JP2020085775A - Floss bubble diameter measurement device, flotation machine using the same, and floss bubble diameter measurement method - Google Patents

Floss bubble diameter measurement device, flotation machine using the same, and floss bubble diameter measurement method Download PDF

Info

Publication number
JP2020085775A
JP2020085775A JP2018223762A JP2018223762A JP2020085775A JP 2020085775 A JP2020085775 A JP 2020085775A JP 2018223762 A JP2018223762 A JP 2018223762A JP 2018223762 A JP2018223762 A JP 2018223762A JP 2020085775 A JP2020085775 A JP 2020085775A
Authority
JP
Japan
Prior art keywords
floss
bubble diameter
image
froth
bubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018223762A
Other languages
Japanese (ja)
Other versions
JP7245415B2 (en
Inventor
杉原 淳
Atsushi Sugihara
杉原  淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018223762A priority Critical patent/JP7245415B2/en
Publication of JP2020085775A publication Critical patent/JP2020085775A/en
Application granted granted Critical
Publication of JP7245415B2 publication Critical patent/JP7245415B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

To provide a floss bubble diameter measurement device configured to image floss bubbles, measure floss bubble diameters inline and digitize the measured diameters in real time, and to provide a flotation machine using the same and a floss bubble diameter measurement method.SOLUTION: A floss bubble diameter measurement device is provided, comprising: a light source provided above a flotation tank and configured to irradiate slurry retained in the flotation tank with light from above; image capturing means for capturing an image of the slurry from above; and arithmetic processing means configured to compute diameters of floss bubbles in the image captured by the image capturing means.SELECTED DRAWING: Figure 1

Description

本発明は、フロス泡径計測装置及びこれを用いた浮遊選鉱機、並びにフロス泡径計測方法に関する。 The present invention relates to a floss bubble diameter measuring device, a flotation machine using the same, and a floss bubble diameter measuring method.

鉱物に含まれる有価成分を回収する際に、鉱物中の有価成分をそれ以外の成分から分離する方法として、浮遊選鉱が知られている。この浮遊選鉱は特許文献1に記載されているように、鉱物を粉砕した粉砕物を水などの液体に混合してスラリーを形成してこのスラリーに空気を吹き込む。すると、粉砕物のうち、空気との親和性に富んだものが浮き上がるので、浮き上がる粉砕物とそれ以外の粉砕物に分離することができる。そして、浮遊選鉱では、粉砕物を空気とともに浮き上がらせるために、スラリー中に起泡剤や捕集剤など複数の試薬が添加されており、添加する試薬を調整することによって、所望の有価成分を含む粉砕物を空気とともに浮き上がらせている。 Floating separation is known as a method of separating valuable components in minerals from other components when recovering valuable components contained in minerals. In this flotation, as described in Patent Document 1, a pulverized product obtained by pulverizing a mineral is mixed with a liquid such as water to form a slurry, and air is blown into the slurry. Then, among the pulverized products, those having a high affinity for air float up, and thus the pulverized product that floats and the other pulverized products can be separated. Then, in flotation, a plurality of reagents such as a foaming agent and a scavenger are added to the slurry in order to float the pulverized product together with air, and a desired valuable component can be obtained by adjusting the reagent to be added. The pulverized material containing it is floated with the air.

この浮遊選鉱では、スラリーに吹き込む空気の量によって、粉砕物を、浮き上がるものとそれ以外のもの(つまり沈降する粉砕物)に分離する性能が変化する。例えば、スラリーに吹き込む空気の量が多くなると、所望の有価成分を含む粉砕物が浮上しやすくなり回収性が向上するものの、それ以外の粉砕物も浮上しやすくなる。このため、スラリーに吹き込む空気の量が多くなると、回収した粉砕物に含まれる不純物が多くなってしまう。したがって、所望の有価成分を含む粉砕物の回収性を向上させつつ、回収した粉砕物の品位を高くする上では、スラリーに吹き込む空気の量を適切に制御する必要がある。 In this flotation process, the ability to separate a pulverized product into a floating product and another product (that is, a crushed product that sediments) changes depending on the amount of air blown into the slurry. For example, when the amount of air blown into the slurry is large, a pulverized product containing a desired valuable component is likely to float and recovery is improved, but other pulverized products are also likely to be floated. Therefore, when the amount of air blown into the slurry increases, the amount of impurities contained in the recovered pulverized product increases. Therefore, it is necessary to appropriately control the amount of air blown into the slurry in order to improve the quality of the recovered pulverized product while improving the recoverability of the pulverized product containing the desired valuable component.

試薬の調整や空気量の調整等で品位や実収率が決まってくるが、その指標として現在は、浮き上がってきたフロス泡の大きさ等を目視することで定性的に判断している。 The quality and the actual yield are determined by adjusting the reagents and adjusting the air volume, etc., but as an index for this, the qualitative judgment is currently made by visually observing the size of the froth bubbles that have risen.

