WO2014203967A1 - Antenna device and wireless device provided therewith - Google Patents

Antenna device and wireless device provided therewith Download PDF

Info

Publication number
WO2014203967A1
WO2014203967A1 PCT/JP2014/066290 JP2014066290W WO2014203967A1 WO 2014203967 A1 WO2014203967 A1 WO 2014203967A1 JP 2014066290 W JP2014066290 W JP 2014066290W WO 2014203967 A1 WO2014203967 A1 WO 2014203967A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiating element
antenna device
feeding
substrate
medium
Prior art date
Application number
PCT/JP2014/066290
Other languages
French (fr)
Japanese (ja)
Inventor
龍太 園田
稔貴 佐山
井川 耕司
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2015522977A priority Critical patent/JPWO2014203967A1/en
Publication of WO2014203967A1 publication Critical patent/WO2014203967A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present invention relates to an antenna device and a wireless device including the antenna device (for example, a portable wireless device such as a mobile phone).
  • a wireless device including the antenna device (for example, a portable wireless device such as a mobile phone).
  • the antenna conductor (radiation conductor) disclosed in Patent Document 1 is formed on the exterior surface of the housing and is in physical contact with a power supply pin provided on the substrate (see FIG. 2 of Patent Document 1). ).
  • a power supply pin When such a power supply pin is used, a special connection terminal having a mechanism for mitigating the impact, such as a spring pin connector, is used in order to improve reliability when an external impact is applied.
  • a special connection terminal having a mechanism for mitigating the impact, such as a spring pin connector, is used in order to improve reliability when an external impact is applied.
  • the non-contact power feeding method can be said to be a structure resistant to impact.
  • a brittle material such as glass or ceramics
  • an antenna is formed on the housing, if power is supplied with a power supply pin or the like, it will become a point on the housing when a strong impact is applied from the outside. When the stress is concentrated, the housing may be damaged and the antenna may not operate.
  • non-contact power feeding can be said to be very effective.
  • an object of the present invention is to provide an antenna device and a wireless device including the antenna device that can realize non-contact power feeding having high position robustness with respect to the positional relationship with the radiation conductor.
  • FIG. 4 Plan view showing an example of an analysis model of an antenna device
  • a perspective view showing an example of an analysis model of an antenna device A perspective view showing an example of an analysis model of an antenna device
  • FIG. 4 is a plan view of an analysis model of the antenna device of FIG. Partial enlarged view of FIG.
  • the feeding point 38 is a feeding part connected to a predetermined transmission line or feeding line using the ground plane 70.
  • the predetermined transmission line include a microstrip line, a strip line, and a coplanar waveguide with a ground plane (a coplanar waveguide having a ground plane disposed on the surface opposite to the conductor surface).
  • the feeder line include a feeder line and a coaxial cable.
  • the power feeding element 37 is connected to, for example, a power feeding circuit (for example, an integrated circuit such as an IC chip (not shown)) mounted on the substrate 80 via a power feeding point 38.
  • the feed element 37 and the feed circuit may be connected via a plurality of different types of transmission lines and feed lines.
  • the substrate 80 is a substrate whose base material is a dielectric, a magnetic material, or a mixture of a dielectric and a magnetic material.
  • the dielectric include resin, glass, glass ceramics, LTCC (Low Temperature Co-Fired Ceramics), and alumina.
  • LTCC Low Temperature Co-Fired Ceramics
  • alumina As a specific example of a mixture of a dielectric and a magnetic material, it is sufficient to have either a transition element such as Fe, Ni, or Co, or a metal or oxide containing a rare earth element such as Sm or Nd. Examples thereof include crystal ferrite, spinel ferrite (Mn—Zn ferrite, Ni—Zn ferrite, etc.), garnet ferrite, permalloy, and Sendust (registered trademark).
  • the substrate 80 includes a ground plane 70 and a feeding point 38 with the ground plane 70 as a ground reference.
  • the radiating element 31 is a linear antenna conductor portion arranged along the outer edge portion 71 and extends in the Y-axis direction parallel to the outer edge portion 71 with a predetermined shortest distance D1 in the X-axis direction, for example.
  • the conductor portion 32 is provided.
  • the linear radiation element 31 is illustrated in FIG. 1, the radiation element 31 may have other shapes such as an L shape and a loop shape.
  • the radiating element 31 has the conductor portion 32 along the outer edge portion 71, for example, the directivity of the antenna device 1 can be easily controlled.
  • the feeding element 37 is an element that is provided in the medium 41 and is connected to a feeding point 38 that is connected to a transmission line such as a microstrip line.
  • the feeding element 37 feeds the radiation element 31 in a non-contact manner via the feeding unit 36.
  • FIG. 1 shows a linear conductor extending in a direction perpendicular to the outer edge portion 71 of the ground plane 70 and parallel to the X axis, and a linear shape extending parallel to the outer edge portion 71 parallel to the Y axis.
  • a power feeding element 37 formed in an L shape by a conductor is illustrated. In the case of FIG. 1, the power feeding element 37 extends in the X-axis direction starting from the power feeding point 38, is then bent in the Y-axis direction, and extends to an end portion 39 extending in the Y-axis direction.
  • the radiating element 31 and the feeding element 37 overlap in a plan view in the Z-axis direction, but if the feeding element 37 is separated from the radiating element 31 by a non-contactable power feeding distance, It does not necessarily have to overlap in plan view in the Z-axis direction. For example, you may overlap in planar view in arbitrary directions, such as an X-axis or a Y-axis direction.
  • Electromagnetic coupling is coupling utilizing the resonance phenomenon of electromagnetic fields.
  • non-patent literature A. Kurs, et al, “Wireless Power Transfer via Strongly Coupled Magnetic Resonances,” Science Express3. 5834, pp. 83-86, Jul. 2007.
  • Electromagnetic coupling is also referred to as electromagnetic resonance coupling or electromagnetic resonance coupling.
  • electromagnetic resonance coupling When two resonators that resonate at the same frequency are brought close to each other and one of the resonators resonates, a near field (non-radiation) is created between the resonators. This is a technique for transmitting energy to the other resonator via coupling in the field region.
  • a structure strong against impact can be obtained by electromagnetically coupling the feeding element 37 and the radiating element 31. That is, by using electromagnetic field coupling, power can be supplied to the radiating element 31 using the power feeding element 37 without physically contacting the power feeding element 37 and the radiating element 31, so that a contact power feeding method that requires physical contact is adopted. In comparison, a structure strong against impact can be obtained.
  • the radiating element at the operating frequency is changed with respect to the change in the separation distance (coupling distance) between the feeding element 37 and the radiating element 31 as compared with the case of feeding by capacitive coupling.
  • the operation gain (antenna gain) 31 is unlikely to decrease.
  • the operating gain is an amount calculated by the product of the radiation efficiency of the antenna and the return loss, and is an amount defined as the efficiency of the antenna with respect to input power. Accordingly, by electromagnetically coupling the feeding element 37 and the radiating element 31, it is possible to increase the degree of freedom in determining the arrangement positions of the feeding element 37 and the radiating element 31, and to improve the position robustness.
  • the power feeding unit 36 is configured to have the entire length of the radiating element 31 from a portion (in this case, the central portion 90) having the lowest impedance at the resonance frequency of the fundamental mode of the radiating element 31. It is good to be located in the site
  • the total length of the radiating element 31 corresponds to L ⁇ b> 32, and the power feeding portion 36 is located on the end portion 34 side with respect to the central portion 90.
  • the electrical length giving the fundamental mode of resonance of the feeding element 37 is Le37
  • the electrical length giving the fundamental mode of resonance of the radiating element 31 is Le31
  • the feeding element 37 or the radiating element at the resonance frequency f 1 of the fundamental mode of the radiating element 31 When the wavelength on 31 is ⁇ , Le37 is (3/8) ⁇ ⁇ or less, and Le31 is (3/8) ⁇ ⁇ when the fundamental mode of resonance of the radiating element 31 is a dipole mode.
  • the resonance mode of the radiating element 31 is the loop mode
  • the ratio is preferably (7/8) ⁇ ⁇ or more and (9/8) ⁇ ⁇ or less.
  • the physical length L37 of the power feeding element 37 is a physical length that gives Le37, and is equal to Le37 in an ideal case that does not include other elements.
  • L37 is preferably greater than zero and less than or equal to Le37.
  • L37 can be shortened (size reduced) by using a matching circuit such as an inductor.
  • the Le31 is (3/8) ⁇ ⁇ or more (5/8) ⁇ or less is preferred, (7/16) ⁇ ⁇ or more (9/16) ⁇ ⁇ or less is more preferred, and (15/32) ⁇ ⁇ or more (17/32) ⁇ ⁇ or less is particularly preferred.
  • the Le31 is preferably (3/8) ⁇ ⁇ ⁇ m or more and (5/8) ⁇ ⁇ ⁇ m or less, and (7/16) ⁇ ⁇ ⁇ m or more (9/16).
  • L31 is (3/8) ⁇ ⁇ g2 or more and (5/8) ⁇ ⁇ g2 or less, and the fundamental mode of resonance of the radiating element is a loop mode. In this case, it is (7/8) ⁇ ⁇ g2 or more and (9/8) ⁇ ⁇ g2 or less.
  • the physical length L31 of the radiating element 31 is the physical length that gives Le31, and is equal to Le31 in an ideal case that does not include other elements. Even if L31 is shortened by using a matching circuit such as an inductor, it exceeds zero, preferably Le31 or less, and particularly preferably 0.4 times or more and 1 time or less of Le31.
  • the length of L37 uses the feed element 37 as a radiation conductor.
  • the design frequency of the power feeding element 37 is 3.5 GHz, it is 20 mm.
  • the length of L31 is the design frequency of the radiating element 31. 34 mm when the frequency is 2.2 GHz.
  • the feeding element 37 may function as a radiating element as described above.
  • the radiating element 31 is a radiating conductor that functions as, for example, a ⁇ / 2 dipole antenna by being fed by the feeding element 37 in a non-contact manner through electromagnetic coupling by the feeding portion 36.
  • the feed element 37 is a linear feed conductor that can feed power to the radiating element 31, and functions as a monopole antenna (for example, a ⁇ / 4 monopole antenna) by being fed at a feed point 38. It is a radiation conductor that can also be used.
  • L37 is (1/8) ⁇ ⁇ g3 or less (3/8) ⁇ ⁇ g3 or less, preferably (3/16) ⁇ ⁇ g3 or more (5/16) ⁇ ⁇ g3 or less.
  • the physical length L37 of the feeding element 37 is a physical length that gives Le37, and is equal to Le37 in an ideal case that does not include other elements.
  • L37 is preferably greater than zero and less than or equal to Le37.
  • L37 can be shortened (size reduced) by using a matching circuit such as an inductor.
  • the shortest distance H4 between the feeding element 37 and the radiating element 31 is 0.2 ⁇ ⁇ 0 or less (more preferably, 0.1 ⁇ ⁇ 0 or less, more preferably 0.05 ⁇ ⁇ 0 or less). Disposing the feeding element 37 and the radiating element 31 by such a shortest distance H4 is advantageous in that the operating gain of the radiating element 31 is improved.
  • the shortest distance H4 is a linear distance between the closest parts in the feeding element 37 and the radiating element 31. Further, as long as the feeding element 37 and the radiating element 31 are electromagnetically coupled to each other, the feeding element 37 and the radiating element 31 may or may not intersect when viewed from an arbitrary direction, and the intersection angle may be an arbitrary angle. Good.
  • the distance that the feeding element 37 and the radiating element 31 run in parallel at the shortest distance H4 is preferably 3/8 or less of the physical length of the radiating element 31. More preferably, it is 1/4 or less, and more preferably 1/8 or less.
  • the position where the shortest distance H4 is located is a portion where the coupling between the feeding element 37 and the radiating element 31 is strong, and if the parallel distance at the shortest distance H4 is long, the radiating element 31 has a strong and low impedance portion. Since they are coupled, impedance matching may not be achieved. Therefore, in order to strongly couple only with a portion where the change in impedance of the radiating element 31 is small, it is advantageous in terms of impedance matching that the distance of parallel running at the shortest distance H4 is short.
  • a transition element such as Fe, Ni, or Co
  • a metal or oxide containing a rare earth element such as Sm or Nd.
  • examples thereof include crystal ferrite, spinel ferrite (Mn—Zn ferrite, Ni—Zn ferrite, etc.), garnet ferrite, permalloy, and Sendust (registered trademark).
  • the product P2 of the relative permittivity ⁇ r of the substrate 80 and the relative permeability ⁇ r of the substrate 80 is, for example, 2 or more and 5 or less.
  • the product P1 of the relative permittivity ⁇ r1 of the medium 41 and the relative permeability ⁇ r1 of the medium 41 is preferably 6 or more, and more preferably 10 or more.
  • the product P1 is preferably 1000 or less, more preferably 400 or less in terms of manufacturing or functioning as an antenna.
  • a chip component 40 including a power feeding element 37 and a medium 41 is mounted on a substrate 80.
  • the power feeding element 37 in contact with the medium 41 can be easily mounted on the substrate 80.
  • the substrate 80 has a transmission line provided with a strip conductor 82 connected to the feeding point 38.
  • the strip conductor 82 is a signal line formed on the surface of the substrate 80 so that the substrate 80 is sandwiched between the strip conductor 82 and the ground plane 70, for example.
  • the positions of the feeding element 37, the radiating element 31, and the ground plane 70 in the height direction parallel to the Z-axis may be different from each other, or all or only a part thereof may be the same.
  • FIG. 4 is a perspective view partially showing an example of the antenna device 3 including the chip component 47 provided with one feeding element 37 and one radiating element 31C. Both the feeding element 37 and the radiating element 31 ⁇ / b> C are in contact with the medium 41.
  • the antenna device 3 includes a substrate 80, a chip component 47, and a radiating element 31D arranged away from the radiating element 31C.
  • the radiating element 31 ⁇ / b> D arranged away from the chip component 47 is a linear conductor that is not in contact with the medium 41.
  • the power feeding element 37 is connected to the power feeding point 38 via the electrode 44 and the wiring 43 of the chip component 47.
  • the thickness (height) in the Z-axis direction was set to 0.018 mm.
  • the shape of the ground plane 70 was a rectangle with an X-axis direction of 30 mm and a Y-axis direction of 50 mm, and the substrate 80 was a rectangle with an X-axis direction of 30 mm and a Y-axis direction of 60 mm. In FIG.
  • H1 is set to 0.8 mm
  • H2 is set to 1.5 mm
  • H3 is set to 1 mm.
  • the shortest distance H4 between the feeding element 37 and the radiating element 31 was set to 0.5 mm, and the feeding element 37 and the radiating element 31 were electromagnetically coupled.
  • FIG. 5 is an enlarged perspective view of a part of the analysis model when the antenna device 1 having the configuration shown in FIGS. L41, L42, and L43 are assumed to be horizontally long, vertically long, and high, respectively, in the medium 41 of the chip component 40, and run in parallel to a part of the conductor portion of the feed element 37 (the conductor portion 32 of the radiating element 31).
  • the length L34 (see FIG. 1) of the portion) was set to the same length as the horizontal length L41.
  • FIG. 7 The S11 characteristic and the correlation coefficient characteristic when the antenna apparatus 2 having the form shown in FIG. 7 is a plan view of an analysis model of the antenna device 2 formed symmetrically, FIG. 8 is a partially enlarged view of FIG. 7, and FIG. 9 shows the positional relationship of each component of the antenna device 3. It is a figure which shows an example typically.
  • FIG. 10 shows the S11 and S21 characteristics of the antenna device 2.
  • FIG. 11 is a characteristic diagram of the correlation coefficient of the antenna device 2. As shown in FIGS. 10 and 11, the correlation coefficient decreases to near zero near the resonance frequency of 2.5 GHz. Therefore, the antenna device 2 functions as a MIMO antenna even if a plurality of feeding elements are in the chip part.
  • FIG. 15 shows the S11 characteristic of the antenna device 2 when there is no radiating element 31C, and shows a case where the feeding element 37 feeds only the radiating element 31D.
  • the antenna device 3 is excited at the resonance frequency of the fundamental mode and the resonance frequency of the secondary mode of the radiating element 31D, and functions as a multiband antenna. In this way, the power feeding element 37 in the chip component can feed power to the radiating element 31D that is separated from the chip component.
  • FIG. 16 shows the S11 characteristic of the antenna device 2 when the radiating element 31C is present, and shows a case where the feeding element 37 feeds both the radiating element 31C and the radiating element 31D.
  • the antenna device 3 excites not only the resonance frequency of the fundamental mode and the resonance frequency of the secondary mode of the radiating element 31D but also the resonance frequency of the fundamental mode of the radiating element 31C.
  • the chip component may include a radiating element as well as a feeding element.
  • First dipole antenna element 20
  • Second dipole antenna elements 31, 31A, 31B, 31C, 31D Radiating element 32
  • Conductor portion 36
  • Feeding portion 37
  • Feeding elements 38, 38A, 38B
  • Feeding point 40
  • Chip component 41
  • Medium 42
  • Surface 43, 43A, 43B Wiring 44, 44A, 44B
  • Electrode 45 Matching circuit 70 Ground plane 71, 72 Outer edge 73 Corner 80, 110 Substrate 81 Land 82 Strip conductor 90
  • Central part 100 Wireless communication apparatus

