JP2020087798A - Power cable - Google Patents

Power cable Download PDF

Info

Publication number
JP2020087798A
JP2020087798A JP2018222822A JP2018222822A JP2020087798A JP 2020087798 A JP2020087798 A JP 2020087798A JP 2018222822 A JP2018222822 A JP 2018222822A JP 2018222822 A JP2018222822 A JP 2018222822A JP 2020087798 A JP2020087798 A JP 2020087798A
Authority
JP
Japan
Prior art keywords
power cable
conductor
insulating layer
adhesive layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018222822A
Other languages
Japanese (ja)
Other versions
JP7137139B2 (en
Inventor
山田 俊介
Shunsuke Yamada
俊介 山田
直哉 山崎
Naoya Yamazaki
直哉 山崎
山崎 孝則
Takanori Yamazaki
孝則 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2018222822A priority Critical patent/JP7137139B2/en
Publication of JP2020087798A publication Critical patent/JP2020087798A/en
Application granted granted Critical
Publication of JP7137139B2 publication Critical patent/JP7137139B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Landscapes

  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

To provide a power cable having insulation characteristics equivalent to or higher than that of a conventional power cable and having excellent adhesion between a conductor and an insulating layer.SOLUTION: There is provided a power cable comprising a conductor, an insulating layer provided on the outer periphery of the conductor and an adhesive layer in contact with the conductor and the insulating layer, wherein the conductor is a compressed twisted-wire including a plurality of wires formed of copper or a copper-based alloy and the constituent material of the insulating layer contains a crosslinked polyolefin.SELECTED DRAWING: Figure 1

Description

本開示は、電力ケーブルに関する。 The present disclosure relates to power cables.

従来、電力ケーブルとして、中心から順に、導体、内部半導電層、絶縁層、外部半導電層を備えるものが知られている(例、特許文献1)。このような電力ケーブルとして、架橋ポリエチレン絶縁ビニルシースケーブル(CVケーブル)が代表的である(特許文献1の明細書[0002])。 BACKGROUND ART Conventionally, as a power cable, a cable including a conductor, an inner semiconductive layer, an insulating layer, and an outer semiconductive layer in order from the center is known (eg, Patent Document 1). A typical example of such a power cable is a crosslinked polyethylene insulated vinyl sheath cable (CV cable) (specification [0002] of Patent Document 1).

特開平06−203651号公報JP, 06-203651, A

導体の外周に内部半導電層、絶縁層、外部半導電層を備える電力ケーブル(以下、従来の電力ケーブルと呼ぶことがある)と同等程度又はそれ以上の絶縁特性を有しつつ、導体と絶縁層との密着性に優れる電力ケーブルが望まれる。 Insulates from the conductor while having insulation characteristics equivalent to or higher than that of a power cable having an inner semiconductive layer, an insulating layer, and an outer semiconductive layer on the outer circumference of the conductor (hereinafter sometimes referred to as a conventional power cable) A power cable with excellent adhesion to layers is desired.

特に、送電電圧が600V超、更に3500V以上と高い電力ケーブルは、使用電圧が数百V以下である電線に比較して、部分放電や絶縁破壊が生じ易い使用状態となり易い。そのため、使用初期から長期に亘り、部分放電や絶縁破壊が発生し難い電力ケーブルが望まれる。 In particular, a power cable whose transmission voltage is higher than 600 V and higher than 3500 V is more likely to be in a use state in which partial discharge and insulation breakdown are more likely to occur than an electric wire whose use voltage is several hundred V or less. Therefore, a power cable that is unlikely to cause partial discharge or dielectric breakdown over a long period from the beginning of use is desired.

また、電力ケーブルは、代表的には、地中管路等に布設されて使用される。電力ケーブルの使用時、通電及び非通電の繰り返しに伴うヒートサイクルによって、絶縁層が熱伸縮する。特に、絶縁層が熱収縮しても、導体と絶縁層とが密着した状態を維持できることが望まれる。 In addition, the power cable is typically laid and used in an underground pipe or the like. When the power cable is used, the insulating layer thermally expands and contracts due to the heat cycle that accompanies repeated energization and de-energization. In particular, it is desired that the conductor and the insulating layer can be kept in close contact with each other even when the insulating layer is thermally contracted.

そこで、本開示は、従来の電力ケーブルと同等以上の絶縁特性を有すると共に、導体と絶縁層との密着性に優れる電力ケーブルを提供することを目的の一つとする。 Therefore, it is an object of the present disclosure to provide a power cable that has insulation characteristics equal to or higher than those of conventional power cables and that has excellent adhesion between a conductor and an insulating layer.

本開示の電力ケーブルは、
導体と、
前記導体の外周に設けられる絶縁層と、
前記導体と前記絶縁層とに接する接着層とを備え、
前記導体は、銅又は銅基合金からなる複数の素線を含む圧縮撚線であり、
前記絶縁層の構成材料は、架橋ポリオレフィンを含む。
The power cable of the present disclosure is
A conductor,
An insulating layer provided on the outer periphery of the conductor,
An adhesive layer in contact with the conductor and the insulating layer,
The conductor is a compressed stranded wire including a plurality of strands made of copper or a copper-based alloy,
The constituent material of the insulating layer includes cross-linked polyolefin.

本開示の電力ケーブルは、従来の電力ケーブルと同等以上の絶縁特性を有すると共に、導体と絶縁層との密着性に優れる。 The power cable of the present disclosure has insulation properties equal to or higher than those of conventional power cables, and has excellent adhesion between the conductor and the insulating layer.

図1は、実施形態の電力ケーブルを示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing a power cable of the embodiment. 図2は、電力ケーブルの横断面において、導体をなす圧縮撚線の包絡円の面積に対する圧縮撚線の輪郭内の面積が占める割合を測定する方法を説明する図である。FIG. 2 is a diagram for explaining a method for measuring the ratio of the area of the contour of the compressed stranded wire to the area of the envelope circle of the compressed stranded wire forming the conductor in the cross section of the power cable.

[本開示の実施形態の説明]
最初に本開示の実施態様を列記して説明する。
(1)本開示の一態様に係る電力ケーブルは、
導体と、
前記導体の外周に設けられる絶縁層と、
前記導体と前記絶縁層とに接する接着層とを備え、
前記導体は、銅又は銅基合金からなる複数の素線を含む圧縮撚線であり、
前記絶縁層の構成材料は、架橋ポリオレフィンを含む。
[Description of Embodiments of the Present Disclosure]
First, embodiments of the present disclosure will be listed and described.
(1) A power cable according to an aspect of the present disclosure is
A conductor,
An insulating layer provided on the outer periphery of the conductor,
An adhesive layer in contact with the conductor and the insulating layer,
The conductor is a compressed stranded wire including a plurality of strands made of copper or a copper-based alloy,
The constituent material of the insulating layer includes cross-linked polyolefin.

本開示の電力ケーブルは、導体を圧縮撚線とし、この導体と絶縁層とに接する接着層を備える。そのため、本開示の電力ケーブルは、導体と絶縁層との間に内部半導電層を備えていないものの、以下に説明するように、内部半導電層を備える従来の電力ケーブルと同等以上の絶縁特性を有する。かつ、本開示の電力ケーブルは、導体と絶縁層との密着性に優れる。 The power cable of the present disclosure includes a compression stranded wire as a conductor, and includes an adhesive layer in contact with the conductor and the insulating layer. Therefore, the power cable of the present disclosure does not include an internal semiconductive layer between the conductor and the insulating layer, but as described below, has an insulation property equal to or higher than that of a conventional power cable including an internal semiconductive layer. Have. Moreover, the power cable of the present disclosure has excellent adhesion between the conductor and the insulating layer.

圧縮撚線は、圧縮されていない撚線(以下、非圧縮線と呼ぶことがある)に比較して、隣り合う外周素線間に形成される隙間(撚り溝)を小さく(浅く)できる。そのため、圧縮撚線の撚り溝は、接着層の構成材料に埋められ易い。また、代表的には、接着層は、圧縮撚線の全周を覆う。撚り溝に充填されると共に導体を覆う接着層によって、導体と絶縁層とが密着できる。その結果、導体と絶縁層との間に局所的な電界集中箇所となり得る空隙が少ないと考えられる。上記空隙が少ないことで、局所的な電界集中に起因する部分放電や水トリー等が生じ難く、これらに起因する絶縁破壊が生じ難いと考えられる。また、上記空隙が少ないことで、上記空隙に介在し得る空気や水等に起因する絶縁層の酸化劣化も低減し易いと考えられる。これらのことから、本開示の電力ケーブルは、優れた絶縁特性を有する。 In the compressed stranded wire, the gap (twisted groove) formed between the adjacent outer peripheral strands can be made smaller (shallow) as compared with the uncompressed stranded wire (hereinafter, also referred to as non-compressed wire). Therefore, the twist groove of the compressed stranded wire is easily filled with the constituent material of the adhesive layer. In addition, typically, the adhesive layer covers the entire circumference of the compressed stranded wire. The conductor and the insulating layer can be brought into close contact with each other by the adhesive layer that fills the twist groove and covers the conductor. As a result, it is considered that there are few voids between the conductor and the insulating layer, which can be local electric field concentration points. It is considered that the small number of voids makes it difficult to cause partial discharge, water tree, and the like due to local electric field concentration, and makes it difficult to cause dielectric breakdown due to these. In addition, it is considered that the oxidative deterioration of the insulating layer due to air, water, or the like that can be present in the voids can be easily reduced because the voids are small. For these reasons, the power cable of the present disclosure has excellent insulating properties.

また、本開示の電力ケーブルの使用時、通電及び非通電の繰り返しに伴うヒートサイクルによって絶縁層は、熱収縮して、導体の軸方向に沿って変位しようとする。接着層は、この絶縁層の変位を低減できる。そのため、本開示の電力ケーブルは、絶縁層の熱収縮によって絶縁層の端部が初期位置から変位し、導体の端部が絶縁層から露出されることを防止できる。従って、本開示の電力ケーブルは、長期に亘り、導体と絶縁層とが密着した状態を維持できる。 Further, when the power cable of the present disclosure is used, the insulating layer undergoes thermal contraction due to heat cycles associated with repeated energization and non-energization, and tends to be displaced along the axial direction of the conductor. The adhesive layer can reduce the displacement of the insulating layer. Therefore, the power cable of the present disclosure can prevent the end portion of the insulating layer from being displaced from the initial position due to the heat shrinkage of the insulating layer, and the end portion of the conductor from being exposed from the insulating layer. Therefore, the power cable of the present disclosure can maintain the state in which the conductor and the insulating layer are in close contact with each other for a long period of time.

(2)本開示の電力ケーブルの一例として、
前記接着層の構成材料は、エチレンメタクリ酸メチル共重合体、エチレン酢酸ビニル共重合体、エチレンエチルアクリレート共重合体、及び無水マレイン酸からなる群より選択される1種以上の化合物を含む形態が挙げられる。
(2) As an example of the power cable of the present disclosure,
The constituent material of the adhesive layer has a form containing at least one compound selected from the group consisting of ethylene methyl methacrylate copolymer, ethylene vinyl acetate copolymer, ethylene ethyl acrylate copolymer, and maleic anhydride. Can be mentioned.

上記形態は、上述の特定の化合物を構成材料とする接着層を備えるため、導体と絶縁層との密着性に優れる。 Since the above-described embodiment includes the adhesive layer containing the above-mentioned specific compound as a constituent material, it has excellent adhesiveness between the conductor and the insulating layer.