特開2013−180289号公報JP, 2013-180289, A

しかしながら、従来の目視による定性的な判断では作業者による判断の誤差が大きく、試薬の調整や空気量の調整等が適切に行えなかった。このため、均一な調整を行うことが困難であり、その結果、粉砕物の回収率及び回収した粉砕物の品位にバラツキを生じるおそれがあった。 However, in the conventional qualitative judgment by visual inspection, the error of the judgment by the operator is large, and the adjustment of the reagent and the adjustment of the air amount cannot be appropriately performed. For this reason, it is difficult to make uniform adjustment, and as a result, there is a possibility that the recovery rate of the pulverized material and the quality of the recovered pulverized material may vary.

そこで、本発明は、フロス泡径を撮像してインラインで計測し、リアルタイムに数値化するフロス泡径計測装置及びこれを用いた浮遊選鉱機、並びにフロス泡径計測方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a froth bubble diameter measuring device that images the froth bubble diameter, measures it in-line, and digitizes it in real time, a flotation machine using the same, and a froth bubble diameter measuring method. To do.

上記目的を達成するため、本発明の一態様に係るフロス泡径計測装置は、浮選槽よりも上方に設けられ、前記浮選槽内に貯留されたスラリーに上面から光を照射する光源と、
前記スラリーを上面から撮像する撮像手段と、
前記撮像手段により撮像された画像に含まれるフロス泡のフロス泡径を算出する演算処理手段と、を有する。
In order to achieve the above object, the floss bubble diameter measuring device according to one aspect of the present invention is provided above the flotation tank, and a light source for irradiating the slurry stored in the flotation tank with light from the upper surface. ,
An image capturing means for capturing an image of the slurry from above,
Arithmetic processing means for calculating the froth bubble diameter of the froth bubbles included in the image picked up by the image pickup means.

本発明によれば、定量的にフロス泡径を計測できるので、目視による定性的な判断に比べてより高精度でリアルタイムな試薬の調整や空気量の調整を行うことができる。 According to the present invention, since the froth bubble diameter can be quantitatively measured, it is possible to perform the reagent adjustment and the air amount adjustment with higher accuracy and in real time as compared with the qualitative judgment by visual observation.

本発明の実施形態に係るフロス泡径計測装置及び浮選機の構成を示す概略図である。It is a schematic diagram showing composition of a froth bubble diameter measuring device and a flotation machine concerning an embodiment of the present invention. フロス泡の頂上が周辺部に比較して白く光る理由を説明するための図である。It is a figure for demonstrating the reason why the top of a floss bubble glows white compared with a peripheral part. フロス泡を上方から撮像した画像の一例を示した図である。It is the figure which showed an example of the image which imaged the floss bubble from the upper part. フロス泡の反射光サイズとフロス泡の実際のサイズとの相関関係を示した図である。It is the figure which showed the correlation of the reflected light size of a floss bubble, and the actual size of a froth bubble. 本発明の実施形態に係るフロス泡径計測方法の処理フローの一例を示したフロー図である。It is a flow figure showing an example of a processing flow of a floss bubble diameter measuring method concerning an embodiment of the present invention.

以下、図面を参照して、本発明を実施するための形態の説明を行う。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1は、本発明の実施形態に係るフロス泡径計測装置及び浮選機の構成を示す概略図である。本発明の実施形態に係る浮選機100は、浮選槽10と、攪拌機20と、エア供給シャフト30と、フロス泡径計測装置80とを備える。また、本発明の実施形態に係るフロス泡径計測装置80は、光源50と、エリアスキャンカメラ60と、コンピューター70とを備える。コンピューター70は、例えば、画像処理部71と、記憶部72とを備えてもよい。エリアスキャンカメラ60とコンピューター70とは、例えば、接続コード61で接続されていてもよい。また、浮選機100の関連構成要素として、浮選槽10内に鉱石スラリー40が貯留されている。 FIG. 1 is a schematic diagram showing the configurations of a floss bubble diameter measuring device and a flotation device according to an embodiment of the present invention. The flotation machine 100 according to the embodiment of the present invention includes a flotation tank 10, an agitator 20, an air supply shaft 30, and a froth bubble diameter measuring device 80. The floss bubble diameter measuring device 80 according to the embodiment of the present invention includes a light source 50, an area scan camera 60, and a computer 70. The computer 70 may include, for example, an image processing unit 71 and a storage unit 72. The area scan camera 60 and the computer 70 may be connected by a connection cord 61, for example. Further, as a related component of the flotation machine 100, the ore slurry 40 is stored in the flotation tank 10.

