるオレフィンとしては、例えばプロペン、ブテン、ペテン等の気体状の低級炭化水素ガス、例えば気体状の低級オレフィンガスが好ましく、特に1−ブテンがその用途の広さから好ましい。従って、本発明の1つの好ましい実施態様において、上記オレフィン異性化反応は、1−ブテンから2−ブテンへの異性化反応である。オレフィン異性化反応のための反応装置としては特にその種類などは限定されないが、その中で固定床反応装置、流動床反応装置が好ましく、特に固定床反応装置が好ましい。 The catalyst prepared as described above, preferably the catalyst subjected to activation pretreatment, can then be used in the olefin isomerization reaction. As the olefin to be subjected to the isomerization reaction using the catalyst of the present invention, for example, gaseous lower hydrocarbon gas such as propene, butene, and petene, for example, gaseous lower olefin gas is preferable, and 1-butene is particularly preferable. It is preferable because of its versatility. Therefore, in one preferred embodiment of the present invention, the olefin isomerization reaction is a 1-butene to 2-butene isomerization reaction. The type of reactor for the olefin isomerization reaction is not particularly limited, but among them, fixed bed reactors and fluidized bed reactors are preferable, and fixed bed reactors are particularly preferable.

反応装置に充填され、必要な前処理がなされた触媒に原料ガスが供給されることにより、反応を開始させることができる。ここでは固定床反応装置を用いた1−ブテンの異性化反応を例に以下説明する。装置に充填された触媒に対して、1−ブテンガスを1〜50WHSV(触媒量に対する反応ガスの空間速度)、好ましくは3〜30WHSV、より好ましくは5〜20WHSVの速度で接触させ、反応させることができる。反応温度は、好ましくは200〜400℃、より好ましくは220〜350℃、特に好ましくは250〜320℃の温度である。この時のガス中の酸素濃度は好ましくは30ppm以下、より好ましくは20ppm以下、特に好ましくは15ppm以下である。 The reaction can be started by supplying the raw material gas to the catalyst that has been charged into the reactor and subjected to the necessary pretreatment. Here, the isomerization reaction of 1-butene using a fixed bed reactor will be described below as an example. 1-butene gas is contacted with the catalyst charged in the apparatus at a rate of 1 to 50 WHSV (space velocity of the reaction gas with respect to the amount of the catalyst), preferably 3 to 30 WHSV, more preferably 5 to 20 WHSV, and reacted. it can. The reaction temperature is preferably 200 to 400°C, more preferably 220 to 350°C, and particularly preferably 250 to 320°C. The oxygen concentration in the gas at this time is preferably 30 ppm or less, more preferably 20 ppm or less, and particularly preferably 15 ppm or less.

反応装置の出口側に、分析装置(例えばガスクロマトグラフ装置)を設けることにより、反応後の成分を連続的にモニターすることができる。通常は、1−ブテンのコンバージョンの低下、2−ブテンの生成量の低下が所定値を越えたところで、原料ガスの供給を止め、反応を停止する。必要な場合には、触媒の再活性化(再生)処理が行われ、活性の回復が確認できた場合には、異性化反応を再開してもよい。この触媒の再生処理は、例えば、体積換算で10ppm以上、好ましくは1000ppm以上、より好ましくは10000ppm以上の酸素を含有する高温の不活性ガス(窒素ガス)を、劣化した触媒に接触させることにより、表面析出した炭素などを酸化、除去することにより行われる。なお、酸素含有量の上限は、例えば10%以下、好ましくは6%以下であることができる。加熱温度としては、例えば350〜550℃、好ましくは400〜500℃、より好ましくは430〜470℃で行われる。処理時間としては、例えば、10分〜7時間、好ましくは20分〜5時間、より好ましくは30分〜4時間である。本発明では、上記のような酸素濃度を有する不活性ガスを用いて再生処理を行った場合であっても、本発明の触媒の十分な再生が達成され、劣化速度も小さく維持されることが見出された。 By providing an analyzer (for example, a gas chromatograph) on the outlet side of the reactor, the components after the reaction can be continuously monitored. Usually, when the decrease in the conversion of 1-butene and the decrease in the amount of 2-butene produced exceed a predetermined value, the supply of the raw material gas is stopped and the reaction is stopped. The catalyst may be reactivated (regenerated) if necessary, and the isomerization reaction may be restarted when the recovery of the activity is confirmed. The regeneration treatment of this catalyst is carried out, for example, by bringing a high temperature inert gas (nitrogen gas) containing oxygen of 10 ppm or more, preferably 1000 ppm or more, more preferably 10000 ppm or more in terms of volume into contact with the deteriorated catalyst, It is performed by oxidizing and removing carbon and the like deposited on the surface. The upper limit of the oxygen content can be, for example, 10% or less, preferably 6% or less. The heating temperature is, for example, 350 to 550°C, preferably 400 to 500°C, more preferably 430 to 470°C. The treatment time is, for example, 10 minutes to 7 hours, preferably 20 minutes to 5 hours, and more preferably 30 minutes to 4 hours. In the present invention, it is possible to achieve sufficient regeneration of the catalyst of the present invention and maintain a low degradation rate even when the regeneration treatment is performed using an inert gas having the above oxygen concentration. Was found.

再生処理を行った場合には、再生処理が行われた本触媒に再度、原料ガスである1−ブテンを、再生前の条件もしくはそれに近い反応条件で通し、異性化反応を開始することができる。例えば、その再スタート時点での転化率を測定し、所定の範囲にあることが確認できれば反応を継続し、逆に、再スタート時の転化率が所定の範囲より小さい場合には、再生処理を繰り返し、所定の活性値確認できたら異性化反応を再開する。このような再生処理は、2回または3回以上繰り返すことができ、従って、上記異性化反応と上記再生処理を交互に2回または3回以上(例えば2〜5回)繰り返すことも可能である。再生処理を行っても、その活性の回復が小さい場合には、反応を停止して触媒の交換を行うことが望ましい。 When the regeneration treatment is carried out, the isomerization reaction can be started by passing 1-butene, which is a raw material gas, through the regeneration-treated catalyst again under the conditions before the regeneration or the reaction conditions close thereto. .. For example, if the conversion rate at the time of restart is measured and it is confirmed that it is within the predetermined range, the reaction is continued, and conversely, if the conversion rate at the time of restart is smaller than the predetermined range, the regeneration process is performed. Repeatedly, when the predetermined activity value is confirmed, the isomerization reaction is restarted. Such regeneration treatment can be repeated 2 times or 3 times or more, and therefore, the isomerization reaction and the regeneration treatment can be alternately repeated 2 times or 3 times or more (for example, 2 to 5 times). .. If the recovery of the activity is small even after the regeneration treatment, it is desirable to stop the reaction and replace the catalyst.