Abstract

An antenna device provided with the following: a substrate provided with a feed point; a feed element connected to said feed point; a radiating element to which said feed element supplies power in a contactless manner; and a medium in contact with the feed element. The product of the relative permittivity of the medium and the relative magnetic permeability of the medium is greater than the product of the relative permittivity of the substrate and the relative magnetic permeability of the substrate. For example, a chip component containing the aforementioned feed element and the aforementioned medium could be mounted on the aforementioned substrate with the feed element located inside said chip component.

Description

アンテナ装置及びそれを備える無線装置ANTENNA DEVICE AND RADIO DEVICE INCLUDING THE SAME
 本発明は、アンテナ装置及びそれを備える無線装置(例えば、携帯電話などの携帯無線機)に関する。 The present invention relates to an antenna device and a wireless device including the antenna device (for example, a portable wireless device such as a mobile phone).
 携帯無線機等に搭載されるアンテナは、近年、その個数が増加しており、また回路基板の集積密度が高まっているため、筺体表面、あるいは筺体内部など、回路基板から離れた部位に実装されている。 In recent years, the number of antennas mounted on portable wireless devices and the like has increased, and the integration density of circuit boards has increased. Therefore, the antennas are mounted on the surface of the enclosure or inside the enclosure away from the circuit board. ing.
 例えば、特許文献1に開示されたアンテナ導体(放射導体)は、筐体外装面に形成されていて、基板に設けられた給電ピンに物理的に接触している(特許文献1の図2参照)。このような給電ピンを用いる場合には、外部からの衝撃が加わった際の信頼性を向上するために、スプリングピンコネクタなどの衝撃を緩和する機構を有する特殊な接続端子が利用される。また、このような特殊な機構を使用しない例として、特許文献2に開示された給電方式がある。 For example, the antenna conductor (radiation conductor) disclosed in Patent Document 1 is formed on the exterior surface of the housing and is in physical contact with a power supply pin provided on the substrate (see FIG. 2 of Patent Document 1). ). When such a power supply pin is used, a special connection terminal having a mechanism for mitigating the impact, such as a spring pin connector, is used in order to improve reliability when an external impact is applied. In addition, as an example in which such a special mechanism is not used, there is a power feeding method disclosed in Patent Document 2.
 特許文献2のアンテナ装置は、筐体に放射導体が形成され、また、回路基板上に垂直に立てられた給電線の先端に容量板が配置されている(特許文献2の図1参照)。容量板と放射導体が容量結合することにより、非接触で放射導体に給電されるため、非接触給電方式は、衝撃に強い構造といえる。特に、筐体にガラスやセラミックスなどの脆性材料を利用し、筐体にアンテナを形成する場合において、給電ピンなどで給電を行うと、外部から強い衝撃が加わった際に筐体の1点に応力が集中することで、筐体が破損し、アンテナも動作しなくなる可能性がある。このような問題を回避する手段として、非接触給電は非常に有効といえる。 In the antenna device of Patent Document 2, a radiating conductor is formed in a casing, and a capacitor plate is disposed at the tip of a feeder line that stands vertically on a circuit board (see FIG. 1 of Patent Document 2). Since the capacitive plate and the radiation conductor are capacitively coupled, the radiation conductor is fed in a non-contact manner. Therefore, the non-contact power feeding method can be said to be a structure resistant to impact. In particular, when a brittle material such as glass or ceramics is used for the housing, and an antenna is formed on the housing, if power is supplied with a power supply pin or the like, it will become a point on the housing when a strong impact is applied from the outside. When the stress is concentrated, the housing may be damaged and the antenna may not operate. As a means for avoiding such a problem, non-contact power feeding can be said to be very effective.
特開2009-060268号公報JP 2009-060268 A 特開2001-244715号公報JP 2001-244715 A
 しかしながら、放射導体と容量板とを容量結合させる給電方式では、製造上の誤差などで、放射導体と容量板との相対的な位置関係、特に間隔が設計値からずれることによって容量値が大きく変化する。その結果、インピーダンスマッチングがとれなくなるおそれがある。また、使用による振動などによって放射導体と容量板との相対的な位置関係が変化しても同様のことが発生するおそれがある。 However, in the power feeding method in which the radiation conductor and the capacitive plate are capacitively coupled, the capacitance value greatly changes due to manufacturing errors and the relative positional relationship between the radiation conductor and the capacitive plate, in particular, the gap deviates from the design value. To do. As a result, impedance matching may not be achieved. In addition, the same may occur even if the relative positional relationship between the radiation conductor and the capacitive plate changes due to vibrations caused by use.
 そこで本発明は、放射導体との位置関係について高い位置ロバスト性を有する非接触給電を実現できる、アンテナ装置及びそれを備える無線装置の提供を目的とする。 Therefore, an object of the present invention is to provide an antenna device and a wireless device including the antenna device that can realize non-contact power feeding having high position robustness with respect to the positional relationship with the radiation conductor.
 上記目的を達成するため、
 給電点を備えた基板と、
 前記給電点に接続される給電素子と、
 前記給電素子によって非接触で給電される放射素子と、
 前記給電素子に接する媒質とを備え、
 前記媒質の比誘電率と前記媒質の比透磁率との積は、前記基板の比誘電率と前記基板の比透磁率との積よりも大きい、アンテナ装置及びそれを備える無線装置が提供される。
To achieve the above objective,
A substrate with a feed point;
A feed element connected to the feed point;
A radiating element fed in a non-contact manner by the feeding element;
A medium in contact with the feeding element,
An antenna device and a wireless device including the antenna device are provided in which a product of a relative permittivity of the medium and a relative permeability of the medium is larger than a product of a relative permittivity of the substrate and a relative permeability of the substrate. .
 本発明によれば、放射導体との位置関係について高い位置ロバスト性を有する非接触給電を実現できる。 According to the present invention, it is possible to realize non-contact power feeding having high position robustness with respect to the positional relationship with the radiation conductor.
アンテナ装置の解析モデルの一例を示す平面図Plan view showing an example of an analysis model of an antenna device 図1のアンテナ装置の各構成の位置関係の一例を模式的に示す図The figure which shows typically an example of the positional relationship of each structure of the antenna apparatus of FIG. アンテナ装置の解析モデルの一例を示す斜視図A perspective view showing an example of an analysis model of an antenna device アンテナ装置の解析モデルの一例を示す斜視図A perspective view showing an example of an analysis model of an antenna device 図1のアンテナ装置の解析モデルを示す斜視図The perspective view which shows the analysis model of the antenna apparatus of FIG. 図5のアンテナ装置のS11特性図S11 characteristic diagram of the antenna device of FIG. 図3のアンテナ装置の解析モデルの平面図Plan view of the analysis model of the antenna device of FIG. 図7の一部拡大図Partial enlarged view of FIG. 図3のアンテナ装置の各構成の位置関係の一例を模式的に示す図The figure which shows typically an example of the positional relationship of each structure of the antenna apparatus of FIG. 図3のアンテナ装置のS11、S21特性図S11, S21 characteristic diagram of the antenna device of FIG. 図3のアンテナ装置の相関係数の一例を示す図The figure which shows an example of the correlation coefficient of the antenna apparatus of FIG. 図4のアンテナ装置の解析モデルの平面図FIG. 4 is a plan view of an analysis model of the antenna device of FIG. 図12の一部拡大図Partial enlarged view of FIG. 図4のアンテナ装置の各構成の位置関係の一例を模式的に示す図The figure which shows typically an example of the positional relationship of each structure of the antenna apparatus of FIG. 図4のアンテナ装置(放射素子がチップ部品内に無い場合)のS11特性図S11 characteristic diagram of the antenna device of FIG. 4 (when the radiating element is not in the chip part) 図4のアンテナ装置(放射素子がチップ部品内にある場合)のS11特性図S11 characteristic diagram of the antenna device of FIG. 4 (when the radiating element is in a chip part)
 図1は、本発明の一実施形態であるアンテナ装置1の動作を解析するためのコンピュータ上のシミュレーションモデルを示した平面図である。電磁界シミュレータとして、Microwave Studio(登録商標)(CST社)を使用した。 FIG. 1 is a plan view showing a simulation model on a computer for analyzing the operation of the antenna device 1 according to an embodiment of the present invention. As an electromagnetic simulator, Microwave Studio (registered trademark) (CST) was used.
 アンテナ装置1は、給電点38と、グランドプレーン70と、放射素子31と、放射素子31に給電する給電部36と、放射素子31からZ軸方向に所定距離離れて配置された導体である給電素子37と、給電素子37を備えた媒質41とを備えている。給電部36は、放射素子31単体に対する給電部位であり、アンテナ装置1としての給電部位ではない。アンテナ装置1としての給電部位は、給電点38である。 The antenna device 1 includes a feeding point 38, a ground plane 70, a radiating element 31, a feeding unit 36 that feeds the radiating element 31, and a feeding that is a conductor arranged at a predetermined distance from the radiating element 31 in the Z-axis direction. An element 37 and a medium 41 including a feeding element 37 are provided. The power feeding unit 36 is a power feeding part for the radiating element 31, and is not a power feeding part as the antenna device 1. A feeding part as the antenna device 1 is a feeding point 38.
 給電点38は、グランドプレーン70を利用した所定の伝送線路や給電線等に接続される給電部位である。所定の伝送線路の具体例として、マイクロストリップライン、ストリップライン、グランドプレーン付きコプレーナウェーブガイド(導体面とは反対側の表面にグランドプレーンが配置されたコプレーナウェーブガイド)などが挙げられる。給電線としては、フィーダー線や同軸ケーブルが挙げられる。給電素子37は、給電点38を介して、例えば、基板80に実装される給電回路(例えば、不図示のICチップ等の集積回路)に接続される。給電素子37と給電回路は、上記の異なる複数の種類の伝送線路や給電線を介して接続されてもよい。 The feeding point 38 is a feeding part connected to a predetermined transmission line or feeding line using the ground plane 70. Specific examples of the predetermined transmission line include a microstrip line, a strip line, and a coplanar waveguide with a ground plane (a coplanar waveguide having a ground plane disposed on the surface opposite to the conductor surface). Examples of the feeder line include a feeder line and a coaxial cable. The power feeding element 37 is connected to, for example, a power feeding circuit (for example, an integrated circuit such as an IC chip (not shown)) mounted on the substrate 80 via a power feeding point 38. The feed element 37 and the feed circuit may be connected via a plurality of different types of transmission lines and feed lines.
 基板80は、誘電体、磁性体、又は誘電体と磁性体との混合物を基材とする基板である。誘電体の具体例として、樹脂、ガラス、ガラスセラミックス、LTCC(Low Temperature Co-Fired Ceramics)、アルミナなどが挙げられる。誘電体と磁性体との混合物の具体例として、FeやNi、Coなどの遷移元素、SmやNdなどの希土類元素を含む金属あるいは酸化物のいずれかを有していればよく、例えば、六方晶系フェライト、スピネル系フェライト(Mn-Zn系フェライト、Ni-Zn系フェライトなど)、ガーネット系フェライト、パーマロイ、センダスト(登録商標)などが挙げられる。基板80は、グランドプレーン70と、グランドプレーン70をグランド基準とする給電点38とを備えている。 The substrate 80 is a substrate whose base material is a dielectric, a magnetic material, or a mixture of a dielectric and a magnetic material. Specific examples of the dielectric include resin, glass, glass ceramics, LTCC (Low Temperature Co-Fired Ceramics), and alumina. As a specific example of a mixture of a dielectric and a magnetic material, it is sufficient to have either a transition element such as Fe, Ni, or Co, or a metal or oxide containing a rare earth element such as Sm or Nd. Examples thereof include crystal ferrite, spinel ferrite (Mn—Zn ferrite, Ni—Zn ferrite, etc.), garnet ferrite, permalloy, and Sendust (registered trademark). The substrate 80 includes a ground plane 70 and a feeding point 38 with the ground plane 70 as a ground reference.
 グランドプレーン70は、基板80の表層又は内層に形成された部位である。グランドプレーン70は、例えば、少なくとも一つの角部73を有するグランド部位であり、角部73からY軸方向に直線的に延伸する外縁部71と、角部73からX軸方向に直線的に延伸する外縁部72とを有している。外縁部71は外縁部72の延伸方向に直交するように延伸することが好ましいが、本発明の効果を損なわない範囲で、例えば、互いの延伸方向の交わる角度は、70°以上110°以下であることが好ましく、80°以上100°以下であることがより好ましい。給電点38は、例えば、グランドプレーン70の角部73の近傍に配置されている。 The ground plane 70 is a part formed on the surface layer or the inner layer of the substrate 80. The ground plane 70 is, for example, a ground portion having at least one corner 73, an outer edge portion 71 linearly extending from the corner 73 in the Y-axis direction, and linearly extending from the corner 73 in the X-axis direction. And an outer edge portion 72. The outer edge portion 71 is preferably stretched so as to be orthogonal to the stretching direction of the outer edge portion 72, but within the range not impairing the effects of the present invention, for example, the angle at which the stretching directions intersect is 70 ° or more and 110 ° or less. It is preferable that it is 80 ° or more and 100 ° or less. For example, the feeding point 38 is arranged in the vicinity of the corner 73 of the ground plane 70.
 放射素子31は、外縁部71に沿うように配置された線状のアンテナ導体部分であり、例えばX軸方向に所定の最短距離D1離れた状態で外縁部71に平行にY軸方向に延在している導体部分32を有している。図1には、直線状の放射素子31が例示されているが、放射素子31は、L字状やループ状などの他の形状であってよい。放射素子31が、外縁部71に沿った導体部分32を有することによって、例えばアンテナ装置1の指向性を容易に制御することが可能となる。 The radiating element 31 is a linear antenna conductor portion arranged along the outer edge portion 71 and extends in the Y-axis direction parallel to the outer edge portion 71 with a predetermined shortest distance D1 in the X-axis direction, for example. The conductor portion 32 is provided. Although the linear radiation element 31 is illustrated in FIG. 1, the radiation element 31 may have other shapes such as an L shape and a loop shape. When the radiating element 31 has the conductor portion 32 along the outer edge portion 71, for example, the directivity of the antenna device 1 can be easily controlled.
 給電素子37は、媒質41に設けられ、マイクロストリップライン等の伝送線路に接続される給電点38に接続される素子であり、給電部36を介して、放射素子31に対して非接触で給電可能な線状導体である。図1には、グランドプレーン70の外縁部71に対して直角且つX軸に平行な方向に延在する直線状導体と、Y軸に平行な外縁部71に並走して延在する直線状導体とによって、L字状に形成された給電素子37が例示されている。図1の場合、給電素子37は、給電点38を起点にX軸方向に延伸してからY軸方向に折り曲げられ、Y軸方向への延伸の端部39まで延伸している。 The feeding element 37 is an element that is provided in the medium 41 and is connected to a feeding point 38 that is connected to a transmission line such as a microstrip line. The feeding element 37 feeds the radiation element 31 in a non-contact manner via the feeding unit 36. Possible linear conductor. FIG. 1 shows a linear conductor extending in a direction perpendicular to the outer edge portion 71 of the ground plane 70 and parallel to the X axis, and a linear shape extending parallel to the outer edge portion 71 parallel to the Y axis. A power feeding element 37 formed in an L shape by a conductor is illustrated. In the case of FIG. 1, the power feeding element 37 extends in the X-axis direction starting from the power feeding point 38, is then bent in the Y-axis direction, and extends to an end portion 39 extending in the Y-axis direction.
 なお、図1の場合、放射素子31と給電素子37は、Z軸方向での平面視において重複しているが、給電素子37が放射素子31に非接触で給電可能な距離離れていれば、必ずしもZ軸方向での平面視において重複していなくてもよい。例えば、X軸又はY軸方向などの任意の方向での平面視において重複していてもよい。 In the case of FIG. 1, the radiating element 31 and the feeding element 37 overlap in a plan view in the Z-axis direction, but if the feeding element 37 is separated from the radiating element 31 by a non-contactable power feeding distance, It does not necessarily have to overlap in plan view in the Z-axis direction. For example, you may overlap in planar view in arbitrary directions, such as an X-axis or a Y-axis direction.
