JP2020085833A - Method and device for measuring gas permeability - Google Patents

Method and device for measuring gas permeability Download PDF

Info

Publication number
JP2020085833A
JP2020085833A JP2018224986A JP2018224986A JP2020085833A JP 2020085833 A JP2020085833 A JP 2020085833A JP 2018224986 A JP2018224986 A JP 2018224986A JP 2018224986 A JP2018224986 A JP 2018224986A JP 2020085833 A JP2020085833 A JP 2020085833A
Authority
JP
Japan
Prior art keywords
pressure
measurement
time point
gas
gas permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018224986A
Other languages
Japanese (ja)
Other versions
JP7311961B2 (en
Inventor
正博 高原
Masahiro Takahara
正博 高原
圭太 小出
Keita Koide
圭太 小出
雅博 山下
Masahiro Yamashita
雅博 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seiki Seisaku-sho Ltd
Original Assignee
Toyo Seiki Seisaku-sho Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seiki Seisaku-sho Ltd filed Critical Toyo Seiki Seisaku-sho Ltd
Priority to JP2018224986A priority Critical patent/JP7311961B2/en
Publication of JP2020085833A publication Critical patent/JP2020085833A/en
Application granted granted Critical
Publication of JP7311961B2 publication Critical patent/JP7311961B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuel Cell (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

To provide a method and a device for measuring a gas permeability capable of increasing the accuracy of the gas permeability, even when there is a change of the differential pressure between a first-side partial space and a second-side partial space of a sample film.SOLUTION: In a first side of a sample film, there is formed a first-side partial space supplied with a measurement gas. In a second side of the sample film, there is formed a second-side partial space, in which the pressure is lower than in the first-side partial space. A pressure Pt in the second-side partial space is measured at each specific measurement time, and the change of the permeation pressure per unit time used for calculating a gas permeability is obtained by using the measurement pressure Pt of each measurement time.SELECTED DRAWING: Figure 8

Description

本発明は、ガス透過度測定方法及びそのガス透過度測定方法を利用したガス透過度測定装置に関する。 The present invention relates to a gas permeability measuring method and a gas permeability measuring apparatus using the gas permeability measuring method.

ガス透過度測定方法には、特許文献1、特許文献2に示すようなものが提案されている。特許文献1には、試料膜を基準としてその一方側に、測定ガスが供給された状態とされた一方側区画空間を確保する一方、試料膜の他方側に、一方側区画空間の圧力よりも相対的に低い圧力状態とされた他方側区画空間を確保し、その試料膜の一方側区画空間から他方側区画空間に透過した測定ガスの圧力を経時的に測定するものが示されている。これによれば、試料膜の他方側区画空間における時間経過に伴う圧力変化を求めることができ、その定常状態における勾配に基づきガス透過度を算出することができる。特許文献2には、特許文献1と同様の構成の下で、測定ガスとして水蒸気ガスを用いるものが示されており、これを用いれば、水蒸気の透過度を算出することができる。 As the gas permeability measuring method, the methods shown in Patent Documents 1 and 2 have been proposed. In Patent Document 1, one side compartment space in which a measurement gas is supplied is secured on one side of the sample membrane as a reference, while on the other side of the sample membrane, the pressure is higher than the pressure of the one side compartment space. It shows that the pressure of the measurement gas that has permeated from the one-side compartment space to the other-side compartment space of the sample film is secured over time with the other-side compartment space kept at a relatively low pressure state. According to this, it is possible to obtain a pressure change with time in the compartment space on the other side of the sample membrane, and it is possible to calculate the gas permeability based on the gradient in the steady state. Patent Document 2 discloses a device that uses water vapor gas as a measurement gas under the same configuration as that of Patent Document 1, and if this is used, the water vapor permeability can be calculated.

特許3845055号公報Japanese Patent No. 3845055 特許5553287号公報Japanese Patent No. 5553287

しかし、上記ガス透過度測定方法においては、その測定に伴い、試料膜の他方側区画空間の圧力が徐々に高まることになり、試料膜の一方側区画空間と他方側区画空間との間の差圧(ガス透過の推進力)が減少し、試料膜の他方側において、時間の経過に伴う圧力上昇変化が形成する勾配は、徐々に緩くなる。特にガス透過度が高い試料膜については、試料膜の一方側区画空間と他方側区画空間との間の差圧が比較的早いタイミングで低下し、試料膜の他方側において、時間の経過に伴う圧力変化が形成する勾配は早い時期から一定ではなくなる(勾配が飽和傾向に転じ始める(図5参照))。このため、ガス透過度測定において、定常状態における時間の経過に伴う圧力変化について、その勾配を特定することが容易でない。仮に、そのような勾配を用いた場合、そのものは、一方側区画空間と他方側区画空間との差圧が経時変化する状況の下でのいずれかのものであり、そのような勾配に基づいて算出されるガス透過度の精度、信頼性は高いとは言えない。 However, in the above-mentioned gas permeability measuring method, the pressure in the other compartment space of the sample film gradually increases with the measurement, and the difference between the one compartment space and the other compartment space of the sample membrane. The pressure (the driving force for gas permeation) decreases, and the gradient formed by the change in pressure increase over time on the other side of the sample membrane gradually becomes gentle. Especially for a sample membrane with a high gas permeability, the pressure difference between the one-side compartment space and the other-side compartment space decreases at a relatively early timing, and on the other side of the sample membrane, with the passage of time. The gradient formed by the pressure change is not constant at an early stage (the gradient begins to turn into a saturation tendency (see FIG. 5)). Therefore, in gas permeability measurement, it is not easy to identify the gradient of the pressure change over time in the steady state. If such a gradient is used, it is either under the condition where the pressure difference between the one-side compartment space and the other-side compartment space changes with time, and based on such a slope, The accuracy and reliability of the calculated gas permeability cannot be said to be high.

本発明は、上記実情に鑑みてなされたもので、その第1の目的は、試料膜を基準として一方側における一方側区画空間と試料膜を基準として他方側における他方側区画空間との間の差圧が時間の経過に伴い変化する場合であっても、ガス透過度の精度を高めることができるガス透過度測定方法を提供することにある。第2の目的は、そのガス透過度測定方法に用いられる測定装置を提供することにある。 The present invention has been made in view of the above circumstances, and a first object thereof is to provide a space between one side compartment space on one side with respect to a sample film and the other side compartment space on the other side with respect to a sample film. It is an object of the present invention to provide a gas permeability measuring method capable of enhancing the accuracy of gas permeability even when the differential pressure changes with the passage of time. A second object is to provide a measuring device used in the gas permeability measuring method.

前記第1の目的を達成するために本発明にあっては、下記(1)〜(4)とした構成とされている。 In order to achieve the first object, the present invention has the following configurations (1) to (4).

(1)試料膜を基準として該試料膜の一方側に、測定ガスが供給された状態とされた一方側区画空間を確保し、前記試料膜の他方側に、前記一方側区画空間の圧力よりも低い圧力状態とされた他方側区画空間を確保し、その上で、前記他方側区画空間の圧力を所定測定時間毎に測定し、その各測定時点毎の測定圧力を用いることにより、ガス透過度の算出に用いる単位時間当たりの透過圧力の変化を求めるガス透過度測定方法において、
前記各測定時点の透過圧力として、該各測定時点の測定圧力に対する補正処理によって得られる補正圧力を用い、
前記補正圧力を得るための補正処理として、前記一方側区画空間の圧力と前記他方側区画空間の圧力との差圧を検出し、測定開始時の差圧を基準とした各測定時の差圧変化の変化率を用いることにより、該各測定時点の測定圧力を、該測定開始時の差圧下での値に補正する構成とされている。
(1) One side of the sample film, with reference to the sample film, secures a one-sided partition space in which a measurement gas is supplied, and the other side of the sample film has a pressure greater than that of the one-sided partition space. Also secures the other side compartment space that is in a low pressure state, measures the pressure of the other side compartment space at each predetermined measurement time, and by using the measured pressure at each measurement time point, gas permeation In the gas permeability measurement method for obtaining the change in permeation pressure per unit time used to calculate the
As the permeation pressure at each measurement time point, a correction pressure obtained by a correction process for the measurement pressure at each measurement time point is used,
As a correction process for obtaining the corrected pressure, the differential pressure between the pressure in the one side compartment space and the pressure in the other side compartment space is detected, and the differential pressure at each measurement based on the differential pressure at the start of measurement. By using the change rate of change, the measurement pressure at each measurement time is corrected to a value under the differential pressure at the start of measurement.

この構成によれば、各測定時点の測定圧力を、測定開始時の差圧下での値に補正することから、各測定時点の補正圧力が形成する単位時間当たりの補正圧力変化(勾配)は、試料膜に応じた勾配をもって一定となる傾向を強めて、直線性を高めることになり、単位時間当たりの補正圧力変化(勾配)の特定を容易且つ精度よく行うことができる。しかも、この単位時間当たりの補正圧力変化に対して測定開始時の差圧を用いて単位差圧当たりの値を算出すれば、その算出方法は、測定に適合するものであり(測定開始時差圧の下での相当値(単位時間当たりの補正圧力)を測定開始時差圧で除算)、ガス透過度を、精度を高めた状態で得ることができる。 According to this configuration, since the measured pressure at each measurement time is corrected to a value under the differential pressure at the start of measurement, the corrected pressure change (gradient) per unit time formed by the corrected pressure at each measurement time is: The linearity is enhanced by strengthening the tendency to have a constant gradient according to the sample film, and the corrected pressure change (gradient) per unit time can be specified easily and accurately. Moreover, if the value per unit differential pressure is calculated using the differential pressure at the start of measurement for this change in corrected pressure per unit time, the calculation method is suitable for measurement (differential pressure at the start of measurement). It is possible to obtain the equivalent value (corrected pressure per unit time) under (divided by the differential pressure at the start of measurement) and the gas permeability with high accuracy.

(2)前記(1)の構成の下で、
前記各測定時点毎の補正圧力として、各測定時点毎に、該各測定時点の一つ前における測定時点の補正圧力に補正量を加算したものを用い、
前記各測定時点毎の補正量として、前記各測定時点の差圧に対する測定開始時差圧の割合を、前記各測定時点における測定圧力と該各測定時点の一つ前における測定時点の測定圧力との差分に乗じたものを用いる構成とされている。
(2) Under the configuration of (1) above,
As the correction pressure for each measurement time point, for each measurement time point, a value obtained by adding a correction amount to the correction pressure at the measurement time point immediately before each measurement time point is used.
As a correction amount for each measurement time point, the ratio of the differential pressure at the time of measurement to the differential pressure at each measurement time point, between the measurement pressure at each measurement time point and the measurement pressure at the measurement time point immediately before each measurement time point It is configured to use the product of the difference.

この構成によれば、前記(1)の方法に対する具体的な方法として、各測定時点の測定圧力を、測定開始時の差圧下での値に補正することができ、この各測定時点の補正圧力をもって、単位時間当たりの補正圧力変化(勾配)の一定性を強め、直線性を高めることができる。これにより、前述の(1)同様、ガス透過度を、精度を高めた状態で得ることができる。 According to this configuration, as a specific method for the method (1), the measurement pressure at each measurement time can be corrected to a value under the differential pressure at the start of measurement, and the correction pressure at each measurement time can be corrected. Thus, it is possible to strengthen the uniformity of the correction pressure change (gradient) per unit time and improve the linearity. As a result, the gas permeability can be obtained in a highly accurate state, as in the above (1).