本発明の触媒は、反応の転化率が高い上に、再生処理後の劣化速度が小さく耐久性に優れるため、触媒交換頻度が低く、高い生産性を実現している。 Since the catalyst of the present invention has a high reaction conversion rate, a small deterioration rate after regeneration treatment, and excellent durability, the catalyst replacement frequency is low and high productivity is realized.

本発明の1つの実施態様において、本発明は、1−ブテンを上記オレフィン異性化触媒と接触させることを含む、2−ブテンの製造方法に関する。本発明のさらなる実施態様において、本発明は、1−ブテンを上記触媒と1〜50WHSVの速度でおよび/または200〜400℃の温度で接触させる、上記の2−ブテンの製造方法に関する。 In one embodiment of the present invention, the present invention relates to a method for producing 2-butene, which comprises contacting 1-butene with the above olefin isomerization catalyst. In a further embodiment of the invention, the invention relates to the process for the preparation of 2-butene as described above, wherein 1-butene is contacted with the catalyst at a rate of 1-50 WHSV and/or at a temperature of 200-400°C.

本発明のさらなる実施態様において、本発明は、上記オレフィン異性化触媒を1−ブテンから2−ブテンの異性化反応に使用後、その使用された触媒を再生し、再度1−ブテンから2−ブテンへの異性化反応に使用する、2−ブテンの製造方法に関する。ここで、異性化反応と再生処理を交互に2回以上行うことができる。また、触媒の再生は、体積換算で10ppm以上、好ましくは1,000ppm以上、より好ましく10,000ppm以上の酸素を含有する窒素ガス中で触媒を、200℃以上、より好ましくは350℃以上に加熱することを含むことができる。 In a further embodiment of the present invention, the present invention provides that the above olefin isomerization catalyst is used for the isomerization reaction of 1-butene to 2-butene, and then the used catalyst is regenerated, and 1-butene to 2-butene is used again. The present invention relates to a method for producing 2-butene used in an isomerization reaction to Here, the isomerization reaction and the regeneration treatment can be alternately performed twice or more. Further, the catalyst is regenerated by heating the catalyst to 200° C. or higher, more preferably 350° C. or higher in a nitrogen gas containing 10 ppm or more, preferably 1,000 ppm or more, more preferably 10,000 ppm or more of oxygen in terms of volume. Can be included.

また、本発明の別の実施態様において、本発明は、1−ブテンの異性化反応のための、好ましくは1−ブテンから2−ブテンを製造するための、上記触媒に関する。さらに、本発明のさらなる実施態様において、本発明は、1−ブテンの異性化反応のための、好ましくは1−ブテンから2−ブテンを製造するための、上記触媒の使用に関する。当該製造は、上述のとおりに行うことができ、例えば、1−ブテンを上記オレフィン異性化触媒と接触させることを含み、好ましくは、1−ブテンを上記触媒と1〜50WHSVの速度でおよび/または200〜400℃の温度で接触させることを含む。 Also, in another embodiment of the present invention, the present invention relates to the above catalyst for isomerization reaction of 1-butene, preferably for producing 2-butene from 1-butene. Furthermore, in a further embodiment of the present invention, the present invention relates to the use of the above catalyst for the isomerization reaction of 1-butene, preferably for producing 2-butene from 1-butene. The production may be carried out as described above, for example comprising contacting 1-butene with the olefin isomerization catalyst, preferably 1-butene with the catalyst at a rate of 1 to 50 WHSV and/or Contacting at a temperature of 200 to 400° C. is included.

また、本発明のオレフィン異性化触媒は、オレフィンメタセシス触媒と組み合わせることにより、エチレンと本触媒により得られた2−ブテンを原料としてプロピレンを製造する工程で好適に使用することができる。オレフィンメタセシス触媒の前段に本発明の触媒装置を接続し、原料ガスを流すことにより、1−ブテンから連続的にプロピレンを製造することが可能となる。本発明のオレフィン異性化触媒が従来技術に比べ活性が高く、且つ耐久性が高い点は、トータルシステムとして高い生産性を可能としている。再生後の活性が低い場合には、プラント全体を停止して触媒交換する必要があるが、本発明の触媒は後述する実施例で示されるように、高純度酸化マグネシウムを用いた触媒よりも、再生処理後の耐久性が同等、もしくはそれ以上に良好である。それにより安価で長時間連続運転を可能とすることにより、プロピレン製造の経済性向上に大きく貢献することが可能となる。従って、本発明の1つの実施態様において、本発明は、以下の工程を含む、プロピレンを製造する方法に関する:
i)請求項1〜12のいずれか1つに記載の触媒を充填した反応槽に、1−ブテンを通過させて2−ブテンを得る工程、および
ii)得られた2−ブテンを、エチレンガスと一緒に、上記触媒の後段に直接的もしくは間接的に接続されたオレフィンメタセシス触媒を通過させてプロピレンを得る工程。
Further, the olefin isomerization catalyst of the present invention can be suitably used in the step of producing propylene using ethylene and 2-butene obtained by the present catalyst as a raw material by combining with the olefin metathesis catalyst. By connecting the catalyst device of the present invention to the preceding stage of the olefin metathesis catalyst and flowing the raw material gas, it becomes possible to continuously produce propylene from 1-butene. The fact that the olefin isomerization catalyst of the present invention has higher activity and higher durability as compared with the prior art enables high productivity as a total system. When the activity after regeneration is low, it is necessary to stop the entire plant and replace the catalyst, but the catalyst of the present invention is, as shown in Examples described later, a catalyst using high-purity magnesium oxide, Durability after regeneration is equal or better. As a result, it is possible to make continuous operation at a low cost for a long time, thereby making it possible to greatly contribute to the improvement in the economical efficiency of propylene production. Therefore, in one embodiment of the present invention, the present invention relates to a method for producing propylene, comprising the steps of:
i) a step of passing 1-butene to obtain 2-butene in a reaction tank filled with the catalyst according to any one of claims 1 to 12, and ii) the obtained 2-butene with ethylene gas Together with the step of passing olefin metathesis catalyst directly or indirectly connected to the latter stage of the above catalyst to obtain propylene.

以下、実施例により本発明を説明するが、本発明は、これらの実施例等によって何ら限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.

