JP2020089209A - Power transmitter and receiver, and wireless power transmission system using the same - Google Patents

Power transmitter and receiver, and wireless power transmission system using the same Download PDF

Info

Publication number
JP2020089209A
JP2020089209A JP2018225050A JP2018225050A JP2020089209A JP 2020089209 A JP2020089209 A JP 2020089209A JP 2018225050 A JP2018225050 A JP 2018225050A JP 2018225050 A JP2018225050 A JP 2018225050A JP 2020089209 A JP2020089209 A JP 2020089209A
Authority
JP
Japan
Prior art keywords
power
conductor
power transmission
transmission system
conductor wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018225050A
Other languages
Japanese (ja)
Other versions
JP7307933B2 (en
Inventor
昌也 田村
Masaya Tamura
昌也 田村
大吾 古巣
Daigo Furusu
大吾 古巣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyohashi University of Technology NUC
Original Assignee
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyohashi University of Technology NUC filed Critical Toyohashi University of Technology NUC
Priority to JP2018225050A priority Critical patent/JP7307933B2/en
Publication of JP2020089209A publication Critical patent/JP2020089209A/en
Application granted granted Critical
Publication of JP7307933B2 publication Critical patent/JP7307933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmitters (AREA)

Abstract

To provide a power transmitter, a power receiver and a wireless power transmission system, enabling easy impedance matching with the suppression of the deterioration of power transmission efficiency inside a structure which reflects an electromagnetic wave therein.SOLUTION: A power transmitter 5 of the wireless power transmission system has an electric connection among a linear metal wire 8 of which one end is an open end, a dielectric substrate 9 and at least one or more conductor posts 10, and further, an electric connection to a matching circuit, so as to transmit power. A power receiver has first and second power receivers arranged in parallel to face each other. The first power receiver electrically connects a first linear conductor line of which one end is an open end to at least one or more first conductor posts at the other end that is not the open end. The second power receiver electrically connects a second conductor line arranged to face the first conductor line to at least one or more second conductor posts at the other end of the second conductor line that is not the open end.SELECTED DRAWING: Figure 3

Description

本発明は、高周波を送電する送電器およびそれを用いる無線電力伝送システムに関するものである。特に、金属体や絶縁体などの障害物を有する金属で囲われた配管やエンジンルーム、工場内部などに設置されたセンサ等へ無線で電力を供給、情報を送受信するための構造および電子機器に関する。 The present invention relates to a power transmitter that transmits high frequencies and a wireless power transmission system that uses the power transmitter. In particular, the present invention relates to a structure and an electronic device for wirelessly supplying electric power to and transmitting and receiving information to a sensor or the like installed in a pipe or an engine room surrounded by a metal having an obstacle such as a metal body or an insulator or in a factory. ..

金属体や絶縁体などの障害物を有する金属で囲われた場所への無線電力伝送システムは、金属の遮蔽効果を利用して遮蔽構造内に電磁界を閉じ込める共振現象を利用して送受電する。 A wireless power transmission system to a place surrounded by a metal having an obstacle such as a metal body or an insulator transmits and receives power by utilizing a resonance phenomenon in which an electromagnetic field is confined in the shield structure by utilizing a metal shielding effect. ..

例えば、非特許文献1では、金属壁によって全体が包囲され、電磁波が遮蔽された構造体と、該構造体の内部に設置された金棒からなる1つの送電器と、金属棒の円状に複数回巻いた1つの受電器とを備え、送電部は、構造体自体を導波路共振器と想定する場合における共振周波数による電磁波を送信し、その共振周波数で共振するように設計された受電器を有する無線電力伝送システムが開示されている。 For example, in Non-Patent Document 1, a structure entirely surrounded by a metal wall and shielded from electromagnetic waves, a power transmitter including a gold rod installed inside the structure, and a plurality of metal rods in a circular shape. One power receiver that is wound, and the power transmission unit transmits an electromagnetic wave at a resonance frequency when the structure itself is assumed to be a waveguide resonator, and a power receiver designed to resonate at the resonance frequency. A wireless power transfer system having is disclosed.

このような従来の無線電力伝送システムでは、高い電力伝送効率を実現するために送電器の構造は金属棒を垂直に配置したモノポール型の構造となっており、遮蔽構造体内の装置や設備などの配置に制限が生じる。受電器は円状に複数回巻いたコイル型の小型共振器を用いているが、小型化により電力伝送効率が10%を下回っている。 In such a conventional wireless power transmission system, in order to achieve high power transmission efficiency, the structure of the power transmitter is a monopole type structure in which metal rods are vertically arranged. There are restrictions on the placement of. The power receiver uses a coil-type small resonator wound in a plurality of circles, but the power transmission efficiency is less than 10% due to miniaturization.

H. Mei, K. A. Thanckston, R. A. Bercich, J. G. R. Jefferys, and P. P. Irazoqui, “Cavity Resonator wireless power transfer system for freely moving animal experiments,” IEEE Biomed. Eng., vol. PP, no. 99, pp. 1-1 June 2016.H. Mei, KA Thanckston, RA Bercich, JGR Jefferys, and PP Irazoqui, “Cavity Resonator wireless power transfer system for freely moving animal experiments,” IEEE Biomed. Eng., vol. PP, no. 99, pp. 1-1 June 2016.

従来の無線電力伝送システムでは、共振器に見立てた遮蔽構造内に電磁波の定在波を効率よく励振するべく、モノポール型の送電器を使用することで容量性結合素子を実現していた。モノポール型の送電器ではその長さを調整することで容量性結合素子の値を調整できるため、送電器と共振器に見立てた遮蔽構造のインピーダンスを整合しやすい反面、送電器長が共振周波数の1/8程度の長さとなり、金属体や絶縁体を有する金属で囲われた配管やエンジンルーム、工場内部などにおける装置等の配置に制限が生じる。さらに、遮蔽構造内の装置や設備などの配置に制限を緩和するべく小型化を施すと共振器と遮蔽構造間のインピーダンス整合が困難となり、電力伝送効率が大幅に劣化するという課題がある。 In a conventional wireless power transmission system, a capacitive coupling element has been realized by using a monopole type power transmitter in order to efficiently excite a standing wave of an electromagnetic wave in a shielding structure likened to a resonator. Since the value of the capacitive coupling element can be adjusted by adjusting the length of the monopole type power transmitter, it is easy to match the impedance of the shielding structure like the power transmitter and the resonator, but the length of the power transmitter is The length is about ⅛ of the above, and there is a restriction on the arrangement of the device and the like in the pipe surrounded by the metal having the metal body or the insulator, the engine room, the inside of the factory and the like. Further, if the size of the device or equipment in the shield structure is reduced to reduce restrictions, impedance matching between the resonator and the shield structure becomes difficult, and the power transmission efficiency deteriorates significantly.