(3)前記(1)又は(2)の構成の下で、
前記一方側区画空間が大気に開放されている構成とされている。
(3) Under the configuration of (1) or (2) above,
The one-side compartment space is open to the atmosphere.

この構成によれば、測定ガスを流れ状態の下で一方側区画空間に供給していても、その測定ガスが大気に排出されることから、試料膜の一方側区画空間における圧力状態を一定(大気圧)とすることができ、試料膜の一方側区画空間における圧力状態を一定とするための構造を簡素化することができる。その一方で、一方側区画空間が大気圧下にあるといえども、気象状態の変化、測定場所の違いに伴う大気圧の変動に基づき、試料膜の一方側区画空間と他方側区画空間との間で差圧が変化するおそれがあるが、それについても、測定開始時の差圧を基準とした差圧変化率として捉えられることになり、経時的に他方側区画空間の圧力が上昇する場合だけでなく、大気圧変動が生じる場合においても、測定開始時差圧を維持した状態の下でガス透過度測定を行う場合に相当する補正圧力を得ることができる。この結果、大気が変動する場合においても、単位時間当たりの他方側空間の圧力変化(勾配)を、時間の経過にかかわらず試料膜に応じた勾配をもって一定となる傾向を強めさせて、直線性を高めさせることができる。これにより、この場合においても、前述の(1)(2)同様、ガス透過度を、精度を高めた状態で得ることができる。 According to this configuration, even if the measurement gas is supplied to the one-side compartment space under a flow condition, the measurement gas is discharged to the atmosphere, so that the pressure state in the one-side compartment space of the sample film is kept constant ( (Atmospheric pressure), and the structure for keeping the pressure state in the one-side compartment of the sample film constant can be simplified. On the other hand, even if the one-side compartment space is under atmospheric pressure, the one-side compartment space and the other-side compartment space of the sample film are There is a possibility that the differential pressure will change between the two, but this will also be understood as the differential pressure change rate based on the differential pressure at the start of measurement, and the pressure in the other compartment space will increase over time. Not only that, even when the atmospheric pressure changes, it is possible to obtain the correction pressure corresponding to the case where the gas permeability measurement is performed under the condition that the differential pressure at the start of measurement is maintained. As a result, even when the atmosphere fluctuates, the pressure change (gradient) in the other space per unit time is strengthened with a gradient according to the sample film regardless of the passage of time, and linearity is increased. Can be increased. As a result, also in this case, the gas permeability can be obtained in a state where the accuracy is increased, as in the above (1) and (2).

(4)前記(3)の構成の下で、
前記一方側区画空間に、測定ガスとして水蒸気を含むものを供給する構成とされている。
(4) Under the configuration of (3) above,
A gas containing water vapor as a measurement gas is supplied to the one-side compartment.

この構成によれば、測定ガスとして加湿ガスを用いる場合においても、ガス透過度を、精度を高めた状態で得ることができる。 According to this configuration, even when the humidifying gas is used as the measurement gas, it is possible to obtain the gas permeability with a high accuracy.

前記第2の目的を達成するために、(5)〜(9)の構成とされている。 In order to achieve the second object, the configurations (5) to (9) are adopted.

(5)試料膜を挟持するための一対のセルが備えられ、該一対のセルのうちの一方のセルと前記試料膜との間に、測定ガスが供給された状態とされる一方側区画空間が形成され、前記一対のセルのうちの他方のセルと前記試料膜との間に、圧力が前記一方側区画空間の圧力よりも低下された他方側区画空間が形成され、前記他方側区画空間に対して該他方側区画空間の圧力を所定測定時間毎に検出する低圧側圧力センサが関連付けられているガス透過度測定装置において、
前記一方側区画空間の圧力を検出する高圧側圧力センサと、
前記高圧側圧力センサからの検出情報と前記低圧側圧力センサからの検出情報とに基づき、測定開始時点及び各測定時点について、前記一方側区画空間の圧力と前記側区画空間の圧力との間の差圧をそれぞれ演算し、その演算情報に基づき、各測定時点における測定時差圧に対する測定開始時差圧の割合を演算し、前記各測定時点における測定圧力と該各測定時点の一つ前における測定時点の測定圧力との差分を演算し、しかも、前記割合と前記差分とを乗じた値を、補正量として演算する補正量演算部と、
前記低圧側圧力センサが検出した各測定時点における測定圧力の補正圧力を、ガス透過度の算出に用いるものとして、該各測定時点の一つ前における測定時点の補正圧力に、前記補正量演算部が演算した該各測定時点における補正量を加算することにより求める補正圧力演算部と、
が備えられている構成とされている。
(5) One side compartment space in which a pair of cells for sandwiching the sample film are provided, and a measurement gas is supplied between one of the pair of cells and the sample film Is formed, between the other cell of the pair of cells and the sample film, the other side partitioned space whose pressure is lower than the pressure of the one side partitioned space is formed, and the other side partitioned space With respect to the gas permeability measuring device associated with the low pressure side pressure sensor for detecting the pressure of the other side compartment space at predetermined measurement time intervals,
A high pressure side pressure sensor for detecting the pressure of the one side compartment space,
Based on the detection information from the high-pressure side pressure sensor and the detection information from the low-pressure side pressure sensor, for the measurement start time point and each measurement time point, between the pressure of the one side compartment space and the pressure of the side compartment space The differential pressure is calculated respectively, and based on the calculated information, the ratio of the differential pressure at the time of measurement to the differential pressure at the time of measurement at each measurement time point is calculated, and the measured pressure at each measurement time point and the measurement time point immediately before each measurement time point are calculated. A correction amount calculation unit that calculates a difference between the measured pressure and the ratio and the difference is calculated as a correction amount.
The correction pressure of the measurement pressure at each measurement time point detected by the low-pressure side pressure sensor is used to calculate the gas permeability, and the correction amount calculation unit is added to the correction pressure at the measurement time point immediately before each measurement time point. A correction pressure calculation unit which is calculated by adding the correction amounts at the respective measurement points calculated by
Is provided.

この構成によれば、前述の(2)の使用方法を使用する具体的装置を提供できる。 With this configuration, it is possible to provide a specific device that uses the above-described usage method (2).

(6)前記(5)の構成の下で、
前記一方のセルに、前記一方側区画空間と大気とを連通させる連通孔が形成されている構成とされている。
(6) Under the configuration of (5) above,
A communication hole that communicates the one-side compartment space with the atmosphere is formed in the one cell.

この構成によれば、前述の(3)の使用方法を使用する具体的装置を提供できる。 With this configuration, it is possible to provide a specific device that uses the method (3) described above.

(7)前記(6)の構成の下で、
前記一方のセルにおける前記一方側区画空間に対して、前記測定ガスを供給するためのガス供給路が連なり、
前記ガス供給路内に、その途中において、該ガス供給路を拡張することにより拡張空間が形成されている構成とされている。
(7) Under the configuration of (6) above,
With respect to the one side compartment space in the one cell, a gas supply path for supplying the measurement gas is connected,
An expansion space is formed in the gas supply path by expanding the gas supply path in the middle thereof.

この構成によれば、拡張空間を含むガス供給路を、ガスが流れる通路として利用できるだけでなく、その拡張空間をもって水槽を形成し、その水槽内に水を溜めてその水面上をガスが通過するようにすることにより、供給ガスを加湿ガスとすることもできる。このため、ガス供給路を多目的に利用できる。 According to this structure, not only can the gas supply path including the expansion space be used as a passage through which gas flows, but a water tank is formed with the expansion space, water is stored in the water tank, and the gas passes over the water surface. By doing so, the supply gas can also be a humidification gas. Therefore, the gas supply path can be used for multiple purposes.

(8)前記(7)の構成の下で、
前記拡張空間が、前記測定ガスの流れを確保した状態で水を溜める水槽を構成している構成とされている。
(8) Under the configuration of (7) above,
The expansion space constitutes a water tank for accumulating water while ensuring the flow of the measurement gas.

この構成によれば、ガス供給路にガスを流すことにより、加湿ガスを一方のセルにおける一方側区画空間に供給できることになり、ガス供給路を有効に利用できる。 According to this configuration, the humidifying gas can be supplied to the one-side compartment in one cell by flowing the gas through the gas supply path, and the gas supply path can be effectively used.

(9)前記(8)の構成の下で、
前記拡張空間が、前記一対のセルのいずれかに内蔵されている構成とされている。
(9) Under the configuration of (8) above,
The expansion space is configured to be contained in any one of the pair of cells.

この構成によれば、ガス供給路に拡張空間が形成されているとしても、その拡張空間を一対のセルのいずれかの内部空間を有効に利用して内蔵することができ、当該ガス透過度装置を極力、小型化することができる。 According to this configuration, even if an expansion space is formed in the gas supply path, the expansion space can be effectively contained by using the internal space of one of the pair of cells, and the gas permeability device can be used. Can be miniaturized as much as possible.

本発明によれば、試料膜を基準として一方側における一方側区画空間と試料膜を基準として他方側における他方側区画空間との間の差圧が時間の経過に伴い変化する場合であっても、ガス透過度の精度を高めることができるガス透過度測定方法及びその使用方法を使用するガス透過度測定装置を提供できる。 According to the present invention, even when the differential pressure between the one-side compartment space on one side with respect to the sample film and the other-side compartment space on the other side with respect to the sample film changes with the passage of time. It is possible to provide a gas permeability measuring method that can improve the accuracy of gas permeability and a gas permeability measuring device that uses the gas permeability measuring method.

実施形態に係るガス透過度測定装置を示す斜視図。The perspective view which shows the gas permeability measuring apparatus which concerns on embodiment. 実施形態に係るガス透過度測定装置の構造を簡略的に示す説明図。Explanatory drawing which shows simply the structure of the gas permeability measuring apparatus which concerns on embodiment. 実施形態に係る上側セルと下側セルの下でのガス透過度の測定を簡略的に説明する説明図。FIG. 4 is an explanatory view briefly explaining measurement of gas permeability under the upper cell and the lower cell according to the embodiment. 実施形態に係る演算処理装置における演算制御部の機能構造を概念的に示す図。The figure which shows notionally the functional structure of the arithmetic control part in the arithmetic processing unit which concerns on embodiment. 一定差圧の下でガス透過度測定が行われる場合(補正後)の単位時間当たりの圧力変化と、差圧変化が生じる状況下でガス透過度測定が行われる場合(補正前)の位時間当たりの圧力変化とを説明する説明図。Pressure change per unit time when the gas permeability measurement is performed under a constant differential pressure (after correction), and the unit time when the gas permeability measurement is performed under the situation where the differential pressure change occurs (before correction) Explanatory drawing explaining the pressure change per hit. 一定差圧の下でガス透過度測定が行われる場合(補正後)の単位時間当たりの圧力変化の経時変化と、差圧変化が生じる状況下でガス透過度測定が行われる場合(補正前)の位時間当たりの圧力変化の経時変化を説明する説明図。When the gas permeability measurement is performed under a constant differential pressure (after correction), the change in pressure per unit time with time, and when the gas permeability measurement is performed under the condition that the differential pressure change occurs (before correction) Explanatory drawing explaining the time-dependent change of the pressure change per unit time. 差圧変化が生じる状況下でガス透過度測定が行われる場合(補正前)の単位時間当たりの圧力変化と、一定差圧の下でガス透過度測定が行われる場合(補正後)の単位時間当たりの圧力変化との関係を説明する説明図。Pressure change per unit time when gas permeability measurement is performed (before correction) under the condition that differential pressure change occurs, and unit time when gas permeability measurement is performed under constant differential pressure (after correction) Explanatory drawing explaining the relationship with the pressure change per hit. 図7の拡大説明図。FIG. 8 is an enlarged explanatory diagram of FIG. 7.