表1に組成が示され、SOを硫黄原子換算で1.3重量%(5200ppm)含有する一般グレード酸化マグネシウム(神島化学工業株式会社、製品名Starmag G−2(一般グレード))を使用して実施例触媒サンプルを作成し、硫黄含有量0.004%のHP−30A(高純度グレード))を使用して比較例2触媒を作成した The composition is shown in Table 1, and general grade magnesium oxide containing 1.3% by weight (5200 ppm) of SO 3 in terms of sulfur atom (Kamijima Chemical Industry Co., Ltd., product name Starmag G-2 (general grade)) is used. Example catalyst sample was prepared by using HP-30A (high purity grade) having a sulfur content of 0.004% to prepare Comparative Example 2 catalyst.

Figure 2020089866
以下の実施例、比較例で使用する転化率、劣化速度の定義と測定方法を以下に示す。また触媒の表面特性評価、破壊強度測定等は、以下の方法によった。
(1)転化率、評価、測定方法
作成した触媒は前処理として、70gの触媒を直径4cmのSUS−316製流通反応器に充填され、550℃窒素気流下で4時間前処理を行い、次いで反応温度300℃まで冷却した。所定の温度に調整されたところで、原料ガス(1−ブテン)を流速170ml/min、300℃温度の条件で触媒に流通させ、出口側のガス成分をガスクロマトグラフィーにより分析することにより、連続的に生成する2−ブテンの量を測定することにより、反応温度(300℃)に到達後の時間tにおける1ブテン(1−C)転化率Ctを(1)式で定義した。
Figure 2020089866
The definitions and measurement methods of the conversion rate and deterioration rate used in the following examples and comparative examples are shown below. The surface characteristics of the catalyst and the breaking strength were measured by the following methods.
(1) Conversion, evaluation, and measurement method As a pretreatment, the prepared catalyst was charged with 70 g of a catalyst in a SUS-316 flow reactor having a diameter of 4 cm, pretreated for 4 hours under a nitrogen stream at 550°C, and then, The reaction temperature was cooled to 300°C. After being adjusted to a predetermined temperature, the raw material gas (1-butene) was allowed to flow through the catalyst under the conditions of a flow rate of 170 ml/min and a temperature of 300° C., and the gas component on the outlet side was analyzed by gas chromatography to continuously obtain By measuring the amount of 2-butene formed in 1, the butene (1-C 4 H 8 ) conversion Ct at time t after reaching the reaction temperature (300° C.) was defined by the equation (1).

Ct=[(N−N)/N]×100(%)・・・・・(1)
;反応前の1−ブテンモル数
;時間tにおける(未反応)1−ブテンモル数

以下では、12時間後の転化率をC12,24時間後の転化率をC24と表記した。
Ct=[(N 0 −N t )/N 0 ]×100(%) (1)
N 0 ; 1-butene mole number before reaction N t ; (unreacted) 1-butene mole number at time t

Below, the conversion rate after 12 hours was described as C 12 , and the conversion rate after 24 hours was described as C 24 .

本実施例で用いられた流通反応装置の原理は図1で示される。原料ガス(1−ブテン)は、常に同じ濃度で触媒充填層の一端から流入し、異性化反応を受けて、他端から流出する。流出したガスは時間を変えながら、一定量ガスクロマトグラフ分析により採取され、1−ブテン濃度が測定され、(1)式から1−ブテン添加率Ctが計算される。流通速度を一定にしているために、触媒に流入した1−ブテンガスのモル数Nは一定であり、それが触媒層を通過する時間τの間にNtモルだけ異性化を受けて(N−N)となる。転化率Ctは、触媒層通過時間τの間にどれだけ異性化を受けたかを示す尺度、即ち触媒活性を示す指標として理解され、その時間変化は、触媒活性の経時変化、もしくは劣化速度を表す指標となる。
(2)触媒劣化速度 Dv
所定温度に達してから任意の時間t1,t2時間における1−ブテン転化率の時間当たりの変化を(2)として触媒の耐久性の指標として用いた。
The principle of the flow reactor used in this example is shown in FIG. The raw material gas (1-butene) always flows in at the same concentration from one end of the catalyst packed bed, undergoes an isomerization reaction, and flows out from the other end. The outflowing gas is collected by a fixed amount gas chromatographic analysis while changing the time, the 1-butene concentration is measured, and the 1-butene addition rate Ct is calculated from the equation (1). Since the flow rate is constant, the number of moles of 1-butene gas N 0 that has flowed into the catalyst is constant, and it is isomerized by Nt moles during the time τ when it passes through the catalyst layer (N 0 −N t ). The conversion rate Ct is understood as a scale showing how much isomerization is performed during the catalyst layer passage time τ, that is, an index showing the catalytic activity, and its time change represents the change over time of the catalyst activity or the deterioration rate. It will be an index.
(2) Catalyst deterioration rate Dv
The change per hour in the 1-butene conversion rate at arbitrary times t1 and t2 after reaching the predetermined temperature was used as an index of the durability of the catalyst as (2).


劣化速度Dv = (Ct1−t2)/(t2−t1) (2)

本実施例では、t=12,t=24の時の転化率を用いて、(3)式の計算による値を、触媒の劣化速度として使用した。

Degradation rate Dv = (C t1- C t2) / (t2-t1) (2)

In this example, the conversion rate at t 1 =12 and t 2 =24 was used, and the value calculated by the equation (3) was used as the catalyst deterioration rate.


劣化速度D=(C12−C24)/12 ・・・・(3)

前述したように流通反応方式による転化率C12,C24はそれぞれ12時間後、24時間後の流通通過時間τ内における転化量であることから、その差C12−C24は、時間τ内での転化量の変化、即ち触媒活性の変化を表す指標となる。即ち(3)式は、12時間から14時間の間の触媒活性の低下、即ち触媒劣化速度を表す指標となる。
(3)触媒再処理後の触媒活性評価
触媒の1回目の異性化反応(Run#1)処理後、触媒を高温で加熱して再生(再活性化)処理を行った。その再生処理後の触媒を用いて、上記(1)と同じ方法で1−ブテンガスを流通させ異性化反応を行わせ、12時間後の転化率C12,24時間後の転化率C24、劣化速度Dvを求めた。
(4)O吸着量
マイクロトラックベル株式会社製昇温脱離装置型式BELCATと質量分析装置を組み合わせて、触媒の酸素吸着能力を調べた。触媒サンプルを550℃、5時間前処理した後、50℃で加熱しながら、0.4体積%の酸素を含有する窒素ガスをパルス状に照射し、それから脱離してくる酸素ガスの量を質量分析法により、m/z=32(m;イオン質量、z:イオン電荷数)のピークを測定し、酸素吸着量を調べた。
(5)触媒の破壊強度の測定
日本計測システム株式会社製、MAX自動荷重試験機で圧壊強度の測定を行った。触媒をピストンで押し込み、触媒が崩壊したときの強度を圧壊強度とした。