(3)上記(2)の電力ケーブルの一例として、
前記接着層における常温での電気抵抗率が1×10Ω・cm以上である形態が挙げられる。
(3) As an example of the power cable of (2) above,
An example is a mode in which the electrical resistivity of the adhesive layer at room temperature is 1×10 4 Ω·cm or more.

上記形態は、電気抵抗率が高い接着層を有するため、電気絶縁性に優れる。 The above-described embodiment has an adhesive layer having a high electric resistivity and therefore has excellent electric insulation.

(4)本開示の電力ケーブルの一例として、
前記接着層の厚さは、0.5mm以下である形態が挙げられる。
(4) As an example of the power cable of the present disclosure,
The thickness of the adhesive layer may be 0.5 mm or less.

上記形態における接着層は、非常に薄い。そのため、上記形態は、同じ導体断面積の導体を備える従来の電力ケーブルに比較して、絶縁層をより厚くできる。この点から、上記形態は、絶縁特性を高め易い。 The adhesive layer in the above form is very thin. Therefore, the said form can make an insulating layer thicker compared with the conventional electric power cable provided with the conductor of the same conductor cross-sectional area. From this point of view, the above-described form is likely to enhance the insulating property.

(5)本開示の電力ケーブルの一例として、
横断面において、前記圧縮撚線の包絡円と、前記圧縮撚線の輪郭とをとり、前記包絡円の面積に対する前記輪郭内の面積が占める割合が85%超である形態が挙げられる。
(5) As an example of the power cable of the present disclosure,
In the cross-section, there is a form in which an envelope circle of the compressed stranded wire and a contour of the compressed stranded wire are taken, and a ratio of an area in the outline to an area of the envelope circle is more than 85%.

上記形態では、横断面において、圧縮撚線の包絡円の面積に対する圧縮撚線の輪郭内の面積が占める割合(以下、導体占有割合と呼ぶことがある)が大きい。このような圧縮撚線は、撚り溝が浅いといえる。そのため、上記形態は、導体と絶縁層との間に局所的な電界集中箇所となり得る空隙をより確実に低減できると考えられる。従って、上記形態は、上記空隙に起因する絶縁破壊や絶縁層の酸化劣化等がより生じ難く、長期に亘り、優れた絶縁特性を維持し易い。 In the above embodiment, the ratio of the area in the contour of the compressed twisted wire to the area of the envelope circle of the compressed twisted wire (hereinafter, also referred to as conductor occupancy ratio) is large in the cross section. It can be said that such a twisted wire has a shallow twist groove. Therefore, it is considered that the above-described embodiment can more reliably reduce the voids that can be local electric field concentration points between the conductor and the insulating layer. Therefore, in the above-described embodiment, dielectric breakdown due to the voids, oxidative deterioration of the insulating layer, and the like are less likely to occur, and excellent insulating characteristics can be easily maintained for a long period of time.

(6)本開示の電力ケーブルの一例として、
前記絶縁層の構成材料は、酸化防止剤を含む形態が挙げられる。
(6) As an example of the power cable of the present disclosure,
Examples of the constituent material of the insulating layer include a form containing an antioxidant.

上記形態における酸化防止剤は、絶縁層を構成する架橋ポリオレフィンが導体を構成する銅や銅基合金に接触することで酸化が促進されること(銅害)を抑制する機能を有する。従って、上記形態は、導体と絶縁層とが直接接触する箇所が有っても絶縁層の酸化劣化が生じ難く、長期に亘り、優れた絶縁特性を維持し易い。 The antioxidant in the above-mentioned embodiment has a function of suppressing acceleration of oxidation (copper damage) due to contact of the cross-linked polyolefin forming the insulating layer with copper or a copper-based alloy forming the conductor. Therefore, in the above embodiment, even if there is a portion where the conductor and the insulating layer are in direct contact with each other, oxidative deterioration of the insulating layer does not easily occur, and it is easy to maintain excellent insulating characteristics for a long period of time.

(7)上記(6)の電力ケーブルの一例として、
前記酸化防止剤は、フェノール系であり、
前記絶縁層の構成材料は、前記酸化防止剤を0.05質量%以上0.5質量%以下含む形態が挙げられる。
(7) As an example of the power cable of (6) above,
The antioxidant is phenolic,
Examples of the constituent material of the insulating layer include a form containing the antioxidant in an amount of 0.05% by mass or more and 0.5% by mass or less.

上記形態は、上述の特定の酸化防止剤を上述の特定の範囲で含むため、絶縁層の酸化劣化がより生じ難く、長期に亘り、優れた絶縁特性を維持し易い。 Since the said form contains the above-mentioned specific antioxidant in the above-mentioned specific range, the oxidation deterioration of an insulating layer does not occur easily, and it is easy to maintain the outstanding insulating characteristic for a long period of time.

(8)本開示の電力ケーブルの一例として、
部分放電試験において、10pCの放電発生電圧が15kV以上である形態が挙げられる。
(8) As an example of the power cable of the present disclosure,
In the partial discharge test, a mode in which the discharge generation voltage of 10 pC is 15 kV or more can be mentioned.

上記形態は、10pCの放電発生電圧が15kV以上と高く、部分放電し難い。 In the above embodiment, the discharge generation voltage of 10 pC is as high as 15 kV or more, and partial discharge is difficult.

(9)本開示の電力ケーブルの一例として、
AC破壊試験において、破壊電圧が20kV/mm以上である形態が挙げられる。
(9) As an example of the power cable of the present disclosure,
In the AC breakdown test, a form in which the breakdown voltage is 20 kV/mm or more can be mentioned.

上記形態は、破壊電圧が20kV/mm以上と高く、絶縁破壊し難い。 In the above embodiment, the breakdown voltage is as high as 20 kV/mm or more, and it is difficult to cause dielectric breakdown.

(10)本開示の電力ケーブルの一例として、
浸水課電後のAC破壊試験において、破壊電圧が15kV/mm以上である形態が挙げられる。
(10) As an example of the power cable of the present disclosure,
In the AC breakdown test after flooding and charging, the breakdown voltage is 15 kV/mm or more.

上記形態は、浸水課電後の破壊電圧が15kV/mm以上と高く、長期に亘り、絶縁破壊し難い。 In the above-mentioned embodiment, the breakdown voltage after flooding is as high as 15 kV/mm or more, and it is difficult to cause dielectric breakdown for a long period of time.

(11)本開示の電力ケーブルの一例として、
送電電圧が6.6kV以上である形態が挙げられる。
(11) As an example of the power cable of the present disclosure,
An example is a mode in which the transmission voltage is 6.6 kV or higher.

上記形態は、上述のように優れた絶縁特性を有しており、送電電圧が6.6kV以上である高圧ケーブルに好適に利用できる。 The above-mentioned form has excellent insulation characteristics as described above, and can be suitably used for a high-voltage cable having a transmission voltage of 6.6 kV or more.

[本開示の実施形態の詳細]
以下、図面を参照しつつ、本開示の実施形態を具体的に説明する。図中の同一符号は、同一名称物を示す。
[Details of the embodiment of the present disclosure]
Hereinafter, embodiments of the present disclosure will be specifically described with reference to the drawings. The same reference numerals in the drawings indicate the same names.

[実施形態]
(概略)
以下、図1,図2を適宜参照して、実施形態に係る電力ケーブルを説明する。
実施形態の電力ケーブル1は、導体2と、絶縁層3とを備える。絶縁層3は、導体2の外周に設けられる。電力ケーブル1は、絶縁層3の主たる構成材料が架橋ポリオレフィンであるゴム・プラスチック絶縁電力ケーブルである。代表的には、電力ケーブル1は、絶縁層3の外周に外部半導電層5を備え、更にその外周に遮蔽層、シース(いずれも図示せず)を備える。
[Embodiment]
(Outline)
Hereinafter, the power cable according to the embodiment will be described with reference to FIGS. 1 and 2 as appropriate.
The power cable 1 of the embodiment includes a conductor 2 and an insulating layer 3. The insulating layer 3 is provided on the outer periphery of the conductor 2. The power cable 1 is a rubber/plastic insulated power cable in which the main constituent material of the insulating layer 3 is a crosslinked polyolefin. Typically, the power cable 1 includes an outer semiconductive layer 5 on the outer periphery of the insulating layer 3, and further includes a shielding layer and a sheath (neither is shown) on the outer periphery thereof.

特に、実施形態の電力ケーブル1では、導体2は、銅又は銅基合金からなる複数の素線20を含む圧縮撚線である。また、実施形態の電力ケーブル1は、導体2と絶縁層3とに接する接着層4とを備える。即ち、実施形態の電力ケーブル1は、CVケーブルといった従来の電力ケーブルに比較すると、内部半導電層を備えていない。但し、実施形態の電力ケーブル1では、絶縁層3の内周面全体が導体2の外周面全体に接するのではなく、代表的には、導体2と絶縁層3との間に接着層4が介在する。
以下、構成要素ごとに詳細に説明する。
Particularly, in the power cable 1 of the embodiment, the conductor 2 is a compression stranded wire including a plurality of strands 20 made of copper or a copper-based alloy. The power cable 1 of the embodiment also includes the adhesive layer 4 that contacts the conductor 2 and the insulating layer 3. That is, the power cable 1 of the embodiment does not include an internal semiconductive layer as compared with a conventional power cable such as a CV cable. However, in the power cable 1 of the embodiment, the entire inner peripheral surface of the insulating layer 3 does not contact the entire outer peripheral surface of the conductor 2, and typically, the adhesive layer 4 is provided between the conductor 2 and the insulating layer 3. Intervene.
Hereinafter, each component will be described in detail.

(電力ケーブル)
〈導体〉
実施形態の電力ケーブル1は、圧縮撚線からなる導体2を備える。圧縮撚線は、複数の素線20が撚り合わされてなる撚線の一種であり、撚り合せ後に更に圧縮成形されたものである。
(Power cable)
<conductor>
The power cable 1 of the embodiment includes a conductor 2 made of a compressed stranded wire. The compression stranded wire is a kind of stranded wire in which a plurality of strands 20 are twisted together, and is further compression-molded after twisting.

圧縮撚線の横断面形状は、図1に示すように円形に近い形状であると、以下の効果を奏する。圧縮撚線の横断面形状又は外形は、圧縮成形に用いる成形型によって変更できる。なお、ここでの横断面とは、電力ケーブル1の軸方向に直交する平面で切断した断面をいう。 When the cross-sectional shape of the compressed stranded wire is a shape close to a circle as shown in FIG. 1, the following effects are obtained. The cross-sectional shape or outer shape of the compression stranded wire can be changed depending on the molding die used for compression molding. In addition, the horizontal cross section here means a cross section taken along a plane orthogonal to the axial direction of the power cable 1.

(1)曲げ等が行い易い。
(2)素線20のうち、撚線の輪郭をなす外周素線間に設けられる隙間(撚り溝)が小さくなり易い。
(3)製造過程で、押出によって、接着層4や絶縁層3を形成し易い。
(4)横断面形状が六角形等の角張った形状である場合に比較して、接着層4の厚さtや絶縁層3の厚さを均一的に製造し易い。その結果、ケーブル径を小さくし易い。
(1) Easy to bend.
(2) Of the strands 20, the gaps (twisted grooves) provided between the outer circumferential strands forming the contour of the stranded wire are likely to be small.
(3) It is easy to form the adhesive layer 4 and the insulating layer 3 by extrusion in the manufacturing process.
(4) The thickness t of the adhesive layer 4 and the thickness of the insulating layer 3 can be easily manufactured uniformly as compared with the case where the cross-sectional shape is an angular shape such as a hexagon. As a result, it is easy to reduce the cable diameter.