以下、本発明の実施形態を説明するに当たり、ガス透過度測定方法の説明に先立ち、その方法が使用されるガス透過度測定装置について説明する。 Before describing an embodiment of the present invention, a gas permeability measuring apparatus using the method will be described prior to the description of the gas permeability measuring method.

図1において、符号1は、ガス透過度測定方法が使用されるガス透過度測定装置を示す。このガス透過度測定装置1は、試料膜5を挟持するための一方のセルとしての上側セル2と、他方のセルとしての下側セル3とを備えている。上側セル2は、下側セル3に対して起倒伏可能に支持されており、下側セル3に対して上側セル2が倒伏したきには、下側セル3の支持面3aと上側セル2の押圧面2aとが合わさり、その上側セル2と下側セル3とによりチャンバー4が形成される。 In FIG. 1, reference numeral 1 indicates a gas permeability measuring device in which the gas permeability measuring method is used. The gas permeability measuring apparatus 1 includes an upper cell 2 as one cell for holding the sample film 5 and a lower cell 3 as the other cell. The upper cell 2 is supported so that it can be laid down with respect to the lower cell 3, and when the upper cell 2 falls down with respect to the lower cell 3, the support surface 3a of the lower cell 3 and the upper cell 2 Of the upper cell 2 and the lower cell 3 form a chamber 4.

前記ガス透過度測定装置1は、簡略的には、図2、図3をもって示すことができる。前記下側セル3の支持面3aは、ガス透過度を測定すべき試料膜5を載置すべき面とされており、その下側セル3の支持面3aに試料膜5が載置された状態で、上側セル2が下側セル3に対して倒伏されたときには、下側セル3と上側セル2とは試料膜5を挟持することになる(図2、図3に示す状態)。この上側セル2の押圧面2a及び下側セル3の支持面3aには、凹所6,7が形成されており、上側セル2と下側セル3とが試料膜5を挟持しているときには、凹所6は、その開口が試料膜5により塞がれることにより一方側区画空間(以下、凹所6と同符号を用いる)を形成し、凹所7は、その開口が試料膜5により塞がれることにより他方側区画空間(以下、凹所7と同符号を用いる)を形成する。この上側セル2の凹所6周壁にはシールリング8が設けられ、下側セル3の凹所7内には濾紙9が収納されている。これにより、上側セル2が下側セル3に対して倒伏されたときには、上側セル2におけるシールリング8が、濾紙9が凹所7内に収納された支持面3a上に配置された試料膜5をその下側セル3の支持面3aに押し付けることになり、下側セル3の支持面3aと上側セル2の押圧面2aとの間において、シールリング8の径方向内方側は、径方向外方側に対して気密性が確保されることになる。尚、図1においては、符号10は、面積が小さい試料膜5を測定すべく、前記シールリング8よりも小さい径のシールリングを取付けるために、上側セル2の押圧面2aに形成される環状溝10である。符号53は、上側セル2が下側セル3に対して倒伏されたとき、上側セル2が下側セル3に対して押し付けられた状態を保持するための保持具である。 The gas permeability measuring apparatus 1 can be simply shown in FIGS. 2 and 3. The supporting surface 3a of the lower cell 3 is a surface on which the sample film 5 whose gas permeability is to be measured is to be placed, and the supporting film 3a is placed on the supporting surface 3a of the lower cell 3. In this state, when the upper cell 2 is laid down with respect to the lower cell 3, the lower cell 3 and the upper cell 2 sandwich the sample film 5 (states shown in FIGS. 2 and 3). Recesses 6 and 7 are formed on the pressing surface 2a of the upper cell 2 and the supporting surface 3a of the lower cell 3, and when the upper cell 2 and the lower cell 3 hold the sample film 5 therebetween. The recess 6 forms a one-sided partition space (hereinafter, the same reference numeral as that of the recess 6 is used) by closing the opening with the sample film 5, and the recess 7 has the opening with the sample film 5. By being closed, a partition space on the other side (hereinafter, the same reference numeral as that of the recess 7 is used) is formed. A seal ring 8 is provided on the peripheral wall of the recess 6 of the upper cell 2, and a filter paper 9 is housed in the recess 7 of the lower cell 3. As a result, when the upper cell 2 is laid down with respect to the lower cell 3, the seal ring 8 in the upper cell 2 has the sample film 5 arranged on the support surface 3 a in which the filter paper 9 is housed in the recess 7. Is pressed against the supporting surface 3a of the lower cell 3, and between the supporting surface 3a of the lower cell 3 and the pressing surface 2a of the upper cell 2, the radial inner side of the seal ring 8 is the radial direction. Airtightness is secured to the outside. In FIG. 1, reference numeral 10 denotes an annular shape formed on the pressing surface 2a of the upper cell 2 in order to attach a seal ring having a smaller diameter than the seal ring 8 in order to measure the sample film 5 having a small area. The groove 10. Reference numeral 53 is a holder for holding the upper cell 2 pressed against the lower cell 3 when the upper cell 2 is laid down with respect to the lower cell 3.

前記上側セル2の一方側区画空間6には、図2、図3に示すように、ガス供給路12と大気連通孔13とが開口されている。ガス供給路12は、外部から測定ガスを上側セル2の一方側区画空間6に供給する役割を有しおり、そのガス供給路12は、上側セル2内部においては、その内部に形成される加工孔14(簡略的に図示)をもって構成されている。大気連通孔13は、上側セル2の一方側区画空間6と大気とを連通させる役割を有しており、測定ガスが上側セル2の一方側区画空間6に供給された状態になっていても、大気連通孔13が余剰な測定ガスを排出することになり、上側セル2の一方側区画空間6は、大気圧に維持される。また、この大気連通孔13には、湿度センサ50が臨んでおり、その湿度センサ50により大気圧下での一方側区画空間6内の相対湿度が検出される。 As shown in FIGS. 2 and 3, a gas supply path 12 and an atmosphere communication hole 13 are opened in the one-side compartment space 6 of the upper cell 2. The gas supply passage 12 has a role of supplying the measurement gas from the outside to the one-side compartment space 6 of the upper cell 2, and the gas supply passage 12 has a processing hole formed inside thereof in the upper cell 2. 14 (simply shown). The atmosphere communication hole 13 has a role of communicating the one-side compartment space 6 of the upper cell 2 and the atmosphere, and even if the measurement gas is supplied to the one-side compartment space 6 of the upper cell 2. The atmosphere communication hole 13 discharges the excess measurement gas, and the one-side compartment space 6 of the upper cell 2 is maintained at the atmospheric pressure. A humidity sensor 50 faces the atmosphere communication hole 13, and the humidity sensor 50 detects the relative humidity in the one-side compartment 6 under atmospheric pressure.

前記下側セル3の他方側区画空間7には、図2、図3に示すように、通路15が開口されている。通路15は、ガス透過度の測定を行うに当たり、下側セル3の他方側区画空間7内を所定減圧状態(所定真空状態)とするために真空引きする真空引き用通路としての役割を有すると共に、ガス透過度の測定中に、下側セル3における他方側区画空間7の圧力を検出するための圧力導出通路としての役割を有している。このため、通路15には、図3に示すように、バルブ16を介して真空ポンプ17が関連付けられていると共に、下側セル3における他方側区画空間7の圧力を検出する低圧側圧力センサ18が関連付けられている。 As shown in FIGS. 2 and 3, a passage 15 is opened in the other compartment space 7 of the lower cell 3. When the gas permeability is measured, the passage 15 has a role as a passage for evacuation to evacuate the other compartment space 7 of the lower cell 3 to a predetermined depressurized state (predetermined vacuum state). , Has a role as a pressure lead-out passage for detecting the pressure of the other-side compartment space 7 in the lower cell 3 during the measurement of the gas permeability. Therefore, as shown in FIG. 3, a vacuum pump 17 is associated with the passage 15 via a valve 16, and a low pressure side pressure sensor 18 for detecting the pressure of the other side partitioned space 7 in the lower cell 3 is provided. Are associated with.

前記上側セル2及び前記下側セル3には、図2に示すように、それらを常に一定温度にすべく、温度調整媒体としての一定温度の循環水が満たされた温度調整循環通路(循環路)20が組み込まれている。温度調整循環通路20は、下側セル3内部に形成される内部循環空間21と、下側セル3内部に形成される内部循環空間22と、それらを、循環路として連通させる接続管(可撓性接続ホース)23,24とにより構成されている。その接続管23,24のうちの一つである接続管23(図1参照)には、図示を略す循環ポンプ、循環水の温度を一定にするための温度調整装置が介装されており、その循環ポンプにより、循環水は、図2の矢印に示すように、温度調整循環通路20を循環することになる。 As shown in FIG. 2, the upper cell 2 and the lower cell 3 have a temperature control circulation passage (circulation path) filled with circulating water of a constant temperature as a temperature control medium so that they are always kept at a constant temperature. )20 is incorporated. The temperature control circulation passage 20 includes an internal circulation space 21 formed inside the lower cell 3, an internal circulation space 22 formed inside the lower cell 3, and a connecting pipe (flexible pipe) for connecting them as a circulation passage. Sex connection hoses) 23 and 24. The connection pipe 23 (see FIG. 1), which is one of the connection pipes 23 and 24, is provided with a circulation pump (not shown) and a temperature adjusting device for keeping the temperature of the circulating water constant, By the circulation pump, the circulating water circulates in the temperature control circulation passage 20 as shown by the arrow in FIG.

前記ガス供給路12は、図2に示すように、図示を略すガス源から、前記下側セル3内、前記接続管24内を経由した上で、前記上側セル2における加工孔14(一方側区画空間6)に連なっている。 As shown in FIG. 2, the gas supply passage 12 passes from a gas source (not shown) through the lower cell 3 and the connection pipe 24, and then the processed hole 14 (one side) in the upper cell 2. It is connected to the compartment space 6).

より具体的には、ガス供給路12は、図1に示すように、図示を略すガス源から下側セル3までは接続管31もって構成されている。その接続管31は、下側セル3に接続されており、この接続管31には、図示を略すガス源から所定の乾き度のガスが供給され、そのガスの流量は、接続管31に介装された流量調整弁33により調整できることになっている。この場合、ガス源から供給されるガスとしては、空気、酸素、窒素等、種々のものを用いることができる。 More specifically, as shown in FIG. 1, the gas supply path 12 includes a connecting pipe 31 from a gas source (not shown) to the lower cell 3. The connection pipe 31 is connected to the lower cell 3, and a gas having a predetermined dryness is supplied to the connection pipe 31 from a gas source (not shown). It can be adjusted by the mounted flow rate adjusting valve 33. In this case, various gases such as air, oxygen and nitrogen can be used as the gas supplied from the gas source.