Degradation rate D V = (C 12 -C 24 ) / 12 ···· (3)

As described above, since the conversion rates C 12 and C 24 by the flow reaction method are the conversion amounts within the flow passage time τ after 12 hours and 24 hours, respectively, the difference C 12 -C 24 is the difference within the time τ. It is an index representing the change in the conversion amount at 1, that is, the change in the catalyst activity. That is, the expression (3) serves as an index representing a decrease in catalyst activity during 12 to 14 hours, that is, a catalyst deterioration rate.
(3) Evaluation of catalyst activity after catalyst retreatment After the first isomerization reaction (Run #1) of the catalyst, the catalyst was heated at a high temperature for regeneration (reactivation) treatment. Using the catalyst after the regeneration treatment, the (1) and in the same way was circulated 1- Butengasu to perform the isomerization reaction, the conversion rate after 12 hours C 12, after 24 hours the conversion C 24, degradation The speed Dv was calculated.
(4) O 2 adsorption amount The oxygen adsorption capacity of the catalyst was investigated by combining a thermal desorption system model BELCAT manufactured by Microtrac Bell Co., Ltd. and a mass spectrometer. After pretreating the catalyst sample at 550° C. for 5 hours, while heating at 50° C., nitrogen gas containing 0.4 volume% of oxygen was irradiated in a pulsed manner, and the amount of oxygen gas desorbed from the nitrogen gas was measured. The peak of m/z=32 (m; ion mass, z: ionic charge number) was measured by the analysis method to examine the oxygen adsorption amount.
(5) Measurement of Fracture Strength of Catalyst Crush strength was measured with a MAX automatic load tester manufactured by Nippon Keizai System Co., Ltd. The strength of the catalyst when it was collapsed by pushing it in with a piston was defined as the crush strength.

表1の組成で示される一般グレードの酸化マグネシウム原料1kgに水を20ml加えた後、ビニール袋中で攪拌後、菊水打錠機を使用して3.2mmの円筒状に成型した。次いで空気雰囲気中で750℃に加熱し3時間焼成して、直径3.2mm、高さ3.2mmの円柱状の担体を得た。次いで、硝酸カリウムの1.3%水溶液を用意し、ガラス噴霧器を用いてスプレー法によりカリウム金属換算で担体100部に対して0.5重量%となるように、上記担体に噴霧塗布、担持後、450℃で焼成し、触媒サンプルAを作成した。 20 ml of water was added to 1 kg of a general-grade magnesium oxide raw material having the composition shown in Table 1, stirred in a vinyl bag, and then molded into a 3.2 mm cylindrical shape using a Kikusui tableting machine. Then, it was heated to 750° C. in an air atmosphere and calcined for 3 hours to obtain a columnar carrier having a diameter of 3.2 mm and a height of 3.2 mm. Next, a 1.3% aqueous solution of potassium nitrate was prepared and spray-coated on the carrier so as to be 0.5% by weight based on 100 parts of the carrier in terms of potassium metal by a spray method using a glass sprayer. A catalyst sample A was prepared by firing at 450°C.

次いで、触媒の前処理として、70gの触媒を直径4cmのSUS−316反応器に充填し、550℃窒素気流下で4時間前処理を行い。次いで反応温度 300℃まで冷却した。所定の温度に調整されたところで、原料ガス(1−ブテン)を流速170ml/min、300℃温度の条件で触媒に流通させ、出口側のガス成分をガスクロマトグラフィーにより分析し、転化率と劣化速度を計算した。その結果を表2に示す。 Next, as a pretreatment of the catalyst, 70 g of the catalyst was charged into a SUS-316 reactor having a diameter of 4 cm and pretreated for 4 hours under a nitrogen stream at 550°C. Then, the reaction temperature was cooled to 300°C. After being adjusted to a predetermined temperature, the raw material gas (1-butene) was passed through the catalyst under the conditions of a flow rate of 170 ml/min and a temperature of 300° C., and the gas components on the outlet side were analyzed by gas chromatography to show the conversion rate and deterioration. The speed was calculated. The results are shown in Table 2.

担体100部に対してカリウム金属換算で1重量%となるようにカリウムを担持した以外は、実施例1と同様の方法により触媒Bを作成した。この触媒Bを実施例1と同様の方法で前処理し、次いで1−ブテンガスの異性化反応を行い、転化率C24の測定を行った。その結果を表2に示す。 A catalyst B was prepared in the same manner as in Example 1 except that potassium was loaded so that the amount of potassium metal was 1% by weight based on 100 parts of the carrier. This catalyst B was pretreated in the same manner as in Example 1, then 1-butene gas was subjected to an isomerization reaction, and the conversion C 24 was measured. The results are shown in Table 2.

担体100部に対してカリウム金属換算で1.5重量%となるようにカリウムを担持した以外は、実施例1と同様の方法により触媒Cを作成した。この触媒Cを実施例1と同様の方法で前処理し、次いで1−ブテンガスの異性化反応を行い、転化率C24の測定を行った。その結果を表2に示す。 A catalyst C was prepared in the same manner as in Example 1 except that potassium was loaded so that the amount of potassium metal was 1.5% by weight based on 100 parts of the carrier. This catalyst C was pretreated in the same manner as in Example 1, and then an isomerization reaction of 1-butene gas was performed to measure the conversion C 24 . The results are shown in Table 2.

担体100部に対してカリウム金属換算で3重量%となるようにカリウムを担持した以外は、実施例1と同様の方法により触媒Dを作成した。この触媒Dを実施例1と同様の方法で前処理し、次いで1−ブテンガスの異性化反応を行い、転化率の測定を行った。その結果を表2に示す。 A catalyst D was prepared in the same manner as in Example 1 except that potassium was loaded so that the amount of potassium metal was 3% by weight based on 100 parts of the carrier. This catalyst D was pretreated in the same manner as in Example 1, then 1-butene gas was subjected to an isomerization reaction, and the conversion rate was measured. The results are shown in Table 2.