 図2は、アンテナ装置1の各構成のZ軸方向の位置関係を模式的に示した図である。給電素子37は、基板80の外部に配置された媒質41に接して設けられている。媒質41の詳細については後述する。放射素子31は、給電素子37から離れて配置され、例えば図2に示されるように、基板80から距離H2離れて基板80に対向する基板110に設けられている。基板110は、誘電体、磁性体、又は誘電体と磁性体との混合物を基材とする基板である。基板110の基材の具体例は、上述の基板80の場合と同様である。放射素子31は、図2では基板110の給電素子37に対向する側の表面に配置されているが、基板110の給電素子37に対向する側とは反対側の表面に配置されてもよいし、基板110の側面に配置されてもよい。 FIG. 2 is a diagram schematically showing the positional relationship in the Z-axis direction of each component of the antenna device 1. The power feeding element 37 is provided in contact with the medium 41 disposed outside the substrate 80. Details of the medium 41 will be described later. The radiating element 31 is disposed away from the power feeding element 37, and is provided on the substrate 110 facing the substrate 80 at a distance H2 away from the substrate 80, for example, as shown in FIG. The substrate 110 is a substrate whose base material is a dielectric, a magnetic material, or a mixture of a dielectric and a magnetic material. A specific example of the base material of the substrate 110 is the same as that of the substrate 80 described above. In FIG. 2, the radiating element 31 is disposed on the surface of the substrate 110 on the side facing the power feeding element 37, but may be disposed on the surface of the substrate 110 opposite to the side facing the power feeding element 37. , May be disposed on the side surface of the substrate 110.
 給電素子37と放射素子31は、例えば、互いに電磁界結合可能な距離で離れて配置されている。放射素子31は、給電部36で給電素子37を介して電磁界結合によって非接触で給電される。このように給電されることによって、放射素子31は、アンテナの放射導体として機能する。図1に示すように、放射素子31が2点間を結ぶ線状導体である場合、半波長ダイポールアンテナと同様の共振電流(定在波状に分布する電流)が放射素子31上に形成される。すなわち、放射素子31は、所定の周波数の半波長で共振するダイポールアンテナとして機能(以下、ダイポールモードという)する。また、放射素子がループ状導体であってもよい。放射素子がループ状導体である場合、ループアンテナと同様の共振電流(定在波状に分布する電流)が放射素子上に形成される。すなわち、放射素子は、所定の周波数の1波長で共振するループアンテナとして機能(以下、ループモードという)する。 The power feeding element 37 and the radiating element 31 are arranged, for example, separated by a distance that allows electromagnetic coupling to each other. The radiating element 31 is fed in a non-contact manner by electromagnetic coupling through the feeding element 37 in the feeding section 36. By being fed in this way, the radiating element 31 functions as a radiating conductor of the antenna. As shown in FIG. 1, when the radiating element 31 is a linear conductor connecting two points, a resonance current (current distributed in a standing wave shape) similar to that of a half-wave dipole antenna is formed on the radiating element 31. . That is, the radiating element 31 functions as a dipole antenna that resonates at a half wavelength of a predetermined frequency (hereinafter referred to as a dipole mode). Further, the radiating element may be a loop conductor. When the radiating element is a loop conductor, a resonance current (current distributed in a standing wave shape) similar to that of the loop antenna is formed on the radiating element. That is, the radiating element functions as a loop antenna that resonates at one wavelength of a predetermined frequency (hereinafter referred to as a loop mode).
 電磁界結合とは、電磁界の共鳴現象を利用した結合であり、例えば非特許文献(A.Kurs, et al,“Wireless Power Transfer via Strongly Coupled Magnetic Resonances,”Science Express, Vol.317, No.5834, pp.83-86, Jul. 2007)に開示されている。電磁界結合は、電磁界共振結合又は電磁界共鳴結合とも称され、同じ周波数で共振する共振器同士を近接させ、一方の共振器を共振させると、共振器間に作られるニアフィールド(非放射界領域)での結合を介して、他方の共振器にエネルギーを伝送する技術である。また、電磁界結合とは、静電容量結合や電磁誘導による結合を除いた高周波における電界及び磁界による結合を意味する。なお、ここでの静電容量結合や電磁誘導による結合を除いたとは、これらの結合が全くなくなることを意味するのではなく、影響を及ぼさない程度に小さいことを意味する。給電素子37と放射素子31との間の媒体は、空気でもよいし、ガラスや樹脂材等の誘電体でもよい。なお、給電素子37と放射素子31との間には、グランドプレーンやディスプレイ等の導電性材料を配置しないことが好ましい。 Electromagnetic coupling is coupling utilizing the resonance phenomenon of electromagnetic fields. For example, non-patent literature (A. Kurs, et al, “Wireless Power Transfer via Strongly Coupled Magnetic Resonances,” Science Express3. 5834, pp. 83-86, Jul. 2007). Electromagnetic coupling is also referred to as electromagnetic resonance coupling or electromagnetic resonance coupling. When two resonators that resonate at the same frequency are brought close to each other and one of the resonators resonates, a near field (non-radiation) is created between the resonators. This is a technique for transmitting energy to the other resonator via coupling in the field region. Further, the electromagnetic field coupling means coupling by an electric field and a magnetic field at a high frequency excluding capacitive coupling and electromagnetic induction coupling. Here, excluding the capacitive coupling or coupling by electromagnetic induction does not mean that these couplings are eliminated at all, but means that the coupling is small enough not to be affected. The medium between the feeding element 37 and the radiating element 31 may be air or a dielectric such as glass or a resin material. In addition, it is preferable not to arrange a conductive material such as a ground plane or a display between the feeding element 37 and the radiating element 31.
 給電素子37と放射素子31を電磁界結合させることによって、衝撃に対して強い構造が得られる。すなわち、電磁界結合の利用によって、給電素子37と放射素子31を物理的に接触させることなく、給電素子37を用いて放射素子31に給電できるため、物理的な接触が必要な接触給電方式に比べて、衝撃に対して強い構造が得られる。 A structure strong against impact can be obtained by electromagnetically coupling the feeding element 37 and the radiating element 31. That is, by using electromagnetic field coupling, power can be supplied to the radiating element 31 using the power feeding element 37 without physically contacting the power feeding element 37 and the radiating element 31, so that a contact power feeding method that requires physical contact is adopted. In comparison, a structure strong against impact can be obtained.
 また、電磁界結合で給電する場合の方が、静電容量結合で給電する場合に比べて、給電素子37と放射素子31の離間距離(結合距離)の変化に対して、動作周波数における放射素子31の動作利得(アンテナ利得)は低下しにくい。ここで、動作利得とは、アンテナの放射効率とリターンロスとの積で算出される量であり、入力電力に対するアンテナの効率として定義される量である。したがって、給電素子37と放射素子31を電磁界結合させることで、給電素子37と放射素子31の配置位置を決める自由度を高めることができ、位置ロバスト性も高めることができる。なお、位置ロバスト性が高いとは、給電素子37及び放射素子31の配置位置等がずれても、放射素子31の動作利得に与える影響が低いことを意味する。また、給電素子37と放射素子31の配置位置を決める自由度が高いため、アンテナ装置1の設置に必要なスペースを容易に縮小できる点で有利である。また、電磁界結合の利用によって、容量板などの余計な部品を構成してなくても、給電素子37を用いて放射素子31に給電できるため、静電容量結合で給電する場合に比べて、簡易な構成での給電が可能である。 In addition, when the power is fed by electromagnetic coupling, the radiating element at the operating frequency is changed with respect to the change in the separation distance (coupling distance) between the feeding element 37 and the radiating element 31 as compared with the case of feeding by capacitive coupling. The operation gain (antenna gain) 31 is unlikely to decrease. Here, the operating gain is an amount calculated by the product of the radiation efficiency of the antenna and the return loss, and is an amount defined as the efficiency of the antenna with respect to input power. Accordingly, by electromagnetically coupling the feeding element 37 and the radiating element 31, it is possible to increase the degree of freedom in determining the arrangement positions of the feeding element 37 and the radiating element 31, and to improve the position robustness. Note that high position robustness means that even if the arrangement positions of the feeding element 37 and the radiating element 31 are shifted, the influence on the operation gain of the radiating element 31 is low. Further, since the degree of freedom in determining the arrangement positions of the feeding element 37 and the radiating element 31 is high, it is advantageous in that the space required for installing the antenna device 1 can be easily reduced. In addition, by using electromagnetic field coupling, it is possible to supply power to the radiating element 31 using the power feeding element 37 without configuring extra parts such as a capacitive plate. Power can be supplied with a simple configuration.
 また、給電素子37が放射素子31に給電する部位である給電部36は、図1の場合、放射素子31の一方の端部34と他方の端部35との間の中央部90以外の部位(中央部90と端部34又は端部35との間の部位)に位置している。このように、給電部36を放射素子31の基本モードの共振周波数における最も低いインピーダンスになる部分(この場合、中央部90)以外の放射素子31の部位に位置させることによって、アンテナ装置1のインピーダンスマッチングを容易に取ることができる。給電部36は、放射素子31と給電素子37とが最近接する放射素子31の導体部分のうち給電点38に最も近い部分で定義される部位である。 Further, in the case of FIG. 1, the power feeding unit 36 that is a site where the power feeding element 37 feeds the radiation element 31 is a site other than the central portion 90 between the one end 34 and the other end 35 of the radiation element 31. It is located at (a portion between the central portion 90 and the end portion 34 or the end portion 35). As described above, the impedance of the antenna device 1 is determined by positioning the power feeding unit 36 at a portion of the radiating element 31 other than the portion (in this case, the central portion 90) having the lowest impedance at the resonance frequency of the fundamental mode of the radiating element 31. Matching can be easily taken. The power feeding unit 36 is a part defined by a portion closest to the feeding point 38 among the conductor portions of the radiating element 31 where the radiating element 31 and the power feeding element 37 are closest to each other.
 放射素子31のインピーダンスは、ダイポールモードの場合、放射素子31の中央部90から端部34又は端部35の方に離れるにつれて高くなる。電磁界結合における高インピーダンスでの結合の場合、給電素子37と放射素子31間のインピーダンスが多少変化しても一定以上の高インピーダンスで結合していればインピーダンスマッチングに対する影響は小さい。よって、マッチングを容易に取るために、放射素子31の給電部36は、放射素子31の高インピーダンスの部分に位置させることが好ましい。 In the dipole mode, the impedance of the radiating element 31 increases as the distance from the central portion 90 of the radiating element 31 increases toward the end portion 34 or the end portion 35. In the case of coupling with high impedance in electromagnetic coupling, even if the impedance between the feed element 37 and the radiating element 31 changes slightly, the effect on impedance matching is small if the coupling is performed with a high impedance above a certain level. Therefore, in order to make matching easy, it is preferable that the power feeding portion 36 of the radiating element 31 is positioned at a high impedance portion of the radiating element 31.
 例えば、アンテナ装置1のインピーダンスマッチングを容易に取るために、給電部36は、放射素子31の基本モードの共振周波数における最も低いインピーダンスになる部分(この場合、中央部90)から放射素子31の全長の1/8以上(好ましくは、1/6以上、さらに好ましくは、1/4以上)の距離を離した部位に位置するとよい。図1の場合、放射素子31の全長は、L32に相当し、給電部36は、中央部90に対して端部34側に位置している。 For example, in order to easily perform impedance matching of the antenna device 1, the power feeding unit 36 is configured to have the entire length of the radiating element 31 from a portion (in this case, the central portion 90) having the lowest impedance at the resonance frequency of the fundamental mode of the radiating element 31. It is good to be located in the site | part which separated the distance of 1/8 or more (preferably 1/6 or more, more preferably 1/4 or more). In the case of FIG. 1, the total length of the radiating element 31 corresponds to L <b> 32, and the power feeding portion 36 is located on the end portion 34 side with respect to the central portion 90.
 一方、特許文献2のような静電容量結合のような低インピーダンスでの結合でインピーダンスマッチングがとれていると、例えば、容量板と放射導体との距離がわずかでも遠くなった場合、容量が小さくなって容量板と放射導体間のインピーダンスが高くなってしまいインピーダンスマッチングがとれなくなる。 On the other hand, when impedance matching is achieved by low impedance coupling such as capacitive coupling as in Patent Document 2, for example, when the distance between the capacitive plate and the radiation conductor is slightly increased, the capacitance is small. As a result, the impedance between the capacitive plate and the radiation conductor becomes high, and impedance matching cannot be obtained.
 また、給電素子37の共振の基本モードを与える電気長をLe37、放射素子31の共振の基本モードを与える電気長をLe31、放射素子31の基本モードの共振周波数fにおける給電素子37または放射素子31上での波長をλとして、Le37が、(3/8)・λ以下であり、かつ、Le31が、放射素子31の共振の基本モードがダイポールモードである場合、(3/8)・λ以上(5/8)・λ以下であり、放射素子31の共振の基本モードがループモードである場合、(7/8)・λ以上(9/8)・λ以下であることが好ましい。 Further, the electrical length giving the fundamental mode of resonance of the feeding element 37 is Le37, the electrical length giving the fundamental mode of resonance of the radiating element 31 is Le31, and the feeding element 37 or the radiating element at the resonance frequency f 1 of the fundamental mode of the radiating element 31 When the wavelength on 31 is λ, Le37 is (3/8) · λ or less, and Le31 is (3/8) · λ when the fundamental mode of resonance of the radiating element 31 is a dipole mode. When the resonance mode of the radiating element 31 is the loop mode, the ratio is preferably (7/8) · λ or more and (9/8) · λ or less.
 前記Le37は、(3/8)・λ以下が好ましい。また、グランドプレーン70の有無を含めその形状に自由度を与えたい場合には、(1/8)・λ以上(3/8)・λ以下がより好ましく、(3/16)・λ以上(5/16)・λ以下が特に好ましい。Le37がこの範囲内であれば、給電素子37が放射素子31の設計周波数(共振周波数f)にて良好に共振するため、アンテナ装置1のグランドプレーン70に依存せずに給電素子37と放射素子31とが共鳴して良好な電磁界結合が得られ好ましい。 The Le37 is preferably (3/8) · λ or less. In addition, when it is desired to give flexibility to the shape including the presence or absence of the ground plane 70, (1/8) · λ or more (3/8) · λ or less is more preferable, and (3/16) · λ or more ( 5/16) · λ or less is particularly preferable. If Le 37 is within this range, the feed element 37 resonates satisfactorily at the design frequency (resonance frequency f 1 ) of the radiating element 31, and thus radiates with the feed element 37 without depending on the ground plane 70 of the antenna device 1. It is preferable that the element 31 resonates and good electromagnetic coupling is obtained.