圧縮撚線の一例として、図1に示す7本の同心撚りの圧縮撚線が挙げられる。素線20の本数、各素線20の断面積、撚り合せ方法等は、送電電圧に応じた所定の断面積を満たす導体2となる範囲で適宜選択できる。例えば、送電電圧が6.6kVである電力ケーブル1では、導体2の公称断面積は14mm以上1200mm以下が挙げられる。また、導体2の外径は4.4mm以上41.7mm以下が挙げられる。 As an example of the compressed stranded wire, seven concentric stranded compressed stranded wires shown in FIG. 1 can be cited. The number of the strands 20, the cross-sectional area of each strand 20, the twisting method, and the like can be appropriately selected within the range of the conductor 2 that satisfies the predetermined cross-sectional area according to the transmission voltage. For example, in the power cable 1 having a transmission voltage of 6.6 kV, the conductor 2 has a nominal cross-sectional area of 14 mm 2 or more and 1200 mm 2 or less. The outer diameter of the conductor 2 is 4.4 mm or more and 41.7 mm or less.

各素線20の構成材料は、銅又は銅基合金とする。「銅」とはいわゆる純銅である。「銅基合金」とは添加元素を含み、残部がCu及び不純物からなる合金である。銅基合金は、公知の組成を利用できる。銅又は銅基合金の導電率は、例えばアルミニウムやアルミニウム基合金に比較して高い。そのため、導体2として、銅又は銅基合金からなる素線20の圧縮撚線を備えれば、導体断面積を小さくし易い。ひいてはケーブル径を小さくし易い。 The constituent material of each strand 20 is copper or a copper-based alloy. "Copper" is so-called pure copper. The "copper-based alloy" is an alloy containing an additive element and the balance of Cu and impurities. A known composition can be used for the copper-based alloy. The conductivity of copper or a copper-based alloy is higher than that of aluminum or an aluminum-based alloy, for example. Therefore, if the conductor 2 is provided with a compression strand of the wire 20 made of copper or a copper-based alloy, the conductor cross-sectional area can be easily reduced. As a result, it is easy to reduce the cable diameter.

導体2を構成する圧縮撚線の撚り溝は、浅いことが好ましい。定量的には、電力ケーブル1の横断面において、図2に示すように導体2をなす圧縮撚線の包絡円25と、この圧縮撚線の輪郭とをとる。包絡円25の面積に対する上記圧縮撚線の輪郭内の面積が占める割合(導体占有割合)が85%超であることが挙げられる。ここでの圧縮撚線の輪郭内の面積は、複数の素線20の面積に加えて、複数の素線20で囲まれてできる隙間22の面積を含む。図2では、包絡円25を二点鎖線で仮想的に示す。また、図2では、包絡円25において圧縮撚線の輪郭内の面積を除く領域(以下、介在領域27と呼ぶ)にハッチングを付し、隙間22にクロスハッチングを付している。図2では、素線20のハッチングは省略している。介在領域27には、接着層4の構成材料が充填される(図1)。 It is preferable that the twist groove of the compressed stranded wire forming the conductor 2 is shallow. Quantitatively, in the cross section of the power cable 1, as shown in FIG. 2, the envelope circle 25 of the compressed stranded wire forming the conductor 2 and the contour of this compressed stranded wire are taken. The ratio of the area in the contour of the compressed twisted wire to the area of the envelope circle 25 (conductor occupancy ratio) is more than 85%. The area within the contour of the compressed stranded wire includes the area of the plurality of strands 20 and the area of the gap 22 formed by the plurality of strands 20 in addition to the area of the plurality of strands 20. In FIG. 2, the envelope circle 25 is virtually shown by a chain double-dashed line. Further, in FIG. 2, a region (hereinafter, referred to as an intervening region 27) of the envelope circle 25 excluding the area within the contour of the compression twisted wire is hatched, and the gap 22 is cross-hatched. In FIG. 2, the hatching of the wires 20 is omitted. The intervening region 27 is filled with the constituent material of the adhesive layer 4 (FIG. 1 ).

上述の導体占有割合が85%超であると、電力ケーブル1は、接着層4を備えることと相俟って、以下に説明するように、絶縁層3の絶縁特性の劣化を抑制し易い。そのため、電力ケーブル1は、長期に亘り、優れた絶縁特性を維持し易い。 When the above-mentioned conductor occupancy rate exceeds 85%, the power cable 1 is likely to suppress deterioration of the insulating characteristics of the insulating layer 3 in combination with the provision of the adhesive layer 4, as described below. Therefore, the power cable 1 can easily maintain excellent insulation characteristics for a long period of time.

上述の導体占有割合が85%超である圧縮撚線は、非圧縮線と比較して、撚り溝が浅く、凹凸が小さい外形を有するといえる。また、このような圧縮撚線の横断面形状は円形に近いといえる。撚り溝が浅ければ、接着層4の構成材料が充填されることで、撚り溝に空隙が生じることを低減し易い。撚り溝に充填された接着層4によって、導体2をなす圧縮撚線と絶縁層3とが密着できる。更に、代表的には、圧縮撚線の全周が接着層4に覆われて、導体2をなす圧縮撚線と絶縁層3との間に接着層4が介在する。このような接着層4によって、導体2と絶縁層3とがより密着し易い。従って、圧縮撚線からなる導体2と絶縁層3との間に局所的な電界集中箇所となり得る空隙が少ないと考えられる。上記空隙が少ないことで、上記空隙での電界集中に起因する絶縁破壊を低減し易い。また、上記空隙が少ないことで、上記隙間に存在し得る空気や水分等の介在物も少ないと考えられる。そのため、絶縁層3が上記介在物に長期に亘り接触することで酸化劣化することも低減し易い。これらのことから、電力ケーブル1は、所定の絶縁特性を維持し易い。 It can be said that the compressed stranded wire in which the conductor occupancy ratio exceeds 85% has an outer shape with shallow twisted grooves and small unevenness as compared with the non-compressed wire. Further, it can be said that the cross-sectional shape of such a compressed stranded wire is close to a circle. If the twist groove is shallow, it is easy to reduce the formation of voids in the twist groove by filling the constituent material of the adhesive layer 4. The compression stranded wire forming the conductor 2 and the insulating layer 3 can be adhered to each other by the adhesive layer 4 filled in the twist groove. Further, typically, the entire circumference of the compressed stranded wire is covered with the adhesive layer 4, and the adhesive layer 4 is interposed between the compressed stranded wire forming the conductor 2 and the insulating layer 3. Due to such an adhesive layer 4, the conductor 2 and the insulating layer 3 are more easily brought into close contact with each other. Therefore, it is considered that there are few gaps between the conductor 2 made of the compressed stranded wire and the insulating layer 3, which can be local electric field concentration points. Since the number of voids is small, it is easy to reduce dielectric breakdown due to electric field concentration in the voids. Further, it is considered that since the voids are small, inclusions such as air and water that may exist in the gaps are also small. Therefore, oxidative deterioration due to the insulating layer 3 being in contact with the inclusions for a long period of time is easily reduced. For these reasons, the power cable 1 can easily maintain a predetermined insulation characteristic.

上述の導体占有割合が大きいほど、上述の空隙が少ないと期待される。従って、上記導体占有割合は、88%以上、更に90%以上、更には95%以上が好ましい。 It is expected that the larger the conductor occupancy rate is, the less the voids are. Therefore, the conductor occupancy ratio is preferably 88% or more, more preferably 90% or more, further preferably 95% or more.

上述の導体占有割合を大きくする手法は、例えば、以下が挙げられる。
(1)圧縮成形時に圧縮度合いを大きくする。
(2)圧縮成形前の撚り合せに供する線材として、断面積がある程度大きな線材(ある程度太い線材)を利用する。
Examples of methods for increasing the conductor occupancy ratio include the following.
(1) Increase the degree of compression during compression molding.
(2) A wire having a relatively large cross-sectional area (a wire having a certain thickness) is used as a wire to be twisted before compression molding.

〈絶縁層〉
絶縁層3の構成材料は、架橋ポリオレフィンを含む。例えば、絶縁層3の構成材料を100質量%として、架橋ポリオレフィンの含有量は95質量%以上が挙げられる。ポリオレフィンの具体例として、ポリエチレン(PE)、ポリプロピレン(PP)等が挙げられる。絶縁層3の構成材料の一例として、架橋ポリエチレンが挙げられる。
<Insulation layer>
The constituent material of the insulating layer 3 includes crosslinked polyolefin. For example, when the constituent material of the insulating layer 3 is 100% by mass, the content of the crosslinked polyolefin is 95% by mass or more. Specific examples of the polyolefin include polyethylene (PE) and polypropylene (PP). Cross-linked polyethylene is an example of the constituent material of the insulating layer 3.

絶縁層3の構成材料は、架橋ポリオレフィンの他、添加剤を含んでもよい。例えば、絶縁層3の構成材料は、酸化防止剤を含んでもよい。酸化防止剤を含むことで、絶縁層3の酸化劣化を効果的に防止できる。絶縁層3の構成材料の一例として、酸化防止剤を含む架橋ポリエチレンが挙げられる。 The constituent material of the insulating layer 3 may include an additive in addition to the crosslinked polyolefin. For example, the constituent material of the insulating layer 3 may include an antioxidant. By including the antioxidant, the oxidative deterioration of the insulating layer 3 can be effectively prevented. As an example of the constituent material of the insulating layer 3, cross-linked polyethylene containing an antioxidant can be mentioned.

酸化防止剤は、種々のものが利用できる。特にフェノール系の酸化防止剤は、以下の点から好ましい。
(1)幅広い温度範囲で架橋ポリオレフィンの酸化防止効果が高い。
(2)銅害防止効果を期待できる。
銅害とは、導体2の構成材料である銅によって絶縁層3の酸化が促進される現象である。導体2と絶縁層3とが直接接触する箇所がある場合には、銅害が生じる可能性があるが、絶縁層3に酸化防止剤を含むことで防止し易い。
Various antioxidants can be used. Particularly, phenolic antioxidants are preferable from the following points.
(1) The antioxidant effect of the crosslinked polyolefin is high in a wide temperature range.
(2) A copper damage prevention effect can be expected.
Copper damage is a phenomenon in which the constituent material of the conductor 2, copper, accelerates the oxidation of the insulating layer 3. When there is a portion where the conductor 2 and the insulating layer 3 are in direct contact with each other, copper damage may occur, but it is easy to prevent by including an antioxidant in the insulating layer 3.

酸化防止剤の含有量は、例えば、絶縁層3の構成材料(架橋ポリオレフィンと酸化防止剤等の添加剤との合計量)を100質量%として、0.05質量%以上0.5質量%以下が挙げられる。 The content of the antioxidant is, for example, 0.05% by mass or more and 0.5% by mass or less, with 100% by mass of the constituent material of the insulating layer 3 (the total amount of the crosslinked polyolefin and the additive such as the antioxidant). Is mentioned.

酸化防止剤の含有量が0.05質量%以上であれば、絶縁層3の酸化や銅害を防止し易い。酸化防止剤の含有量が多いほど、絶縁層3の酸化や銅害を防止し易い。そのため、酸化防止剤の含有量は、0.08質量%以上、更に0.10質量%以上、更には0.12質量%以上としてもよい。 When the content of the antioxidant is 0.05% by mass or more, it is easy to prevent oxidation of the insulating layer 3 and copper damage. The greater the content of the antioxidant, the easier it is to prevent oxidation of the insulating layer 3 and copper damage. Therefore, the content of the antioxidant may be 0.08% by mass or more, further 0.10% by mass or more, and further 0.12% by mass or more.