本発明は、上記課題を解決するためになされたものであり、インピーダンス整合が容易な小型化された送受電器およびそれを用いる無線電力伝送システムを実現するものである。 The present invention has been made to solve the above problems, and realizes a miniaturized power transmitter/receiver with easy impedance matching and a wireless power transmission system using the same.

本発明に係る無線電力伝送システムは、適宜な比透磁率を有する材料で形成された電磁波反射部材によって全体が包囲された構造体と、該構造体の内部に設置された少なくとも1つの送電部および少なくとも1つの受電部とを備え、
前記送電部は、前記構造体本体を導波路共振器と想定する場合における共振周波数による電磁波を送受信するものであり、前記受電部は第一の受電器および第二の受電器を備えてなるものであって、
前記送電部は、一方が開放端となる線状の金属で構成される導体線と、該導体線を保持する誘電体基板と、少なくとも1つ以上の導体柱と、整合回路とを電気的に接続してなるものであり、
前記第一の受電器は、一方が開放端となる線状の第一の導体線と、該第一の導体線の開放端でない他端において少なくとも1つ以上の第一の導体柱とを電気的に接続してなるものであり、
前記第二の受電器は、第一の導体線と対向配置された第二の導体線と、該第二の導体線の開放端でない他端において少なくとも1つ以上の第二の導体柱とを電気的に接続してなり、前記第一の導体柱の軸線と第二の導体柱の軸線とを同一直線上に対向して配置した場合において、該直線に直交する仮想平面を対称面として第二の導体線が前記第一の導体線に対称となるものであり、
前記送電部と受電部との間における伝送路間でインピーダンス整合させていることを特徴とする。
A wireless power transmission system according to the present invention includes a structure entirely surrounded by an electromagnetic wave reflection member formed of a material having an appropriate relative magnetic permeability, and at least one power transmission section installed inside the structure. At least one power receiving unit,
The power transmission unit transmits/receives an electromagnetic wave having a resonance frequency when the structure body is assumed to be a waveguide resonator, and the power reception unit includes a first power receiver and a second power receiver. And
The power transmission unit electrically includes a conductor wire made of a linear metal, one of which is an open end, a dielectric substrate that holds the conductor wire, at least one or more conductor posts, and a matching circuit. It is made by connecting,
The first power receiver electrically connects a linear first conductor wire, one of which is an open end, and at least one or more first conductor pillars at the other end which is not the open end of the first conductor wire. Are connected together,
The second power receiver includes a second conductor wire arranged to face the first conductor wire and at least one second conductor pillar at the other end which is not an open end of the second conductor wire. When electrically connected, the axis of the first conductor column and the axis of the second conductor column are arranged to face each other on the same straight line, and a virtual plane orthogonal to the straight line is used as a plane of symmetry. The second conductor wire is symmetrical to the first conductor wire,
Impedance matching is performed between transmission lines between the power transmission unit and the power reception unit.

上記構成および構造により、送電器と無線電力伝送システムとの接続部で生じる反射電力をもっとも低減でき、モノポール型のような金属棒を垂直に配置した送電器を用いることなく高効率に電力を無線で給電することができる。 With the above configuration and structure, the reflected power generated at the connection between the power transmitter and the wireless power transmission system can be reduced most, and the power can be efficiently generated without using the power transmitter in which the metal rod is vertically arranged like the monopole type. It can be powered wirelessly.

また、本発明に係る無線電力伝送システムの送電部は、前記送電器の導体線の長さと導体柱の長さとを合せた長さが前記構造体固有の共振周波数の波長の1/4より短く、かつ容量性素子として動作するものであることを特徴とする。 Further, in the power transmission section of the wireless power transmission system according to the present invention, the total length of the conductor wire and the conductor column of the power transmitter is shorter than 1/4 of the wavelength of the resonance frequency peculiar to the structure. In addition, it operates as a capacitive element.

さらに、本発明に係る無線電力伝送システムの受電部は、前記第一の受電器および第二の受電器それぞれの導体線の長さと導体柱の長さとを合せた長さが、ともに前記構造体固有の共振周波数の波長の1/4より短く、かつ容量性素子として動作するものであることを特徴とする。 Furthermore, in the power receiving unit of the wireless power transmission system according to the present invention, the combined length of the conductor wire of each of the first power receiver and the second power receiver and the length of the conductor pillar are both the structure. It is characterized in that it is shorter than 1/4 of the wavelength of the natural resonance frequency and operates as a capacitive element.

前記受電部において受電器を共振器で構成する必要が無くなり、該受電器と電磁波の遮蔽構造物間の整合が容易となる。 In the power receiving unit, it is not necessary to configure the power receiver with a resonator, and the matching between the power receiver and the electromagnetic wave shielding structure becomes easy.

本発明によれば電磁波遮蔽構造体内の装置や設備などの配置に制限を与えることなく、無線電力伝送システムの送電部と受電部の見通しが悪くとも該受電部に必要な電力を高効率に供給できるようになる。 ADVANTAGE OF THE INVENTION According to this invention, even if the visibility of the power transmission part and the power reception part of a wireless power transmission system is bad, the power required for the power reception part is supplied highly efficiently, without restricting the arrangement of devices and equipment in the electromagnetic wave shielding structure. become able to.