浮選槽10は、選鉱の対象となる粉砕物を含む液状の鉱石スラリー40を貯留するためのスラリー貯留手段である。粉砕物は、選鉱又は精鉱の対象となる有用金属であるから、鉱石スラリー40を浮選槽10内に貯留した状態で浮遊選鉱を行う。よって、図1には示されていないが、浮選槽10は、有用金属を抽出する抽出口を浮選槽10の上部に有し、有用金属の対象とならない尾鉱を排出する排出口とを備えてもよい。 The flotation tank 10 is a slurry storage means for storing a liquid ore slurry 40 containing a crushed material to be processed. Since the pulverized product is a useful metal that is the target of beneficiation or concentrate, the ore slurry 40 is stored in the flotation tank 10 to perform the flotation. Therefore, although not shown in FIG. 1, the flotation tank 10 has an extraction port for extracting useful metals at the upper part of the flotation tank 10 and an outlet for discharging tailings not targeted by useful metals. May be provided.

撹拌翼20は、エア供給シャフト30の下端から供給されたエアにより発生したフロス泡41を細かくするためのフロス泡微細化手段である。エア供給シャフト30の下端、即ち、撹拌翼20よりも下方で発生したフロス泡41は、上昇する際、撹拌翼20の回転により撹拌翼20と衝突し、これによりフロス泡径が小さくなる。フロス泡径を小さくすると、鉱石スラリー40中の鉱石粒子との衝突効率を高めることができる。 The stirring blade 20 is a froth bubble finer means for making fine the froth bubbles 41 generated by the air supplied from the lower end of the air supply shaft 30. The froth bubbles 41 generated at the lower end of the air supply shaft 30, that is, below the stirring blades 20, collide with the stirring blades 20 due to the rotation of the stirring blades 20 when ascending, thereby reducing the diameter of the froth bubbles. By reducing the floss bubble diameter, the collision efficiency with the ore particles in the ore slurry 40 can be increased.

金属面が表面に出ている粉砕物(鉱石粒子)は、フロス泡に付着して鉱石スラリー40中を浮上し、それ以外の粉砕物はフロス泡41に付着せず浮選槽10内の底面に沈降する。この場合、選鉱対象となる粉砕物サイズとフロス泡41の浮力とのバランスなどを考慮し、粉砕物が付着し易い適切な径を有するフロス泡41を発生させることが好ましい。そのため、フロス泡径を計測すべく、フロス泡径計測装置80が設けられている。 The pulverized product (ore particles) whose metal surface is exposed on the surface adheres to the froth bubbles and floats in the ore slurry 40, and the other pulverized substances do not adhere to the froth bubbles 41 and the bottom surface in the flotation tank 10. Settles. In this case, it is preferable to generate the floss foam 41 having an appropriate diameter to which the pulverized material is easily attached, in consideration of the balance between the size of the pulverized material to be processed and the buoyancy of the froth foam 41. Therefore, a floss bubble diameter measuring device 80 is provided to measure the floss bubble diameter.

フロス泡径計測装置80は、鉱石スラリー40内のフロス泡41を上面から撮像すべく、浮選槽10よりも上方に、光源50とエリアスキャンカメラ60とを備える。 The floss bubble diameter measuring device 80 includes a light source 50 and an area scan camera 60 above the flotation tank 10 in order to image the froth bubbles 41 in the ore slurry 40 from the upper surface.

エリアスキャンカメラ60は、鉱石スラリー40を上面から撮像し、フロス泡41を含む画像を取得するための撮像手段である。本実施形態においては、エリアスキャンカメラ60を用いた例を挙げているが、鉱石スラリー40の一部領域又は全体領域を撮像できれば、種々の撮像手段を用いることができる。なお、本実施形態においては、エリアスキャンカメラ60は、光源50が光を照射した領域を撮像することができれば十分であり、必ずしも浮選槽10の全面を撮像できる必要はない。 The area scan camera 60 is an imaging means for imaging the ore slurry 40 from the upper surface and acquiring an image including the froth bubbles 41. In the present embodiment, an example in which the area scan camera 60 is used is given, but various imaging means can be used as long as they can image a partial area or the entire area of the ore slurry 40. In the present embodiment, it is sufficient for the area scan camera 60 to be able to image the area illuminated by the light source 50, and not necessarily the entire surface of the flotation tank 10.