酸化防止剤の含有量が0.5質量%以下であれば、絶縁層3の発泡や変色等の不具合を低減できる。そのため、酸化防止剤の含有量は、0.45質量%以下、更に0.40質量%以下、更には0.30質量%以下としてもよい。 When the content of the antioxidant is 0.5% by mass or less, defects such as foaming and discoloration of the insulating layer 3 can be reduced. Therefore, the content of the antioxidant may be 0.45 mass% or less, further 0.40 mass% or less, and further 0.30 mass% or less.

絶縁層3の構成材料における酸化防止剤の含有量の測定には、例えば、各種の分析方法を利用できる。分析方法の一例として、ガスクロマトグラフィー分析が挙げられる。 For example, various analysis methods can be used to measure the content of the antioxidant in the constituent material of the insulating layer 3. One example of the analysis method is gas chromatography analysis.

絶縁層3の厚さは、導体断面積に応じて、所定の絶縁特性を満たすように適宜選択するとよい。実施形態の電力ケーブル1は、内部半導電層を有していない。そのため、従来の電力ケーブルに対して、(内部半導電層の厚さ−接着層4の厚さt)の厚さを絶縁層3に加えられる。このような絶縁層3の厚肉化によって、電力ケーブル1は、絶縁特性を高め易い。例えば、送電電圧が6.6kVである電力ケーブル1では、絶縁層3の厚さは、4.0mm以上6.0mm以下が挙げられる。 The thickness of the insulating layer 3 may be appropriately selected depending on the conductor cross-sectional area so as to satisfy predetermined insulating characteristics. The power cable 1 of the embodiment does not have an internal semiconductive layer. Therefore, a thickness of (the thickness of the inner semiconductive layer-the thickness t of the adhesive layer 4) can be added to the insulating layer 3 with respect to the conventional power cable. By increasing the thickness of the insulating layer 3 as described above, the power cable 1 is likely to have improved insulation characteristics. For example, in the power cable 1 having a transmission voltage of 6.6 kV, the thickness of the insulating layer 3 may be 4.0 mm or more and 6.0 mm or less.

〈接着層〉
接着層4は、導体2と絶縁層3との密着性の向上に寄与する。ここで、電力ケーブル1は、代表的には地中管路等に布設されて使用される。そのため、電力ケーブル1は、布設状態に起因する張力が実質的に作用しない。しかし、電力ケーブル1の使用時、通電及び非通電の繰り返しに伴うヒートサイクルによって、絶縁層3が熱伸縮する。特に、絶縁層3が熱収縮すると、電力ケーブル1の端部において、絶縁層3の端部が初期位置から変位して、導体2の端部が絶縁層3から露出されることが考えられる。そのため、接着層4には、上述の使用時の熱収縮に起因する張力が絶縁層3に作用した場合でも、導体2と絶縁層3とが密着した状態を維持できることが望まれる。このような接着層4の構成材料は、銅又は銅基合金からなる導体2と、架橋ポリオレフィンを主材料とする絶縁層3との双方に対して密着性に優れる材料が好ましい。例えば、接着層4の構成材料には、架橋ポリオレフィン以外の材料であって、架橋ポリオレフィンよりも導体2との密着性に優れる材料が好適に利用できる。
<Adhesive layer>
The adhesive layer 4 contributes to the improvement of the adhesiveness between the conductor 2 and the insulating layer 3. Here, the power cable 1 is typically laid and used in an underground conduit or the like. Therefore, in the power cable 1, the tension resulting from the installed state does not substantially act. However, when the power cable 1 is used, the insulating layer 3 thermally expands and contracts due to a heat cycle that accompanies repeated energization and de-energization. In particular, when the insulating layer 3 thermally contracts, it is possible that the end of the insulating layer 3 is displaced from the initial position at the end of the power cable 1 and the end of the conductor 2 is exposed from the insulating layer 3. Therefore, it is desired that the adhesive layer 4 be able to maintain the state in which the conductor 2 and the insulating layer 3 are in close contact with each other, even when the tension resulting from the heat shrinkage during use acts on the insulating layer 3. The constituent material of such an adhesive layer 4 is preferably a material having excellent adhesiveness to both the conductor 2 made of copper or a copper-based alloy and the insulating layer 3 having a crosslinked polyolefin as a main material. For example, as the constituent material of the adhesive layer 4, a material other than the cross-linked polyolefin and having a higher adhesiveness with the conductor 2 than the cross-linked polyolefin can be suitably used.

接着層4の構成材料の一例として、エチレンメタクリ酸メチル共重合体(EMMA)、エチレン酢酸ビニル共重合体(EVA)、エチレンエチルアクリレート共重合体(EEA)、及び無水マレイン酸からなる群より選択される1種以上の化合物を含むことが挙げられる。上記に列挙する化合物はいずれも、導体2との接着性が高い。そのため、上記に列挙する化合物からなる接着層4は、導体2と絶縁層3とを密着できる。また、上記に列挙する化合物はいずれも、溶解時に適度な流動性を有しており、押出被覆を行い易い。この点で電力ケーブル1の製造性にも優れる。接着層4の構成材料は上記に列挙する1種の化合物でもよいし、2種以上の化合物を含んでもよい。 An example of the constituent material of the adhesive layer 4 is selected from the group consisting of ethylene methyl methacrylate copolymer (EMMA), ethylene vinyl acetate copolymer (EVA), ethylene ethyl acrylate copolymer (EEA), and maleic anhydride. Are included. All the compounds listed above have high adhesiveness to the conductor 2. Therefore, the adhesive layer 4 made of the compounds listed above can bring the conductor 2 and the insulating layer 3 into close contact with each other. In addition, all of the above-listed compounds have appropriate fluidity when dissolved, and thus extrusion coating is easy to perform. In this respect, the manufacturability of the power cable 1 is also excellent. The constituent material of the adhesive layer 4 may be one kind of the compounds listed above, or may include two or more kinds of compounds.

接着層4における常温(例えば20℃±15℃)での電気抵抗率は、例えば1×10Ω・cm以上が挙げられる。接着層4の電気抵抗率が1×10Ω・cm以上であれば、電気絶縁性に優れる。良好な電気絶縁性等を望む場合には、上記電気抵抗率を5×10Ω・cm以上、更に1×10Ω・cm以上としてもよい。このような電気絶縁性に優れる接着層4は、例えば、導電性物質(例、カーボンブラック)を添加していない上述のEMMA等の化合物によって実質的に構成することが挙げられる。 The electrical resistivity of the adhesive layer 4 at room temperature (for example, 20° C.±15° C.) is, for example, 1×10 4 Ω·cm or more. When the electric resistivity of the adhesive layer 4 is 1×10 4 Ω·cm or more, the electric insulation is excellent. When good electrical insulation is desired, the electrical resistivity may be 5×10 4 Ω·cm or more, and further 1×10 5 Ω·cm or more. Such an adhesive layer 4 having an excellent electric insulation property may be constituted substantially by, for example, a compound such as EMMA described above to which a conductive substance (eg, carbon black) is not added.

接着層4は、導体2をなす圧縮撚線の撚り溝(介在領域27)に充填される部分(以下、充填部と呼ぶ)を含む。また、接着層4は、代表的には、上記充填部に加えて、圧縮撚線の外周の少なくとも一部を囲む部分(以下、被覆部と呼ぶ)を含む。上記被覆部は、上述の包絡円25の少なくとも一部を覆う部分である。接着層4は、上記充填部と上記被覆部とを含み、上記被覆部が上記包絡円25の全周を覆って環状であることが好ましい。 The adhesive layer 4 includes a portion (hereinafter referred to as a filling portion) filled in the twist groove (the intervening region 27) of the compressed stranded wire forming the conductor 2. In addition to the filling portion, the adhesive layer 4 typically includes a portion (hereinafter, referred to as a covering portion) that surrounds at least a part of the outer circumference of the compressed stranded wire. The covering portion is a portion that covers at least a part of the envelope circle 25 described above. The adhesive layer 4 preferably includes the filling portion and the covering portion, and the covering portion preferably has an annular shape covering the entire circumference of the envelope circle 25.

圧縮撚線の各撚り溝に上述の接着層4の充填部を備えていれば、上述の接着層4の被覆部を有していなくても、各充填部の外周面と絶縁層3の内周面とが接着されることで、導体2と絶縁層3とが密着できる。従って、接着層4は、上記被覆部を有さない場合、及び上記被覆部を有するものの環状でない場合を許容する。いわば、導体2と絶縁層3とが直接接触した箇所が存在することを許容する。一方、上記充填部と上記被覆部とを備えると、更には上記被覆部が環状に近いほど、絶縁層3の内周面における接着層4との接触面積が増大し、導体2と絶縁層3とが密着し易く好ましい。また、上記被覆部が環状であれば、導体2をなす圧縮撚線の全周と絶縁層3との間に接着層4が介在することで、導体2と絶縁層3とが直接接触することを防止できる。そのため、接着層4の介在による銅害の防止効果が期待できる。 As long as each twist groove of the compressed stranded wire is provided with the filling portion of the adhesive layer 4 described above, the outer peripheral surface of each filling portion and the insulating layer 3 By bonding the peripheral surface, the conductor 2 and the insulating layer 3 can be in close contact with each other. Therefore, the adhesive layer 4 allows the case without the covering portion and the case with the covering portion but not the annular shape. In other words, it is allowed that there is a portion where the conductor 2 and the insulating layer 3 are in direct contact with each other. On the other hand, when the filling portion and the covering portion are provided, the contact area with the adhesive layer 4 on the inner peripheral surface of the insulating layer 3 increases as the covering portion further approximates a ring, and the conductor 2 and the insulating layer 3 are provided. And are easily adhered, which is preferable. Further, when the covering portion is annular, the conductor 2 and the insulating layer 3 are in direct contact with each other by the interposition of the adhesive layer 4 between the entire circumference of the compressed stranded wire forming the conductor 2 and the insulating layer 3. Can be prevented. Therefore, the effect of preventing copper damage due to the interposition of the adhesive layer 4 can be expected.

接着層4は、上述のように電力ケーブル1の使用時において導体2と絶縁層3とが密着した状態を維持できれば、薄くてよい。例えば、接着層4の厚さtは、0.5mm以下が挙げられる。 The adhesive layer 4 may be thin as long as the conductor 2 and the insulating layer 3 can be kept in close contact with each other when the power cable 1 is used as described above. For example, the thickness t of the adhesive layer 4 is 0.5 mm or less.

ここでの接着層4の厚さtとは、上述の被覆部の厚さである。厚さtの測定は、以下のように行う。電力ケーブル1の横断面において、導体2をなす圧縮撚線の包絡円25と、接着層4の輪郭線とを抽出する。包絡円25の直径方向に沿って、包絡円25と輪郭線との距離を測定する。複数の測定点(例、4点〜5点)についてそれぞれ上記距離を測定して平均をとる。この平均値を厚さtとする。上記被覆部が環状であれば、包絡円25の周方向に等間隔に測定点をとるとよい。又は、上記被覆部が環状であれば、包絡円25の全周に亘って上記距離を測定し、平均をとってもよい。上記被覆部が環状でなければ、上記被覆部が存在する箇所から測定点をとる。 The thickness t of the adhesive layer 4 here is the thickness of the above-mentioned covering portion. The thickness t is measured as follows. In the cross section of the power cable 1, the envelope circle 25 of the compression strand forming the conductor 2 and the contour line of the adhesive layer 4 are extracted. The distance between the envelope circle 25 and the contour line is measured along the diameter direction of the envelope circle 25. The above distances are measured at a plurality of measurement points (eg, 4 points to 5 points) and averaged. This average value is taken as the thickness t. If the covering portion is annular, it is advisable to take measurement points at equal intervals in the circumferential direction of the envelope circle 25. Alternatively, if the covering portion is annular, the distance may be measured over the entire circumference of the envelope circle 25 and averaged. If the covering portion is not annular, the measurement point is taken from the place where the covering portion is present.