 また、外縁部71が放射素子31に沿うようにグランドプレーン70が形成された場合、給電素子37は外縁部71との相互作用により、給電素子37とグランドプレーン上に、共振電流(定在波状に分布する電流)を形成することができ、放射素子31と共鳴して電磁界結合する。そのため、給電素子37の電気長Le21の下限値は特になく、給電素子37が放射素子31と物理的に電磁界結合できる程度の長さであればよい。また、電磁界結合が実現しているとは整合が取れているということを意味している。また、この場合、給電素子37が放射素子31の共振周波数に合わせて電気長を設計する必要がなく、給電素子37を放射導体として自由に設計することが可能になるため、アンテナ装置1の多周波化を容易に実現できる。なお、放射素子31に沿うグランドプレーン70の外縁部71は、給電素子37の電気長と合計して設計周波数(共振周波数f11)の(1/4)・λ以上の長さであることがよい。 In addition, when the ground plane 70 is formed so that the outer edge portion 71 is along the radiating element 31, the feeding element 37 interacts with the outer edge portion 71 to cause a resonance current (standing wave shape) on the feeding element 37 and the ground plane. Current distributed in the electromagnetic field), and resonates with the radiating element 31 to be electromagnetically coupled. Therefore, there is no particular lower limit value for the electrical length Le21 of the power feeding element 37, and the lower limit value may be any length as long as the power feeding element 37 can be physically electromagnetically coupled to the radiation element 31. Also, the realization of electromagnetic field coupling means that matching is achieved. Further, in this case, it is not necessary for the feeding element 37 to design the electrical length in accordance with the resonance frequency of the radiating element 31, and the feeding element 37 can be freely designed as a radiating conductor. Frequency can be easily realized. The outer edge portion 71 of the ground plane 70 along the radiating element 31 has a total length of (1/4) · λ or more of the design frequency (resonance frequency f 11 ) with the electrical length of the feeding element 37. Good.
 なお給電素子37の物理的な長さL37(図1の場合、D1+L34に相当)は、整合回路などを含んでいない場合、放射素子の基本モードの共振周波数における真空中の電波の波長をλとして、実装される環境による短縮効果の短縮率をkとしたとき、λg1=λ・kによって決定される。ここでkは、給電素子37の環境の実効比誘電率(ε)および実効比透磁率(μ)などの給電素子が設けられた誘電体基材等の媒質(環境)の比誘電率、比透磁率、および厚み、共振周波数などから算出される値である。すなわち、L37は、(3/8)・λg1以下である。なお、短縮率は上記の物性から算出してもよいし、実測により求めても良い。例えば、短縮率を測定したい環境に設置された対象となる素子の共振周波数を測定し、任意の周波数ごとの短縮率が既知である環境において同じ素子の共振周波数を測定し、これらの共振周波数の差から短縮率を算出してもよい。 Note (in Figure 1, corresponding to D1 + L34) physical length L37 of the feed element 37, if it does not contain and matching circuit, a radio wave of a vacuum at the resonant frequency of the fundamental mode of radiation elements lambda 0 Assuming that the shortening rate of the shortening effect depending on the mounted environment is k 1 , it is determined by λ g1 = λ 0 · k 1 . Here, k 1 is the relative dielectric constant of a medium (environment) such as a dielectric substrate provided with a feed element such as an effective relative dielectric constant (ε r ) and an effective relative permeability (μ r ) of the environment of the feed element 37. It is a value calculated from the rate, relative permeability, thickness, resonance frequency, and the like. That is, L37 is (3/8) · λ g1 or less. The shortening rate may be calculated from the above physical properties or may be obtained by actual measurement. For example, the resonance frequency of the target element installed in the environment where the shortening rate is to be measured is measured, and the resonance frequency of the same element is measured in an environment where the shortening rate for each arbitrary frequency is known. The shortening rate may be calculated from the difference.
 給電素子37の物理的な長さL37はLe37を与える物理的な長さであり、その他の要素を含まない理想的な場合、Le37と等しい。給電素子37が、整合回路などを含む場合、L37は、ゼロを超え、Le37以下が好ましい。L37はインダクタ等の整合回路を利用することにより短く(サイズを小さく)することが可能である。 The physical length L37 of the power feeding element 37 is a physical length that gives Le37, and is equal to Le37 in an ideal case that does not include other elements. When the power feeding element 37 includes a matching circuit or the like, L37 is preferably greater than zero and less than or equal to Le37. L37 can be shortened (size reduced) by using a matching circuit such as an inductor.
 また、前記Le31は、放射素子の共振の基本モードがダイポールモード(放射素子の両端が開放端であるような線状の導体)である場合、(3/8)・λ以上(5/8)・λ以下が好ましく、(7/16)・λ以上(9/16)・λ以下がより好ましく、(15/32)・λ以上(17/32)・λ以下が特に好ましい。また、高次モードを考慮すると、前記Le31は、(3/8)・λ・m以上(5/8)・λ・m以下が好ましく、(7/16)・λ・m以上(9/16)・λ・m以下がより好ましく、(15/32)・λ・m以上(17/32)・λ・m以下が特に好ましい。ただし、mは高次モードのモード数であり、自然数である。mは1~5の整数が好ましく、1~3の整数が特に好ましい。m=1の場合は基本モードである。Le31がこの範囲内であれば、放射素子31が充分に放射導体として機能し、アンテナ装置1の効率が良く好ましい。 Further, when the fundamental mode of resonance of the radiating element is a dipole mode (a linear conductor in which both ends of the radiating element are open ends), the Le31 is (3/8) · λ or more (5/8) Λ or less is preferred, (7/16) · λ or more (9/16) · λ or less is more preferred, and (15/32) · λ or more (17/32) · λ or less is particularly preferred. In consideration of higher order modes, the Le31 is preferably (3/8) · λ · m or more and (5/8) · λ · m or less, and (7/16) · λ · m or more (9/16). ) · Λ · m or less, more preferably (15/32) · λ · m or more and (17/32) · λ · m or less. However, m is the number of modes in the higher order mode and is a natural number. m is preferably an integer of 1 to 5, particularly preferably an integer of 1 to 3. When m = 1, it is a basic mode. If Le31 is within this range, the radiating element 31 sufficiently functions as a radiating conductor, and the efficiency of the antenna device 1 is preferable.
 また同様に、放射素子の共振の基本モードがループモード(放射素子がループ状の導体)である場合、前記Le31は、(7/8)・λ以上(9/8)・λ以下が好ましく、(15/16)・λ以上(17/16)・λ以下がより好ましく、(31/32)・λ以上(33/32)・λ以下が特に好ましい。また、高次モードについてはダイポールモードと同様に、前記Le31は、(7/8)・λ・m以上(9/8)・λ・m以下が好ましく、(15/16)・λ・m以上(17/16)・λ・m以下がより好ましく、(31/32)・λ・m以上(33/32)・λ・m以下が特に好ましい。 Similarly, when the fundamental mode of resonance of the radiating element is a loop mode (the radiating element is a loop-shaped conductor), the Le31 is preferably (7/8) · λ or more and (9/8) · λ or less, It is more preferably (15/16) · λ or more and (17/16) · λ or less, particularly preferably (31/32) · λ or more and (33/32) · λ or less. As for the high-order mode, as in the dipole mode, the Le31 is preferably (7/8) · λ · m or more and (9/8) · λ · m or less, and (15/16) · λ · m or more. (17/16) · λ · m or less is more preferable, and (31/32) · λ · m or more and (33/32) · λ · m or less is particularly preferable.
 なお放射素子31の物理的な長さL31(図1の場合、L32に相当)は、放射素子の基本モードの共振周波数における真空中の電波の波長をλとして、実装される環境による波長短縮効果の短縮率をkとしたとき、λg2=λ・kによって決定される。ここでkは、放射素子31の環境の実効比誘電率(εr2)および実効比透磁率(μr2)などの放射素子が設けられた誘電体基材等の媒質(環境)の比誘電率、比透磁率、および厚み、共振周波数などから算出される値である。すなわち、L31は、放射素子の共振の基本モードがダイポールモードである場合、(3/8)・λg2以上(5/8)・λg2以下、放射素子の共振の基本モードがループモードである場合、(7/8)・λg2以上(9/8)・λg2以下である。放射素子31の物理的な長さL31は、Le31を与える物理的な長さであり、その他の要素を含まない理想的な場合、Le31と等しい。L31は、インダクタ等の整合回路を利用することにより短くしたとしても、ゼロを超え、Le31以下が好ましく、Le31の0.4倍以上1倍以下が特に好ましい。 The physical length L31 of the radiating element 31 (corresponding to L32 in the case of FIG. 1) is a wavelength shortening depending on the mounting environment, where λ 0 is the wavelength of the radio wave in vacuum at the resonance frequency of the fundamental mode of the radiating element. when the fractional shortening effect was k 2, it is determined by λ g2 = λ 0 · k 2 . Here, k 2 is a relative dielectric constant of a medium (environment) such as a dielectric substrate provided with a radiating element such as an effective relative permittivity (ε r2 ) and an effective relative permeability (μ r2 ) of the environment of the radiating element 31. It is a value calculated from the rate, relative permeability, thickness, resonance frequency, and the like. That is, when the fundamental mode of resonance of the radiating element is a dipole mode, L31 is (3/8) · λ g2 or more and (5/8) · λ g2 or less, and the fundamental mode of resonance of the radiating element is a loop mode. In this case, it is (7/8) · λ g2 or more and (9/8) · λ g2 or less. The physical length L31 of the radiating element 31 is the physical length that gives Le31, and is equal to Le31 in an ideal case that does not include other elements. Even if L31 is shortened by using a matching circuit such as an inductor, it exceeds zero, preferably Le31 or less, and particularly preferably 0.4 times or more and 1 time or less of Le31.
 例えば、媒質41が、比誘電率=3.4、tanδ=0.003、Z軸方向の厚さ=0.8mmの特性を有する場合のL37の長さは、給電素子37を放射導体として利用する場合の給電素子37の設計周波数を3.5GHzとしたときに、20mmである。また、例えば、基板110が、比誘電率=3.4、tanδ=0.003、Z軸方向の厚さ=0.8mmの特性を有する場合のL31の長さは、放射素子31の設計周波数を2.2GHzとしたときに、34mmである。 For example, when the medium 41 has characteristics of relative permittivity = 3.4, tan δ = 0.003, and thickness in the Z-axis direction = 0.8 mm, the length of L37 uses the feed element 37 as a radiation conductor. When the design frequency of the power feeding element 37 is 3.5 GHz, it is 20 mm. Further, for example, when the substrate 110 has characteristics of relative permittivity = 3.4, tan δ = 0.003, and thickness in the Z-axis direction = 0.8 mm, the length of L31 is the design frequency of the radiating element 31. 34 mm when the frequency is 2.2 GHz.
 また、図1に示すように給電素子37とグランドプレーン70の外縁部71との相互作用を利用できる場合おいて、給電素子37を前述のように放射素子として機能させてもよい。放射素子31は、給電素子37によって給電部36で非接触に電磁界結合で給電されることにより、例えば、λ/2ダイポールアンテナとして機能する放射導体である。一方、給電素子37は、放射素子31に対して給電可能な線状の給電導体であるが、給電点38で給電されることにより、モノポールアンテナ(例えば、λ/4モノポールアンテナ)として機能することも可能な放射導体である。放射素子31の共振周波数をf、給電素子37の共振周波数をfと設定し、給電素子37の長さを周波数fで共振するモノポールアンテナとして調整すれば、給電素子の放射機能を利用することができ、アンテナ装置1の多周波化を容易に実現できる。 Further, as shown in FIG. 1, when the interaction between the feeding element 37 and the outer edge portion 71 of the ground plane 70 can be used, the feeding element 37 may function as a radiating element as described above. The radiating element 31 is a radiating conductor that functions as, for example, a λ / 2 dipole antenna by being fed by the feeding element 37 in a non-contact manner through electromagnetic coupling by the feeding portion 36. On the other hand, the feed element 37 is a linear feed conductor that can feed power to the radiating element 31, and functions as a monopole antenna (for example, a λ / 4 monopole antenna) by being fed at a feed point 38. It is a radiation conductor that can also be used. If the resonance frequency of the radiating element 31 is set to f 1 , the resonance frequency of the feeding element 37 is set to f 2, and the length of the feeding element 37 is adjusted as a monopole antenna that resonates at the frequency f 2 , Therefore, the antenna device 1 can be easily multi-frequencyd.
 給電素子37の放射機能を利用したときの物理的な長さL37は、整合回路などを含んでいない場合、給電素子37の共振周波数fにおける真空中の電波の波長をλとして、実装される環境による波長短縮効果の短縮率をkとしたとき、λg3=λ・kによって決定される。ここでkは、給電素子37の環境の実効比誘電率(εr1)および実効比透磁率(μr1)などの給電素子が設けられた誘電体基材等の媒質(環境)の比誘電率、比透磁率、および厚み、共振周波数などから算出される値である。すなわち、L37は、(1/8)・λg3以下(3/8)・λg3以下であり、好ましくは、(3/16)・λg3以上(5/16)・λg3以下である。給電素子37の物理的な長さL37はLe37を与える物理的な長さであり、その他の要素を含まない理想的な場合、Le37と等しい。給電素子37が、整合回路などを含む場合、L37は、ゼロを超え、Le37以下が好ましい。L37はインダクタ等の整合回路を利用することにより短く(サイズを小さく)することが可能である。 When the radiation function of the feed element 37 is used, the physical length L37 is mounted with the wavelength of the radio wave in vacuum at the resonance frequency f 2 of the feed element 37 being λ 1 when a matching circuit or the like is not included. Λ g3 = λ 1 · k 1 where k 1 is the shortening rate of the wavelength shortening effect due to the environment. Here, k 1 is a relative dielectric constant of a medium (environment) such as a dielectric substrate provided with a feeding element such as an effective relative dielectric constant (ε r1 ) and an effective relative permeability (μ r1 ) of the environment of the feeding element 37. It is a value calculated from the rate, relative permeability, thickness, resonance frequency, and the like. That is, L37 is (1/8) · λ g3 or less (3/8) · λ g3 or less, preferably (3/16) · λ g3 or more (5/16) · λ g3 or less. The physical length L37 of the feeding element 37 is a physical length that gives Le37, and is equal to Le37 in an ideal case that does not include other elements. When the power feeding element 37 includes a matching circuit or the like, L37 is preferably greater than zero and less than or equal to Le37. L37 can be shortened (size reduced) by using a matching circuit such as an inductor.
 また、放射素子31の基本モードの共振周波数における真空中の電波波長をλとする場合、給電素子37と放射素子31との最短距離H4は、0.2×λ以下(より好ましくは、0.1×λ以下、更に好ましくは、0.05×λ以下)であると好適である。給電素子37と放射素子31をこのような最短距離H4だけ離して配置することによって、放射素子31の動作利得を向上させる点で有利である。 When the radio wave wavelength in vacuum at the resonance frequency of the fundamental mode of the radiating element 31 is λ 0 , the shortest distance H4 between the feeding element 37 and the radiating element 31 is 0.2 × λ 0 or less (more preferably, 0.1 × λ 0 or less, more preferably 0.05 × λ 0 or less). Disposing the feeding element 37 and the radiating element 31 by such a shortest distance H4 is advantageous in that the operating gain of the radiating element 31 is improved.
 なお、最短距離H4とは、給電素子37と放射素子31において、最も近接している部位間の直線距離である。また、給電素子37と放射素子31は、両者が電磁界結合していれば、任意の方向から見たときに、交差しても交差しなくてもよいし、その交差角度も任意の角度でよい。 In addition, the shortest distance H4 is a linear distance between the closest parts in the feeding element 37 and the radiating element 31. Further, as long as the feeding element 37 and the radiating element 31 are electromagnetically coupled to each other, the feeding element 37 and the radiating element 31 may or may not intersect when viewed from an arbitrary direction, and the intersection angle may be an arbitrary angle. Good.
 また、給電素子37と放射素子31とが最短距離H4で並走する距離は、放射素子31の物理的な長さの3/8以下であることが好ましい。より好ましくは、1/4以下、更に好ましくは、1/8以下である。最短距離H4となる位置は給電素子37と放射素子31との結合が強い部位であり、最短距離H4で並走する距離が長いと、放射素子31のインピーダンスが高い部分と低い部分の両方と強く結合することになるため、インピーダンスマッチングが取れない場合がある。よって、放射素子31のインピーダンスの変化が少ない部位のみと強く結合するために最短距離H4で並走する距離は短い方がインピーダンスマッチングの点で有利である。 In addition, the distance that the feeding element 37 and the radiating element 31 run in parallel at the shortest distance H4 is preferably 3/8 or less of the physical length of the radiating element 31. More preferably, it is 1/4 or less, and more preferably 1/8 or less. The position where the shortest distance H4 is located is a portion where the coupling between the feeding element 37 and the radiating element 31 is strong, and if the parallel distance at the shortest distance H4 is long, the radiating element 31 has a strong and low impedance portion. Since they are coupled, impedance matching may not be achieved. Therefore, in order to strongly couple only with a portion where the change in impedance of the radiating element 31 is small, it is advantageous in terms of impedance matching that the distance of parallel running at the shortest distance H4 is short.
 <給電素子37に接する媒質41について>
 給電素子37の物理的な長さL37は、kに比例する。そのため、媒質41の比誘電率εr1と媒質41の比透磁率μr1との積P1を、基板80の比誘電率εと基板80の比透磁率μとの積P2よりも大きくすることにより、積P1が積P2と等しい場合に比べて、長さL37を短くできる。これにより、給電素子37を小型化できるため、アンテナ装置1の設置スペースを削減し、非接触給電を簡易な構成で実現できる。
<Regarding Medium 41 in Contact with Feeding Element 37>