光源50は、鉱石スラリー40を上面から照らすための発光手段又は照明手段である。鉱石スラリー40を上面から照らすことができれば、種々の発光手段又は照明手段を用いることができる。鉱石スラリー40の上面に上方から光を照射することにより、鉱石スラリー40中に存在するフロス泡41の頂上付近が、フロス泡41の周辺部に比較して白く光り、頂上部の方が周辺部よりも高い輝度で光る。即ち、フロス泡41に対して光源50から光を照射してエリアスキャンカメラ2で得られた画像はフロス泡頂上付近がフロス泡の裾野に比べて白く光る。 The light source 50 is a light emitting unit or a lighting unit for illuminating the ore slurry 40 from the upper surface. If the ore slurry 40 can be illuminated from the upper surface, various light emitting means or illumination means can be used. By irradiating the upper surface of the ore slurry 40 with light from above, the vicinity of the top of the froth bubbles 41 present in the ore slurry 40 glows whiter than the peripheral portion of the froth bubbles 41, and the top portion is the peripheral portion. Glows at a higher brightness than. That is, in the image obtained by the area scan camera 2 by irradiating the floss bubble 41 with light from the light source 50, the vicinity of the top of the floss bubble shines whiter than the foot of the floss bubble.

図2は、フロス泡41の頂上が周辺部に比較して白く光る理由を説明するための図である。図2に示されるように、光源50から照射された光がフロス泡41に当たり反射したときに、フロス泡41の頂上付近はエリアスキャンカメラ50が配置された上方に反射するのに対してフロス泡41の裾野に当たった光は斜め上方や横方向に反射するためである。 FIG. 2 is a diagram for explaining the reason why the top of the floss bubble 41 glows whiter than the peripheral portion. As shown in FIG. 2, when the light emitted from the light source 50 hits the floss bubble 41 and is reflected, the vicinity of the top of the floss bubble 41 is reflected upwards where the area scan camera 50 is arranged, whereas the floss bubble 41 is reflected. This is because the light that hits the skirt of 41 is reflected obliquely upward and laterally.

図3は、そのようなフロス泡41を上方から撮像した画像の一例を示した図である。図3に示されるように、フロス泡41の中心部分に白く光る部分(反射光領域)42が存在する画像となる。 FIG. 3 is a diagram showing an example of an image of such a floss bubble 41 taken from above. As shown in FIG. 3, the image has a white glowing portion (reflected light area) 42 in the central portion of the froth bubble 41.

白く光る部分の大きさはフロス泡41の大きさとフロス泡の曲率で決まるため、フロス泡41の曲率は鉱石スラリー40の組成によって多少違いがあるとも考えられる。しかしながら、図2にも示したように、フロス泡41の輝度の位置による差は、フロス泡41が略球形に近い形状であることに起因しているものであるから、鉱石スラリー40の組成による相違は微差に過ぎず、概ね一定であると仮定できる。そうすると、フロス泡41の大きさは、白く光る部分の大きさと相関があると言える。白く光る部分42の大きさが決まる要因としては、上述のフロス泡41の大きさと泡の曲率以外に光源50の発光面の大きさ、浮選槽10の上面から光源50までの距離、浮選槽10の上面からエリアスキャンカメラ60までの距離があるが、いずれも条件を変えなければ要因から除外できる。 Since the size of the white glowing part is determined by the size of the floss bubble 41 and the curvature of the floss bubble 41, the curvature of the floss bubble 41 may be somewhat different depending on the composition of the ore slurry 40. However, as shown in FIG. 2, the difference in the position of the brightness of the floss bubble 41 is due to the fact that the floss bubble 41 has a substantially spherical shape, and therefore depends on the composition of the ore slurry 40. The difference is only a slight difference and can be assumed to be almost constant. Then, it can be said that the size of the floss bubble 41 has a correlation with the size of the white glowing portion. The factors that determine the size of the white glowing portion 42 include the size of the light emitting surface of the light source 50, the distance from the upper surface of the flotation tank 10 to the light source 50, and the flotation in addition to the size of the floss bubble 41 and the curvature of the bubble described above. Although there is a distance from the upper surface of the tank 10 to the area scan camera 60, they can be excluded from the factors unless the conditions are changed.

エリアスキャンカメラ60はネットワーク経由でコンピューター70に接続され、エリアスキャンカメラ60から得た画像はコンピューター70に取り込まれる。なお、エリアスキャンカメラ60からの画像は、接続コード61を介して有線通信で送信されてもよいし、無線通信で送信されてもよい。 The area scan camera 60 is connected to the computer 70 via a network, and the image obtained from the area scan camera 60 is captured by the computer 70. The image from the area scan camera 60 may be transmitted by wire communication or wireless communication via the connection cord 61.

コンピューター70は、CPU(Central Processing Unit、中央処理装置)、RAM(Random Access Memory)、ROM(Read Only Memory)等を備え、プログラムを読み込んで動作する構造を有する。コンピューター70は、エリアスキャンカメラ60から取得した画像に基づいて、フロス泡径を算出する演算処理を行う演算処理手段として機能する。また、コンピューター70は、画像処理部71を備え、エリアスキャンカメラ60から取得した画像を必要に応じて画像処理する機能及び構造を備えてよい。 The computer 70 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and has a structure for operating by reading a program. The computer 70 functions as an arithmetic processing unit that performs arithmetic processing for calculating the froth bubble diameter based on the image acquired from the area scan camera 60. Further, the computer 70 may include an image processing unit 71, and may have a function and structure for performing image processing on an image acquired from the area scan camera 60 as necessary.