接着層4の厚さtが薄いほど、上述のように絶縁層3を厚くして絶縁特性を高め易い。(内部半導電層の厚さ−接着層4の厚さt)の値が大きくなって、絶縁層3の増加量を大きく確保できるからである。また、厚さtが薄いほど、接着層4の材料を低減できる。この点から、材料コストも低減できる。絶縁層3の増大による絶縁特性の向上等を望む場合には、厚さtを0.4mm以下、更に0.3mm以下としてもよい。 The thinner the thickness t of the adhesive layer 4, the thicker the insulating layer 3 as described above, and the easier it is to improve the insulating property. This is because the value of (thickness of inner semiconductive layer-thickness t of adhesive layer 4) becomes large, and a large increase amount of the insulating layer 3 can be secured. Further, the thinner the thickness t, the more the material of the adhesive layer 4 can be reduced. From this point, the material cost can also be reduced. The thickness t may be 0.4 mm or less, and more preferably 0.3 mm or less when it is desired to improve the insulating property by increasing the insulating layer 3.

一方、接着層4の厚さtが0.01mm以上であれば、上述の被覆部を含むことによる導体2と絶縁層3との密着性の向上を図れる。また、厚さtが厚いほど、接着層4は、上記被覆部を有し易く、更には環状の被覆部を有し易い。そのため、導体2と絶縁層3との密着性の向上効果、銅害防止効果を得易い。密着性の向上、銅害防止等を望む場合には、厚さtを0.05mm以上、更に0.08mm以上、0.10mm以上にしてもよい。 On the other hand, when the thickness t of the adhesive layer 4 is 0.01 mm or more, it is possible to improve the adhesion between the conductor 2 and the insulating layer 3 by including the above-mentioned covering portion. Further, the thicker the thickness t is, the easier the adhesive layer 4 has the above-mentioned covering portion, and more easily the annular covering portion. Therefore, it is easy to obtain the effect of improving the adhesion between the conductor 2 and the insulating layer 3 and the effect of preventing copper damage. The thickness t may be set to 0.05 mm or more, further 0.08 mm or more, 0.10 mm or more in order to improve the adhesion and prevent copper damage.

〈その他の構成層〉
外部半導電層5や遮蔽層、シース等は、公知の材料を利用できる。なお、外部半導電層5を省略することもできる。
<Other constituent layers>
Known materials can be used for the outer semiconductive layer 5, the shielding layer, the sheath, and the like. The outer semiconductive layer 5 may be omitted.

〈絶縁特性〉
実施形態の電力ケーブル1は、内部半導電層を備えていないものの、内部半導電層を備える従来の電力ケーブルと同等程度、又はそれ以上の絶縁特性を有する。
<Insulation characteristics>
Although the power cable 1 of the embodiment does not include the inner semiconductive layer, it has an insulating property equivalent to or higher than that of the conventional power cable including the inner semiconductive layer.

例えば、実施形態の電力ケーブル1は、部分放電試験において、10pCの放電発生電圧が15kV以上であることが挙げられる。10pCの放電発生電圧が15kV以上であれば部分放電し難いといえる。このような電力ケーブル1は、導体2と絶縁層3との間に部分放電の起点となり得る空隙が少ないと考えられる。このことから、内部半導電層を備えていない電力ケーブルに対して、「10pCの放電発生電圧が15kV以上」という指標は、導体2と絶縁層3との間に部分放電の起点となり得る空隙が少ないことを間接的に示す指標の一つに利用できると考えられる。10pCの放電発生電圧が高いほど部分放電し難く、絶縁特性に優れる。そのため、10pCの放電発生電圧は15.3kV以上、更に15.5kV以上が好ましい。部分放電試験、後述するAC破壊試験、浸水課電後のAC破壊試験の試験条件は、試験例1で詳細に説明する。 For example, the power cable 1 of the embodiment may have a discharge generation voltage of 10 pC of 15 kV or more in the partial discharge test. It can be said that partial discharge is difficult if the discharge generation voltage of 10 pC is 15 kV or more. It is considered that such a power cable 1 has a small gap between the conductor 2 and the insulating layer 3 that can be a starting point of partial discharge. From this, for the power cable that does not include the internal semiconductive layer, the index "the discharge generation voltage of 10 pC is 15 kV or more" indicates that there is a gap between the conductor 2 and the insulating layer 3 that may be a starting point of partial discharge. It can be used as one of the indicators that indirectly indicate that there is little. The higher the discharge generation voltage of 10 pC, the more difficult partial discharge is, and the more excellent the insulation characteristics are. Therefore, the discharge generation voltage of 10 pC is preferably 15.3 kV or higher, more preferably 15.5 kV or higher. The test conditions of the partial discharge test, the AC destructive test described later, and the AC destructive test after immersion in water will be described in detail in Test Example 1.

又は、実施形態の電力ケーブル1は、AC破壊試験において、破壊電圧が20kV/mm以上であることが挙げられる。上記破壊電圧が20kV/mm以上であれば絶縁破壊し難いといえる。このような電力ケーブル1は、絶縁層3や、導体2と絶縁層3との間に絶縁破壊の起点となり得る空隙が少ないと考えられる。このことから、内部半導電層を備えていない電力ケーブルに対して、「破壊電圧が20kV/mm以上である」という指標は、絶縁層3や、導体2と絶縁層3との間に上記空隙が少ないことを間接的に示す指標の一つに利用できると考えられる。上記破壊電圧が高いほど絶縁破壊し難く、絶縁特性に優れる。そのため、上記破壊電圧は20.2kV/mm以上、更に20.5kV/mm以上が好ましい。 Alternatively, the power cable 1 of the embodiment may have a breakdown voltage of 20 kV/mm or more in the AC breakdown test. If the breakdown voltage is 20 kV/mm or more, it can be said that dielectric breakdown is difficult. It is considered that such a power cable 1 has few insulating layers 3 and voids between the conductors 2 and the insulating layers 3 that can be the starting points of dielectric breakdown. From this, with respect to the power cable that does not include the internal semiconductive layer, the index "breakdown voltage is 20 kV/mm or more" is defined as the above-mentioned gap between the insulating layer 3 and the conductor 2 and the insulating layer 3. It can be used as one of the indicators that indirectly indicate that there is little. The higher the breakdown voltage is, the more difficult the dielectric breakdown is and the more excellent the insulation property is. Therefore, the breakdown voltage is preferably 20.2 kV/mm or more, more preferably 20.5 kV/mm or more.

又は、実施形態の電力ケーブル1は、浸水課電後のAC破壊試験において、破壊電圧が15kV/mm以上であることが挙げられる。浸水課電後における上記破壊電圧が15kV/mm以上であれば、長期に亘り水分が接した状態となっても酸化劣化や水トリー等が生じ難く、絶縁破壊し難いといえる。このような電力ケーブル1は、絶縁層3や、導体2と絶縁層3との間に水分が溜まり得る隙間が少ないと考えられる。このことから、内部半導電層を備えていない電力ケーブルに対して、「浸水課電後の破壊電圧が15kV/mm以上である」という指標は、絶縁層3や導体2と絶縁層3との間に上記隙間が少ないことを間接的に示す指標の一つに利用できると考えられる。上記破壊電圧が高いほど長期の使用でも絶縁破壊し難く、絶縁特性に優れる。そのため、上記破壊電圧は16kV/mm以上、更に18kV/mm以上が好ましい。 Alternatively, the power cable 1 of the embodiment may have a breakdown voltage of 15 kV/mm or more in the AC breakdown test after the flooding. If the breakdown voltage is 15 kV/mm or more after flooding, it can be said that even if moisture is kept in contact for a long period of time, oxidative deterioration, water tree, etc. are less likely to occur, and dielectric breakdown is less likely to occur. It is considered that such a power cable 1 has few insulating layers 3 and a gap between the conductor 2 and the insulating layer 3 in which water can be accumulated. From this, for the power cable that does not include the internal semiconductive layer, the index "the breakdown voltage after flooding is 15 kV/mm or more" indicates that the insulation layer 3 or the conductor 2 and the insulation layer 3 are It is considered that this can be used as one of the indicators indirectly indicating that the above gap is small. The higher the breakdown voltage is, the more difficult it is to cause dielectric breakdown even after long-term use, and the more excellent the insulation characteristics are. Therefore, the breakdown voltage is preferably 16 kV/mm or more, more preferably 18 kV/mm or more.

実施形態の電力ケーブル1は、部分放電試験において10pCの放電発生電圧が15kV以上であること、AC破壊試験において破壊電圧が20kV/mm以上であること、及び浸水課電後のAC破壊試験において破壊電圧が15kV/mm以上であることの少なくとも一つを満たすことが好ましい。列挙した三つの事項のうち、少なくとも二つを満たすこと、更に三つ全てを満たすことがより好ましい。 The power cable 1 of the embodiment has a discharge generation voltage of 10 pC of 15 kV or more in a partial discharge test, a breakdown voltage of 20 kV/mm or more in an AC breakdown test, and a breakdown in an AC breakdown test after water immersion. It is preferable to satisfy at least one of the voltage being 15 kV/mm or more. It is more preferable that at least two of the three listed items are satisfied, and further that all three are satisfied.

上述の放電発生電圧、破壊電圧、浸水課電後の破壊電圧をより高めるには、上述の導体占有割合をより大きくすること、酸化防止剤の含有量を多くすること、接着層4の厚さtを厚くすること等が挙げられる。 In order to further increase the above-mentioned discharge generation voltage, breakdown voltage, and breakdown voltage after immersion in water, it is necessary to increase the above-mentioned conductor occupancy ratio, increase the antioxidant content, and increase the thickness of the adhesive layer 4. Increasing t can be mentioned.

〈送電電圧〉
実施形態の電力ケーブル1は、上述のように導体2を特定の形状とし、かつ接着層4を備えることで部分放電や絶縁破壊が発生し難いため、送電電圧がより高い用途に好適に利用できる。例えば、電力ケーブル1は、送電電圧が600V超、更に3500V以上、特に6.6kV以上である用途に好適に利用できる。
<Transmission voltage>
Since the power cable 1 of the embodiment has the conductor 2 having a specific shape as described above and the adhesive layer 4 is less likely to cause partial discharge or dielectric breakdown, the power cable 1 can be suitably used for a higher transmission voltage. .. For example, the power cable 1 can be suitably used for applications in which the transmission voltage is more than 600 V, further 3500 V or more, and particularly 6.6 kV or more.