担体100部に対してカリウム金属換算で5重量%となるようにカリウムを担持した以外は、実施例1と同様の方法により触媒Eを作成した。この触媒Eを実施例1と同様の方法で前処理し、次いで1−ブテンガスの異性化反応を行い、転化率の測定C24を行った。その結果を表2に示す。 A catalyst E was prepared in the same manner as in Example 1 except that potassium was supported so that the amount of potassium metal was 5% by weight based on 100 parts of the carrier. This catalyst E was pretreated in the same manner as in Example 1, and then an isomerization reaction of 1-butene gas was performed, and a conversion measurement C 24 was performed. The results are shown in Table 2.

アルカリ金属としてカリウム(K)の代わりにナトリウム(Na)を使用した以外は、実施例2と同じ方法で、ナトリウム担持量1%の触媒Fを作成した。この触媒Fを実施例1と同様の方法で前処理し、次いで1−ブテンガスの異性化反応を行い、転化率C24の測定を行った。その結果を表2に示す。 A catalyst F having a sodium supported amount of 1% was prepared in the same manner as in Example 2 except that sodium (Na) was used as the alkali metal instead of potassium (K). This catalyst F was pretreated in the same manner as in Example 1, and then an isomerization reaction of 1-butene gas was performed to measure the conversion C 24 . The results are shown in Table 2.

アルカリ金属としてカリウム(K)の代わりにリチウム(Li)を使用した以外は、実施例2と同じ方法で、リチウム担持量1%の触媒Gを作成した。この触媒Gを実施例1と同様の方法で前処理し、次いで1−ブテンガスの異性化反応を行い、転化率C24の測定を行った。その結果を表2に示す。
[比較例1]
A catalyst G having a supported lithium amount of 1% was prepared in the same manner as in Example 2 except that lithium (Li) was used as the alkali metal instead of potassium (K). This catalyst G was pretreated in the same manner as in Example 1, and then an isomerization reaction of 1-butene gas was performed to measure the conversion C 24 . The results are shown in Table 2.
[Comparative Example 1]

実施例1と同じ原料を使用して同じ条件で担体を作成した後、アルカリ金属塗布を行わずに同じ処理を行って、触媒Hを作成した。この触媒Hを実施例1と同様の方法で前処理し、次いで1−ブテンガスの異性化反応を行い、転化率の測定C24を行った。その結果を表2に示す。
[比較例2]
After preparing a carrier under the same conditions by using the same raw material as in Example 1, the same treatment was carried out without applying an alkali metal to prepare a catalyst H. This catalyst H was pretreated in the same manner as in Example 1, then subjected to an isomerization reaction of 1-butene gas, and a conversion measurement C 24 was performed. The results are shown in Table 2.
[Comparative example 2]

一般グレードの酸化マグネシウム原料の代わりに、表1で示される高純度マグネシウムを使用して、実施例2と同じ方法で、カリウム担持量1重量%の触媒Jを作成した。この触媒Jを実施例1と同様の方法で前処理し、次いで1−ブテンガスの異性化反応を行い、24時間後の転化率C24の測定を行った。その結果を表2に示す。 Catalyst J having a potassium supported amount of 1% by weight was prepared in the same manner as in Example 2 by using the high-purity magnesium shown in Table 1 instead of the general grade magnesium oxide raw material. This catalyst J was pretreated in the same manner as in Example 1, then an isomerization reaction of 1-butene gas was performed, and the conversion C 24 after 24 hours was measured. The results are shown in Table 2.

Figure 2020089866
表2において、アルカリ金属担持量に対して1−ブテンの24時間後の転化率C24をプロットすると図2になる。このグラフから、アルカリ金属担持量が0.2〜5重量%で活性が高くなり、0.5〜3重量%で好ましい転化率が得られるようになり、更に0.7〜2.5重量%で平衡転化率に近い高い転化率が得られることがわかる。
Figure 2020089866
In Table 2, the conversion C 24 of 1-butene after 24 hours is plotted against the amount of supported alkali metal, and the result is shown in FIG. 2. From this graph, the activity becomes high when the amount of the alkali metal supported is 0.2 to 5% by weight, and the preferable conversion rate is obtained when the amount is 0.5 to 3% by weight, and further 0.7 to 2.5% by weight is obtained. It can be seen that a high conversion rate close to the equilibrium conversion rate can be obtained.

表2、図2の結果が、どのようなメカニズムにより起きるのか解析するために、いくつかの触媒を選んで、TPD−MASS(昇温脱離―質量分析)により酸素ガス吸着量の測定を行った。その結果を表3に示した。また酸素ガス吸着量と転化率の関係を図3a、酸素ガス吸着量と劣化速度の関係を図3bに示した。これからアルカリ担持量増加に伴い酸素吸着量が増大し、それと共に転化率が向上することがわかる。酸素吸着量が0.5〜20μmol/gでは転化率が40%前後となり、酸素吸着量が0.6〜15μmol/g、更には0.7〜10μmol/gとなるとさらに転化率が向上し、特に酸素吸着量が0.8〜4μmol/g付近で転化率が最大となると共に、劣化速度が最小となる。20μmol/g以上に酸素吸着量が大きくなると、転化率は減少し、劣化速度が大きくなる。これらの結果から、表面に吸着した酸素が、異性化反応により生じる炭素を酸化して、コーキングの進行を遅らせることが、劣化を抑制し、転化率を向上させる大きな理由の一つと考えられた。 In order to analyze by what mechanism the results in Table 2 and FIG. 2 occur, several catalysts were selected and the oxygen gas adsorption amount was measured by TPD-MASS (thermal desorption-mass spectrometry). It was The results are shown in Table 3. The relationship between the oxygen gas adsorption amount and the conversion rate is shown in FIG. 3a, and the relationship between the oxygen gas adsorption amount and the deterioration rate is shown in FIG. 3b. From this, it is understood that the oxygen adsorption amount increases with the increase of the amount of the alkali supported, and the conversion rate also improves accordingly. When the oxygen adsorption amount is 0.5 to 20 μmol/g, the conversion rate is about 40%, and when the oxygen adsorption amount is 0.6 to 15 μmol/g, and further 0.7 to 10 μmol/g, the conversion rate is further improved. Particularly, when the oxygen adsorption amount is around 0.8 to 4 μmol/g, the conversion rate becomes maximum and the deterioration rate becomes minimum. When the amount of oxygen adsorbed increases to 20 μmol/g or more, the conversion rate decreases and the deterioration rate increases. From these results, it was considered that the oxygen adsorbed on the surface oxidizes carbon generated by the isomerization reaction and delays the progress of coking, which is one of the major reasons for suppressing the deterioration and improving the conversion rate.