図4は、フロス泡の反射光サイズとフロス泡の実際のサイズとの相関関係を示した図である。図4は、予め実験によりフロス泡41に光を照射したときの反射光のサイズと、実測したフロス泡41のサイズとの相関関係を関係式として求めておき、これをフロス泡41のサイズ測定に用いる。つまり、図4において、横軸がフロス泡41の反射光サイズを示しており、縦軸がフロス泡41のサイズを示している。これらの測定値をプロットしてゆくと、白く光る部分の大きさと泡の大きさをプロットしたグラフである程度の相関性が確認できる。そして、この関係から回帰式が近似できる。 FIG. 4 is a diagram showing the correlation between the reflected light size of the froth bubbles and the actual size of the froth bubbles. In FIG. 4, a correlation between the size of the reflected light when the floss bubble 41 is irradiated with light and the size of the actually measured floss bubble 41 is obtained as a relational expression by an experiment, and the size of the floss bubble 41 is measured. Used for. That is, in FIG. 4, the horizontal axis represents the reflected light size of the floss bubble 41, and the vertical axis represents the size of the floss bubble 41. When these measured values are plotted, a certain degree of correlation can be confirmed in the graph in which the size of the part that glows white and the size of the bubble are plotted. The regression equation can be approximated from this relationship.

図4において、プロット点の相間関係を示した曲線が近似回帰式である。図4に示される近似回帰式は、直線ではなく、多項式となっていることが分かる。かかる近似回帰式は、一度作成してしまえば、鉱石スラリー40の組成によらず、概ね一般化して適用可能である。しかしながら、より正確にフロス泡径の測定を行いたい場合には、各々の鉱石スラリー40の組成について、予め計測を行って図4に示すような近似回帰式を求め、鉱石スラリー40の組成に応じてより近似した条件の近似回帰式を用いる構成としてもよい。 In FIG. 4, the curve showing the phase relationship between the plotted points is the approximate regression equation. It can be seen that the approximate regression equation shown in FIG. 4 is not a straight line but a polynomial. Once the approximate regression equation is created, it can be generally applied regardless of the composition of the ore slurry 40. However, in order to measure the froth bubble diameter more accurately, the composition of each ore slurry 40 is measured in advance to obtain an approximate regression equation as shown in FIG. It is also possible to adopt a configuration that uses an approximate regression equation of a more approximate condition.

このように、コンピューター70では、画像の白く光る部分42の大きさを計測し、上述の近似回帰式によりフロス泡41の大きさを算出できる。なお、図4で説明した近似回帰式は、例えば、コンピューター70内の記憶部72に保存しておき、演算処理の際にCPUが記憶部72に保存された近似回帰式を参照して演算処理を行えばよい。これにより、コンピューター70は、エリアスキャンカメラ60から送信した画像から白く光る部分42のサイズを求め、図4に示す近似回帰式を用いてフロス泡41のサイズ(直径)を算出することができる。 In this way, the computer 70 can measure the size of the white shining portion 42 of the image and calculate the size of the froth bubble 41 by the above-described approximate regression equation. The approximate regression equation described with reference to FIG. 4 is stored in, for example, the storage unit 72 in the computer 70, and the CPU refers to the approximate regression equation stored in the storage unit 72 during the arithmetic processing to perform the arithmetic processing. Should be done. Accordingly, the computer 70 can obtain the size of the white glowing portion 42 from the image transmitted from the area scan camera 60 and calculate the size (diameter) of the floss bubble 41 by using the approximate regression equation shown in FIG.

なお、光源50から照射される光は、撮像領域をカバーする指向角の狭いできるだけ均一な面発光であることが望ましい。これは指向角が狭い方が白く光る部分42のコントラストが出やすい為である。 It is desirable that the light emitted from the light source 50 is surface emission that covers the imaging area and has a narrow directivity angle and is as uniform as possible. This is because the narrower the directivity angle, the easier the contrast of the part 42 that shines white becomes.

また、画像処理部71においては、画像の雑音を除去し、コントラストを高めて演算処理を容易にするような種々の画像処理を行ってもよい。例えば、所定の閾値を定めて取得した画像から二値化画像を取得すれば、フロス泡41のサイズを求めやすくなる。このような処理を画像処理部71において行ってもよい。なお、画像処理部71は、コンピューター70の内部に設けられてもよいし、コンピューター70の外部に別体として設けられてもよい。 Further, the image processing unit 71 may perform various kinds of image processing for removing noise from the image and enhancing the contrast to facilitate the arithmetic processing. For example, if a binarized image is acquired from an image acquired by setting a predetermined threshold value, the size of the froth bubble 41 can be easily obtained. Such processing may be performed in the image processing unit 71. The image processing unit 71 may be provided inside the computer 70 or may be provided outside the computer 70 as a separate body.