Physical length L37 of the feed element 37 is proportional to k 1. Therefore, the product P1 of the relative permittivity ε r1 of the medium 41 and the relative permeability μ r1 of the medium 41 is made larger than the product P2 of the relative permittivity ε r of the substrate 80 and the relative permeability μ r of the substrate 80. Thus, the length L37 can be shortened as compared with the case where the product P1 is equal to the product P2. Thereby, since the power feeding element 37 can be reduced in size, the installation space of the antenna device 1 can be reduced, and non-contact power feeding can be realized with a simple configuration.
 媒質41は、誘電体、磁性体、又は誘電体と磁性体との混合物を基材とする基体である。媒質41の基材として誘電体が用いられる場合、波長短縮効果によって、給電素子37の小型化ができる。誘電体の具体例として、樹脂、ガラス、ガラスセラミックス、LTCC(Low Temperature Co-Fired Ceramics)、アルミナなどが挙げられる。媒質41の基材として磁性体が用いられる場合、給電素子37のQ値の低下によって、アンテナ装置1の広帯域化ができる。媒質41の基材として誘電体と磁性体との混合物が用いられる場合、給電素子37の小型化とアンテナ装置1の広帯域化が可能である。誘電体と磁性体との混合物の具体例として、FeやNi、Coなどの遷移元素、SmやNdなどの希土類元素を含む金属あるいは酸化物のいずれかを有していればよく、例えば、六方晶系フェライト、スピネル系フェライト(Mn-Zn系フェライト、Ni-Zn系フェライトなど)、ガーネット系フェライト、パーマロイ、センダスト(登録商標)などが挙げられる。 The medium 41 is a base body based on a dielectric material, a magnetic material, or a mixture of a dielectric material and a magnetic material. When a dielectric is used as the base material of the medium 41, the feeding element 37 can be downsized due to the wavelength shortening effect. Specific examples of the dielectric include resin, glass, glass ceramics, LTCC (Low Temperature Co-Fired Ceramics), and alumina. When a magnetic material is used as the base material of the medium 41, the antenna device 1 can be broadened by reducing the Q value of the feed element 37. When a mixture of a dielectric material and a magnetic material is used as the base material of the medium 41, the feed element 37 can be downsized and the antenna device 1 can be widened. As a specific example of a mixture of a dielectric and a magnetic material, it is sufficient to have either a transition element such as Fe, Ni, or Co, or a metal or oxide containing a rare earth element such as Sm or Nd. Examples thereof include crystal ferrite, spinel ferrite (Mn—Zn ferrite, Ni—Zn ferrite, etc.), garnet ferrite, permalloy, and Sendust (registered trademark).
 基板80の基材が誘電体である場合、基板80の比誘電率εと基板80の比透磁率μとの積P2は、例えば、2以上5以下である。給電素子37を小型化するには、媒質41の比誘電率εr1と媒質41の比透磁率μr1との積P1は、6以上であることが好ましく、10以上であることがより好ましい。また、積P1は、製造上又はアンテナとして機能させる上で、1000以下であることが好ましく、400以下であることがより好ましい。 When the base material of the substrate 80 is a dielectric, the product P2 of the relative permittivity ε r of the substrate 80 and the relative permeability μ r of the substrate 80 is, for example, 2 or more and 5 or less. In order to reduce the size of the feeding element 37, the product P1 of the relative permittivity ε r1 of the medium 41 and the relative permeability μ r1 of the medium 41 is preferably 6 or more, and more preferably 10 or more. In addition, the product P1 is preferably 1000 or less, more preferably 400 or less in terms of manufacturing or functioning as an antenna.
 例えば図2に示されるように、給電素子37と媒質41とを含んで構成されたチップ部品40が基板80に実装される。これにより、媒質41に接した給電素子37を基板80に容易に実装できる。 For example, as shown in FIG. 2, a chip component 40 including a power feeding element 37 and a medium 41 is mounted on a substrate 80. Thereby, the power feeding element 37 in contact with the medium 41 can be easily mounted on the substrate 80.
 基板80は、給電点38に接続されるストリップ導体82を備えた伝送線路を有している。ストリップ導体82は、例えば、グランドプレーン70との間に基板80を挟むように基板80の表面に形成された信号線である。 The substrate 80 has a transmission line provided with a strip conductor 82 connected to the feeding point 38. The strip conductor 82 is a signal line formed on the surface of the substrate 80 so that the substrate 80 is sandwiched between the strip conductor 82 and the ground plane 70, for example.
 また、基板80は、給電点38に接続されるランド81を有している。ランド81は、給電素子37と給電点38とを電気的に接続するための導体部位であり、基板80の表面に形成されている。チップ部品40は、給電素子37がビア等の配線43を介して接続される電極44を有する。電極44がはんだ等でランド81に接合されることによって、チップ部品40は基板80の表面に実装され、給電素子37は給電点38に電気的に接続される。 The substrate 80 has a land 81 connected to the feeding point 38. The land 81 is a conductor portion for electrically connecting the power feeding element 37 and the power feeding point 38, and is formed on the surface of the substrate 80. The chip component 40 includes an electrode 44 to which the power feeding element 37 is connected via a wiring 43 such as a via. By bonding the electrode 44 to the land 81 with solder or the like, the chip component 40 is mounted on the surface of the substrate 80, and the power feeding element 37 is electrically connected to the power feeding point 38.
 給電素子37は、媒質41に囲まれるようにチップ部品40の内部に配置されることが、給電素子37の小型化の点で有利である。しかしながら、給電素子37が、媒質41に接した状態で、チップ部品40の表面42に露出してもよい。 It is advantageous in terms of miniaturization of the power feeding element 37 that the power feeding element 37 is disposed inside the chip component 40 so as to be surrounded by the medium 41. However, the power feeding element 37 may be exposed on the surface 42 of the chip component 40 while being in contact with the medium 41.
 また、チップ部品40は、放射素子31又は給電素子37のマッチングを行うマッチング回路45を有してよい。マッチング回路は、リアクタンス素子を有する回路であり、整合回路とも呼ばれる。マッチング回路45は、例えば、給電点38に接続される伝送線路を介して接続される給電回路(例えば、基板80に実装されるICチップ等の集積回路)と、放射素子31又は給電素子37とのマッチングを行う回路である。マッチング回路45は、チップ部品40の内部に設けられてもよいし、チップ部品40の表面に設けられてもよい。マッチング回路45をチップ部品40に設けることによって、マッチング回路45が基板80の表面に直接実装される場合に比べて、基板80の小型化又は基板80の実装可能面積の拡大化が可能である。また、チップ部品40は、マッチング回路以外にも、高調波を減衰するフィルタや、給電点に接続される給電素子を複数の給電素子の中から選択的に切り替えるスイッチなどの機能をチップ部品40の内部又は表面に有していてもよい。 Further, the chip component 40 may include a matching circuit 45 that performs matching of the radiating element 31 or the power feeding element 37. The matching circuit is a circuit having a reactance element and is also called a matching circuit. The matching circuit 45 includes, for example, a power supply circuit connected via a transmission line connected to the power supply point 38 (for example, an integrated circuit such as an IC chip mounted on the substrate 80), the radiation element 31 or the power supply element 37, and the like. Is a circuit that performs the matching. The matching circuit 45 may be provided inside the chip component 40 or may be provided on the surface of the chip component 40. By providing the matching circuit 45 on the chip component 40, the substrate 80 can be downsized or the mountable area of the substrate 80 can be increased as compared with the case where the matching circuit 45 is directly mounted on the surface of the substrate 80. In addition to the matching circuit, the chip component 40 has functions such as a filter that attenuates harmonics and a switch that selectively switches a power feeding element connected to the power feeding point from a plurality of power feeding elements. You may have in the inside or the surface.
 マッチング回路45又はフィルタは、放射素子31又は給電素子37のインピーダンスと給電点38に接続される伝送線路又は給電線のインピーダンスとのマッチングをチューニングする機能を有してもよい。また、マッチング回路45は、MIMOアンテナにおいて、アンテナ素子間の結合を低減するための減結合回路を含んでもよい。 The matching circuit 45 or the filter may have a function of tuning matching between the impedance of the radiating element 31 or the feeding element 37 and the impedance of the transmission line or the feeding line connected to the feeding point 38. In addition, the matching circuit 45 may include a decoupling circuit for reducing coupling between antenna elements in the MIMO antenna.
 <アンテナ装置の搭載装置>
 本発明の実施形態に係るアンテナ装置は、無線装置(例えば、人が携帯可能な通信端末)に搭載される。無線装置の具体例として、情報端末機、携帯電話、スマートフォン、パソコン、ゲーム機、テレビ、音楽や映像のプレーヤーなどの電子機器が挙げられる。
<Attachment device of antenna device>
An antenna device according to an embodiment of the present invention is mounted on a wireless device (for example, a communication terminal that can be carried by a person). Specific examples of the wireless device include electronic devices such as an information terminal, a mobile phone, a smartphone, a personal computer, a game machine, a television, and a music and video player.
 例えば図2において、ディスプレイを有する無線通信装置100(無線装置の一例)にアンテナ装置1が搭載される場合、基板110は、例えば、ディスプレイの画像表示面を全面的に覆うカバーガラスであってもよいし、基板80が固定される筐体(特には、表蓋、裏蓋、側壁など)であってもよい。カバーガラスは、ディスプレイに表示される画像を透明又はユーザが視認可能な程度に半透明な誘電体基板であって、ディスプレイの上に積層配置された平板状の部材である。 For example, in FIG. 2, when the antenna device 1 is mounted on a wireless communication device 100 (an example of a wireless device) having a display, the substrate 110 may be, for example, a cover glass that covers the entire image display surface of the display. Alternatively, it may be a casing (in particular, a front cover, a back cover, a side wall, etc.) to which the substrate 80 is fixed. The cover glass is a dielectric substrate that is transparent or translucent enough to allow a user to visually recognize an image displayed on the display, and is a flat plate member that is laminated on the display.
 放射素子31がカバーガラスの表面に設けられる場合、放射素子31は、銅や銀などの導体ペーストをカバーガラスの表面に塗って焼成して形成されるとよい。このときの導体ペーストとして、カバーガラスに利用される化学強化ガラスの強化が鈍らない程度の温度で焼成できる低温焼成可能な導体ペーストを利用するとよい。また、酸化による導体の劣化を防ぐために、メッキなどを施してもよい。また、カバーガラスには加飾印刷が施されていてもよく、加飾印刷された部分に導体が形成されていてもよい。また、配線などを隠す目的でカバーガラスの周縁に黒色隠蔽膜が形成されている場合、放射素子31が黒色隠蔽膜上に形成されてもよい。 When the radiating element 31 is provided on the surface of the cover glass, the radiating element 31 may be formed by applying a conductive paste such as copper or silver on the surface of the cover glass and baking it. As the conductor paste at this time, a conductor paste that can be fired at a low temperature that can be fired at a temperature at which the strengthening of the chemically strengthened glass used for the cover glass is not dulled may be used. Further, plating or the like may be applied to prevent deterioration of the conductor due to oxidation. Further, the cover glass may be subjected to decorative printing, and a conductor may be formed on the decorative printed portion. Further, when a black masking film is formed on the periphery of the cover glass for the purpose of concealing the wiring or the like, the radiating element 31 may be formed on the black masking film.
 また、給電素子37及び放射素子31、並びにグランドプレーン70のZ軸に平行な高さ方向における各位置は、互いに異なっていてもよいし、全て又は一部のみが同じでもよい。 Further, the positions of the feeding element 37, the radiating element 31, and the ground plane 70 in the height direction parallel to the Z-axis may be different from each other, or all or only a part thereof may be the same.
 また、一つの給電素子37で複数の放射素子に給電してもよい。複数の放射素子を利用することにより、マルチバンド化、ワイドバンド化、指向性制御等の実施が容易となる。また、複数のアンテナ装置が一つの無線通信装置に搭載されてもよい。 Further, a plurality of radiating elements may be fed by one feeding element 37. By using a plurality of radiating elements, implementation of multiband, wideband, directivity control, etc. becomes easy. A plurality of antenna devices may be mounted on one wireless communication device.
 複数の給電素子がチップ部品の内部又は表面に設けられてもよい。図3は、2つの給電素子37A,37Bが設けられたチップ部品46を備えるアンテナ装置2の一例を部分的に示す斜視図である。給電素子37A,37Bは、媒質41に接する。アンテナ装置2は、基板80と、チップ部品46と、2つの放射素子31A,31Bとを備える。基板80は、所定の間隔を空けて互いに近接する2つの給電点38A,38Bを備える。給電素子37Aは、給電点38Aにチップ部品46の電極44A及び配線43Aを介して接続され、放射素子31Aに非接触で給電する線状導体である。給電素子37Bは、給電点38Bにチップ部品46の電極44B及び配線43Bを介して接続され、放射素子31Bに非接触で給電する線状導体である。配線43A及び配線43Bは、例えば、ビアである。 A plurality of power feeding elements may be provided inside or on the surface of the chip component. FIG. 3 is a perspective view partially showing an example of the antenna device 2 including the chip component 46 provided with the two power feeding elements 37A and 37B. The power feeding elements 37 </ b> A and 37 </ b> B are in contact with the medium 41. The antenna device 2 includes a substrate 80, a chip component 46, and two radiation elements 31A and 31B. The substrate 80 includes two feeding points 38A and 38B that are close to each other with a predetermined gap therebetween. The power feeding element 37A is a linear conductor that is connected to the power feeding point 38A via the electrode 44A and the wiring 43A of the chip component 46 and feeds power to the radiation element 31A in a non-contact manner. The power feeding element 37B is a linear conductor that is connected to the power feeding point 38B via the electrode 44B and the wiring 43B of the chip component 46 and feeds power to the radiating element 31B in a non-contact manner. The wiring 43A and the wiring 43B are vias, for example.
 アンテナ装置2は、給電素子37Aと放射素子31Aとを有する第1のダイポールアンテナ素子10と、給電素子37Bと放射素子31Bとを有する第2のダイポールアンテナ素子20とを備える。 The antenna device 2 includes a first dipole antenna element 10 having a feeding element 37A and a radiating element 31A, and a second dipole antenna element 20 having a feeding element 37B and a radiating element 31B.
 第1のダイポールアンテナ素子10と第2のダイポールアンテナ素子20との間の相関係数が低いので、アンテナ装置2を、MIMO(Multiple Input Multiple Output)アンテナとして機能させることが可能である。MIMOアンテナは、複数のアンテナ素子を用いて所定の周波数において多重の入出力が可能なマルチアンテナである。 Since the correlation coefficient between the first dipole antenna element 10 and the second dipole antenna element 20 is low, the antenna device 2 can function as a MIMO (Multiple Input Multiple Output) antenna. A MIMO antenna is a multi-antenna capable of multiple input / output at a predetermined frequency using a plurality of antenna elements.
 また、単数又は複数の放射素子がチップ部品の内部又は表面に設けられてもよい。図4は、1つの給電素子37と1つの放射素子31Cとが設けられたチップ部品47を備えるアンテナ装置3の一例を部分的に示す斜視図である。給電素子37も放射素子31Cも、媒質41に接する。アンテナ装置3は、基板80と、チップ部品47と、放射素子31Cから離れて配置される放射素子31Dとを備える。チップ部品47から離れて配置される放射素子31Dは、媒質41に非接触の線状導体である。給電素子37は、給電点38にチップ部品47の電極44及び配線43を介して接続される。給電素子37は、チップ部品47に設けられた放射素子31Cに非接触で給電し、且つ、チップ部品47から離れて配置される放射素子31Dに非接触で給電する線状導体である。 Further, one or a plurality of radiating elements may be provided inside or on the surface of the chip component. FIG. 4 is a perspective view partially showing an example of the antenna device 3 including the chip component 47 provided with one feeding element 37 and one radiating element 31C. Both the feeding element 37 and the radiating element 31 </ b> C are in contact with the medium 41. The antenna device 3 includes a substrate 80, a chip component 47, and a radiating element 31D arranged away from the radiating element 31C. The radiating element 31 </ b> D arranged away from the chip component 47 is a linear conductor that is not in contact with the medium 41. The power feeding element 37 is connected to the power feeding point 38 via the electrode 44 and the wiring 43 of the chip component 47. The power feeding element 37 is a linear conductor that feeds power to the radiating element 31 </ b> C provided in the chip component 47 in a contactless manner and feeds power to the radiating element 31 </ b> D arranged away from the chip component 47 in a contactless manner.