Figure 2020089866
Figure 2020089866

実施例2で最初の異性化反応(Run#1)させた後の使用済み実施例触媒Bの69mlを、ガラス容器に充填し、再生処理を行った。その再生処理は、表4で示される第一段階から第三段階の処理を連続して合計7時間行った後、自然冷却する方法によった。 69 ml of the used Example catalyst B after the first isomerization reaction (Run #1) in Example 2 was filled in a glass container and regenerated. The regeneration treatment was carried out by a method in which the treatments from the first stage to the third stage shown in Table 4 were continuously performed for a total of 7 hours and then naturally cooled.

Figure 2020089866
比較例2で最初の反応(Run#1)させた触媒Jについても表4と同じ条件で再生処理を行った。これらの再生処理済の触媒B、触媒JをRun#1と同じ条件で2回目の異性化反応(Run #2)を行った。更に続けて2度目の再処理を表4と同じ条件で行い、Run#1,Run#2と同じ条件で、再生後の触媒B,Jを用いて3回目の異性化反応(Run#3)を行わせた.Run#1〜Run#3における触媒B,Jによる異性化転化率、劣化速度を調べ、表5に示した。
Figure 2020089866
The catalyst J, which was subjected to the first reaction (Run #1) in Comparative Example 2, was also regenerated under the same conditions as in Table 4. A second isomerization reaction (Run #2) was performed on these regenerated catalysts B and J under the same conditions as Run #1. Then, the second re-treatment is performed under the same conditions as in Table 4, and the third isomerization reaction (Run #3) is performed using the regenerated catalysts B and J under the same conditions as Run #1 and Run #2. Was done. The isomerization conversion rates and deterioration rates of catalysts B and J in Run #1 to Run #3 were examined and shown in Table 5.

Figure 2020089866
表5について、反応回数と劣化速度との関係を図4に示す。これから、標準グレードの酸化マグネシウム担体を用いた触媒は、高純度酸化マグネシウムを用いた触媒に比べ1回目の劣化速度はやや大きいものの、再生繰り返し後の劣化速度は小さくなり、その耐久性が著しく良好であることが見て取れる。酸素濃度の高い一般グレードの窒素ガスを使用した再生処理により、高純度酸化マグネシウムと同等、もしくはそれ以上の優れた耐久性が確認された。
Figure 2020089866
Regarding Table 5, the relationship between the number of reactions and the deterioration rate is shown in FIG. From this, it can be seen that the catalyst using the standard-grade magnesium oxide carrier has a slightly higher deterioration rate at the first time than the catalyst using high-purity magnesium oxide, but the deterioration rate after repeated regeneration is small, and its durability is extremely good. It can be seen that By the regeneration treatment using general-grade nitrogen gas with high oxygen concentration, excellent durability equal to or higher than that of high-purity magnesium oxide was confirmed.

実施例9で示した反応−再生繰り返し時の耐久性向上の理由を調べるために、異性化反応前の触媒B(一般グレード酸化マグネシウム担体1%カリウム担持)と、触媒J(高純度酸化マグネシウム担体1%カリウム担持)の破壊強度の測定を行い、その結果を表5に示した。また3回反応を繰り返した後の触媒の外観を観察したところ、触媒Jの表面が一部崩壊しているのに対して、触媒Bの崩壊はわずかであった。触媒Bは担体の破壊強度が高いために、異性化反応時の高温などのストレスに耐えるのに対して、触媒Jは高温のストレスにより一部摩耗が観察された。この摩耗により、表面のアルカリ金属が剥離するなどして、劣化が大きくなることも、触媒活性低下の一つの要因と考えられた。 In order to investigate the reason for the improvement in durability during the repeated reaction-regeneration shown in Example 9, catalyst B (general grade magnesium oxide carrier 1% potassium supported) and catalyst J (high-purity magnesium oxide carrier) before the isomerization reaction were used. The fracture strength of 1% potassium supported) was measured, and the results are shown in Table 5. Further, when the appearance of the catalyst after repeating the reaction three times was observed, the surface of the catalyst J was partially collapsed, while the catalyst B was slightly decomposed. The catalyst B has a high fracture strength of the carrier and therefore can withstand stress such as high temperature during the isomerization reaction, while the catalyst J was partially worn due to high temperature stress. It is considered that one of the causes of the decrease in the catalyst activity is that the wear causes the deterioration of the surface due to the peeling of the alkali metal on the surface.

以上、実施例8(図4)と実施例9の結果について、考察すると以下のようになる。
1)硫黄含有量の大きな酸化マグネシウムを担体原料とした触媒は、その硫黄が触媒毒として作用するために、オレフィン異性化転化率が低下する。
2)それに対して、硫黄含有量の大きな一般グレードを用いた酸化マグネシウムにカリウムなどのアルカリ金属を担持すると、転化率が増加、劣化速度が高純度酸化マグネシウムと同等程度に改良される。この効果は、アルカリ添加による酸素吸着量の増加が主要因として作用していると推定される。
3)最初の異性化反応後に、酸素濃度の高い窒素ガスで再生処理し、異性化を繰り返すと、高純度酸化マグネシウムは劣化増加現象を示すのに対して、一般グレード酸化マグネシウムは、3回繰り返しまではその劣化速度の増加が殆ど観察されず、良好な耐久性の結果を示した。
4)以上から、硫黄含有量の大きな一般グレードの酸化マグネシウムを担体材料として使用し、適切な量のアルカリを担持させると、酸素吸着量が増加して異性化時のコーキングが抑制されること、及び一般グレードの酸化マグネシウム担体を用いた触媒の破壊強度が上昇することの二つの効果が、触媒の劣化防止に寄与していると理解された。
As described above, the results of Example 8 (FIG. 4) and Example 9 are considered as follows.
1) A catalyst using magnesium oxide having a large sulfur content as a carrier raw material has a low olefin isomerization conversion rate because the sulfur acts as a catalyst poison.
2) On the other hand, when an alkali metal such as potassium is supported on magnesium oxide using a general grade having a large sulfur content, the conversion rate is increased and the deterioration rate is improved to the same level as that of high-purity magnesium oxide. It is estimated that this effect is mainly due to the increase in oxygen adsorption amount due to the addition of alkali.
3) After the first isomerization reaction, when regenerating treatment with nitrogen gas having a high oxygen concentration and repeating isomerization, high-purity magnesium oxide shows a deterioration increasing phenomenon, whereas general grade magnesium oxide repeats three times. Until then, almost no increase in the deterioration rate was observed, and good durability results were shown.
4) From the above, when general grade magnesium oxide having a large sulfur content is used as a carrier material and an appropriate amount of alkali is supported, the oxygen adsorption amount is increased and coking during isomerization is suppressed, It has been understood that the two effects of increasing the crush strength of the catalyst using the general-purpose magnesium oxide carrier and contributing to preventing the deterioration of the catalyst.