浮選槽10は円柱状で上部中心に供給エアを裁断して細かい泡を出すための撹拌翼20の駆動部が配置されることが一般的である為、浮選槽10の上部から全面を撮像することは物理的に困難である。ただし、泡の状態は場所による依存性はないため、一部分を撮像することで全体を代表することができる。そのため浮選槽10の上面の一部を撮像できる視野で十分であり、浮選槽10の上面からのエリアスキャンカメラ60の高さや、レンズの視野は用途に応じて決めれば良い。 Since the flotation tank 10 has a columnar shape and is generally provided with a drive unit of a stirring blade 20 for cutting the supply air to generate fine bubbles in the center of the upper portion, the entire surface from the upper portion of the flotation tank 10 is Imaging is physically difficult. However, since the state of bubbles does not depend on the location, it is possible to represent the whole by capturing a part of the image. Therefore, a field of view that can image a part of the upper surface of the flotation tank 10 is sufficient, and the height of the area scan camera 60 from the upper surface of the flotation tank 10 and the field of view of the lens may be determined according to the application.

図1においては、光源50及びエリアスキャンカメラ60の位置は模式的に示されているが、用途に応じて固定手段を設け、適切な位置に固定することができる。 In FIG. 1, the positions of the light source 50 and the area scan camera 60 are schematically shown, but fixing means can be provided and fixed at appropriate positions according to the application.

また、浮選機100においては、浮選槽10、撹拌翼20、エア供給シャフト30以外の構成要素が示されていないが、浮選機100を構成するのに必要な種々の構成要素を備えてよいことは言うまでもない。 Further, in the flotation machine 100, although the constituent elements other than the flotation tank 10, the stirring blades 20, and the air supply shaft 30 are not shown, the flotation machine 100 includes various constituent elements necessary for constituting the flotation machine 100. It goes without saying that it is okay.

次に、本発明の実施形態に係るフロス泡径計測方法の処理フローについて説明する。図5は、本発明の実施形態に係るフロス泡径計測方法の処理フローの一例を示したフロー図である。なお、今まで説明した構成要素については、同一の参照符号を付してその説明を省略する。 Next, a processing flow of the floss bubble diameter measuring method according to the embodiment of the present invention will be described. FIG. 5 is a flow chart showing an example of the processing flow of the floss bubble diameter measuring method according to the embodiment of the present invention. The constituent elements described so far are designated by the same reference numerals, and the description thereof will be omitted.

図5において、ステップS100では、光源50が浮選槽10に貯留された鉱石スラリー40の上面に光を照射する。これにより、鉱石スラリー40中のフロス泡41の頂上部分が白く光る。なお、頂上部分は、図2、3で説明したように、フロス泡41の略中心に相当する。 In FIG. 5, in step S100, the light source 50 irradiates the upper surface of the ore slurry 40 stored in the flotation tank 10 with light. As a result, the top portion of the froth bubbles 41 in the ore slurry 40 glows white. The top portion corresponds to the approximate center of the froth bubble 41, as described with reference to FIGS.

ステップS110では、エリアスキャンカメラ60が、鉱石スラリー40の上面を撮像し、鉱石スラリー40の上面から撮像した画像を取得する。取得した画像には、白く光る部分42を有するフロス泡41が含まれている。取得した画像データは、有線又は無線通信でコンピューター70に送信される。 In step S110, the area scan camera 60 images the upper surface of the ore slurry 40, and acquires the image captured from the upper surface of the ore slurry 40. The acquired image includes a froth bubble 41 having a white glowing portion 42. The acquired image data is transmitted to the computer 70 by wire or wireless communication.

ステップS120では、必要に応じて、画像処理部71が受信した画像について画像処理を行う。画像処理は、例えば、受信した画像から所定の閾値を用いて二値化画像を取得する。これにより、エリアスキャンカメラ60で取得した画像からノイズが除去される。なお、ステップS120は必須ではなく、必要に応じて行うようにしてよい。 In step S120, image processing is performed on the image received by the image processing unit 71 as necessary. In the image processing, for example, a binarized image is acquired from the received image using a predetermined threshold value. As a result, noise is removed from the image acquired by the area scan camera 60. Note that step S120 is not essential, and may be performed as needed.

ステップS130では、コンピューター70が演算処理を行い、フロス泡径を算出する。この時、コンピューター70は、記憶部72に記憶された予め準備した近似回帰式を用いて、反射光のサイズから、フロス泡のサイズを算出する。これにより、フロス泡径が計測される。 In step S130, the computer 70 performs a calculation process to calculate the froth bubble diameter. At this time, the computer 70 calculates the size of the froth bubble from the size of the reflected light using the approximate regression formula prepared in advance and stored in the storage unit 72. Thereby, the froth bubble diameter is measured.