本発明に係る無線電力伝送システム1の構成図である。It is a block diagram of the wireless power transmission system 1 which concerns on this invention. 本発明に係る送電部2の構成図である。It is a block diagram of the power transmission part 2 which concerns on this invention. 本発明に係る送電部2における送電器5の模式図である。It is a schematic diagram of the power transmitter 5 in the power transmission part 2 which concerns on this invention. 本発明に係る受電部3における受電器11の模式図である。It is a schematic diagram of the power receiver 11 in the power receiving unit 3 according to the present invention. 無線電力伝送システムにおいて、共振器構造体内部に障害物18を有する場合の概念図である。It is a conceptual diagram in case the obstacle 18 is provided inside a resonator structure in a wireless power transmission system. 無線電力伝送システムにおいて、共振器構造体を構成する電磁波反射板の一例を表す模式図である。It is a schematic diagram showing an example of the electromagnetic wave reflection plate which comprises a resonator structure in a wireless power transmission system. 本発明の実施例1に係る障害物18の一例を表す模式図である。It is a schematic diagram showing an example of the obstacle 18 which concerns on Example 1 of this invention. 本発明の実施例1に係る可変整合回路6と送電器5を接続するSMAコネクタの模式図である。It is a schematic diagram of the SMA connector which connects the variable matching circuit 6 and the power transmitter 5 which concern on Example 1 of this invention. 本発明の実施例1に係る受電部3における受電器11を配置した一例を表す模式図である。It is a schematic diagram showing an example which has arrange|positioned the power receiver 11 in the power receiving part 3 which concerns on Example 1 of this invention. 本発明の実施例1に係る無線センサモジュール33の模式図である。無線センサモジュール33は整流回路31と無線通信機能を含むセンサモジュール32とを電気的に接続してなる。It is a schematic diagram of the wireless sensor module 33 according to the first embodiment of the present invention. The wireless sensor module 33 is configured by electrically connecting the rectifier circuit 31 and the sensor module 32 having a wireless communication function.

以下、本発明の実施形態について図を参照しながら説明する。本発明に係る無線電力伝送システムについて、図1を用いて説明する。図1は本発明に係る無線給電システムの構成図である。図1において、無線電力伝送システム1は内部にすくなくとも1つ以上の送電部2と、少なくとも1つ以上の受電装置3を備え、無線電力伝送システム1は電磁波を反射する材料である電磁波反射板4で全面が囲われている。すなわち、無線電力伝送システム1は無線給電を実現する構造物の全体を指している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. A wireless power transmission system according to the present invention will be described with reference to FIG. FIG. 1 is a configuration diagram of a wireless power feeding system according to the present invention. In FIG. 1, a wireless power transmission system 1 includes at least one power transmission unit 2 and at least one power reception device 3 inside, and the wireless power transmission system 1 includes an electromagnetic wave reflection plate 4 that is a material that reflects electromagnetic waves. The whole area is surrounded by. That is, the wireless power transmission system 1 refers to the entire structure that realizes wireless power feeding.

前記送電部2の構成について図2を用いて説明する。送電部2は、高周波電力を送電するための送電器5と可変整合回路6からなり、前記可変整合回路は例えば、高周波電源7に接続される。可変整合回路6は送電器5と高周波電源7との間に接続され、高周波電源7から出力された高周波電力が送電器5で反射されて高周波電源7に逆流することを防ぐ目的で接続される。 The configuration of the power transmission unit 2 will be described with reference to FIG. The power transmission unit 2 includes a power transmitter 5 for transmitting high frequency power and a variable matching circuit 6, and the variable matching circuit is connected to, for example, a high frequency power supply 7. The variable matching circuit 6 is connected between the power transmitter 5 and the high frequency power supply 7, and is connected for the purpose of preventing the high frequency power output from the high frequency power supply 7 from being reflected by the power transmitter 5 and flowing back to the high frequency power supply 7. ..

前記送電器5は、図3に示すように一方が開放端となる線状の金属で構成される導体線8と、導体線8を保持する誘電体基板9と、導体線8と前記可変整合回路6を接続する少なくとも1つ以上の導体柱10からなる。 As shown in FIG. 3, the power transmitter 5 includes a conductor wire 8 made of a linear metal, one of which is an open end, a dielectric substrate 9 holding the conductor wire 8, a conductor wire 8 and the variable matching. It comprises at least one or more conductor posts 10 connecting the circuits 6.

無線電力伝送システム1は電磁波反射板4で遮蔽された空間を有するため、導波管共振器として考えることができる。したがって、無線電力伝送システム1においてx軸方向の辺の長さaとy軸方向の辺の長さbとz軸方向の辺の長さcから求まる共振周波数frm,n,p(数1)を送電周波数に設定することで、無線電力伝送システム1内全体に電磁界を分布させることができる。 Since the wireless power transmission system 1 has a space shielded by the electromagnetic wave reflection plate 4, it can be considered as a waveguide resonator. Therefore, in the wireless power transmission system 1, the resonance frequency fr m,n,p (Equation 1) obtained from the side length a in the x-axis direction, the side length b in the y-axis direction, and the side length c in the z-axis direction. ) Is set to the power transmission frequency, the electromagnetic field can be distributed throughout the wireless power transmission system 1.

Figure 2020089209
ここで、vは光速、μは比透磁率、εは比誘電率、m、n、pはそれぞれ整数を示している。
Figure 2020089209
Here, v is the speed of light, μ r is the relative permeability, ε r is the relative permittivity, and m, n, and p are integers.

前記共振周波数frm,n,pの高周波電力を無線電力伝送システム1内に給電するために、前記送電器5の金属線8の長さと導体柱10の長さの合計が共振周波数frm,n,pの1/4波長より短く設定することで容量性素子として動作させることができる。無線電力伝送システム1は導波管共振器として、送電器5は容量性素子として動作することから、無線電力伝送システム1は高周波フィルタの共振回路、送電器5は電界結合素子からなるイミタンスイバータと同じ役割となる。すなわち、共振周波数frm,n,pにおいて、送電器5と無線電力伝送システム1との間の整合が容易となるため、モノポール型のような棒状の送電器を用いることなく高効率に電力を無線で給電することができる。 In order to feed the high frequency power having the resonance frequency fr m,n,p into the wireless power transmission system 1, the total length of the metal wire 8 and the conductor column 10 of the power transmitter 5 is equal to the resonance frequency fr m, By setting the wavelength shorter than 1/4 wavelength of n and p , it can be operated as a capacitive element. Since the wireless power transmission system 1 operates as a waveguide resonator and the power transmitter 5 operates as a capacitive element, the wireless power transmission system 1 is a resonance circuit of a high frequency filter, and the power transmitter 5 is an immittance swiver composed of an electric field coupling element. Has the same role as. That is, at the resonance frequency fr m,n,p , matching between the power transmitter 5 and the wireless power transmission system 1 becomes easy, so that power can be efficiently fed without using a rod-shaped power transmitter such as a monopole type. Can be powered wirelessly.