(電力ケーブルの製造方法)
実施形態の電力ケーブル1は、例えば、以下の工程を備える製造方法によって製造できる。
(導体準備工程)複数の線材を撚り合せた後、更に圧縮成形して、圧縮撚線を形成する工程。
(押出工程)前記圧縮撚線の直上に、接着層となる第一の原料と、絶縁層となる第二の原料とを同時に押し出す工程。
(架橋工程)前記第二の原料による押出層を架橋する工程。
以下、工程ごとに詳細に説明する。
(Power cable manufacturing method)
The power cable 1 of the embodiment can be manufactured by, for example, a manufacturing method including the following steps.
(Conductor preparation step) A step of forming a compressed stranded wire by twisting a plurality of wires and further compression-molding the wires.
(Extrusion step) A step of immediately extruding a first raw material to be an adhesive layer and a second raw material to be an insulating layer directly above the compressed stranded wire.
(Crosslinking step) A step of crosslinking the extruded layer with the second raw material.
Hereinafter, each step will be described in detail.

〈導体準備工程〉
この工程では、導体2とする圧縮撚線を製造する。圧縮撚線に供する線材は、銅又は銅基合金からなり、所定の断面積や外径を有する線材を利用できる。代表的には、上記線材は、銅又は銅基合金からなる丸線を利用できる。上記線材は、公知の銅線又は銅基合金線の製造方法によって製造できる。上記線材として、比較的太めの線材を利用すると、圧縮度合いを高め易く、上述の導体占有割合を高め易い。撚線の製造には、同心撚りや集合撚り等の撚り合せ法を利用できる。圧縮成形には、所定の横断面形状が得られる成形型を利用できる。また、圧縮成形は、上記導体占有割合が85%超となる範囲で圧縮度合いを調整して行うことが好ましい。
<Conductor preparation process>
In this step, a compressed stranded wire to be the conductor 2 is manufactured. The wire rod used for the compression stranded wire is made of copper or a copper-based alloy, and a wire rod having a predetermined cross-sectional area and outer diameter can be used. Typically, the wire may be a round wire made of copper or a copper-based alloy. The wire rod can be manufactured by a known method for manufacturing a copper wire or a copper-based alloy wire. If a relatively thick wire is used as the wire, the degree of compression can be easily increased, and the conductor occupancy rate can be easily increased. For manufacturing the stranded wire, a twisting method such as concentric twisting or collective twisting can be used. For compression molding, a molding die that can obtain a predetermined cross-sectional shape can be used. Further, the compression molding is preferably performed by adjusting the degree of compression within the range where the conductor occupancy rate exceeds 85%.

〈押出工程〉
この工程では、用意した圧縮撚線の外周に第一の原料及び第二の原料を押し出して、第一の原料による押出層と第二の原料による押出層とを同時に形成する。押出層の形成には、従来の電力ケーブルにおける内部半導電層と絶縁層との同時押出に利用される設備を利用できる。
<Extrusion process>
In this step, the first raw material and the second raw material are extruded onto the outer periphery of the prepared compressed stranded wire to simultaneously form an extruded layer of the first raw material and an extruded layer of the second raw material. To form the extruded layer, the equipment used for coextruding the inner semiconductive layer and the insulating layer in the conventional power cable can be used.

第一の原料には、接着層4の構成材料の項で説明した化合物等を利用できる。第二の原料には、絶縁層3の構成材料の項で説明したポリオレフィン(酸化防止剤等を含んでもよい)を利用できる。接着層4、絶縁層3の構成材料の詳細は上述の各項を参照するとよい。第一の原料及び第二の原料は、いずれも押出可能なように溶融状態とする。 As the first raw material, the compound or the like described in the section of the constituent material of the adhesive layer 4 can be used. The polyolefin (which may include an antioxidant or the like) described in the section of the constituent material of the insulating layer 3 can be used as the second raw material. For details of the constituent materials of the adhesive layer 4 and the insulating layer 3, refer to the above-mentioned items. Both the first raw material and the second raw material are in a molten state so that they can be extruded.

各押出層の厚さは、接着層4の厚さt、絶縁層3の厚さが所定の厚さとなるように調整する。上述のように接着層4の厚さtは薄くてよいため、接着層4となる押出層の厚さも薄くできる。 The thickness of each extruded layer is adjusted so that the thickness t of the adhesive layer 4 and the thickness of the insulating layer 3 become a predetermined thickness. Since the thickness t of the adhesive layer 4 may be thin as described above, the thickness of the extruded layer serving as the adhesive layer 4 can also be thin.

押出温度は、例えば180℃以上が挙げられる。押出温度が高いほど、原料の流動性を高められて、圧縮撚線と溶融状態の原料(押出層)とを密着させ易い。第一の原料による押出層と第二の原料による押出層とも密着させ易い。その結果、導体2と絶縁層3との間に局所的な電界集中箇所となり得る微小な空隙が生じることを低減し易い。密着性の向上等を望む場合には、原料の組成、押出層の厚さ等にもよるが、押出温度を190℃以上、更に200℃以上としてもよい。押出温度の調整に加えて、又は調整に代えて、押出圧力を高めてもよい。この場合も、上記空隙を低減して、圧縮撚線と押出層、押出層同士を密着させ易いと期待される。 The extrusion temperature is, for example, 180° C. or higher. The higher the extrusion temperature, the higher the fluidity of the raw material and the easier it is for the compressed stranded wire and the molten raw material (extruded layer) to adhere to each other. The extruded layer made of the first raw material and the extruded layer made of the second raw material are easily adhered to each other. As a result, it is easy to reduce the formation of minute voids between the conductor 2 and the insulating layer 3, which can be local electric field concentration points. When it is desired to improve the adhesion, the extrusion temperature may be 190° C. or higher, more preferably 200° C. or higher, depending on the composition of the raw material, the thickness of the extruded layer, and the like. In addition to or instead of adjusting the extrusion temperature, the extrusion pressure may be increased. Also in this case, it is expected that the above-mentioned voids will be reduced and the compressed stranded wire and the extruded layer and the extruded layers will be easily brought into close contact with each other.

〈架橋工程〉
この工程では、第二の原料による押出層、即ち主としてポリオレフィンからなる押出層を架橋して、主として架橋ポリオレフィンからなる絶縁層3を形成する。架橋条件は、ポリオレフィンの種類、酸化防止剤等の添加剤の種類や含有量、押出層の厚さ等に応じて、適宜選択できる。この工程により、圧縮撚線からなる導体2の外周に、架橋ポリオレフィンを主体とする絶縁層3を備え、かつ導体2と絶縁層3とに接する接着層4を有するものが得られる。
<Crosslinking process>
In this step, the extruded layer made of the second raw material, that is, the extruded layer mainly made of polyolefin is crosslinked to form the insulating layer 3 mainly made of crosslinked polyolefin. Crosslinking conditions can be appropriately selected depending on the type of polyolefin, the type and content of additives such as antioxidants, the thickness of the extruded layer, and the like. By this step, it is possible to obtain the conductor 2 including the compressed stranded wire, which has the insulating layer 3 mainly composed of the cross-linked polyolefin and the adhesive layer 4 in contact with the conductor 2 and the insulating layer 3 on the outer periphery of the conductor 2.

〈その他の工程〉
外部半導電層5を備える場合、絶縁層3の外周に外部半導電層5を形成する。例えば、外部半導電層5は、半導電テープを巻回して形成してもよい。又は、例えば、外部半導電層5は、接着層4及び絶縁層3と同時押出によって形成してもよい。
<Other processes>
When the outer semiconductive layer 5 is provided, the outer semiconductive layer 5 is formed on the outer periphery of the insulating layer 3. For example, the outer semiconductive layer 5 may be formed by winding a semiconductive tape. Alternatively, for example, the outer semiconductive layer 5 may be formed by coextrusion with the adhesive layer 4 and the insulating layer 3.

絶縁層3の外周、又は外部半導電層5の外周に遮蔽層やシース等(いずれも図示せず)を形成する。遮蔽層やシースの製造条件は、公知の条件を利用できる。 A shield layer, a sheath, etc. (none of which are shown) are formed on the outer periphery of the insulating layer 3 or the outer periphery of the outer semiconductive layer 5. Known conditions can be used for manufacturing conditions of the shielding layer and the sheath.

〈その他の製法〉
同時押出に代えて、圧縮撚線の直上に接着層となる第一の原料を押し出した後、絶縁層となる第二の原料を押し出してもよい。即ち、押出工程を複数回行ってもよい。但し、上述の同時押出を行うと、押出工程数が少なく、製造性に優れる。
<Other manufacturing methods>
Instead of the co-extrusion, the first raw material to be the adhesive layer may be extruded directly above the compression stranded wire, and then the second raw material to be the insulating layer may be extruded. That is, the extrusion process may be performed multiple times. However, when the above-mentioned coextrusion is performed, the number of extrusion steps is small and the manufacturability is excellent.

(主要な作用・効果)
実施形態の電力ケーブル1は、導体2が圧縮撚線から構成されると共に、導体2と絶縁層3とに接する接着層4を備える。実施形態の電力ケーブル1は、内部半導電層を備えていないものの、内部半導電層を備える従来の電力ケーブルと同等程度以上の絶縁特性を有する。また、導体2と絶縁層3との密着性にも優れる。これらの効果を以下の試験例1で具体的に説明する。
(Main actions/effects)
In the power cable 1 of the embodiment, the conductor 2 is composed of a compression stranded wire, and includes an adhesive layer 4 that contacts the conductor 2 and the insulating layer 3. Although the power cable 1 of the embodiment does not include the inner semiconductive layer, it has insulation properties equal to or higher than those of the conventional power cable including the inner semiconductive layer. Also, the adhesion between the conductor 2 and the insulating layer 3 is excellent. These effects will be specifically described in Test Example 1 below.

[試験例1]
以下の電力ケーブルについて、絶縁特性、導体と絶縁層との密着性を調べた。
電力ケーブルはいずれも、送電電圧が6.6kVであり、導体断面積が60mmである単心のCVケーブル(6600V、CV、1X60SQ)相当とする。導体は銅からなるものとする。また、各電力ケーブルは、同一の厚さの絶縁層を備えると共に、外部半導電層、遮蔽層、シースを備えるものとする。
[Test Example 1]
The following power cables were examined for insulation properties and adhesion between conductors and insulation layers.
Each power cable is equivalent to a single-core CV cable (6600V, CV, 1X60SQ) having a transmission voltage of 6.6 kV and a conductor cross-sectional area of 60 mm 2 . The conductor shall be made of copper. In addition, each power cable includes an insulating layer having the same thickness, and an outer semiconductive layer, a shielding layer, and a sheath.

〈試料No.1 内部半導電層なし、接着層有り、導体占有割合:大〉
試料No.1の電力ケーブルは、圧縮撚線からなる導体と、EMMAからなる接着層と、酸化防止剤を含む架橋ポリエチレンからなる絶縁層とを備える。
ここでは、1.0mmφ以上の線径を有する複数の銅線を撚り合せた後、圧縮成形して圧縮撚線を製造する。圧縮度合いは、導体占有割合が91%となるように調整する。導体占有割合は、得られる電力ケーブル(又は圧縮撚線)の横断面において、圧縮撚線の包絡円の面積に対する圧縮撚線の輪郭内の面積が占める割合である。
絶縁層の原料は、フェノール系の酸化防止剤を0.15質量%含有するポリエチレンである。接着層の原料(EMMA)と絶縁層の原料とを溶融状態として、圧縮撚線の外周に同時押出を行う。押出温度は、210℃である。押出後、絶縁層の原料による押出層を架橋する。接着層の厚さは0.1mmである。
接着層における常温(ここでは20℃程度)の電気抵抗率は、1×10Ω・cm以上である。
<Sample No. 1 No internal semi-conductive layer, adhesive layer, conductor occupancy ratio: large>
Sample No. The power cable of No. 1 includes a conductor made of a compressed stranded wire, an adhesive layer made of EMMA, and an insulating layer made of crosslinked polyethylene containing an antioxidant.
Here, a plurality of copper wires having a wire diameter of 1.0 mmφ or more are twisted together, and then compression molded to produce a compressed twisted wire. The degree of compression is adjusted so that the conductor occupancy rate is 91%. The conductor occupancy ratio is the ratio of the area in the contour of the compressed stranded wire to the area of the envelope circle of the compressed stranded wire in the cross section of the obtained power cable (or the compressed stranded wire).
The raw material of the insulating layer is polyethylene containing 0.15% by mass of a phenolic antioxidant. The raw material (EMMA) for the adhesive layer and the raw material for the insulating layer are melted and coextruded onto the outer periphery of the compression stranded wire. The extrusion temperature is 210°C. After the extrusion, the extruded layer made of the raw material of the insulating layer is cross-linked. The thickness of the adhesive layer is 0.1 mm.
The electrical resistivity of the adhesive layer at room temperature (here, about 20° C.) is 1×10 4 Ω·cm or more.