 アンテナ装置3は、放射素子31Cが共振する周波数と放射素子31Dが共振する周波数とを合わせた複数の周波数で励振するマルチバンドアンテナである。 The antenna device 3 is a multiband antenna that excites at a plurality of frequencies including the frequency at which the radiating element 31C resonates and the frequency at which the radiating element 31D resonates.
 図1,2で示した形態のアンテナ装置1をシミュレーション解析したときのS11特性について説明する。S11特性とは、高周波電子部品等の特性の一種であり、本明細書においては周波数に対する反射損失(リターンロス)で表す。電磁界シミュレータとして、Microwave Studio(登録商標)(CST社)を使用した。 The S11 characteristic when the antenna device 1 having the form shown in FIGS. The S11 characteristic is a kind of characteristic of high-frequency electronic components and the like, and is represented by a reflection loss (return loss) with respect to the frequency in this specification. As an electromagnetic simulator, Microwave Studio (registered trademark) (CST) was used.
 S11特性の測定時の図1で示した各寸法は、単位をmmとすると、
 D1:3.75
 L32:45
 W31:1.9
 W32:1.9
 W33:1
とした。
Each dimension shown in FIG. 1 at the time of measuring the S11 characteristic is expressed in units of mm.
D1: 3.75
L32: 45
W31: 1.9
W32: 1.9
W33: 1
It was.
 また、グランドプレーン70、給電素子37及び放射素子31において、Z軸方向の厚さ(高さ)は0.018mmとした。また、基板80は、比誘電率ε=3.3、tanδ=0.003に設定し、基板110は、比誘電率ε=1、に設定した。また、グランドプレーン70の形状は、X軸方向が30mmでY軸方向が50mmの長方形とし、基板80の形状は、X軸方向が30mmでY軸方向が60mmの長方形とした。また、図2において、H1を0.8mm、H2を1.5mm、H3を1mmに設定した。また、給電素子37と放射素子31との最短距離H4を0.5mmに設定し、給電素子37と放射素子31とを電磁界結合させた。 Further, in the ground plane 70, the power feeding element 37, and the radiating element 31, the thickness (height) in the Z-axis direction was set to 0.018 mm. The substrate 80 was set to have a relative dielectric constant ε r = 3.3 and tan δ = 0.003, and the substrate 110 was set to have a relative dielectric constant ε r = 1. The shape of the ground plane 70 was a rectangle with an X-axis direction of 30 mm and a Y-axis direction of 50 mm, and the substrate 80 was a rectangle with an X-axis direction of 30 mm and a Y-axis direction of 60 mm. In FIG. 2, H1 is set to 0.8 mm, H2 is set to 1.5 mm, and H3 is set to 1 mm. The shortest distance H4 between the feeding element 37 and the radiating element 31 was set to 0.5 mm, and the feeding element 37 and the radiating element 31 were electromagnetically coupled.
 図5は、図1,2で示した形態のアンテナ装置1をシミュレーション解析したときの解析モデルの一部を拡大した斜視図である。L41,L42,L43は、それぞれ、チップ部品40の媒質41における、横長、縦長、高さを想定していて、給電素子37の一部の導体部分(放射素子31の導体部分32に並走する部分)の長さL34(図1参照)は、横長L41と同じ長さに設定した。 FIG. 5 is an enlarged perspective view of a part of the analysis model when the antenna device 1 having the configuration shown in FIGS. L41, L42, and L43 are assumed to be horizontally long, vertically long, and high, respectively, in the medium 41 of the chip component 40, and run in parallel to a part of the conductor portion of the feed element 37 (the conductor portion 32 of the radiating element 31). The length L34 (see FIG. 1) of the portion) was set to the same length as the horizontal length L41.
 図6は、図1,2で示した形態のアンテナ装置1において、媒質41の比誘電率εr1と媒質41の比透磁率μr1との積P1を、「10」に設定した場合(本発明の実施例)と「1」に設定した場合(本発明の比較例)のS11特性図である。積P1が「10」の場合とは、積P1が、基板80の比誘電率εと基板80の比透磁率μとの積P2よりも大きい場合を示し、積P1が「1」の場合とは、積P1が、基板80の比誘電率εと基板80の比透磁率μとの積P2よりも小さい場合を示す。 6 shows a case where the product P1 of the relative permittivity ε r1 of the medium 41 and the relative permeability μ r1 of the medium 41 is set to “10” in the antenna device 1 having the configuration shown in FIGS. (Example of the invention) and S11 characteristic diagram when set to “1” (comparative example of the present invention). The case where the product P1 is “10” indicates that the product P1 is larger than the product P2 of the relative permittivity ε r of the substrate 80 and the relative permeability μ r of the substrate 80, and the product P1 is “1”. The case indicates a case where the product P1 is smaller than the product P2 of the relative permittivity ε r of the substrate 80 and the relative permeability μ r of the substrate 80.
 積P1が「1」の場合、図6に示されるように、放射素子31の基本モードの共振周波数を2.6GHz付近に設定し、且つ、給電素子37の基本モードの共振周波数を4.7GHz付近に設定するには、図5で示した各寸法は、単位をmmとすると、
 L41:14
 L42:5
 L43:1
にする必要があった。
When the product P1 is “1”, as shown in FIG. 6, the resonance frequency of the fundamental mode of the radiating element 31 is set near 2.6 GHz, and the resonance frequency of the fundamental mode of the feeding element 37 is 4.7 GHz. To set near, each dimension shown in FIG.
L41: 14
L42: 5
L43: 1
It was necessary to be.
 これに対し、積P1が「10」の場合、図6に示されるように、放射素子31の基本モードの共振周波数を2.6GHz付近に設定し、且つ、給電素子37の基本モードの共振周波数を4.7GHz付近に設定するには、図5で示した各寸法は、単位をmmとすると、
 L41:7
 L42:5
 L43:1
にする必要があった。
On the other hand, when the product P1 is “10”, as shown in FIG. 6, the resonance frequency of the fundamental mode of the radiating element 31 is set near 2.6 GHz, and the resonance frequency of the fundamental mode of the feed element 37 is set. 5 is set to around 4.7 GHz, each dimension shown in FIG.
L41: 7
L42: 5
L43: 1
It was necessary to be.
 すなわち、積P1を「10」にすることによって、L41の長さを半分にできるため、給電素子37の小型化が可能である。 That is, by setting the product P1 to “10”, the length of L41 can be halved, so that the power feeding element 37 can be reduced in size.
 図3で示した形態のアンテナ装置2をシミュレーション解析したときにおいて、S11特性及び相関係数特性について説明する。図7は、左右対称に形成されたアンテナ装置2の解析モデルの平面図であり、図8は、図7の一部拡大図であり、図9は、アンテナ装置3の各構成の位置関係の一例を模式的に示す図である。 The S11 characteristic and the correlation coefficient characteristic when the antenna apparatus 2 having the form shown in FIG. 7 is a plan view of an analysis model of the antenna device 2 formed symmetrically, FIG. 8 is a partially enlarged view of FIG. 7, and FIG. 9 shows the positional relationship of each component of the antenna device 3. It is a figure which shows an example typically.
 特性測定時の図7,8,9で示した各寸法は、単位をmmとすると、
 L51:60
 L52:50
 L53:10
 L54:5
 L55:24
 L56:45
 L57:2.5
 L58:8.5
 L59:5
 L60:2.5
 L61:2
 W34:0.5
 W35:1
 H11:1
 H12:1
 H13:0.5
 H14:0.5
とした。
Each dimension shown in FIGS. 7, 8 and 9 at the time of characteristic measurement is expressed in units of mm.
L51: 60
L52: 50
L53: 10
L54: 5
L55: 24
L56: 45
L57: 2.5
L58: 8.5
L59: 5
L60: 2.5
L61: 2
W34: 0.5
W35: 1
H11: 1
H12: 1
H13: 0.5
H14: 0.5
It was.
 また、グランドプレーン70、給電素子37A,37B及び放射素子31A,31Bにおいて、Z軸方向の厚さ(高さ)は0.018mmとした。また、基板80は、比誘電率ε=3.3、tanδ=0.003に設定した。また、給電素子37Aと放射素子31Aとの最短距離を1mmに設定し、給電素子37Aと放射素子31Aとを電磁界結合させた。給電素子37Bと放射素子31Bとの関係も同じである。また、媒質41の比誘電率εr1と媒質41の比透磁率μr1との積P1は、10であり、基板80の比誘電率εと基板80の比透磁率μとの積P2よりも大きな値である。 Further, in the ground plane 70, the power feeding elements 37A and 37B, and the radiation elements 31A and 31B, the thickness (height) in the Z-axis direction was set to 0.018 mm. The substrate 80 was set to have a relative dielectric constant ε r = 3.3 and tan δ = 0.003. Further, the shortest distance between the feeding element 37A and the radiating element 31A was set to 1 mm, and the feeding element 37A and the radiating element 31A were electromagnetically coupled. The relationship between the feed element 37B and the radiation element 31B is the same. The product P1 of the relative permittivity ε r1 of the medium 41 and the relative permeability μ r1 of the medium 41 is 10, and the product P2 of the relative permittivity ε r of the substrate 80 and the relative permeability μ r of the substrate 80 Is a larger value.
 図10は、アンテナ装置2のS11,S21特性である。図11は、アンテナ装置2の相関係数の特性図である。図10、図11に示されるように、相関係数は、共振周波数2.5GHz付近で0付近まで低下している。したがって、複数の給電素子がチップ部品内にあっても、アンテナ装置2はMIMOアンテナとして機能する。 FIG. 10 shows the S11 and S21 characteristics of the antenna device 2. FIG. 11 is a characteristic diagram of the correlation coefficient of the antenna device 2. As shown in FIGS. 10 and 11, the correlation coefficient decreases to near zero near the resonance frequency of 2.5 GHz. Therefore, the antenna device 2 functions as a MIMO antenna even if a plurality of feeding elements are in the chip part.
 図4で示した形態のアンテナ装置3をシミュレーション解析したときにおいて、S11特性について説明する。図12は、アンテナ装置3の解析モデルの平面図であり、図13は、図12の一部拡大図であり、図14は、アンテナ装置3の各構成の位置関係の一例を模式的に示す図である。 S11 characteristics will be described when the antenna apparatus 3 having the configuration shown in FIG. 12 is a plan view of the analysis model of the antenna device 3, FIG. 13 is a partially enlarged view of FIG. 12, and FIG. 14 schematically shows an example of the positional relationship of each component of the antenna device 3. FIG.
 特性測定時の図12,13,14で示した各寸法は、単位をmmとすると、
 L71:30(グランドプレーン70及び基板80の幅)
 L72:50
 L73:10
 L74:5
 L75:16
 L76:30(放射素子31Dの長さ)
 L77:2.5
 L78:5.5
 L80:2.5
 L81:2
 L82:1
 W36:0.5
 W37:1
 H21:1
 H22:1
 H23:0.5
 H24:0.5
とした。
Each dimension shown in FIGS. 12, 13, and 14 at the time of characteristic measurement is expressed in units of mm.
L71: 30 (width of ground plane 70 and substrate 80)
L72: 50
L73: 10
L74: 5
L75: 16
L76: 30 (length of radiation element 31D)
L77: 2.5
L78: 5.5
L80: 2.5
L81: 2
L82: 1
W36: 0.5
W37: 1
H21: 1
H22: 1
H23: 0.5
H24: 0.5
It was.
 また、グランドプレーン70、給電素子37及び放射素子31C,31Dにおいて、Z軸方向の厚さ(高さ)は0.018mmとした。また、基板80は、比誘電率ε=3.3、tanδ=0.003に設定した。また、給電素子37と放射素子31Cとの最短距離を0.5mmに設定し、給電素子37と放射素子31Cとを電磁界結合させた。給電素子37と放射素子31Dとの最短距離を1.0mmに設定し、給電素子37と放射素子31Dとを電磁界結合させた。また、媒質41の比誘電率εr1と媒質41の比透磁率μr1との積P1は、10であり、基板80の比誘電率εと基板80の比透磁率μとの積P2よりも大きな値である。 Further, in the ground plane 70, the power feeding element 37, and the radiation elements 31C and 31D, the thickness (height) in the Z-axis direction was set to 0.018 mm. The substrate 80 was set to have a relative dielectric constant ε r = 3.3 and tan δ = 0.003. The shortest distance between the feeding element 37 and the radiating element 31C was set to 0.5 mm, and the feeding element 37 and the radiating element 31C were electromagnetically coupled. The shortest distance between the feeding element 37 and the radiating element 31D was set to 1.0 mm, and the feeding element 37 and the radiating element 31D were electromagnetically coupled. The product P1 of the relative permittivity ε r1 of the medium 41 and the relative permeability μ r1 of the medium 41 is 10, and the product P2 of the relative permittivity ε r of the substrate 80 and the relative permeability μ r of the substrate 80 Is a larger value.
 図15は、放射素子31Cが無い場合のアンテナ装置2のS11特性を示し、給電素子37が放射素子31Dのみに給電する場合を示す。図15に示されるように、アンテナ装置3は、放射素子31Dの基本モードの共振周波数と2次モードの共振周波数で励振し、マルチバンドアンテナとして機能する。このように、チップ部品内の給電素子37は、チップ部品から離れた放射素子31Dに給電できる。 FIG. 15 shows the S11 characteristic of the antenna device 2 when there is no radiating element 31C, and shows a case where the feeding element 37 feeds only the radiating element 31D. As shown in FIG. 15, the antenna device 3 is excited at the resonance frequency of the fundamental mode and the resonance frequency of the secondary mode of the radiating element 31D, and functions as a multiband antenna. In this way, the power feeding element 37 in the chip component can feed power to the radiating element 31D that is separated from the chip component.
 図16は、放射素子31Cがある場合のアンテナ装置2のS11特性を示し、給電素子37が放射素子31Cと放射素子31Dの両方に給電する場合を示す。
図16に示されるように、アンテナ装置3は、放射素子31Dの基本モードの共振周波数と2次モードの共振周波数だけでなく、放射素子31Cの基本モードの共振周波数でも励振するので、マルチバンドアンテナとして機能する。このように、チップ部品内には、給電素子だけでなく、放射素子があってもよい。
FIG. 16 shows the S11 characteristic of the antenna device 2 when the radiating element 31C is present, and shows a case where the feeding element 37 feeds both the radiating element 31C and the radiating element 31D.
As shown in FIG. 16, the antenna device 3 excites not only the resonance frequency of the fundamental mode and the resonance frequency of the secondary mode of the radiating element 31D but also the resonance frequency of the fundamental mode of the radiating element 31C. Function as. As described above, the chip component may include a radiating element as well as a feeding element.
 以上、アンテナ装置及びそれを備える無線装置を実施形態例により説明したが、本発明は上記実施形態例に限定されるものではない。他の実施形態例の一部又は全部との組み合わせや置換などの種々の変形及び改良が、本発明の範囲内で可能である。 Although the antenna device and the wireless device including the antenna device have been described above by way of the embodiment, the present invention is not limited to the above embodiment. Various modifications and improvements, such as combinations and substitutions with part or all of other example embodiments, are possible within the scope of the present invention.
 例えば、放射素子は、図示の形態に限られない。例えば、図1の放射素子31は、直接又は接続導体を介して間接的に接続された導体部分を有するものでもよいし、放射素子31に高周波的(例えば、容量的)に結合された導体部分を有するものでもよい。 For example, the radiating element is not limited to the illustrated form. For example, the radiating element 31 of FIG. 1 may have a conductor portion that is directly or indirectly connected via a connecting conductor, or a conductor portion that is coupled to the radiating element 31 in a high-frequency manner (for example, capacitively). It may have.
 また、放射素子は、直線的に延びる線状の導体部分を含むものに限らず、曲がった導体部分を含むものでもよい。例えば、L字状の導体部分を含むものでもよいし、メアンダ形状の導体部分を含むものでもよいし、途中で分岐した導体部分を含むものでもよい。 Further, the radiating element is not limited to a linear conductor portion extending linearly, and may include a bent conductor portion. For example, an L-shaped conductor portion may be included, a meander-shaped conductor portion may be included, or a conductor portion branched in the middle may be included.
 本国際出願は、2013年6月21日に出願した日本国特許出願第2013-131157号に基づく優先権を主張するものであり、日本国特許出願第2013-131157号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2013-131157 filed on June 21, 2013. The entire contents of Japanese Patent Application No. 2013-131157 are hereby incorporated by reference. Incorporated into.
1,2、3 アンテナ装置
10 第1のダイポールアンテナ素子
20 第2のダイポールアンテナ素子
31,31A,31B,31C,31D 放射素子
32 導体部分
36 給電部
37 給電素子
38,38A,38B 給電点
40,46,47 チップ部品
41 媒質
42 表面
43,43A,43B 配線
44,44A,44B 電極
45 マッチング回路
70 グランドプレーン
71,72 外縁部
73 角部
80,110 基板
81 ランド
82 ストリップ導体
90 中央部
100 無線通信装置
1, 2, 3 Antenna device 10 First dipole antenna element 20 Second dipole antenna elements 31, 31A, 31B, 31C, 31D Radiating element 32 Conductor portion 36 Feeding portion 37 Feeding elements 38, 38A, 38B Feeding point 40, 46, 47 Chip component 41 Medium 42 Surface 43, 43A, 43B Wiring 44, 44A, 44B Electrode 45 Matching circuit 70 Ground plane 71, 72 Outer edge 73 Corner 80, 110 Substrate 81 Land 82 Strip conductor 90 Central part 100 Wireless communication apparatus