前記送電器5から送電された電力は図4に示す受電器11で受電する。受電器11は、一方が開放端となる線上の導体線12と、導体線12の他端と接続された少なくとも1つ以上の導体柱13からなる受電器部品14と、導体線12と対向配置された導体線15と、導体線15の他端と接続された少なくとも1つ以上の導体柱16からなる受電器部品17から構成される。受電器5は導体柱13の軸線と導体柱16の軸線とを結ぶ同一直線上に対向して配置し、導体線12と導体線15は対称構造となっている。 The power transmitted from the power transmitter 5 is received by the power receiver 11 shown in FIG. The power receiver 11 includes a conductor wire 12 on a wire of which one end is an open end, a power receiver component 14 including at least one or more conductor pillars 13 connected to the other end of the conductor wire 12, and a conductor wire 12 facing each other. The power receiving part 17 includes a conductor wire 15 and a conductor pillar 16 connected to the other end of the conductor wire 15. The power receiver 5 is arranged on the same straight line connecting the axis of the conductor column 13 and the axis of the conductor column 16 so as to face each other, and the conductor line 12 and the conductor line 15 have a symmetrical structure.

前記受電器11において、導体線12の長さと導体柱13の長さの合計、すなわち受電器部品14の長さと、導体線15の長さと導体柱16の長さの合計、すなわち受電器部品17の長さがそれぞれ共振周波数frm,n,pの1/4波長より短く設定することでそれぞれ容量性素子として動作させることができる。無線電力伝送システム1は導波管共振器として、受電器11は容量性素子として動作することから、無線電力伝送システム1は高周波フィルタの共振回路、受電器11は電界結合素子からなるイミタンスイバータと同じ役割となる。すなわち、共振周波数frm,n,pにおいて、前記送電器5と無線電力伝送システム1との間の整合が容易となる。さらに、導体線12と導体線13は対称構造となっていることから、電気映像法により受電器部品14と受電器部品17の符号が対となる電荷をもつ容量素子となるため、受電器11は共振周波数frm,n,pの1/2波長共振器として動作させることなく差動型受電器として動作させることができる。結果、受電器を共振器で構成する必要なく、受電器と遮蔽構造物間の整合が容易となるため、高効率に送電器と受電器の見通しが悪くとも受電器に必要な電力の供給が実現できる。 In the power receiver 11, the total length of the conductor wire 12 and the conductor pillar 13, that is, the length of the power receiver component 14, the total length of the conductor wire 15 and the conductor pillar 16, that is, the power receiver component 17 Can be operated as a capacitive element by setting the lengths of the wavelengths shorter than the quarter wavelengths of the resonance frequencies fr m,n,p . Since the wireless power transfer system 1 operates as a waveguide resonator and the power receiver 11 operates as a capacitive element, the wireless power transfer system 1 is a resonance circuit of a high frequency filter, and the power receiver 11 is an immittance swiver composed of an electric field coupling element. Has the same role as. That is, at the resonance frequency fr m,n,p , matching between the power transmitter 5 and the wireless power transmission system 1 becomes easy. Further, since the conductor wire 12 and the conductor wire 13 have a symmetrical structure, the symbols of the power receiver component 14 and the power receiver component 17 are paired capacitive elements having electric charges by the electric imaging method, and thus the power receiver 11 Can be operated as a differential type power receiver without operating as a 1/2 wavelength resonator having a resonance frequency fr m,n,p . As a result, it is not necessary to configure the power receiver with a resonator, and the matching between the power receiver and the shield structure is easy, so that the power required for the power receiver can be supplied with high efficiency even if the visibility of the power receiver and the power receiver is poor. realizable.

なお、前記電磁波反射板4は例えば、銅や鉄などの金属や高い比透磁率を有する導電性材料、それらからなるメッシュや網に置き換えた場合、電力供給する周波数においてのみ電磁波反射板として動作させることができる。そのため、情報通信を行う周波数はメッシュや網を通過するので、情報通信は無線電力伝送システム1外から制御することができる。例えば、無線電力伝送システム1内でセンシングの指示やセンシングデータを無線電力伝送システム1外で送受信することができる。 When the electromagnetic wave reflection plate 4 is replaced with, for example, a metal such as copper or iron or a conductive material having a high relative magnetic permeability, or a mesh or net made of them, it operates as an electromagnetic wave reflection plate only at a frequency at which power is supplied. be able to. Therefore, since the frequency for performing information communication passes through the mesh or the network, the information communication can be controlled from outside the wireless power transmission system 1. For example, it is possible to send and receive sensing instructions and sensing data inside the wireless power transmission system 1 outside the wireless power transmission system 1.

例えば、図3に示す送電器5と図4に示す受電器11、アルミニウムからなる障害物18からなる図5に示す無線電力伝送システム19を考える。無線電力伝送システム19をなす電磁波反射板4はすべて導通接続されている。例えば、電磁波反射板4のうち5面分は図6に示すようにクロムメッキされた鋼線20を複数用いて格子上に接続した金属網とする。格子のサイズは12mm×12mmで鋼線の直径は1mmとする。残り1面はアルミニウムの板で構成する。この格子サイズは無線電力伝送システム19の基底共振周波数の波長に対して1/16以下のサイズであり、センサ情報を送受信する情報伝送周波数の波長に対して1/8以上のサイズとする。 For example, consider the wireless power transmission system 19 shown in FIG. 5 including the power transmitter 5 shown in FIG. 3, the power receiver 11 shown in FIG. 4, and an obstacle 18 made of aluminum. The electromagnetic wave reflectors 4 forming the wireless power transmission system 19 are all conductively connected. For example, as shown in FIG. 6, five surfaces of the electromagnetic wave reflection plate 4 are metal nets that are connected on a grid by using a plurality of chrome-plated steel wires 20. The size of the grid is 12 mm×12 mm, and the diameter of the steel wire is 1 mm. The remaining one surface is made of an aluminum plate. The lattice size is 1/16 or less of the wavelength of the base resonance frequency of the wireless power transmission system 19, and 1/8 or more of the wavelength of the information transmission frequency for transmitting/receiving the sensor information.