ステップS140に示されるように、計測されたフロス泡径に基づいて、種々の調整処理を行うようにしてもよい。即ち、エアの供給条件や、撹拌条件を最適化することができる。このような調整は、人間がフロス泡の計測結果を見て調整してもよいが、コンピューター70が自動制御で調整してもよい。人間が調整を行う場合には、コンピューター70は、計測結果をディスプレイ等に出力する。また、コンピューター70が自動調整を行う場合には、計測結果に基づいてコンピューター70がエア供給シャフト30の出力や、撹拌翼20の駆動速度等を調整する。その際、測定結果を併せて出力してもよいことは言うまでもない。かかる観点から、ステップS140は必須ではなく、必要に応じて実行すればよい。 As shown in step S140, various adjustment processes may be performed based on the measured froth bubble diameter. That is, the air supply conditions and stirring conditions can be optimized. Although such an adjustment may be made by a human being by looking at the measurement result of the froth bubbles, the computer 70 may make an automatic adjustment. When a person makes an adjustment, the computer 70 outputs the measurement result to a display or the like. When the computer 70 performs automatic adjustment, the computer 70 adjusts the output of the air supply shaft 30, the drive speed of the stirring blade 20, and the like based on the measurement result. In that case, it goes without saying that the measurement result may be output together. From this point of view, step S140 is not essential and may be executed as necessary.

このように、本実施形態に係るフロス泡径計測方法によれば、自動でフロス泡径を計測し、更に必要に応じてフロス泡径を最適化するような調整を行うこともでき、高品位の浮選を行うことができる。 As described above, according to the floss bubble diameter measuring method according to the present embodiment, it is possible to automatically measure the floss bubble diameter and further perform an adjustment so as to optimize the floss bubble diameter, if necessary, to obtain a high quality. Flotation can be done.

以上説明したように、本実施形態に係るフロス径計測装置、浮選機及びフロス泡径計測方法によれば、自動で均一な基準でフロス径を正確に計測することができ、浮選の品位を均一かつ高品位とすることができる。 As described above, according to the floss diameter measuring device, the flotation machine, and the froth bubble diameter measuring method according to the present embodiment, the floss diameter can be accurately measured automatically on a uniform basis, and the quality of flotation is improved. Can be made uniform and of high quality.

以上、本発明の好ましい実施形態について詳説したが、本発明は、上述した実施形態に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施形態に種々の変形及び置換を加えることができる。 Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications and substitutions can be made to the above-described embodiments without departing from the scope of the present invention. Can be added.

10 浮選槽
20 撹拌翼
30 エア供給シャフト
40 鉱石スラリー
41 フロス泡
42 白く光る部分(反射光領域)
50 光源
60 エリアスキャンカメラ
61 接続コード
70 コンピューター
80 フロス泡径計測装置
100 浮選機
10 Flotation Tank 20 Stirring Blade 30 Air Supply Shaft 40 Ore Slurry 41 Floss Foam 42 White Shining Part (Reflected Light Area)
50 light source 60 area scan camera 61 connection cord 70 computer 80 floss bubble diameter measuring device 100 flotation machine

Claims (8)