Claims (14)

  1.  給電点を備えた基板と、
     前記給電点に接続される給電素子と、
     前記給電素子によって非接触で給電される放射素子と、
     前記給電素子に接する媒質とを備え、
     前記媒質の比誘電率と前記媒質の比透磁率との積は、前記基板の比誘電率と前記基板の比透磁率との積よりも大きい、アンテナ装置。
    A substrate with a feed point;
    A feed element connected to the feed point;
    A radiating element fed in a non-contact manner by the feeding element;
    A medium in contact with the feeding element,
    The antenna device, wherein a product of a relative permittivity of the medium and a relative permeability of the medium is larger than a product of a relative permittivity of the substrate and a relative permeability of the substrate.
  2.  前記給電素子と前記放射素子が電磁界結合する、請求項1に記載のアンテナ装置。 The antenna device according to claim 1, wherein the feeding element and the radiating element are electromagnetically coupled.
  3.  前記給電素子と前記媒質とを含んで構成されたチップ部品が、前記基板に実装された、請求項1または2に記載のアンテナ装置。 The antenna device according to claim 1 or 2, wherein a chip component including the power feeding element and the medium is mounted on the substrate.
  4.  前記給電素子は、前記チップ部品の内部に配置された、請求項3に記載のアンテナ装置。 The antenna device according to claim 3, wherein the feeding element is disposed inside the chip component.
  5.  前記チップ部品は、前記放射素子又は前記給電素子のマッチングを行うマッチング回路を有する、請求項3又は4に記載のアンテナ装置。 The antenna device according to claim 3 or 4, wherein the chip component has a matching circuit for matching the radiation element or the feeding element.
  6.  前記媒質の比誘電率と前記媒質の比透磁率との積は、6以上である、請求項1から5のいずれか一項に記載のアンテナ装置。 The antenna device according to any one of claims 1 to 5, wherein a product of a relative permittivity of the medium and a relative permeability of the medium is 6 or more.
  7.  前記給電素子の共振の基本モードを与える電気長をLe37、前記放射素子の共振の基本モードを与える電気長をLe31、前記放射素子の基本モードの共振周波数における前記給電素子または前記放射素子上での波長をλとして、Le37が、(3/8)・λ以下であり、かつ、Le31が、前記放射素子の共振の基本モードがダイポールモードである場合、(3/8)・λ以上(5/8)・λ以下であり、前記放射素子の共振の基本モードがループモードである場合、(7/8)・λ以上(9/8)・λ以下である請求項1から6のいずれか一項に記載のアンテナ装置。 The electrical length giving the fundamental mode of resonance of the feeding element is Le37, the electrical length giving the fundamental mode of resonance of the radiating element is Le31, and the feeding element or the radiating element at the resonance frequency of the fundamental mode of the radiating element is When the wavelength is λ and Le37 is (3/8) · λ or less, and Le31 is the dipole mode of the fundamental mode of resonance of the radiating element, (3/8) · λ or more (5 / 8) · λ or less, and when the fundamental mode of resonance of the radiating element is a loop mode, it is (7/8) · λ or more and (9/8) · λ or less. The antenna device according to item.
  8.  前記放射素子の基本モードの共振周波数における真空中の電波の波長をλとする場合、
     前記給電素子と前記放射素子との最短距離が、0.2×λ以下である、請求項1から7のいずれか一項に記載のアンテナ装置。
    When the wavelength of the radio wave in vacuum at the resonance frequency of the fundamental mode of the radiating element is λ 0 ,
    The antenna device according to claim 1, wherein a shortest distance between the feeding element and the radiating element is 0.2 × λ 0 or less.
  9.  前記給電素子が前記放射素子に給電する給電部は、前記放射素子の基本モードの共振周波数における最も低いインピーダンスになる部分以外に位置させる、請求項1から8のいずれか一項に記載のアンテナ装置。 The antenna device according to any one of claims 1 to 8, wherein a power feeding unit that feeds power to the radiating element by the power feeding element is located at a portion other than a portion having the lowest impedance at a resonance frequency of a fundamental mode of the radiating element. .
  10.  前記給電素子が前記放射素子に給電する給電部は、前記放射素子の基本モードの共振周波数における最も低いインピーダンスになる部分から前記放射素子の全長の1/8以上の距離を離した部位に位置する、請求項1から9のいずれか一項に記載のアンテナ装置。 The power feeding unit that feeds power to the radiating element from the power feeding element is located at a position that is separated from the portion having the lowest impedance at the resonance frequency of the fundamental mode of the radiating element by a distance of 1/8 or more of the entire length of the radiating element. The antenna device according to any one of claims 1 to 9.
  11.  前記給電素子と前記放射素子とが最短距離で並走する距離は、前記放射素子の長さの3/8以下である、請求項1から10のいずれか一項に記載のアンテナ装置。 The antenna device according to any one of claims 1 to 10, wherein a distance in which the feeding element and the radiating element run in parallel at a shortest distance is 3/8 or less of a length of the radiating element.
  12.  グランドプレーンを備え、
     前記放射素子は、前記グランドプレーンの外縁部に沿った導体部分を有する、請求項1から11のいずれか一項に記載のアンテナ装置。
    With a ground plane,
    The antenna device according to claim 1, wherein the radiating element has a conductor portion along an outer edge portion of the ground plane.
  13.  前記基板は、前記給電点に接続される伝送線路を有する、請求項1から12のいずれか一項に記載のアンテナ装置。 The antenna device according to any one of claims 1 to 12, wherein the substrate has a transmission line connected to the feeding point.
  14.  請求項1から13のいずれか一項に記載のアンテナ装置を備える無線装置。 A wireless device comprising the antenna device according to any one of claims 1 to 13.
PCT/JP2014/066290 2013-06-21 2014-06-19 Antenna device and wireless device provided therewith WO2014203967A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015522977A JPWO2014203967A1 (en) 2013-06-21 2014-06-19 ANTENNA DEVICE AND RADIO DEVICE INCLUDING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-131157 2013-06-21
JP2013131157 2013-06-21