なお、前記電磁波反射板4はすべて金属板で構成することにより高い遮蔽性を実現することができる。また、電磁波反射板4をすべて金属網で表現することにより軽量化や通気性の確保が可能であり、より広い用途に適用することができる。あるいは、前記電磁波反射板4を透明薄膜上に透明電極により構成した金属網構造とすることで、さらに軽量化および設置の容易化を実現できる。 It should be noted that the electromagnetic wave reflection plate 4 can be realized with a high shielding property if it is made of a metal plate. Further, by expressing the electromagnetic wave reflection plate 4 entirely by a metal net, it is possible to reduce the weight and ensure the air permeability, and it is possible to apply to a wider range of applications. Alternatively, the electromagnetic wave reflection plate 4 has a metal net structure in which a transparent electrode is formed on a transparent thin film, so that further weight reduction and easy installation can be realized.

さらに、無線電力伝送システム19の6面は各辺同士をアルミニウムからなるフレームによって固定することで強固に直方体の形状を保つことができ、かつ、高い導通性を実現できる。 Furthermore, the six sides of the wireless power transmission system 19 can firmly maintain the shape of a rectangular parallelepiped by fixing each side with a frame made of aluminum, and realize high conductivity.

無線電力伝送システム19の内寸はx軸方向に473mm、y軸方向に470mm、z軸方向に800mmとする。無線電力伝送システム19のうち送電器5と受電器11および障害物18が配置されている面を面21とし、この面21がアルミニウムの板で構成されているとする。例えば、障害物18は4本の金属柱22、23、24、25および2枚の金属板26、27からなる。4本の金属柱22、23、24、25は金属板26、27の四角とそれぞれ導通するように固定されている。例えば、金属柱22、23、24、25はいずれもアルミニウムからなり、サイズはx軸方向に30mm、y軸方向に30mm、z軸方向に400mmとする。金属板26、27もいずれもアルミニウムからなり、サイズをx軸方向に400mm、y軸方向に300mm、厚みを2mmとする。金属板26と固定されていない金属柱22、23、24、25の端は面21と電気的に導通するように固定されている。金属柱22、23、24、25の他端と面21の接続面からz軸方向に100mmの位置に金属棚27が金属柱22、23、24、25の一端と電気的に導通するように固定される。金属板26、27の中点と面21の中点が一致するように配置される。 The internal dimensions of the wireless power transmission system 19 are 473 mm in the x-axis direction, 470 mm in the y-axis direction, and 800 mm in the z-axis direction. It is assumed that the surface of the wireless power transmission system 19 on which the power transmitter 5, the power receiver 11 and the obstacle 18 are arranged is a surface 21, and the surface 21 is made of an aluminum plate. For example, the obstacle 18 is composed of four metal columns 22, 23, 24, 25 and two metal plates 26, 27. The four metal columns 22, 23, 24, 25 are fixed so as to be electrically connected to the squares of the metal plates 26, 27, respectively. For example, each of the metal columns 22, 23, 24, and 25 is made of aluminum and has a size of 30 mm in the x-axis direction, 30 mm in the y-axis direction, and 400 mm in the z-axis direction. Each of the metal plates 26 and 27 is also made of aluminum and has a size of 400 mm in the x-axis direction, 300 mm in the y-axis direction, and a thickness of 2 mm. The ends of the metal columns 22, 23, 24, 25 that are not fixed to the metal plate 26 are fixed so as to be electrically connected to the surface 21. The metal shelves 27 are electrically connected to the ends of the metal columns 22, 23, 24, 25 at a position of 100 mm in the z-axis direction from the connection surface between the other ends of the metal columns 22, 23, 24, 25 and the surface 21. Fixed. The metal plates 26, 27 are arranged so that the midpoint of the metal plates 26, 27 coincides with the midpoint of the surface 21.

図3に示す送電器5の誘電体基板9は比誘電率3.4の誘電体基板とし、その上に銅からなるマイクロストリップラインで導体線8を表現することで実現する。例えば、誘電体基板9のサイズはx軸方向に100mm、y軸方向に20mm、導体線8は幅2mm、長さ80mmで、誘電体基板9の短辺の中心と導体線の幅の中心が一致するように配置される。導体柱10は銅で実現する。例えば、導体線8の一端に径1mmの穴をあけ、同径で長さが20mmの導体柱10を差し込み、はんだで固定する。送電器5の導体柱10の一端は、例えば、図8に示すようにパネルマウントタイプのSMAコネクタ28の中心導体29にはんだづけし、外導体30をねじおよびナットにより電磁波反射板4あるいは障害物18に固定することができる。なお、送電器は前記誘電体基板9を透明薄膜とし、前記導体線8を透明電極により構成することで、視界を遮ることなく同等の性能を維持できる。 The dielectric substrate 9 of the power transmitter 5 shown in FIG. 3 is a dielectric substrate having a relative dielectric constant of 3.4, and the conductor lines 8 are expressed by microstrip lines made of copper thereon. For example, the size of the dielectric substrate 9 is 100 mm in the x-axis direction, 20 mm in the y-axis direction, the conductor line 8 has a width of 2 mm and a length of 80 mm, and the center of the short side of the dielectric substrate 9 and the center of the width of the conductor line are. Arranged to match. The conductor column 10 is made of copper. For example, a hole having a diameter of 1 mm is made at one end of the conductor wire 8, a conductor column 10 having the same diameter and a length of 20 mm is inserted, and fixed by soldering. For example, one end of the conductor post 10 of the power transmitter 5 is soldered to the center conductor 29 of the panel mount type SMA connector 28 as shown in FIG. 8, and the outer conductor 30 is screwed and nuted to the electromagnetic wave reflection plate 4 or the obstacle 18. Can be fixed to. In the power transmitter, the dielectric substrate 9 is a transparent thin film and the conductor wire 8 is a transparent electrode, so that the same performance can be maintained without blocking the view.