〈試料No.100 内部半導電層なし、接着層有り、導体占有割合:小〉
試料No.100の電力ケーブルは、試料No.1に対して、上記導体占有割合を小さくした点を除いて、試料No.1と同様に製造する。試料No.100の電力ケーブルの導体占有割合は85%である。
<Sample No. 100 No internal semi-conductive layer, adhesive layer, conductor occupancy ratio: small>
Sample No. The power cable of No. 100 is sample No. Sample No. 1 except that the conductor occupancy ratio was made smaller than that of Sample No. 1. Produced in the same manner as 1. Sample No. The conductor occupancy of 100 power cables is 85%.

〈試料No.200 内部半導電層有り、接着層無し〉
試料No.200の電力ケーブルは、内部半導電層を備える従来の電力ケーブルであり、市販のものである。
<Sample No. 200 With internal semi-conductive layer, without adhesive layer>
Sample No. The 200 power cable is a conventional power cable with an internal semiconductive layer and is commercially available.

各試料の電力ケーブルについて、以下の試験を行った。
以下の(1)〜(3)の試験では、各試料の電力ケーブルから適宜な長さのケーブル片をとり、ケーブル片の端末(切断端面)から部分放電等が発生しないように十分な処置を行ったものを試験片とする。
The following test was performed about the power cable of each sample.
In the following tests (1) to (3), take a cable piece of an appropriate length from the power cable of each sample, and take sufficient measures to prevent partial discharge from the end (cut end surface) of the cable piece. The test piece is used.

(1)部分放電試験(初期特性の評価)
この試験は、室温(ここでは20℃程度)で行う。
用意した試験片を線心外径の約10倍の円周に沿って180°屈曲させた状態で、試験片に備えられる導体と遮蔽層との間に交流電圧を加え、部分放電の発生電圧を測定器で調べる。印加する交流電圧は、周波数が50Hz又は60Hzの正弦波に近いものである。上記測定器には、10pC以下の放電電荷量を測定可能な精度を有するものを利用する。
(1) Partial discharge test (Evaluation of initial characteristics)
This test is performed at room temperature (here, about 20° C.).
The prepared test piece was bent 180° along the circumference of about 10 times the outer diameter of the wire core, and an AC voltage was applied between the conductor and the shielding layer provided on the test piece to generate the partial discharge voltage. With a measuring instrument. The alternating voltage applied is close to a sine wave with a frequency of 50 Hz or 60 Hz. As the measuring instrument, a measuring instrument having an accuracy capable of measuring a discharge charge amount of 10 pC or less is used.

(2) AC破壊試験(初期特性の評価)
用意した試験片を、上述の(1)部分放電試験と同様に、室温にて、線心外径の約10倍の円周に沿って180°屈曲させた状態で、導体と遮蔽層との間に交流電圧を印加する。印加する交流電圧は、周波数が50Hz又は60Hzのほぼ正弦波の波形を持つものである。交流電圧を徐々に増大させていき、絶縁破壊する電圧を調べる。
(2) AC breakdown test (evaluation of initial characteristics)
Similarly to the above-mentioned (1) partial discharge test, the prepared test piece was bent at 180° along the circumference of about 10 times the outer diameter of the core, and the conductor and the shielding layer were bent. AC voltage is applied between them. The applied AC voltage has a substantially sinusoidal waveform with a frequency of 50 Hz or 60 Hz. Gradually increase the AC voltage and check the voltage that causes dielectric breakdown.

(3)浸水課電試験
この試験は、絶縁層の内外を浸水状態として、電圧を印加する。詳しくは、水路中に試験片を設置する。試験片に備えられるシースに穴をあけてシース内に浸水可能なようにし、かつケーブル両端から導体内に水を注入した状態で課電を行う。上記課電後、上述の(2)AC破壊試験と同様にして、AC破壊電圧(残存性能)を測定する。上記課電は、印加電圧を12.7kVとし、周波数を50Hzとする加速劣化条件での課電とし、この加速劣化条件での課電を120日行う。
(3) Water immersion voltage application test In this test, a voltage is applied with the inside and outside of the insulating layer being in a water immersion state. Specifically, install a test piece in the waterway. A hole is made in the sheath provided in the test piece to allow water to enter the sheath, and electricity is applied in a state where water is injected into the conductor from both ends of the cable. After the above voltage application, the AC breakdown voltage (residual performance) is measured in the same manner as in the above (2) AC breakdown test. The above-mentioned voltage application is performed under the accelerated deterioration condition in which the applied voltage is 12.7 kV and the frequency is 50 Hz, and the application of the voltage under the accelerated deterioration condition is 120 days.

(4)ヒートサイクル試験
この試験は、各試料の電力ケーブルから適宜な長さのケーブル片をとり、ケーブル片の端部に端末金具を取り付けて実線路に近い回路を形成し、通電及び非通電を繰り返す。通電条件は、導体温度が90℃となるような電流値を設定し、この電流値で4時間通電後、4時間非通電とする(通電を遮断する)。絶縁層の収縮量が飽和するまで、上述の通電条件で通電及び非通電を繰り返す。絶縁層の収縮量が飽和した状態において、導体の端部が絶縁層から露出するか否か目視確認する。
(4) Heat cycle test In this test, a cable piece of an appropriate length is taken from the power cable of each sample, and a terminal metal fitting is attached to the end of the cable piece to form a circuit close to the actual line, and the current is turned on and off. repeat. As the energization condition, a current value is set such that the conductor temperature is 90° C., and the current value is energized for 4 hours and then deenergized for 4 hours (energization is cut off). Energization and de-energization are repeated under the above energization conditions until the shrinkage amount of the insulating layer is saturated. When the contraction amount of the insulating layer is saturated, it is visually checked whether the end of the conductor is exposed from the insulating layer.

試料No.1の電力ケーブルの試験結果は以下の通りである。
(1)部分放電試験において15kVで部分放電が発生せず、15.8kVで発生した。即ち、10pCの放電発生電圧が15kV以上である。
(2)AC破壊試験において、初期のAC破壊電圧が21kV/mmであり、20kV/mm以上である。
(3)浸水課電試験において、浸水課電試験後のAC破壊電圧が19.2kV/mmであり、15kV/mm以上である。
(4)ヒートサイクル試験において、絶縁層が収縮しているものの、収縮量が小さく(6mm以下程度)、導体は絶縁層から露出していない。
Sample No. The test results of the power cable No. 1 are as follows.
(1) Partial discharge did not occur at 15 kV in the partial discharge test, but occurred at 15.8 kV. That is, the discharge generation voltage of 10 pC is 15 kV or more.
(2) In the AC breakdown test, the initial AC breakdown voltage is 21 kV/mm, which is 20 kV/mm or more.
(3) In the water immersion voltage test, the AC breakdown voltage after the water immersion voltage test is 19.2 kV/mm, which is 15 kV/mm or more.
(4) In the heat cycle test, the insulating layer contracted, but the contraction amount was small (about 6 mm or less), and the conductor was not exposed from the insulating layer.

試料No.100の電力ケーブルの試験結果は以下の通りである。
(1)部分放電試験において6.0kVで部分放電が発生し、10pCの放電発生電圧が15kV未満、更に10kV以下であった。
(2)AC破壊試験において、初期のAC破壊電圧が20kV/mm未満であった。
(3)浸水課電試験において、浸水課電試験後のAC破壊電圧が12kV以下であった。
(4)ヒートサイクル試験において、絶縁層が収縮しているものの、収縮量が小さく(6mm以下程度)、導体は絶縁層から露出していない。
Sample No. The test results of 100 power cables are as follows.
(1) In the partial discharge test, partial discharge occurred at 6.0 kV, and the discharge generation voltage of 10 pC was less than 15 kV, and further 10 kV or less.
(2) In the AC breakdown test, the initial AC breakdown voltage was less than 20 kV/mm.
(3) In the water immersion voltage test, the AC breakdown voltage after the water immersion voltage test was 12 kV or less.
(4) In the heat cycle test, the insulating layer contracted, but the contraction amount was small (about 6 mm or less), and the conductor was not exposed from the insulating layer.

試料No.200の電力ケーブルの試験結果は以下の通りである。
(1)部分放電試験において5.0kV〜12kVで部分放電が発生した。
(2)AC破壊試験において、初期のAC破壊電圧が26kV/mmであった。
(3)浸水課電試験において、浸水課電試験後のAC破壊電圧が13kV/mm〜31kV/mmであった。
(4)ヒートサイクル試験において、絶縁層が収縮しているものの、収縮量が小さく(6mm以下程度)、導体は絶縁層から露出していない。
なお、試料No.200については、複数のサンプルを測定しており、(1),(3)に示すように結果にばらつきがある。
Sample No. The test results for 200 power cables are as follows.
(1) Partial discharge occurred at 5.0 kV to 12 kV in the partial discharge test.
(2) In the AC breakdown test, the initial AC breakdown voltage was 26 kV/mm.
(3) In the water immersion voltage test, the AC breakdown voltage after the water immersion voltage test was 13 kV/mm to 31 kV/mm.
(4) In the heat cycle test, the insulating layer contracted, but the contraction amount was small (about 6 mm or less), and the conductor was not exposed from the insulating layer.
Sample No. With respect to 200, a plurality of samples were measured, and the results have variations as shown in (1) and (3).

試料No.1と試料No.200とを比較することで、試料No.1の電力ケーブルは、内部半導電層を備える従来の電力ケーブルと同等程度以上の部分放電特性を有する、同等程度のAC破壊特性を有する、浸水課電試験後においても同等程度又は同等程度以上のAC破壊特性を有するといえ、絶縁特性に優れる。また、試料No.1の電力ケーブルは、内部半導電層を有していないものの、導体と絶縁層との密着性に優れる。 Sample No. 1 and sample No. By comparing with No. 200, the sample No. The power cable of No. 1 has a partial discharge characteristic equal to or higher than that of a conventional power cable including an internal semiconductive layer, has an AC breakdown characteristic of an equivalent degree, and has an equivalent degree or an equal degree or more even after a water immersion test. Even though it has AC breakdown characteristics, it has excellent insulation characteristics. In addition, the sample No. Although the power cable No. 1 does not have an internal semiconductive layer, it has excellent adhesion between the conductor and the insulating layer.