Claims (19)

酸化マグネシウム純度が56重量%以上かつ99重量%未満である酸化マグネシウム担体上に、少なくとも1種のアルカリ金属が担持されたオレフィン異性化触媒。 An olefin isomerization catalyst in which at least one alkali metal is supported on a magnesium oxide carrier having a magnesium oxide purity of 56% by weight or more and less than 99% by weight. 酸化マグネシウム担体が、硫黄原子重量換算で500ppm以上の硫黄化合物を含有する、請求項1に記載のオレフィン異性化触媒。 The olefin isomerization catalyst according to claim 1, wherein the magnesium oxide carrier contains 500 ppm or more of a sulfur compound in terms of sulfur atom weight. 酸化マグネシウム担体が、硫黄原子重量換算で2000ppm以上の硫黄化合物を含有する、請求項1に記載のオレフィン異性化触媒。 The olefin isomerization catalyst according to claim 1, wherein the magnesium oxide carrier contains 2000 ppm or more of a sulfur compound in terms of sulfur atom weight. 酸化マグネシウム担体が、硫黄原子重量換算で4000ppm以上の硫黄化合物を含有する、請求項1に記載のオレフィン異性化触媒。 The olefin isomerization catalyst according to claim 1, wherein the magnesium oxide support contains 4000 ppm or more of a sulfur compound in terms of sulfur atom weight. 前記の少なくとも1種のアルカリ金属がカリウムおよびナトリウムからなる群から選択される、請求項1〜4のいずれか1つに記載のオレフィン異性化触媒。 The olefin isomerization catalyst according to any one of claims 1 to 4, wherein the at least one alkali metal is selected from the group consisting of potassium and sodium. 酸化マグネシウム担体100重量部に対して金属換算で0.2〜5重量部の少なくとも1種のアルカリ金属が担体表面上に担持された請求項1〜5のいずれか1つに記載のオレフィン異性化触媒。 Olefin isomerization according to any one of claims 1 to 5, wherein 0.2 to 5 parts by weight of metal, based on 100 parts by weight of the magnesium oxide support, of at least one alkali metal is supported on the surface of the support. catalyst. 酸化マグネシウム担体100重量部に対して金属換算で0.5〜3重量部の少なくとも1種のアルカリ金属が担体表面上に担持された請求項1〜5のいずれか1つに記載のオレフィン異性化触媒。 Olefin isomerization according to any one of claims 1 to 5, wherein 0.5 to 3 parts by weight of metal, based on 100 parts by weight of the magnesium oxide support, is supported on the surface of at least one alkali metal. catalyst. 酸化マグネシウム担体100重量部に対して金属換算で0.7〜2.5重量部の少なくとも1種のアルカリ金属が担体表面上に担持された請求項1〜5のいずれか1つに記載のオレフィン異性化触媒。 The olefin according to any one of claims 1 to 5, wherein 0.7 to 2.5 parts by weight of at least one alkali metal in terms of metal is supported on the surface of the support based on 100 parts by weight of the magnesium oxide support. Isomerization catalyst. TPD−MASS測定法による酸素吸着量が、0.5〜20μmol/g、より好ましくは0.6〜15μmol/g、更に好ましくは0.7〜10μmol/g、特に好ましくは0.8〜4μmol/gである、請求項1〜8のいずれか1つに記載のオレフィン異性化触媒。 The amount of oxygen adsorbed by the TPD-MASS measurement method is 0.5 to 20 μmol/g, more preferably 0.6 to 15 μmol/g, further preferably 0.7 to 10 μmol/g, and particularly preferably 0.8 to 4 μmol/g. The olefin isomerization catalyst according to any one of claims 1 to 8, which is g. ペレット状、粒状、円柱状、円筒状、もしくは柱状の成型体である、請求項1〜9のいずれか1つに記載のオレフィン異性化触媒。 The olefin isomerization catalyst according to any one of claims 1 to 9, which is a pelletized, granular, columnar, cylindrical, or columnar molded body. オレフィン異性化が、1−ブテンから2−ブテンへの異性化反応である、請求項1〜10のいずれか1つに記載のオレフィン異性化触媒。 The olefin isomerization catalyst according to any one of claims 1 to 10, wherein the olefin isomerization is an isomerization reaction from 1-butene to 2-butene. 少なくとも25Nの破壊強度を有する、請求項1〜11のいずれか1つに記載のオレフィン異性化触媒。 The olefin isomerization catalyst according to any one of claims 1 to 11, which has a breaking strength of at least 25N. a)酸化マグネシウム純度が56重量%以上かつ99重量%未満である酸化マグネシウムを成型して担体を得る工程、
b)工程a)により得られた担体に少なくとも1種のアルカリ金属を噴霧塗布する工程、および
c)工程b)により得られたアルカリ金属が担持された担体を焼成する工程、
を含む、請求項1〜12のいずれか1つに記載のオレフィン異性化触媒の製造方法。
a) a step of molding magnesium oxide having a magnesium oxide purity of 56% by weight or more and less than 99% by weight to obtain a carrier,
b) spray-coating the carrier obtained in step a) with at least one alkali metal; and c) calcining the alkali-metal-supported carrier obtained in step b).
The method for producing an olefin isomerization catalyst according to claim 1, which comprises:
前記酸化マグネシウムが、海水を原料として電解法により製造された酸化マグネシウムである、請求項13に記載のオレフィン異性化触媒の製造方法。 The method for producing an olefin isomerization catalyst according to claim 13, wherein the magnesium oxide is magnesium oxide produced by an electrolysis method using seawater as a raw material. 1−ブテンを請求項1〜12のいずれか1つに記載のオレフィン異性化触媒と接触させることを含む、2−ブテンの製造方法。 A method for producing 2-butene, which comprises contacting 1-butene with the olefin isomerization catalyst according to claim 1. 請求項1〜12のいずれか1つに記載の触媒を1−ブテンから2−ブテンへの異性化反応に使用後、その使用された触媒を再生し、再度1−ブテンから2−ブテンへの異性化反応に使用する、請求項15に記載の2−ブテンの製造方法。 After using the catalyst according to any one of claims 1 to 12 for the isomerization reaction of 1-butene to 2-butene, the used catalyst is regenerated to convert 1-butene to 2-butene again. The method for producing 2-butene according to claim 15, which is used in an isomerization reaction. 異性化反応と再生処理を交互に2回以上行う、請求項16に記載の2−ブテンの製造方法。 The method for producing 2-butene according to claim 16, wherein the isomerization reaction and the regeneration treatment are alternately performed twice or more. 触媒の再生が、体積換算で10ppm以上、好ましくは1,000ppm以上、より好ましくは10,000ppm以上の酸素を含有する窒素ガス中で触媒を、200℃以上、より好ましくは350℃以上に加熱することを含む、請求項16または17に記載の2−ブテンの製造方法。 For the regeneration of the catalyst, the catalyst is heated to 200° C. or higher, more preferably 350° C. or higher in a nitrogen gas containing oxygen of 10 ppm or more, preferably 1,000 ppm or more, more preferably 10,000 ppm or more in terms of volume. The method for producing 2-butene according to claim 16 or 17, which comprises: i)請求項1〜12のいずれか1つに記載の触媒を充填した反応槽に、1−ブテンを通過させて2−ブテンを得る工程、および
ii)得られた2−ブテンを、エチレンガスと一緒に後段のオレフィンメタセシス触媒を通過させてプロピレンを得る工程、
を含む、プロピレンを製造する方法。
i) a step of passing 1-butene to obtain 2-butene in a reaction tank filled with the catalyst according to any one of claims 1 to 12, and ii) the obtained 2-butene with ethylene gas A step of passing olefin metathesis catalyst in the latter stage together with to obtain propylene,
A method for producing propylene, comprising:
JP2018230281A 2018-12-07 2018-12-07 Olefin isomerization catalyst and method for producing the same, method for producing 2-butene and propylene production method using the same Pending JP2020089866A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018230281A JP2020089866A (en) 2018-12-07 2018-12-07 Olefin isomerization catalyst and method for producing the same, method for producing 2-butene and propylene production method using the same
PCT/JP2019/047552 WO2020116548A1 (en) 2018-12-07 2019-12-05 Olefin isomerization catalyst and production method therefor, and 2-butene production method and propylene production method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018230281A JP2020089866A (en) 2018-12-07 2018-12-07 Olefin isomerization catalyst and method for producing the same, method for producing 2-butene and propylene production method using the same