Publications (1)

Publication Number Publication Date
WO2014203967A1 true WO2014203967A1 (en) 2014-12-24

Family

ID=52104693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066290 WO2014203967A1 (en) 2013-06-21 2014-06-19 Antenna device and wireless device provided therewith

Country Status (2)

Country Link
JP (1) JPWO2014203967A1 (en)
WO (1) WO2014203967A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111029713A (en) * 2019-11-29 2020-04-17 Oppo广东移动通信有限公司 Electronic equipment
US11831090B2 (en) * 2020-06-16 2023-11-28 Apple Inc. Electronic devices with display-overlapping antennas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173425A (en) * 1996-12-06 1998-06-26 Murata Mfg Co Ltd Surface mount antenna and antenna device and communication equipment
JP2001244715A (en) * 2000-02-28 2001-09-07 Sony Corp Antenna system
JP2009027233A (en) * 2007-07-17 2009-02-05 Murata Mfg Co Ltd Wireless ic device, and electronic equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173425A (en) * 1996-12-06 1998-06-26 Murata Mfg Co Ltd Surface mount antenna and antenna device and communication equipment
JP2001244715A (en) * 2000-02-28 2001-09-07 Sony Corp Antenna system
JP2009027233A (en) * 2007-07-17 2009-02-05 Murata Mfg Co Ltd Wireless ic device, and electronic equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111029713A (en) * 2019-11-29 2020-04-17 Oppo广东移动通信有限公司 Electronic equipment
US11831090B2 (en) * 2020-06-16 2023-11-28 Apple Inc. Electronic devices with display-overlapping antennas

Also Published As

Publication number Publication date
JPWO2014203967A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6819753B2 (en) Antenna device and wireless device
JP6465109B2 (en) Multi-antenna and radio apparatus including the same
JP5686221B2 (en) ANTENNA DEVICE AND RADIO DEVICE INCLUDING THE SAME
JP6314980B2 (en) ANTENNA, ANTENNA DEVICE, AND RADIO DEVICE
TWI657620B (en) Antenna directivity control system and wireless device including the same
KR20060042232A (en) Reverse f-shaped antenna
WO2015108140A1 (en) Portable wireless apparatus
JP5900660B2 (en) MIMO antenna and radio apparatus
WO2014203976A1 (en) Antenna and wireless device provided therewith
JP6436100B2 (en) ANTENNA DEVICE AND RADIO DEVICE INCLUDING THE SAME
WO2014203967A1 (en) Antenna device and wireless device provided therewith
JP6233319B2 (en) Multiband antenna and radio apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522977

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14813022

Country of ref document: EP

Kind code of ref document: A1