ガス供給路12は、下側セル3内では、図2に示すように、ガス供給路12を拡張することにより、水Wを溜める水槽34を形成している。この水槽34は、外部から水の補給を可能とすべく、下側セル3の上面から外部に開口するように形成され、その水槽34の開口は蓋体35により覆われている。この下側セル3内部には、前記接続管31に連なる加工孔36(簡略的に図示)が形成されており、その加工孔36は、水槽34内に、その水槽34内の水面Wsよりも高い位置において開口されて、図示を略すガス源からのガスは水槽34の水面Wa上に供給されることになっている。また、下側セル3内部には、加工孔38(簡略的に図示)が形成されており、その加工孔38の一端開口は、水槽34内に、その水槽34内の水面Wsよりも高い位置において開口されている。これにより、図示を略すガス源から供給されるガスは、水槽33の水面上を通過することにより、加湿され、それが、加工孔38に供給される。このとき、ガスは所定の乾き度とされていることから、流量調整弁33によりガスの流量を調整するだけで、ガスの加湿度(相対湿度)を調整できることになる。この結果、湿度センサ50の検出結果に基づき手動又は自動をもって流量調整弁33の流量を調整することにより、測定ガスの加湿度(相対湿度)を所望のものにできることになる。 In the lower cell 3, the gas supply path 12 forms a water tank 34 for storing water W by expanding the gas supply path 12 as shown in FIG. The water tank 34 is formed so as to open from the upper surface of the lower cell 3 to the outside so that water can be supplied from the outside, and the opening of the water tank 34 is covered with a lid 35. Inside the lower cell 3, a processing hole 36 (simply shown) connected to the connection pipe 31 is formed, and the processing hole 36 is formed in the water tank 34 more than the water surface Ws in the water tank 34. A gas from a gas source (not shown) is opened at a high position and is supplied onto the water surface Wa of the water tank 34. Further, a processing hole 38 (simply shown) is formed inside the lower cell 3, and one end opening of the processing hole 38 is located in the water tank 34 at a position higher than the water surface Ws in the water tank 34. Is opened in. As a result, the gas supplied from a gas source (not shown) is humidified by passing over the water surface of the water tank 33, and the humidified gas is supplied to the processed hole 38. At this time, since the gas has a predetermined dryness, the humidification (relative humidity) of the gas can be adjusted only by adjusting the flow rate of the gas by the flow rate adjusting valve 33. As a result, by adjusting the flow rate of the flow rate adjusting valve 33 manually or automatically based on the detection result of the humidity sensor 50, the humidification (relative humidity) of the measurement gas can be made desired.

この場合、前記接続管24内は、下側セル3の内部循環空間22と連なっており、その循環水は、接続管24内に導かれることになっている。 In this case, the inside of the connection pipe 24 is connected to the internal circulation space 22 of the lower cell 3, and the circulating water is to be introduced into the connection pipe 24.

前記ガス供給路12は、下側セル3から上側セル2までにおいては、図2に示すように、接続管41もって構成されている。その接続管41の一端側が下側セル3の加工孔38に連なっている一方、その接続管41の一端部よりも他端側は、前記接続管24内に環状空間42が形成されるようにした状態で収納されている。これにより、下側セル3における内部循環空間22における所定温度の循環水は、接続管24内の環状空間42を下側セル3から上側セル2に流れて、上側セル2及び下側セル3を一定温度にするだけでなく、接続管41内を下側セル3から上側セル2内に向けて流れる加湿測定ガスの加湿度状態が、外部温度の影響を受けて変化することを抑制する。 As shown in FIG. 2, the gas supply path 12 is configured with a connecting pipe 41 from the lower cell 3 to the upper cell 2. One end side of the connection pipe 41 is connected to the processing hole 38 of the lower cell 3, while the other end side of the connection pipe 41 is formed with an annular space 42 inside the connection pipe 24. It is stored in the opened state. Thereby, the circulating water at the predetermined temperature in the internal circulation space 22 in the lower cell 3 flows from the lower cell 3 to the upper cell 2 in the annular space 42 in the connecting pipe 24, and the upper cell 2 and the lower cell 3 are discharged. Not only is the temperature kept constant, but the humidified state of the humidified measurement gas flowing from the lower cell 3 to the upper cell 2 in the connecting pipe 41 is prevented from changing under the influence of the external temperature.

上記接続管41の他端部は、図2に示すように、前記接続管24よりも延出されて、上側セル2の前記加工孔14に連なっている。これにより、測定ガスとしての加湿ガスは、その加工孔14から上側セル2における一方側区画空間6に供給されることになる。 As shown in FIG. 2, the other end of the connection pipe 41 extends beyond the connection pipe 24 and is connected to the processed hole 14 of the upper cell 2. As a result, the humidifying gas as the measurement gas is supplied from the processing hole 14 to the one-side compartment space 6 in the upper cell 2.

ガス透過度測定装置1は、図3に示すように、試料膜5に対するガス透過度GTRを算出するべく、演算処理装置51を備えている。このため、演算処理装置51には、前記低圧側圧力センサ18からの圧力情報、前記高圧側圧力センサ55からの大気圧情報が入力される。この演算処理装置51には、コンピュータとしての機能を確保すべく、記憶部51Aと、演算制御部51Bと、ディスプレイ等の表示部51Cとが備えられている。記憶部51Aは、ROM(Read Only Memory)やRAM(Random Access Memory)等の記憶素子をもって構成され、その記憶部51Aには、必要な情報として、ガス透過度GTRを求める下記(数1)式、(数2)式、その(数1)(数2)式において用いられる定数、固定値等が格納されている。 As shown in FIG. 3, the gas permeability measuring apparatus 1 includes an arithmetic processing unit 51 in order to calculate the gas permeability GTR with respect to the sample film 5. Therefore, the pressure information from the low pressure side pressure sensor 18 and the atmospheric pressure information from the high pressure side pressure sensor 55 are input to the arithmetic processing unit 51. The arithmetic processing device 51 is provided with a storage unit 51A, an arithmetic control unit 51B, and a display unit 51C such as a display in order to ensure the function as a computer. The storage unit 51A is configured with storage elements such as a ROM (Read Only Memory) and a RAM (Random Access Memory), and the storage unit 51A calculates the gas permeability GTR as necessary information in the following (Equation 1) formula. , (Equation 2), constants and fixed values used in the equations (1) and (Equation 2) are stored.

(数1)
GTR=V×(1/R)×(1/A)×(1/T)×(1/Pdo)×(dPp/dt)
ここで、GTR:ガス透過度[mol/(m2・S・Pa)]
V:下側セル3のセル容積[m3
R:気体定数[m3・Pa/(K・mol)]
A:透過面積(m2
T:試験温度[K]
Pdo:測定開始時の差圧[Pa](Pdo=Pho−Pto)
Ph:測定時点の大気圧[Pa]
Pto:下側セル3内における測定開始時圧力[Pa]
Pho:測定開始時の大気圧[Pa]
Pp:下側セル3内における測定圧力の補正圧力[Pa]
dPp/dt:単位時間当たりの補正圧力変化[Pa/s]
(Equation 1)
GTR=V×(1/R)×(1/A)×(1/T)×(1/Pdo)×(dPp/dt)
Here, GTR: gas permeability [mol/(m 2 ·S·Pa)]
V: Cell volume of lower cell 3 [m 3 ]
R: Gas constant [m 3 ·Pa/(K·mol)]
A: Transmission area (m 2 )
T: Test temperature [K]
Pdo: Differential pressure [Pa] at the start of measurement (Pdo=Pho-Pto)
Ph: Atmospheric pressure [Pa] at the time of measurement
Pto: Pressure at measurement start [Pa] in the lower cell 3
Pho: Atmospheric pressure [Pa] at the start of measurement
Pp: Corrected pressure [Pa] of the measured pressure in the lower cell 3
dPp/dt: Change in corrected pressure per unit time [Pa/s]

(数2)
Ppn=Ppn-1+1/(1−α)×(Ptn−Ptn-1
=Ppn-1+(Pdo/Pd)×(Ptn−Ptn-1
ここで、n=1,2,3・・・・(サンプリング回数)
Pp:下側セル3内における測定圧力の補正圧力[Pa]
Pt:下側セル3内における測定圧力[Pa]
Ph:測定時点の大気圧[Pa]
Pto:下側セル3内における測定開始時圧力[Pa]
Pho:測定開始時の大気圧[Pa]
Pd:測定時点の差圧(Pd=Ph−Pt)
Pdo:測定開始時の差圧(Pdo=Pho−Pto)
α:差圧変化率(α=(Pdo−Pd)/Pdo)
(Equation 2)
Pp n = Pp n-1 + 1 / (1-α) × (Pt n -Pt n-1)
= Pp n-1 + (Pdo / Pd) × (Pt n -Pt n-1)
Where n=1, 2, 3,... (Sampling count)
Pp: Corrected pressure [Pa] of the measured pressure in the lower cell 3
Pt: Measured pressure in the lower cell 3 [Pa]
Ph: Atmospheric pressure [Pa] at the time of measurement
Pto: Pressure at measurement start [Pa] in the lower cell 3
Pho: Atmospheric pressure [Pa] at the start of measurement
Pd: Differential pressure at the time of measurement (Pd=Ph-Pt)
Pdo: Differential pressure at the start of measurement (Pdo=Pho-Pto)
α: Rate of differential pressure change (α=(Pdo-Pd)/Pdo)

また、必要なプログラムとしては、補正量演算(差圧演算(Pd=Ph−Pt、Pdo=Pho−Pto)、割合演算(Pdo/Pd)、差分演算(Ptn−Ptn-1)、補正量算出(Pdo/Pd)×(Ptn−Ptn-1))、補正圧力演算(Ppn=Ppn-1+(Pdo/Pd)×(Ptn−Ptn-1))、勾配演算(単位時間当たりの補正圧力変化演算:dPp/dt)、ガス透過度演算(GTR)等に関するものが記憶部51Aに格納されている。 As the required program, the correction amount calculation (differential pressure calculation (Pd = Ph-Pt, Pdo = Pho-Pto), the percentage calculation (Pdo / Pd), difference operation (Pt n -Pt n-1) , corrected The amount calculated (Pdo / Pd) × (Pt n -Pt n-1)), the correction pressure calculating (Pp n = Pp n-1 + (Pdo / Pd) × (Pt n -Pt n-1)), the gradient calculation (Correction pressure change calculation per unit time: dPp/dt), gas permeability calculation (GTR), and the like are stored in the storage unit 51A.

演算制御部51Bは、CPU(Central Processing Unit)をもって構成されており、演算制御部51Bは、記憶部51Aから読み出されたプログラムに基づき、図4に示すように、補正量演算部61と、補正圧力演算部62と、勾配演算部63と、ガス透過度演算部64等として機能し、補正量演算部61は、さらには、差圧演算部61A、割合演算部61B、差分演算部61C、補正量算出部61Dとしての役割を果たす。 The calculation control unit 51B is configured by a CPU (Central Processing Unit), and the calculation control unit 51B, based on the program read from the storage unit 51A, as shown in FIG. The correction pressure calculation unit 62, the gradient calculation unit 63, the gas permeability calculation unit 64, and the like function as the correction amount calculation unit 61. The correction amount calculation unit 61 further includes a differential pressure calculation unit 61A, a ratio calculation unit 61B, and a difference calculation unit 61C. It serves as the correction amount calculation unit 61D.