図4に示す受電器11の導体線12、15は、例えば、その形状を保持する目的で比誘電率3.4の誘電体基板上に銅からなるマイクロストリップラインで表現し、導体柱13、16はともにアルミニウムで実現する。導体線12、15は105mmと同じ長さで、開放端から40mmで直角に曲がり、25mmの長さを構成し、さらに直角に曲がり40mmの長さをもつ。導体線12、15の他端に径1mmの穴をあけ、同径で長さが10mmの導体柱13、16の一端をそれぞれ差し込み、はんだで固定する。導体柱12、15の他端は、例えば、受電回路を形成した回路基板上にはんだで固定することで受電部を実現する。なお、図4では受電器の導体線はコの字型となっているが、該導体線の形状はこれに限らず、対称に対向して配置されていればよい。 The conductor wires 12 and 15 of the power receiver 11 shown in FIG. 4 are represented by, for example, a microstrip line made of copper on a dielectric substrate having a relative dielectric constant of 3.4 for the purpose of maintaining the shape, and the conductor pillars 13 and Both 16 are realized by aluminum. The conductor wires 12 and 15 have the same length as 105 mm, are bent at a right angle of 40 mm from the open end to form a length of 25 mm, and are further bent at a right angle and have a length of 40 mm. A hole having a diameter of 1 mm is formed in the other ends of the conductor wires 12 and 15, and one ends of conductor columns 13 and 16 having the same diameter and a length of 10 mm are inserted and fixed by soldering. The other ends of the conductor columns 12 and 15 are fixed to a circuit board on which a power receiving circuit is formed, for example, by soldering to realize a power receiving unit. Although the conductor wire of the power receiver is U-shaped in FIG. 4, the shape of the conductor wire is not limited to this and may be symmetrically arranged.

例えば、前記送電器5は無線電力伝送システム19のx座標が198mm座標が235mm、z座標が800mmの位置、すなわち電磁波反射板4上に、前記受電器11は障害物18の金属板26において、送電器5と向かい合う面にx座標が218mm、y座標が223.5mmの位置にそれぞれ取り付ける。ここで、送電器5と受電器11の座標位置は中心導体14および導体柱13、16を基準として定められるものとする。送電器5と受電器11は互いに見通し内に位置されている。 For example, the power transmitter 5 is at a position where the x coordinate of the wireless power transmission system 19 is 198 mm, the coordinate is 235 mm, and the z coordinate is 800 mm, that is, on the electromagnetic wave reflection plate 4, and the power receiver 11 is the metal plate 26 of the obstacle 18, It is attached to the surface facing the power transmitter 5 at a position where the x coordinate is 218 mm and the y coordinate is 223.5 mm. Here, it is assumed that the coordinate positions of the power transmitter 5 and the power receiver 11 are determined on the basis of the center conductor 14 and the conductor columns 13 and 16. The power transmitter 5 and the power receiver 11 are positioned within the line of sight of each other.

前記障害物18を含まない無線電力伝送システム1の基底共振周波数は、その内寸から計算式(数2)より求められる。 The base resonance frequency of the wireless power transmission system 1 that does not include the obstacle 18 can be obtained from the internal dimensions by the calculation formula (Equation 2).

Figure 2020089209
Figure 2020089209

一方、前記障害物18を含んだ無線電力伝送システム19は前記無線電力伝送システム1から共振周波数は変化する。この共振周波数は電磁界シミュレーションなどを用いることで構造から容易に計算することができる。例えば、図3に示す構造は453MHzとなる。よって、電力伝送に用いる周波数は453MHzとなる。 On the other hand, the resonance frequency of the wireless power transmission system 19 including the obstacle 18 changes from that of the wireless power transmission system 1. This resonance frequency can be easily calculated from the structure by using an electromagnetic field simulation or the like. For example, the structure shown in FIG. 3 is 453 MHz. Therefore, the frequency used for power transmission is 453 MHz.

このような構成において、送電器5と受電器11を含む送受電システムがインピーダンス整合された状態での電力伝送効率は97%となる。 In such a configuration, the power transmission efficiency is 97% when the power transmission/reception system including the power transmission device 5 and the power reception device 11 is impedance-matched.

一方、送電器5の見通し外となるように受電器11を、例えば、図9に示すように遮蔽物11の金属棚27における金属棚26と向かい合う面上のx座標85mm、y座標135mmとなる見通し外の位置に移動させた場合のインピーダンス整合後の電力伝送効率は90%となる。 On the other hand, the power receiver 11 is located outside the line-of-sight of the power transmitter 5, for example, the x-coordinate of 85 mm and the y-coordinate of 135 mm on the surface of the metal shelf 27 of the shield 11 facing the metal shelf 26 as shown in FIG. The power transmission efficiency after impedance matching when moved to a position outside the line of sight is 90%.

これにより、受電器11に接続された、例えば、温度センサや照度センサ、湿度センサなどのセンサモジュールといった電子機器を駆動させることができる。 As a result, it is possible to drive an electronic device such as a sensor module such as a temperature sensor, an illuminance sensor, or a humidity sensor, which is connected to the power receiver 11.

なお、前記受電器11の2つの金属線12、15を保持する誘電体基板9の間は仮想グラウンド面となるため、前記誘電体基板9の間に回路を挿入することも可能となる。例えば、図10に示すように整流回路31と無線通信機能を含むセンサモジュール32からなる無線センサモジュール33を配置する。 Since a virtual ground plane is provided between the dielectric substrates 9 holding the two metal wires 12 and 15 of the power receiver 11, it is possible to insert a circuit between the dielectric substrates 9. For example, as shown in FIG. 10, a wireless sensor module 33 including a rectifier circuit 31 and a sensor module 32 having a wireless communication function is arranged.