Publications (1)

Publication Number Publication Date
JP2020089866A true JP2020089866A (en) 2020-06-11

Family

ID=70973659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018230281A Pending JP2020089866A (en) 2018-12-07 2018-12-07 Olefin isomerization catalyst and method for producing the same, method for producing 2-butene and propylene production method using the same

Country Status (2)

Country Link
JP (1) JP2020089866A (en)
WO (1) WO2020116548A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094925A (en) * 1983-10-31 1985-05-28 Mitsui Petrochem Ind Ltd Production of 5-alkylidene-2-norbornene
JPS614531A (en) * 1984-06-18 1986-01-10 Mitsui Petrochem Ind Ltd Stabilization-treated substance deposited with alkali metal and isomerizing reaction catalyst consisting of it
US4684760A (en) * 1986-02-24 1987-08-04 Phillips Petroleum Company Catalyst compositions useful for olefin isomerization and disproportionation
US6875901B2 (en) * 2001-05-23 2005-04-05 Abb Lummus Global Inc. Olefin isomerization process
US8586813B2 (en) * 2009-07-21 2013-11-19 Lummus Technology Inc. Catalyst for metathesis of ethylene and 2-butene and/or double bond isomerization
CN104812483B (en) * 2012-10-06 2017-07-28 科莱恩催化剂(日本)有限公司 Mixed catalyst, preparation method and applications for olefin metathesis reaction

Also Published As

Publication number Publication date
WO2020116548A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
JP4339681B2 (en) Selective hydrogenation catalyst for selective hydrogenation of unsaturated olefins and use thereof
JP6029682B2 (en) Zinc and / or manganese aluminate catalysts useful for alkane dehydrogenation
WO2021012801A1 (en) Olefin aromatization catalyst, preparation method therefor, and application thereof, and light olefin aromatization method
JP6733099B2 (en) Catalytic system for oxidative dehydrogenation reaction, reactor for oxidative dehydrogenation including the same, and oxidative dehydrogenation method
KR20050083849A (en) Process for producing olefin by catalytic cracking of hydrocarbon
US20140296605A1 (en) Catalyst composition for the dehydrogenation of alkanes
CN1052172C (en) Process of oxidizing aliphatic hydrocarbons employing a molybdate catalyst composition
JP2018008248A (en) Catalyst for synthesizing 1,3-butadiene and apparatus and method for producing 1,3-butadiene
JP2014523856A (en) Isomerization of light α-olefins to light internal olefins
JP6812620B2 (en) Catalytic system for oxidative dehydrogenation reaction, reactor for butadiene production including it, and method for producing 1,3-butadiene
JP6698110B2 (en) Catalyst and hydrocarbon conversion process using the catalyst
JP7365354B2 (en) Catalyst and method for producing 1,3-butadiene using the same
JP6446033B2 (en) Process for producing unsaturated hydrocarbons
WO2020116548A1 (en) Olefin isomerization catalyst and production method therefor, and 2-butene production method and propylene production method using same
CN115337943B (en) Catalyst for synthesizing isoprene, preparation method thereof and isoprene synthesizing method
JP2018153769A (en) Metal-containing zeolite
JP5094506B2 (en) Production method of light olefin
JP2952409B2 (en) Catalyst for lower olefin production
JP7160604B2 (en) Method for producing 1,3-butadiene and acetaldehyde diethyl acetal
JP6619255B2 (en) 1,3-butadiene synthesis catalyst, 1,3-butadiene production apparatus, and 1,3-butadiene production method
JP7210262B2 (en) Method for producing butadiene
EP3766575A1 (en) Method for producing ferrite-based coating catalyst and method for producing butadiene by using same
JP6704581B2 (en) Metal oxide catalyst, method for producing butadiene and method for producing metal oxide catalyst
JP2007185636A (en) Method for manufacturing catalyst for fluidized bed and method for producing nitriles
US20210178358A1 (en) Arsine adsorbents