演算処理装置51は、ガス透過度GTRの精度を高めるため、下側セル3における他方側区画空間7の圧力(以下、下側セル内圧力)Ptの補正処理を行った上で、ガス透過度GTRを算出する。この演算処理装置51の処理には、実施形態に係るガス透過度測定方法が反映されており、その演算処理装置51の処理については、ガス透過度測定方法と共に、具体的に説明する。 In order to improve the accuracy of the gas permeability GTR, the processor 51 corrects the pressure (hereinafter, lower cell internal pressure) Pt of the other compartment space 7 in the lower cell 3, and then the gas permeability. Calculate GTR. The gas permeability measuring method according to the embodiment is reflected in the processing of the arithmetic processing device 51, and the processing of the arithmetic processing device 51 will be specifically described together with the gas permeability measuring method.

ガス透過度GTRの算出には、一般的な規格計算式として、下記(数3)式が用いられる。その(数3)式を用いるに当たっては、(数3)式中のdP/dt(単位時間当たりの下側セル3内圧力)変化(Pa/s))については、経過時間に対する下側セル3内圧力を測定して(ガス透過曲線の作成)、そのガス透過の定常状態を示す直線部分の傾き(勾配)を得ることにより求められ、それを(数3)式に代入することによりガス透過度GTRが導き出される。
(数3)
GTR=V×(1/R)×(1/A)×(1/T)×(1/Pd)×(dP/dt)
ここで、GTR:ガス透過度[mol/(m2・S・Pa)]
V:下側セル3のセル容積[m3
R:気体定数[m3・Pa/(K・mol)]
A:透過面積(m2
T:試験温度[K]
Pd:測定時点の差圧(高圧側圧力Ph−低圧側圧力Pt)
dP/dt:単位時間当たりの圧力変化[Pa/s]
For the calculation of the gas permeability GTR, the following formula (Equation 3) is used as a general standard calculation formula. In using the formula (3), regarding the change in dP/dt (pressure in the lower cell 3 per unit time) (Pa/s) in the formula (3), the lower cell 3 with respect to the elapsed time is It is obtained by measuring the internal pressure (creating a gas permeation curve) and obtaining the slope (gradient) of the straight line showing the steady state of gas permeation, and substituting it into the equation (3) Degree GTR is derived.
(Equation 3)
GTR=V×(1/R)×(1/A)×(1/T)×(1/Pd)×(dP/dt)
Here, GTR: gas permeability [mol/(m 2 ·S·Pa)]
V: Cell volume of lower cell 3 [m 3 ]
R: Gas constant [m 3 ·Pa/(K·mol)]
A: Transmission area (m 2 )
T: Test temperature [K]
Pd: Differential pressure at the time of measurement (high pressure side pressure Ph-low pressure side pressure Pt)
dP/dt: Pressure change per unit time [Pa/s]

しかし、経過時間に対する下側セル3内圧力を測定(ガス透過曲線の作成)した場合、時間の経過に伴い、下側セル3内圧力が上昇する結果、大気圧Phと下側セル3内との差圧Pd=Ph−Ptが減少する。このため、下側セル3内圧力は、時間の経過に伴い、図5(補正前参照)に示すように、個々の状況に応じて徐々に飽和値(圧力)に近づき、また、単位時間当たりの下側セル3内圧力変化dP/dt(勾配)の経時的な変化は、図6(補正前参照)に示すように、単調に減少する傾向となる。この結果、測定開始時の差圧が同一であることを条件とすると、ガス透過度測定において、経時的に差圧減少を生じる場合のdP/dt(勾配)は、差圧Pdが一定値である場合のdP/dt(勾配)よりも小さい傾向を示し、さらには直線性も低下することとなり、その特定が容易でないばかりか、仮にその特定を行ったとしても、その特定により得られるdP/dt(勾配)は、精度が高いものとは言えない。また、上側セル2内圧力である大気圧Phは、気候変動、測定場所の違い等により変動し、差圧Pd=Ph−Ptに変動を与えることになり(図7、図8参照)、単位時間当たりの下側セル3内圧力変化dP/dt(勾配)は、その大気圧の変動に応じた影響をも受けることにもなる。このため、そのことも、そのdP/dt(勾配)の特定の容易性、その特定により得られるdP/dt(勾配)の精度を低める。尚、図5〜図8では、理解を容易にするため誇張表示がなされている。さらには、(数3)式に用いられるPdは測定時点の差圧(変動値)であり、このPdを用いて(数3)式の下でガス透過度GTRを算出することは、演算処理装置の負担を高める。 However, when the pressure in the lower cell 3 with respect to the elapsed time is measured (a gas permeation curve is created), the pressure in the lower cell 3 increases with the lapse of time, and as a result, the atmospheric pressure Ph and the inside of the lower cell 3 are increased. The differential pressure Pd=Ph-Pt decreases. Therefore, the pressure in the lower cell 3 gradually approaches the saturation value (pressure) according to the individual situation as shown in FIG. 5 (see before correction) with the passage of time, and per unit time. The temporal change in the pressure change dP/dt (gradient) in the lower cell 3 tends to monotonically decrease as shown in FIG. 6 (before correction). As a result, under the condition that the differential pressure at the start of measurement is the same, the dP/dt (gradient) in the case where the differential pressure decreases with time in the gas permeability measurement, the differential pressure Pd is a constant value. It tends to be smaller than dP/dt (gradient) in a certain case, and the linearity also decreases, and not only is its identification difficult, but even if the identification is performed, the dP/ dt (gradient) cannot be said to be highly accurate. Further, the atmospheric pressure Ph, which is the pressure inside the upper cell 2, fluctuates due to climate change, difference in measurement location, etc., and thus gives a differential pressure Pd=Ph-Pt (see FIGS. 7 and 8), unit. The pressure change dP/dt (gradient) in the lower cell 3 per time is also influenced by the change in the atmospheric pressure. Therefore, this also lowers the ease of specifying the dP/dt (gradient) and the accuracy of the dP/dt (gradient) obtained by the specification. In addition, in FIGS. 5 to 8, exaggerated display is provided for easy understanding. Furthermore, Pd used in the equation (3) is a differential pressure (variation value) at the time of measurement, and using this Pd to calculate the gas permeability GTR under the equation (3) is a calculation process. Increase the load on the device.

このため、本実施形態においては、演算処理装置51は、経過時間に対する下側セル3内圧力Ptを補正して経過時間に対する補正圧力Ppを求め(ガス透過直線の作成)、その直線部分の傾き(勾配)から、dPp/dtを得ることとしている。後述するように、dPp/dtとして的確なものを容易且つ精度良く導き出すことができるからである。 Therefore, in the present embodiment, the arithmetic processing unit 51 corrects the lower cell inner pressure Pt with respect to the elapsed time to obtain the corrected pressure Pp with respect to the elapsed time (creating a gas permeation straight line), and the slope of the straight line portion. From the (gradient), dPp/dt is obtained. This is because an accurate dPp/dt can be derived easily and accurately as described later.

演算処理装置51は、上記下側セル3内圧力Ptを補正するに当たっては、下側セル3の圧力上昇の勾配値(傾き値)が差圧Pdに比例(ガス透過度が差圧に比例)することに着目し、補正後の下側セル3内圧力の上昇勾配値を、その下側セル3の圧力上昇の勾配値に差圧変化の変化率分(減少率分)の補正(加算)を行ったものとしている。すなわち、図7に示すように、経過時間に対する下側セル3内圧力Pt(特性線)に対して、真の圧力(補正圧力)Pp(特性線)が存在するとすれば、下側セル3内圧力Ptの圧力勾配dPt/dtが、真の圧力Ppの圧力勾配dPp/dtよりもその差圧変化の変化率α分(α×dPt/dt)だけ小さくなると考えられることから、dPp/dt=dPt/dt+α×dPt/dtの関係が成り立つ。これを整理すれば、下記(数4)式となる。
(数4)
dPp/dt=(1/(1−α))×dPt/dt
In correcting the pressure Pt in the lower cell 3, the arithmetic processing unit 51 is proportional to the gradient value (gradient value) of the pressure increase in the lower cell 3 to the differential pressure Pd (the gas permeability is proportional to the differential pressure). The increase gradient value of the pressure in the lower cell 3 after correction is corrected (added) to the gradient value of the pressure increase in the lower cell 3 by the change rate (decrease rate) of the differential pressure change. It is supposed to have been done. That is, as shown in FIG. 7, if there is a true pressure (correction pressure) Pp (characteristic line) with respect to the pressure Pt (characteristic line) in the lower cell 3 with respect to the elapsed time, then in the lower cell 3 Since it is considered that the pressure gradient dPt/dt of the pressure Pt becomes smaller than the pressure gradient dPp/dt of the true pressure Pp by the change rate α of the differential pressure change (α×dPt/dt), dPp/dt= The relationship of dPt/dt+α×dPt/dt is established. If this is arranged, it becomes the following (Formula 4) formula.
(Equation 4)
dPp/dt=(1/(1-α))×dPt/dt

他方、真の圧力Ppについては、n回目のサンプリングタイム時とn−1回目のサンプリングタイム時とでは、微分量を使って下記(数5)をもって示すことができる。
(数5)
Ppn=Ppn-1+(dPp/dt)×dt
On the other hand, the true pressure Pp can be expressed by the following (Equation 5) using the differential amount at the n-th sampling time and the (n-1)th sampling time.
(Equation 5)
Pp n = Pp n-1 + (dPp / dt) × dt

この(数5)式に(数4)式を代入すれば、下記(数6)式の関係を得る。
(数6)
Ppn=Ppn-1+(dPp/dt)×dt
=Ppn-1+(1/(1−α))×(dPt/dt)×dt
=Ppn-1+(1/(1−α))×(Ptn−Ptn-1
=Ppn-1+(Pdo/Pd)×(Ptn−Ptn-1
By substituting the equation (4) into the equation (5), the following equation (6) is obtained.
(Equation 6)
Pp n = Pp n-1 + (dPp / dt) × dt
=Ppn -1 +(1/(1-[alpha]))*(dPt/dt)*dt
= Pp n-1 + (1 / (1-α)) × (Pt n -Pt n-1)
= Pp n-1 + (Pdo / Pd) × (Pt n -Pt n-1)

上記(数6)式から、測定時点tnにおける下側セル3内圧力Ptの補正圧力(真の圧力)Ppnは、1つ前の測定時点tn-1における補正圧力Ppn-1に補正量を加算したものとなり、その補正量としては、測定時点tnの下側セル3内圧力Ptnと測定時点tn-1の下側セル3内圧力Ptn-1との差分Ptn−Ptn-1に、測定開始時点と各測定時点との割合Pdo/Pdを乗じたもの(Pdo/Pd)×(Ptn−Ptn-1)となる。この場合、Pdとしては、tn時とtn-1時との平均値を利用することができる。すなわち、tn時のPdをPdnとすれば、Pdn=[(Phn−Ptn)+(Phn-1−Ptn-1)]/2である。 From the above equation (6), corrected pressure (true pressure) Pp n below the side cell 3 pressure Pt at the measurement time t n is the corrected pressure Pp n-1 in the preceding measurement time point t n-1 be obtained by adding the correction amount, the difference Pt n as the amount of correction, the lower cell 3 within the pressure Pt n-1 of the lower cell 3 within the pressure Pt n and the measurement time t n-1 of the measurement time point t n -Pt n-1 is obtained by multiplying the ratio Pdo/Pd between the measurement start time point and each measurement time point (Pdo/Pd)×(Pt n -Pt n-1 ). In this case, as Pd, the average value of t n time and t n-1 time can be used. That is, if the Pd at the time t n and Pd n, Pd n = [( Ph n -Pt n) + (Ph n-1 -Pt n-1)] is / 2.