このような構成において、前記受電器11の出力部となる導体柱13、16に前記整流回路31を接続することで前記無線センサモジュール33は直流電力を得ることができる。例えば、前記整流回路31に10kΩの負荷抵抗を接続した場合、負荷抵抗に印加される電圧から直流出力電力を測定できる。直流出力電力と送電器5に入力した電力の比から電力伝送効率が算出可能である。 In such a configuration, the wireless sensor module 33 can obtain DC power by connecting the rectifier circuit 31 to the conductor columns 13 and 16 that serve as the output section of the power receiver 11. For example, when a load resistance of 10 kΩ is connected to the rectifier circuit 31, the DC output power can be measured from the voltage applied to the load resistance. The power transmission efficiency can be calculated from the ratio of the DC output power and the power input to the power transmitter 5.

また、例えば、前記受電器11を前記障害物18の金属板26において、前記送電器5と向かい合う面にx座標が198mm座標が235mmの位置に配置し、前記整流流回路31を倍電圧整流回路で構成した場合、送電器5に15.9dBmを入力すると電力伝送効率は49.0%となる。見通し外となる前記金属板27上の同位置における電力伝送効率は36.9%となる。前記金属板26のx座標85mm、y座標135mmでは20.3%、前記金属板27の同位置では10.9%となる。 Further, for example, the power receiver 11 is disposed on the metal plate 26 of the obstacle 18 on the surface facing the power transmitter 5 at a position where the x coordinate is 198 mm and the coordinate is 235 mm, and the rectifying current circuit 31 is the double voltage rectifying circuit. In the case of the above configuration, if 15.9 dBm is input to the power transmitter 5, the power transmission efficiency will be 49.0%. The power transmission efficiency at the same position on the metal plate 27 outside the line of sight is 36.9%. When the x coordinate of the metal plate 26 is 85 mm and the y coordinate is 135 mm, the percentage is 20.3%, and the same position of the metal plate 27 is 10.9%.

また、例えば、前記センサモジュール32を照度センサとし、無線通信機能をZigbeeとした場合、前記送電器5と向かい合う面にx座標が198mm座標が235mmの位置に配置した場合、見通し外となる前記金属板27上の同位置に配置した場合、前記金属板26のx座標85mm、y座標135mmに配置した場合、および前記金属板27の同位置に配置した場合でも前記無線センサモジュール33を駆動できる。さらに電磁波反射板4をすべて金属網で表現することにより、前記無線センサモジュール33からの情報を前記無線電力伝送システム1の外部で受信することができる。
Further, for example, when the sensor module 32 is an illuminance sensor and the wireless communication function is Zigbee, when the x-coordinate is 198 mm and the coordinate is 235 mm at a position facing the power transmitter 5, the metal is out of sight. The wireless sensor module 33 can be driven even when arranged at the same position on the plate 27, arranged at the x coordinate of 85 mm and the y coordinate of 135 mm of the metal plate 26, and arranged at the same position of the metal plate 27. Furthermore, by expressing the electromagnetic wave reflection plate 4 entirely by a metal net, the information from the wireless sensor module 33 can be received outside the wireless power transmission system 1.

1、19 無線電力伝送システム
2 送電部
3 受電部
4 電磁波反射板
5、送電器
6、可変整合回路
7、高周波電源
8、12、15 金属線
9、誘電体基板
10、13、16 導体柱
11、受電器
14、17 受電器部品
18、障害物
20、鋼線
21、面
22、23、24、25 金属柱
26、27 金属板
28、SMAコネクタ
29、中心導体
30、外導体
31、整流回路
32、センサモジュール
33、無線センサモジュール

1, 19 Wireless Power Transmission System 2 Power Transmitter 3 Power Receiver 4 Electromagnetic Wave Reflector 5, Power Transmitter 6, Variable Matching Circuit 7, High Frequency Power Supplies 8, 12, 15 Metal Wire 9, Dielectric Substrate 10, 13, 16 Conductor Column 11 , Power receiver 14, 17 power receiver component 18, obstacle 20, steel wire 21, surface 22, 23, 24, 25 metal column 26, 27 metal plate 28, SMA connector 29, center conductor 30, outer conductor 31, rectifier circuit 32, sensor module 33, wireless sensor module

Claims (3)

適宜な比透磁率を有する材料で形成された電磁波反射部材によって全体が包囲された構造体と、該構造体の内部に設置された少なくとも1つの送電部および少なくとも1つの受電部とを備え、
前記送電部は、前記構造体本体を導波路共振器と想定する場合における共振周波数による電磁波を送受信するものであり、前記受電部は第一の受電器および第二の受電器を備えてなるものであって、
前記送電部は、一方が開放端となる線状の金属で構成される導体線と、該導体線を保持する誘電体基板と、少なくとも1つ以上の導体柱と、整合回路とを電気的に接続してなるものであり、
前記第一の受電器は、一方が開放端となる線状の第一の導体線と、該第一の導体線の開放端でない他端において少なくとも1つ以上の第一の導体柱とを電気的に接続してなるものであり、
前記第二の受電器は、第一の導体線と対向配置された第二の導体線と、該第二の導体線の開放端でない他端において少なくとも1つ以上の第二の導体柱とを電気的に接続してなり、前記第一の導体柱の軸線と第二の導体柱の軸線とを同一直線上に対向して配置した場合において、該直線に直交する仮想平面を対称面として第二の導体線が前記第一の導体線に対称となるものであり、
前記送電部と受電部との間における伝送路間でインピーダンス整合させていることを特徴とする無線電力伝送システム。
A structure body entirely surrounded by an electromagnetic wave reflection member formed of a material having an appropriate relative magnetic permeability, and at least one power transmission unit and at least one power reception unit installed inside the structure body,
The power transmission unit transmits/receives an electromagnetic wave having a resonance frequency when the structure body is assumed to be a waveguide resonator, and the power reception unit includes a first power receiver and a second power receiver. And
The power transmission unit electrically includes a conductor wire made of a linear metal, one of which is an open end, a dielectric substrate that holds the conductor wire, at least one or more conductor posts, and a matching circuit. It is made by connecting,
The first power receiver electrically connects a linear first conductor wire, one of which is an open end, and at least one or more first conductor pillars at the other end which is not the open end of the first conductor wire. Are connected together,
The second power receiver includes a second conductor wire arranged to face the first conductor wire and at least one second conductor pillar at the other end which is not an open end of the second conductor wire. When electrically connected, the axis of the first conductor column and the axis of the second conductor column are arranged to face each other on the same straight line, and a virtual plane orthogonal to the straight line is used as a plane of symmetry. The second conductor wire is symmetrical to the first conductor wire,
A wireless power transmission system, wherein impedance matching is performed between transmission lines between the power transmission unit and the power reception unit.
前記送電部は、前記送電器の導体線の長さと導体柱の長さとを合せた長さが前記構造体固有の共振周波数の波長の1/4より短く、かつ容量性素子として動作するものであることを特徴とする請求項1に記載の無線電力伝送システム。 The power transmission unit is such that the combined length of the conductor wire and the conductor column of the power transmitter is shorter than 1/4 of the wavelength of the resonance frequency peculiar to the structure, and operates as a capacitive element. The wireless power transmission system according to claim 1, wherein: 前記受電部は、前記第一の受電器および第二の受電器それぞれの導体線の長さと導体柱の長さとを合せた長さが、ともに前記構造体固有の共振周波数の波長の1/4より短く、かつ容量性素子として動作するものであることを特徴とする請求項1に記載の無線電力伝送システム。