試料No.1と試料No.100とを比較すると、内部半導電層を省略する場合には、導体占有割合をある程度高めると(この試験では85%超)、10pCの放電発生電圧や、AC破壊電圧、浸水課電試験後のAC破壊電圧を高め易いといえる。また、試料No.200に示すように内部半導電層を備えていても10pCの放電発生電圧が15kV未満になったり、浸水課電試験後のAC破壊電圧にばらつきがあり、15kV/mm未満となったりする場合がある。これに対し、試料No.1の電力ケーブルが上述のように絶縁特性に優れる理由の一つとして、圧縮撚線からなる導体を備えると共に、導体と絶縁層とに接する接着層を備えることで、導体と絶縁層との間に局所的な電界集中箇所となり得る空隙が十分に少ないため、と考えられる。 Sample No. 1 and sample No. Comparing with 100, when the internal semiconductive layer is omitted, if the conductor occupancy rate is increased to some extent (more than 85% in this test), the discharge generation voltage of 10 pC, the AC breakdown voltage, and the water immersion test after It can be said that it is easy to increase the AC breakdown voltage. In addition, the sample No. As shown in 200, even if an internal semiconductive layer is provided, the discharge generation voltage of 10 pC may be less than 15 kV, or there may be variations in the AC breakdown voltage after a water immersion voltage application test, resulting in less than 15 kV/mm. is there. On the other hand, the sample No. One of the reasons why the power cable of No. 1 is excellent in the insulation characteristics as described above is that the conductor including the compression stranded wire is provided and the adhesive layer that is in contact with the conductor and the insulating layer is provided. It is considered that this is because there are sufficiently few voids that can be local electric field concentration points.

以上の試験結果から、圧縮撚線からなる導体を備えると共に、導体と絶縁層とに接する接着層を備えることで、内部半導電層を備えていなくても、内部半導電層を備える従来の電力ケーブルと同等以上の絶縁特性を有しつつ、導体と絶縁層との密着性に優れることが示された。 From the above test results, by providing the conductor made of the compressed stranded wire and the adhesive layer in contact with the conductor and the insulating layer, the conventional electric power having the internal semiconductive layer is provided even if the internal semiconductive layer is not provided. It has been shown that the conductor and the insulating layer have excellent adhesion while having insulation properties equal to or higher than those of the cable.

本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 The present invention is not limited to these exemplifications, but is defined by the scope of the claims, and is intended to include meanings equivalent to the scope of the claims and all modifications within the scope.

1 電力ケーブル
2 導体、20 素線、22 隙間、25 包絡円、27 介在領域
3 絶縁層
4 接着層
5 外部半導電層
1 Power Cable 2 Conductor, 20 Elementary Wire, 22 Gap, 25 Envelope Circle, 27 Intervening Area 3 Insulating Layer 4 Adhesive Layer 5 External Semiconductive Layer

Claims (11)

導体と、
前記導体の外周に設けられる絶縁層と、
前記導体と前記絶縁層とに接する接着層とを備え、
前記導体は、銅又は銅基合金からなる複数の素線を含む圧縮撚線であり、
前記絶縁層の構成材料は、架橋ポリオレフィンを含む、
電力ケーブル。
A conductor,
An insulating layer provided on the outer periphery of the conductor,
An adhesive layer in contact with the conductor and the insulating layer,
The conductor is a compressed stranded wire including a plurality of strands made of copper or a copper-based alloy,
The constituent material of the insulating layer includes a crosslinked polyolefin,
Power cable.
前記接着層の構成材料は、エチレンメタクリ酸メチル共重合体、エチレン酢酸ビニル共重合体、エチレンエチルアクリレート共重合体、及び無水マレイン酸からなる群より選択される1種以上の化合物を含む請求項1に記載の電力ケーブル。 The constituent material of the adhesive layer contains at least one compound selected from the group consisting of ethylene methyl methacrylate copolymer, ethylene vinyl acetate copolymer, ethylene ethyl acrylate copolymer, and maleic anhydride. The power cable according to 1. 前記接着層における常温での電気抵抗率が1×10Ω・cm以上である請求項2に記載の電力ケーブル。 The power cable according to claim 2, wherein the electrical resistivity of the adhesive layer at room temperature is 1×10 4 Ω·cm or more. 前記接着層の厚さは、0.5mm以下である請求項1から請求項3のいずれか1項に記載の電力ケーブル。 The power cable according to claim 1, wherein the adhesive layer has a thickness of 0.5 mm or less. 横断面において、前記圧縮撚線の包絡円と、前記圧縮撚線の輪郭とをとり、前記包絡円の面積に対する前記輪郭内の面積が占める割合が85%超である請求項1から請求項4のいずれか1項に記載の電力ケーブル。 The cross-sectional view, wherein an envelope circle of the compressed stranded wire and an outline of the compressed stranded wire are taken, and a ratio of an area in the outline to an area of the envelope circle is more than 85%. The power cable according to any one of 1. 前記絶縁層の構成材料は、酸化防止剤を含む請求項1から請求項5のいずれか1項に記載の電力ケーブル。 The power cable according to any one of claims 1 to 5, wherein a constituent material of the insulating layer contains an antioxidant. 前記酸化防止剤は、フェノール系であり、
前記絶縁層の構成材料は、前記酸化防止剤を0.05質量%以上0.5質量%以下含む請求項6に記載の電力ケーブル。
The antioxidant is phenolic,
The power cable according to claim 6, wherein the constituent material of the insulating layer contains the antioxidant in an amount of 0.05% by mass or more and 0.5% by mass or less.
部分放電試験において、10pCの放電発生電圧が15kV以上である請求項1から請求項7のいずれか1項に記載の電力ケーブル。 The power cable according to any one of claims 1 to 7, wherein a discharge generation voltage of 10 pC is 15 kV or more in a partial discharge test. AC破壊試験において、破壊電圧が20kV/mm以上である請求項1から請求項8のいずれか1項に記載の電力ケーブル。 The power cable according to any one of claims 1 to 8, which has a breakdown voltage of 20 kV/mm or more in an AC breakdown test. 浸水課電後のAC破壊試験において、破壊電圧が15kV/mm以上である請求項1から請求項9のいずれか1項に記載の電力ケーブル。 The power cable according to any one of claims 1 to 9, which has a breakdown voltage of 15 kV/mm or more in an AC breakdown test after flooding. 送電電圧が6.6kV以上である請求項1から請求項10のいずれか1項に記載の電力ケーブル。 The power cable according to any one of claims 1 to 10, wherein the transmission voltage is 6.6 kV or more.
JP2018222822A 2018-11-28 2018-11-28 power cable Active JP7137139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018222822A JP7137139B2 (en) 2018-11-28 2018-11-28 power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018222822A JP7137139B2 (en) 2018-11-28 2018-11-28 power cable

Publications (2)

Publication Number Publication Date
JP2020087798A true JP2020087798A (en) 2020-06-04
JP7137139B2 JP7137139B2 (en) 2022-09-14

Family

ID=70908684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018222822A Active JP7137139B2 (en) 2018-11-28 2018-11-28 power cable

Country Status (1)

Country Link
JP (1) JP7137139B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220068524A1 (en) * 2020-08-28 2022-03-03 Yazaki Corporation Compressed stranded conductor, method of manufacturing compressed stranded conductor, insulated electric wire, and wire harness

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047303A (en) * 1983-08-23 1985-03-14 日立電線株式会社 Watertight rubber and plastic insulated cable
JPS61109206A (en) * 1984-10-31 1986-05-27 昭和電線電纜株式会社 Electric insulator and electric cable using the same
JPH04109179A (en) * 1990-08-29 1992-04-10 Furukawa Electric Co Ltd:The Defect section detecting method for cable insulator
JPH10237233A (en) * 1997-02-25 1998-09-08 Mitsubishi Cable Ind Ltd Cross-linked polyethylene, its production, and insulated power cable produced by using the same
JPH10324839A (en) * 1997-05-23 1998-12-08 Mitsubishi Cable Ind Ltd Composition for watertight sealing of cable conductor
JP2005158450A (en) * 2003-11-25 2005-06-16 Sumitomo Wiring Syst Ltd Electric wire for automobile
JP2016184480A (en) * 2015-03-25 2016-10-20 株式会社ジェイ・パワーシステムズ Watertight insulation wire and manufacturing method of watertight insulation wire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047303A (en) * 1983-08-23 1985-03-14 日立電線株式会社 Watertight rubber and plastic insulated cable
JPS61109206A (en) * 1984-10-31 1986-05-27 昭和電線電纜株式会社 Electric insulator and electric cable using the same
JPH04109179A (en) * 1990-08-29 1992-04-10 Furukawa Electric Co Ltd:The Defect section detecting method for cable insulator
JPH10237233A (en) * 1997-02-25 1998-09-08 Mitsubishi Cable Ind Ltd Cross-linked polyethylene, its production, and insulated power cable produced by using the same
JPH10324839A (en) * 1997-05-23 1998-12-08 Mitsubishi Cable Ind Ltd Composition for watertight sealing of cable conductor
JP2005158450A (en) * 2003-11-25 2005-06-16 Sumitomo Wiring Syst Ltd Electric wire for automobile
JP2016184480A (en) * 2015-03-25 2016-10-20 株式会社ジェイ・パワーシステムズ Watertight insulation wire and manufacturing method of watertight insulation wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220068524A1 (en) * 2020-08-28 2022-03-03 Yazaki Corporation Compressed stranded conductor, method of manufacturing compressed stranded conductor, insulated electric wire, and wire harness
US11984239B2 (en) * 2020-08-28 2024-05-14 Yazaki Corporation Compressed stranded conductor, method of manufacturing compressed stranded conductor, insulated electric wire, and wire harness

Also Published As

Publication number Publication date
JP7137139B2 (en) 2022-09-14

Similar Documents

Publication Publication Date Title
CN109378136B (en) Manufacturing method of environment-friendly medium-voltage power cable and cable
RU152230U1 (en) THREE-WAY POWER CABLE
CN112635121A (en) Concentric optical fiber composite conductor cable and preparation process thereof
RU175260U1 (en) POWER CABLE
JP7137139B2 (en) power cable
RU180838U1 (en) FIRE RESISTANT CABLE
CN114388175A (en) Twisted pair and cable comprising the same
JP5768923B1 (en) Cable, cable with housing, and method of manufacturing cable
CN219916777U (en) Composite special-shaped conductor and smooth aluminum sheath integrated high-voltage cable
CA2689460C (en) Swellable tapes and yarns to replace strand filling compounds
RU87037U1 (en) POWER CABLE
Nordås et al. The influence of strain on water treeing in XLPE power cables
JP6872148B2 (en) Power cable
CN104103379A (en) Production process of cross-linked polyethylene insulation non-extrusion insulation shielding medium voltage power cables
Sarma et al. Accelerated ageing tests on polymeric cables using water-filled tanks-a critical review
CN203260362U (en) High-voltage and extra-high voltage flexible direct-current power transmission fiber composite extrusion insulation power cable
US20210319929A1 (en) Insulated electrical cable
FI3973556T3 (en) Hvdc power cable with water-blocking capability
CN220895243U (en) High-performance medium-voltage power cable
RU160992U1 (en) HIGH VOLTAGE CABLE FOR RAILWAY
RU92567U1 (en) POWER CABLE
RU148879U1 (en) THREE-PHASE POWER CABLE, NOT DISTRIBUTING COMBUSTION
RU127995U1 (en) POWER CABLE
RU182083U1 (en) SEALED CABLE FOR DATA TRANSMISSION
RU91215U1 (en) ELECTRIC CABLE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220816

R150 Certificate of patent or registration of utility model

Ref document number: 7137139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150