以上の内容から、演算処理装置51は、高圧側圧力センサ55及び低圧側圧力センサ18から圧力情報が入力されると、補正量演算部61が、その各要素61A〜61D(図4参照)により上記内容の処理を行うことにより補正量を導き出す。すなわち、各測定時点において、差圧演算部61Aが、測定開始時点及び各測定時点について、差圧Pd=Ph−Pt、Pdo=Pho−Ptoをそれぞれ演算し、割合演算部61Bは、各測定時点において、差圧演算部61Aからの情報に基づき、各測定時点における割合Pdo/Pdを演算する。差分演算部61Cは、各測定時点において、その各測定時点のPtnとその各測定時点の一つ前における測定時点のPtn-1との差分Ptn−Ptn-1を演算し、補正量算出部61Dは、各測定時点の割合Pdo/Pdと各測定時点の差分Ptn−Ptn-1とを乗じた値(Pdo/Pd)×(Ptn−Ptn-1)を、補正量として算出する。また、補正圧力演算部62は、各測定時点の下側セル3内圧力Ptnの補正圧力Ppnとして、各測定時点の一つ前における測定時点の補正圧力Ppn-1に各測定時点における補正量(Pdo/Pd)×(Ptn−Ptn-1)を加算するものを演算する。具体的には、t0のときには補正圧力Pp0=0、t1のときには補正圧力Pp1=(Pd0/Pd)×Pt1、t2のときには補正圧力Pp2=Pp1+(Pd0/Pd)×(Pt2−Pt1)等となる。 From the above contents, in the arithmetic processing unit 51, when the pressure information is input from the high pressure side pressure sensor 55 and the low pressure side pressure sensor 18, the correction amount calculation unit 61 causes the respective elements 61A to 61D (see FIG. 4) to operate. The correction amount is derived by performing the processing described above. That is, at each measurement time point, the differential pressure calculation unit 61A calculates the differential pressures Pd=Ph-Pt and Pdo=Pho-Pto at the measurement start time point and each measurement time point, respectively, and the ratio calculation unit 61B determines the measurement time point. In, the ratio Pdo/Pd at each measurement time point is calculated based on the information from the differential pressure calculation unit 61A. Difference calculation section 61C, at each measurement time point, and calculates the difference Pt n -Pt n-1 and Pt n of the respective measurement point and its Pt n-1 of the measurement point in one before each measurement time point, correct The amount calculation unit 61D corrects the value (Pdo/Pd)×(Pt n −Pt n−1 ) obtained by multiplying the ratio Pdo/Pd at each measurement time by the difference Pt n −Pt n−1 at each measurement time. Calculate as quantity. The correction pressure calculating unit 62, a corrected pressure Pp n of the pressure Pt n in the lower cells 3 of each measurement time point, at each measurement time point in the corrected pressure Pp n-1 of the measurement point in one before each measurement time point The sum of the correction amounts (Pdo/Pd)×(Pt n −Pt n−1 ) is calculated. Specifically, when t 0 , the correction pressure Pp 0 =0, when t 1 , the correction pressure Pp 1 =(Pd0/Pd)×Pt 1 , and when t 2 , the correction pressure Pp 2 =Pp 1 +(Pd0/Pd )*(Pt2-Pt1).

次いで、演算処理装置51は、その勾配演算部63が、補正圧力演算部62が演算した各測定時点の補正圧力Ppを用いて単位時間当たりの補正圧力変化(勾配dPp/dt)を演算し、ガス透過度演算部64は、その勾配演算部63が演算した単位時間当たりの補正圧力変化dPp/dtと、前述の(数1)式とから、試料膜5に対するガス透過度GTRを演算する。 Next, in the calculation processing device 51, the gradient calculation unit 63 calculates the correction pressure change (gradient dPp/dt) per unit time using the correction pressure Pp at each measurement time calculated by the correction pressure calculation unit 62, The gas permeability calculating unit 64 calculates the gas permeability GTR with respect to the sample film 5 from the corrected pressure change dPp/dt per unit time calculated by the gradient calculating unit 63 and the above formula (Equation 1).

このとき、単位時間当たりの補正圧力変化(勾配dPp/dt)を演算するに当たり、補正圧力演算部62が演算した補正圧力Ppが用いられ、そのPpを求めることが、差圧減少に伴う下側セル3内の圧力勾配(dPt/dt)の減少を解消することにあることから、その勾配減少分として、測定開始時差圧Pdoを基準とした差圧変化率(α=(Pdo−Pd)/Pdo)を、測定開始時差圧が維持される場合の傾きdPp/dtに乗じたものが認識され、それが、前述の通り、(数4)式を導くために利用されている。このため、上側セル2と下側セル3との間の差圧変化として、下側セル3内の圧力上昇に基づく場合、大気圧変動に基づく場合のいずれの差圧変化が生じても(図7、図8参照)、それらのいずれについても、測定開始時の差圧Pdoを基準とした差圧変化の変化率として捉えることができ、測定開始時差圧Pdoを維持した状態の下でガス透過度測定を行う場合に相当する補正圧力Ppを得ることができる。この結果、測定開始時差圧Pdoの下での試料膜5に応じた勾配dPp/dtは、時間の経過にかかわらず一定であることを維持して、高い直線性を示すことになり、勾配演算部63は、(数1)式で用いるdPp/dtとして的確なものを容易且つ精度良く導き出すことになる。 At this time, in calculating the correction pressure change per unit time (gradient dPp/dt), the correction pressure Pp calculated by the correction pressure calculation unit 62 is used, and the calculation of the Pp is based on the lower side of the differential pressure decrease. Since the decrease in the pressure gradient (dPt/dt) in the cell 3 is eliminated, the rate of change in the pressure difference (α=(Pdo−Pd)/ A value obtained by multiplying the slope dPp/dt when the differential pressure at the start of measurement is maintained is recognized, which is used to derive the equation (4) as described above. Therefore, as the differential pressure change between the upper cell 2 and the lower cell 3, whether the differential pressure change is based on the pressure increase in the lower cell 3 or based on the atmospheric pressure fluctuation (Fig. 7 and FIG. 8), any of them can be understood as a rate of change of the differential pressure change based on the differential pressure Pdo at the start of measurement, and gas permeation under the state where the differential pressure Pdo at the start of measurement is maintained. The correction pressure Pp corresponding to the case where the degree measurement is performed can be obtained. As a result, the gradient dPp/dt according to the sample film 5 under the differential pressure Pdo at the start of measurement is maintained constant regardless of the passage of time, and exhibits high linearity. The unit 63 easily and accurately derives an accurate dPp/dt used in the equation (1).

また、ガス透過度演算部64は、ガス透過度測定として測定開始時差圧Pdoを維持したものに相当する場合のdPp/dtを(数1)式で用いると共に、その(数1)式において、測定開始時差圧Pdoを用いることにより単位差圧当たりの値を求めることになり、(数1)式に適合した用い方(測定開始時差圧Pdoの下での相当値(単位時間当たりの補正圧力dPp/dt)を測定開始時差圧Pdoで除算)が行われることになる。このため、ガス透過度GTRとして精度の高い値のものを算出できる。しかもこの場合、単位差圧当たりの値を求めるために、測定開始時差圧Pdo(一定値)が用いられることになり、演算処理装置51の処理負担は軽減されることになる。 In addition, the gas permeability calculation unit 64 uses dPp/dt in the formula (1) when it corresponds to the one that maintains the differential pressure Pdo at the start of measurement as the gas permeability measurement, and in the formula (1), The value per unit differential pressure is obtained by using the differential pressure Pdo at the measurement start time, and the method that is suitable for the formula (1) (equivalent value under the differential pressure Pdo at the measurement start time (corrected pressure per unit time) (dPp/dt) is divided by the differential pressure Pdo at the start of measurement). Therefore, it is possible to calculate the gas permeability GTR with a highly accurate value. Moreover, in this case, the measurement start differential pressure Pdo (constant value) is used to obtain the value per unit differential pressure, and the processing load of the arithmetic processing device 51 is reduced.

このようなガス透過度測定装置1は、次のような順序に従って測定を行う。先ず、図3に示すように、上側セル2と下側セル3とにより試料膜5を挟持した上で、下側セル3における他方側区画空間7が、真空ポンプ17により大気圧よりも低い所定の減圧状態(所定の真空状態)とされる。次いで、ガス源から所定の乾き度のガスの供給が開始され、そのガスの流量を流量調整弁33をもって調整することにより水槽34上でガスの加湿度が調整される。このとき、加湿ガスは連続的に上側セル2における一方側区画空間6に供給されるが、その供給された分だけの加湿ガスが大気連通孔13から排出されることになり、一方側区画空間6内には、大気圧の下で、流量調整弁33により調整された加湿度状態の測定ガスが存在する状態となる。 Such a gas permeability measuring device 1 performs the measurement in the following order. First, as shown in FIG. 3, after the sample film 5 is sandwiched between the upper cell 2 and the lower cell 3, the other side partitioned space 7 in the lower cell 3 is lower than the atmospheric pressure by the vacuum pump 17. The reduced pressure state (predetermined vacuum state) is set. Then, the supply of gas having a predetermined dryness is started from the gas source, and the flow rate of the gas is adjusted by the flow rate adjusting valve 33, whereby the humidity of the gas on the water tank 34 is adjusted. At this time, the humidified gas is continuously supplied to the one-side partitioned space 6 in the upper cell 2, but the supplied humidified gas is exhausted from the atmosphere communication hole 13 and the one-side partitioned space 6 is discharged. In the inside of 6, the measurement gas in the humidified state adjusted by the flow rate adjusting valve 33 exists under the atmospheric pressure.

下側セル3における他方側区画空間7の減圧状態が所定の状態となり、流量調整弁33によってガスの加湿度が所望の相対湿度となると、バルブ16が閉じられ、試料膜5に対するガス透過度の測定が開始される。ガス透過度の測定に際しては、所定測定タイミング毎に、低圧側圧力センサ18が、下側セル3における他方側区画空間7の圧力を測定圧力として検出し、高圧側圧力センサ55が上側セル2における一方側区画空間6の圧力(大気圧)を検出する。この両圧力検出情報は、演算処理装置51に入力され、演算処理装置51は、それらに基づき、単位時間当たりの透過圧力変化(勾配:dP/dt)を求め、その単位時間当たりの透過圧力変化に基づき、ガス透過度GTRを求める。 When the decompressed state of the other divided space 7 in the lower cell 3 becomes a predetermined state and the humidification of the gas reaches a desired relative humidity by the flow rate adjusting valve 33, the valve 16 is closed and the gas permeability of the sample film 5 is reduced. The measurement is started. At the time of measuring the gas permeability, the low-pressure side pressure sensor 18 detects the pressure of the other-side compartment space 7 in the lower cell 3 as the measurement pressure and the high-pressure side pressure sensor 55 in the upper cell 2 at every predetermined measurement timing. The pressure (atmospheric pressure) in the one-side compartment 6 is detected. The both pressure detection information is input to the arithmetic processing unit 51, and the arithmetic processing unit 51 obtains a permeation pressure change (gradient: dP/dt) per unit time based on them, and the permeation pressure change per unit time. Based on the above, the gas permeability GTR is obtained.