In the power receiving unit, the total length of the conductor wires of the first power receiver and the second power receiver and the length of the conductor column are both ¼ of the wavelength of the resonance frequency peculiar to the structure. The wireless power transmission system according to claim 1, wherein the wireless power transmission system is shorter and operates as a capacitive element.

JP2018225050A 2018-11-30 2018-11-30 Transmitter and receiver and wireless power transmission system using the same Active JP7307933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018225050A JP7307933B2 (en) 2018-11-30 2018-11-30 Transmitter and receiver and wireless power transmission system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018225050A JP7307933B2 (en) 2018-11-30 2018-11-30 Transmitter and receiver and wireless power transmission system using the same

Publications (2)

Publication Number Publication Date
JP2020089209A true JP2020089209A (en) 2020-06-04
JP7307933B2 JP7307933B2 (en) 2023-07-13

Family

ID=70909331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018225050A Active JP7307933B2 (en) 2018-11-30 2018-11-30 Transmitter and receiver and wireless power transmission system using the same

Country Status (1)

Country Link
JP (1) JP7307933B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113629897A (en) * 2021-07-29 2021-11-09 同济大学 Wireless charging system with improved safety based on composite cavity structure
CN113960125A (en) * 2021-09-23 2022-01-21 西北大学 Passive sensor for monitoring soil humidity in real time and application thereof
WO2023002906A1 (en) * 2021-07-19 2023-01-26 株式会社村田製作所 Wireless power transmission system and power receiving device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005303528A (en) * 2004-04-08 2005-10-27 Hidekazu Ogawa Radio wave polarization conversion resonance reflector, radio wave polarization conversion resonance reflecting apparatus, radio communication system, metal-adaptive radio ic tag, article and rfid system
JP2013513187A (en) * 2009-12-07 2013-04-18 エムイーピーエス、リアル‐タイム、インコーポレイテッド System and method for identifying tagged articles
JP2017188985A (en) * 2016-04-01 2017-10-12 国立大学法人豊橋技術科学大学 Wireless power transmission system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005303528A (en) * 2004-04-08 2005-10-27 Hidekazu Ogawa Radio wave polarization conversion resonance reflector, radio wave polarization conversion resonance reflecting apparatus, radio communication system, metal-adaptive radio ic tag, article and rfid system
JP2013513187A (en) * 2009-12-07 2013-04-18 エムイーピーエス、リアル‐タイム、インコーポレイテッド System and method for identifying tagged articles
JP2017188985A (en) * 2016-04-01 2017-10-12 国立大学法人豊橋技術科学大学 Wireless power transmission system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023002906A1 (en) * 2021-07-19 2023-01-26 株式会社村田製作所 Wireless power transmission system and power receiving device
CN113629897A (en) * 2021-07-29 2021-11-09 同济大学 Wireless charging system with improved safety based on composite cavity structure
CN113629897B (en) * 2021-07-29 2023-11-24 同济大学 Wireless charging system based on composite cavity structure and with improved safety
CN113960125A (en) * 2021-09-23 2022-01-21 西北大学 Passive sensor for monitoring soil humidity in real time and application thereof
CN113960125B (en) * 2021-09-23 2023-12-08 西北大学 Passive sensor for monitoring soil humidity in real time and application thereof

Also Published As

Publication number Publication date
JP7307933B2 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
JP6819753B2 (en) Antenna device and wireless device
KR100836213B1 (en) Antenna, radio device, method of designing antenna, and method of measuring operating frequency of antenna
US9660340B2 (en) Multiband antenna
US10075021B2 (en) Wireless power transmission system for transmitting alternating-current power wirelessly
JP7307933B2 (en) Transmitter and receiver and wireless power transmission system using the same
JP2012231266A (en) Antenna device
JP2011155630A (en) Antenna module
JP2014150526A (en) Antenna assembly and communication device comprising the same
TWI493789B (en) An antenna
CN106605335B (en) Antenna and electric device
TW201533973A (en) Portable wireless apparatus
JP2011124834A (en) Antenna apparatus and wireless terminal apparatus
JP6973781B2 (en) Wireless power transmission system
CN102593558B (en) Electromagnetic coupler and carried the information communication device of this electromagnetic coupler
JP6782953B2 (en) Wireless power transmission system
CN105098371B (en) A kind of electronic equipment and its antenna assembly
JP6156872B2 (en) Wireless power transmission system
JP2000188506A (en) Antenna system
JP5556716B2 (en) Electromagnetic coupler and wireless terminal equipped with the same
TWM516785U (en) Antenna
JP2002135028A (en) Chip antenna
WO2014203967A1 (en) Antenna device and wireless device provided therewith
KR20180053862A (en) Hybrid antenna
JP2006246228A (en) Antenna device and radio communications system
WO2015008483A1 (en) Wireless apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230626

R150 Certificate of patent or registration of utility model

Ref document number: 7307933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150