この場合、演算処理装置51は、単位時間当たりの透過圧力変化(勾配:dP/dt)を求めるに際して、各測定時点の透過圧力として、各測定時点の測定圧力Ptに対する補正処理によって得られる補正圧力Ppを用い、その補正圧力Ppを求めるために、測定開始時の差圧Pdoを基準とした各測定時における差圧変化Pdo−Pdの変化率(Pdo−Pd)/Pdoを用いることにより、各測定時点の測定圧力Ptを、測定開始時の差圧Pdo下での値Ppに補正する。これにより、前述したように、単位時間当たりの透過圧力変化として、特定が容易で精度が高い単位時間当たりの補正圧力変化dPp/dtを用いることができ、さらには、それに測定開始時差圧Pdoを用いて、単位差圧当たりの値を的確なものにすることができることになり、ガス透過度GTRは、精度の高いものとなる。 In this case, when calculating the permeation pressure change (gradient: dP/dt) per unit time, the arithmetic processing unit 51 determines the permeation pressure at each measurement time point as the correction pressure obtained by the correction process for the measurement pressure Pt at each measurement time point. In order to obtain the correction pressure Pp using Pp, by using the change rate (Pdo-Pd)/Pdo of the differential pressure change Pdo-Pd at each measurement based on the differential pressure Pdo at the start of measurement, The measurement pressure Pt at the time of measurement is corrected to the value Pp under the differential pressure Pdo at the start of measurement. As a result, as described above, as the permeation pressure change per unit time, the corrected pressure change per unit time dPp/dt that is easy to specify and has high accuracy can be used, and further, the measurement start differential pressure Pdo can be used. By using this, the value per unit pressure difference can be made accurate, and the gas permeability GTR becomes highly accurate.

ガス透過度の測定が所定時間行われると、ガス源からのガスの供給が停止され、バルブ16等が開かれて、真空ポンプ17により残留ガスの排気が行われる。この排気により、ガス透過度測定装置1において残留ガスがなくなると、ガス透過度測定の終了となる。 When the gas permeability is measured for a predetermined time, the supply of gas from the gas source is stopped, the valve 16 and the like are opened, and the vacuum pump 17 exhausts the residual gas. When the residual gas is exhausted in the gas permeability measuring device 1 by this exhaust, the gas permeability measurement ends.

したがって、本実施形態においては、下側セル3内の圧力上昇に伴う上側セル2内圧力と下側セル3内圧力との経時的な差圧減少を考慮して、各測定時点の下側セル内圧力Ptを、測定開始時の差圧下での値Ppに補正することから、単位時間当たりの補正圧力変化dPp/dt(勾配)の特定を容易且つ精度よく行うことができ、しかも、この単位時間当たりの補正圧力変化dPt/dtに測定開始時の差圧Pdoを用いて単位差圧当たりの値を算出することができることになり、ガス透過度GTRを、精度を高めた値にできる。 Therefore, in the present embodiment, the lower cell at each measurement point is considered in consideration of the decrease in the differential pressure between the inner pressure of the upper cell 2 and the inner pressure of the lower cell 3 as the pressure in the lower cell 3 increases. Since the internal pressure Pt is corrected to the value Pp under the differential pressure at the start of measurement, the corrected pressure change dPp/dt (gradient) per unit time can be specified easily and accurately, and this unit The value per unit differential pressure can be calculated using the differential pressure Pdo at the start of measurement for the corrected pressure change dPt/dt per time, and the gas permeability GTR can be set to a value with higher accuracy.

また、大気圧の変動についても、下側セル3内の圧力Pt上昇の場合同様、測定開始時差圧Pdoを基準とした差圧Pd変化の変化率として捉えることができ、上側セルの一方側区画空間6が大気に開口している構造のものでも、ガス透過度GTRを、精度を高めた値にできる。 Also, the fluctuation of the atmospheric pressure can be grasped as the rate of change of the differential pressure Pd based on the differential pressure Pdo at the time of measurement as in the case of the pressure Pt increase in the lower cell 3, and the one side partition of the upper cell Even in the structure in which the space 6 is open to the atmosphere, the gas permeability GTR can be set to a value with high accuracy.

さらには、このようなガス透過度測定装置1においては、一方側区画空間6の圧力が大気圧とされて、他方側区画空間7の圧力調整を行うだけで測定開始時の差圧調整を行うこととしていることから、真空ポンプ17から上側セル2における一方側区画空間6に対して真空引き用の配管を設ける必要がなくなる。また、水槽34が下側セル3の内部に収納されることから、その下側セル3の内部空間を有効に利用することができる。これにより、ガス透過度測定装置1を極力、小型化することができる。しかもこの場合、水槽34は、起倒伏する上側セル2内ではなく、起倒伏させない下側セル3内に内蔵させることから、上側セル2の起倒伏動に伴う水槽34内の水の揺れ等を考慮する必要がなくなり、ガス透過度測定に支障を与えることを防止できる。さらには、他方側区画空間7の圧力調整(真空引き)を行うだけで測定開始時の差圧調整を行うことができ、ガス透過度測定前の準備時間の短縮を図ることができる。 Further, in such a gas permeability measuring apparatus 1, the pressure in the one-side compartment 6 is set to atmospheric pressure, and the differential pressure at the start of measurement is adjusted only by adjusting the pressure in the other-side compartment 7. Therefore, it is not necessary to provide a piping for vacuuming from the vacuum pump 17 to the one-side compartment space 6 in the upper cell 2. Further, since the water tank 34 is housed inside the lower cell 3, the internal space of the lower cell 3 can be effectively used. Thereby, the gas permeability measuring device 1 can be miniaturized as much as possible. Moreover, in this case, since the water tank 34 is built in the lower cell 3 which is not tilted, not in the upper cell 2 which is tilted up and down, the shaking of the water in the water tank 34 due to the tilting movement of the upper cell 2 and the like are prevented. Since it is not necessary to consider it, it is possible to prevent the gas permeability measurement from being hindered. Furthermore, the differential pressure at the start of the measurement can be adjusted only by adjusting the pressure (vacuum evacuation) of the other compartment space 7, and the preparation time before measuring the gas permeability can be shortened.

さらにまた、下側セル3に加湿装置としての水槽34が内蔵されるとしても、接続管41(ガス供給路12)が、少なくとも、水槽34から上側セル2までの間において接続管24内に、該接続管24と接続管41との間に環状空間42を形成するようにしつつ収納されことになり、下側セル3から上側セル2における一方側区画空間6に測定ガスを供給するに当たり、外部温度によりその湿度状態が変化することを、接続管24内の環状空間42を流れる循環水により抑制できることになる。このため、所望の加湿状態(相対湿度)にある測定ガスの透過度を的確に測定することができる。 Furthermore, even if the water tank 34 as a humidifier is built in the lower cell 3, the connection pipe 41 (gas supply path 12) is at least in the connection pipe 24 between the water tank 34 and the upper cell 2, It is accommodated while forming an annular space 42 between the connecting pipe 24 and the connecting pipe 41, and when supplying the measurement gas from the lower cell 3 to the one-side compartment space 6 in the upper cell 2, The change in the humidity state due to the temperature can be suppressed by the circulating water flowing through the annular space 42 in the connecting pipe 24. Therefore, it is possible to accurately measure the permeability of the measurement gas in a desired humidified state (relative humidity).

以上実施形態について説明したが本発明にあっては次の態様を包含する。
(1)測定ガスとして加湿ガスを生成しない場合には、拡張空間である水槽34内を、水を溜めずに空間のままの状態とすること。
(2)拡張空間である水槽34を上側セル2の内部に内蔵すること。
(3)ガスには、乾燥ガスだけでなく、水蒸気ガス、水蒸気を含む窒素ガス、酸素ガス等の加湿ガスを含むこと。
Although the embodiments have been described above, the present invention includes the following modes.
(1) When the humidifying gas is not generated as the measurement gas, the inside of the water tank 34, which is the expansion space, is kept in the space without storing water.
(2) The water tank 34, which is an expansion space, is built in the upper cell 2.
(3) The gas should include not only a dry gas but also a humidifying gas such as steam gas, nitrogen gas containing steam, and oxygen gas.

本発明は、試料膜5を基準として一方側における一方側区画空間6と試料膜5を基準として他方側における他方側区画空間7との間の差圧Pdが時間の経過に伴い変化する場合であっても、ガス透過度GTRの精度を高めることに利用できる。 The present invention relates to a case where the differential pressure Pd between the one-side compartment space 6 on one side with respect to the sample film 5 and the other-side compartment space 7 on the other side with respect to the sample film 5 changes with the passage of time. Even if it exists, it can be used to improve the accuracy of the gas permeability GTR.

1 ガス透過度測定装置
2 上側セル(一方のセル)
3 下側セル(他方のセル)
5 試料膜
6 一方側区画空間
7 他方側区画空間
12 ガス供給路
13 大気連通孔
18 低圧側圧力センサ
34 水槽(拡張空間)
55 高圧側圧力センサ
Pp 補正圧力
Ph 上側セル内圧力(一方側区画空間の圧力)
Pt 下側セル内圧力(他方側区画空間の圧力、測定圧力)
Pdo 測定開始時の差圧
Pd 測定時の差圧
(Pdo−Pd)/Pdo 測定開始時の差圧を基準とした各測定時の差圧変化の変化率
Pdo/Pd 各測定時点の差圧に対する測定開始時差圧の割合
Ptn−Ptn-1 各測定時点における測定圧力と該各測定時点の一つ前における測定時点の測定圧力との差分
1 Gas permeability measuring device 2 Upper cell (one cell)
3 Lower cell (other cell)
5 Sample Membrane 6 One Side Partition Space 7 Other Side Partition Space 12 Gas Supply Channel 13 Atmosphere Communication Hole 18 Low Pressure Side Pressure Sensor 34 Water Tank (Expansion Space)
55 High-pressure side pressure sensor Pp Corrected pressure Ph Upper cell pressure (pressure in one side compartment)
Pt lower cell pressure (pressure in the other compartment space, measured pressure)
Pdo differential pressure at measurement start Pd differential pressure at measurement (Pdo-Pd)/Pdo Change rate of differential pressure change at each measurement based on differential pressure at measurement start Pdo/Pd relative to differential pressure at each measurement time the difference between the measured pressure of the measurement points in previous one measurement pressure and respective measurement points in the ratio Pt n -Pt n-1 time each measurement of a measurement start time difference pressure

Claims (9)

試料膜を基準として該試料膜の一方側に、測定ガスが供給された状態とされた一方側区画空間を確保し、前記試料膜の他方側に、前記一方側区画空間の圧力よりも低い圧力状態とされた他方側区画空間を確保し、その上で、前記他方側区画空間の圧力を所定測定時間毎に測定し、その各測定時点毎の測定圧力を用いることにより、ガス透過度の算出に用いる単位時間当たりの透過圧力の変化を求めるガス透過度測定方法において、
前記各測定時点の透過圧力として、該各測定時点の測定圧力に対する補正処理によって得られる補正圧力を用い、
前記補正圧力を得るための補正処理として、前記一方側区画空間の圧力と前記他方側区画空間の圧力との差圧を検出し、測定開始時の差圧を基準とした各測定時の差圧変化の変化率を用いることにより、該各測定時点の測定圧力を、該測定開始時の差圧下での値に補正する、
ことを特徴とするガス透過度測定方法。
On one side of the sample film with reference to the sample film, one side compartment space in which a measurement gas is supplied is secured, and on the other side of the sample film, a pressure lower than the pressure of the one side compartment space. Calculating the gas permeability by securing the other-side compartment space in the state, measuring the pressure of the other-side compartment space at each predetermined measurement time, and using the measured pressure at each measurement time point. In the gas permeability measuring method for obtaining the change of permeation pressure per unit time used for
As the permeation pressure at each measurement time point, a correction pressure obtained by a correction process for the measurement pressure at each measurement time point is used,
As a correction process for obtaining the corrected pressure, the differential pressure between the pressure in the one side compartment space and the pressure in the other side compartment space is detected, and the differential pressure at each measurement based on the differential pressure at the start of measurement. By using the change rate of change, the measurement pressure at each measurement time is corrected to a value under the differential pressure at the start of measurement,
A method for measuring gas permeability, which is characterized in that
請求項1において、
前記各測定時点毎の補正圧力として、各測定時点毎に、該各測定時点の一つ前における測定時点の補正圧力に補正量を加算したものを用い、
前記各測定時点毎の補正量として、前記各測定時点の差圧に対する測定開始時差圧の割合を、前記各測定時点における測定圧力と該各測定時点の一つ前における測定時点の測定圧力との差分に乗じたものを用いる、
ことを特徴とするガス透過度測定方法。
In claim 1,
As the correction pressure for each measurement time point, for each measurement time point, a value obtained by adding a correction amount to the correction pressure at the measurement time point immediately before each measurement time point is used.
As the correction amount for each measurement time point, the ratio of the differential pressure at the start of measurement to the differential pressure at each measurement time point is defined as the measured pressure at each measurement time point and the measured pressure at the measurement time point immediately before each measurement time point. Use the product of the difference,
A method for measuring gas permeability, which is characterized in that
請求項1又は2において、
前記一方側区画空間が大気に開放されている、
ことを特徴とするガス透過度測定方法。
In claim 1 or 2,
The one-side compartment space is open to the atmosphere,
A method for measuring gas permeability, which is characterized in that
請求項3において、
前記一方側区画空間に、測定ガスとして水蒸気を含むものを供給する、
ことを特徴とするガス透過度測定方法。
In claim 3,
The one-side compartment is supplied with a measurement gas containing water vapor,
A method for measuring gas permeability, which is characterized in that
試料膜を挟持するための一対のセルが備えられ、該一対のセルのうちの一方のセルと前記試料膜との間に、測定ガスが供給された状態とされる一方側区画空間が形成され、前記一対のセルのうちの他方のセルと前記試料膜との間に、圧力が前記一方側区画空間の圧力よりも低下された他方側区画空間が形成され、前記他方側区画空間に対して該他方側区画空間の圧力を所定測定時間毎に検出する低圧側圧力センサが関連付けられているガス透過度測定装置において、
前記一方側区画空間の圧力を検出する高圧側圧力センサと、
前記高圧側圧力センサからの検出情報と前記低圧側圧力センサからの検出情報とに基づき、測定開始時点及び各測定時点について、前記一方側区画空間の圧力と前記側区画空間の圧力との間の差圧をそれぞれ演算し、その演算情報に基づき、各測定時点における測定時差圧に対する測定開始時差圧の割合を演算し、前記各測定時点における測定圧力と該各測定時点の一つ前における測定時点の測定圧力との差分を演算し、しかも、前記割合と前記差分とを乗じた値を、補正量として演算する補正量演算部と、
前記低圧側圧力センサが検出した各測定時点における測定圧力の補正圧力を、ガス透過度の算出に用いるものとして、該各測定時点の一つ前における測定時点の補正圧力に、前記補正量演算部が演算した該各測定時点における補正量を加算することにより求める補正圧力演算部と、
が備えられている、
ことを特徴とするガス透過度測定装置。
A pair of cells for sandwiching the sample film is provided, and a one-side compartment space in which the measurement gas is supplied is formed between one of the pair of cells and the sample film. , Between the other cell of the pair of cells and the sample film, the other side partitioned space whose pressure is lower than the pressure of the one side partitioned space is formed, with respect to the other side partitioned space. In a gas permeability measuring device associated with a low pressure side pressure sensor for detecting the pressure of the other compartment space at predetermined time intervals,
A high pressure side pressure sensor for detecting the pressure of the one side compartment space,
Based on the detection information from the high-pressure side pressure sensor and the detection information from the low-pressure side pressure sensor, for the measurement start time point and each measurement time point, between the pressure of the one side compartment space and the pressure of the side compartment space The differential pressure is calculated respectively, and based on the calculated information, the ratio of the differential pressure at the time of measurement to the differential pressure at the time of measurement at each measurement time point is calculated, and the measured pressure at each measurement time point and the measurement time point immediately before each measurement time point are calculated. A correction amount calculation unit that calculates a difference between the measured pressure and the ratio and the difference is calculated as a correction amount.
The correction pressure of the measurement pressure at each measurement time point detected by the low-pressure side pressure sensor is used to calculate the gas permeability, and the correction amount calculation unit is added to the correction pressure at the measurement time point immediately before each measurement time point. A correction pressure calculation unit which is calculated by adding the correction amounts at the respective measurement points calculated by
Is equipped with,
A gas permeability measuring device characterized in that
請求項5において、
前記一方のセルに、前記一方側区画空間と大気とを連通させる連通孔が形成されている、
ことを特徴とするガス透過度測定装置。
In claim 5,
In the one of the cells, a communication hole that connects the one-side compartment space and the atmosphere is formed.
A gas permeability measuring device characterized in that
請求項6において、
前記一方のセルにおける前記一方側区画空間に対して、前記測定ガスを供給するためのガス供給路が連なり、
前記ガス供給路内に、その途中において、該ガス供給路を拡張することにより拡張空間が形成されている、
ことを特徴とするガス透過度測定装置。
In claim 6,
With respect to the one side compartment space in the one cell, a gas supply path for supplying the measurement gas is connected,
In the gas supply path, an expansion space is formed by expanding the gas supply path in the middle thereof.
A gas permeability measuring device characterized in that
請求項7において、
前記拡張空間が、前記測定ガスの流れを確保した状態で水を溜める水槽を構成している、
ことを特徴とするガス透過度測定装置。
In claim 7,
The expansion space constitutes a water tank for accumulating water in a state where the flow of the measurement gas is secured,
A gas permeability measuring device characterized in that
請求項8において、
前記拡張空間が、前記一対のセルのいずれかに内蔵されている、
ことを特徴とするガス透過度測定装置。
In claim 8,
The expansion space is contained in any one of the pair of cells,
A gas permeability measuring device characterized in that
JP2018224986A 2018-11-30 2018-11-30 Gas permeability measuring method and gas permeability measuring device Active JP7311961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018224986A JP7311961B2 (en) 2018-11-30 2018-11-30 Gas permeability measuring method and gas permeability measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018224986A JP7311961B2 (en) 2018-11-30 2018-11-30 Gas permeability measuring method and gas permeability measuring device

Publications (2)

Publication Number Publication Date
JP2020085833A true JP2020085833A (en) 2020-06-04
JP7311961B2 JP7311961B2 (en) 2023-07-20

Family

ID=70908370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018224986A Active JP7311961B2 (en) 2018-11-30 2018-11-30 Gas permeability measuring method and gas permeability measuring device

Country Status (1)

Country Link
JP (1) JP7311961B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7349478B2 (en) 2021-08-20 2023-09-22 株式会社東洋精機製作所 Water vapor permeability measuring method and water vapor permeability measuring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250668U (en) * 1988-10-01 1990-04-09
JP2013015504A (en) * 2011-07-04 2013-01-24 Hosen Techno:Kk Vapor penetration measurement system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3845055B2 (en) 2002-11-08 2006-11-15 株式会社東洋精機製作所 Gas permeability measuring device
JP4022128B2 (en) 2002-11-08 2007-12-12 株式会社東洋精機製作所 Gas permeability measuring method and apparatus
JP5553287B2 (en) 2011-01-27 2014-07-16 株式会社 テクノ・アイ Water vapor permeability measuring device and measuring method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250668U (en) * 1988-10-01 1990-04-09
JP2013015504A (en) * 2011-07-04 2013-01-24 Hosen Techno:Kk Vapor penetration measurement system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7349478B2 (en) 2021-08-20 2023-09-22 株式会社東洋精機製作所 Water vapor permeability measuring method and water vapor permeability measuring device

Also Published As

Publication number Publication date
JP7311961B2 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
US6981426B2 (en) Method and apparatus to measure gas amounts adsorbed on a powder sample
JP6457813B2 (en) Rapid detection of dimensionally stable / loose package leaks without the addition of a test gas
US7730759B2 (en) Method and device for calibrating a humidity sensor and sensor arrangement having humidity sensor capable of calibration
US11874199B2 (en) Device and process for determining the size of a leak hole in a sample
JP6228285B1 (en) Air leak inspection apparatus and method
US7810376B2 (en) Mitigation of gas memory effects in gas analysis
EP3023766B1 (en) Method and device for measuring permeation by mass spectrometry
US11846566B2 (en) System and method for detecting a possible loss of integrity of a flexible bag for biopharmaceutical product
US10845266B2 (en) Quick leak detection on dimensionally stable/slack packaging without the addition of test gas
US20190063987A1 (en) Method of inspecting flow rate measuring system
JP2020085833A (en) Method and device for measuring gas permeability
JP7253309B2 (en) Gas permeability measuring device
JP2011043386A (en) Transmission quantity measuring instrument having freezing trap
JP3989629B2 (en) Flow inspection device
JP7349478B2 (en) Water vapor permeability measuring method and water vapor permeability measuring device
JP2005276546A (en) Fault detection system
Setina et al. Measuring volume ratios of vacuum vessels using non-evaporable getters
JP2000352539A (en) Method for correcting measured value of and apparatus for correcting measured value of gas pressure, and method for detecting and apparatus for detecting air leak of sealed container using the same
US20060120920A1 (en) Hydrogen or helium sensor
KR20180051549A (en) How to detect leakage in exhaust of test chamber or specimen
JP3371924B2 (en) Helium leak detection method by reverse diffusion measurement
CN115524271A (en) Gas permeability measuring method, device, equipment and medium
JP2003149111A (en) Hydrogen storage amount measuring method and device
JP2021121889A (en) Inspection system and inspection method for flow rate control device, and semiconductor manufacturing equipment
CN116147858A (en) Leakage detection method and leakage detection device for heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230523

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230707

R150 Certificate of patent or registration of utility model

Ref document number: 7311961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150