浮選槽よりも上方に設けられ、前記浮選槽内に貯留されたスラリーに上面から光を照射する光源と、
前記スラリーを上面から撮像する撮像手段と、
前記撮像手段により撮像された画像に含まれるフロス泡のフロス泡径を算出する演算処理手段と、を有するフロス泡径計測装置。
A light source that is provided above the flotation tank and irradiates the slurry stored in the flotation tank with light from the upper surface,
An image pickup means for picking up an image of the slurry from above,
A floss bubble diameter measuring device, comprising: an arithmetic processing unit that calculates a froth bubble diameter of the froth bubbles included in the image captured by the image capturing unit.
前記演算処理手段は、前記画像に含まれるフロス泡の白く光る部分の大きさに基づいて前記フロス泡径を算出する請求項1に記載のフロス泡径計測装置。 The floss bubble diameter measuring device according to claim 1, wherein the arithmetic processing unit calculates the floss bubble diameter based on a size of a white glowing portion of the froth bubble included in the image. 前記演算処理手段は、予め実測して求めたフロス泡の白く光る部分の大きさとフロス泡径との関係性から得られる近似回帰式を用いて、前記フロス泡径を算出する請求項2に記載のフロス泡径計測装置。 The said arithmetic processing means calculates the said floss bubble diameter using the approximate regression formula obtained from the relationship between the size of the white glowing part of the froth bubble and the floss bubble diameter which were actually measured beforehand. Froth bubble diameter measuring device. 前記撮像手段により撮像された画像から雑音を除去し、前記フロス泡の白く光る部分の大きさを計測し易くする画像処理を行う画像処理手段を更に有する請求項1乃至3のいずれか一項に記載のフロス泡径計測装置。 4. The image processing unit according to claim 1, further comprising an image processing unit that removes noise from the image captured by the image capturing unit and performs image processing that facilitates measurement of the size of the white glowing portion of the floss bubble. The described froth bubble diameter measuring device. スラリーを貯留する浮選槽と、
前記浮選槽内に設けられ、前記スラリーを撹拌する撹拌手段と、
請求項1乃至4のいずれか一項に記載のフロス泡径計測装置と、を有する浮遊選鉱機。
A flotation tank to store the slurry,
An agitating unit provided in the flotation tank and agitating the slurry,
A flotation machine comprising the froth bubble diameter measuring device according to any one of claims 1 to 4.
浮選槽内に貯留されたスラリーの上面に光を照射する工程と、
前記光が照射された前記スラリーの上面を撮像する工程と、
撮像された画像に含まれるフロス泡のフロス泡径を算出する工程と、を有するフロス泡径計測方法。
Irradiating the upper surface of the slurry stored in the flotation tank with light,
Imaging a top surface of the slurry irradiated with the light;
And a step of calculating the froth bubble diameter of the froth bubbles included in the captured image.
前記フロス泡径を算出する工程において、前記画像に含まれるフロス泡の白く光る部分の大きさに基づいて前記フロス泡径を算出する請求項6に記載のフロス泡径計測方法。 The floss bubble diameter measuring method according to claim 6, wherein in the step of calculating the floss bubble diameter, the floss bubble diameter is calculated based on a size of a white glowing portion of the floss bubble included in the image. 前記フロス泡径を算出する工程において、予め実測して求めたフロス泡の白く光る部分の大きさとフロス泡径との関係性から得られる近似回帰式を用いて、前記フロス泡径を算出する請求項7に記載のフロス泡径計測方法。 In the step of calculating the floss foam diameter, the floss foam diameter is calculated by using an approximate regression equation obtained from the relationship between the size of the white glowing portion of the floss foam and the froth foam diameter, which is obtained by actual measurement in advance. Item 7. The froth bubble diameter measuring method according to Item 7.
JP2018223762A 2018-11-29 2018-11-29 Floss bubble diameter measuring device, flotation machine using the same, and froth bubble diameter measuring method Active JP7245415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018223762A JP7245415B2 (en) 2018-11-29 2018-11-29 Floss bubble diameter measuring device, flotation machine using the same, and froth bubble diameter measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018223762A JP7245415B2 (en) 2018-11-29 2018-11-29 Floss bubble diameter measuring device, flotation machine using the same, and froth bubble diameter measuring method

Publications (2)

Publication Number Publication Date
JP2020085775A true JP2020085775A (en) 2020-06-04
JP7245415B2 JP7245415B2 (en) 2023-03-24

Family

ID=70907657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018223762A Active JP7245415B2 (en) 2018-11-29 2018-11-29 Floss bubble diameter measuring device, flotation machine using the same, and froth bubble diameter measuring method

Country Status (1)

Country Link
JP (1) JP7245415B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287920A (en) * 1996-04-23 1997-11-04 Asahi Glass Co Ltd Method for evaluating shape of object to be measured, shape of bubble inside glass and degree of defect of glass
WO2001038001A1 (en) * 1999-11-24 2001-05-31 Outokumpu Oyj Monitoring and control of a froth flotation plant
JP2009059002A (en) * 2007-08-29 2009-03-19 Central Res Inst Of Electric Power Ind Bubble count system
CN104596898A (en) * 2013-10-30 2015-05-06 天津科技大学 Micro-bubble dimension online measurement apparatus and method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287920A (en) * 1996-04-23 1997-11-04 Asahi Glass Co Ltd Method for evaluating shape of object to be measured, shape of bubble inside glass and degree of defect of glass
WO2001038001A1 (en) * 1999-11-24 2001-05-31 Outokumpu Oyj Monitoring and control of a froth flotation plant
JP2009059002A (en) * 2007-08-29 2009-03-19 Central Res Inst Of Electric Power Ind Bubble count system
CN104596898A (en) * 2013-10-30 2015-05-06 天津科技大学 Micro-bubble dimension online measurement apparatus and method thereof

Also Published As

Publication number Publication date
JP7245415B2 (en) 2023-03-24

Similar Documents

Publication Publication Date Title
JP5794130B2 (en) Collection method of gold concentrate
KR102103048B1 (en) Optical granular substance sorter
CA1327854C (en) Method and apparatus for flotation cell processing
Miskovic An investigation of the gas dispersion properties of mechanical flotation cells: An in-situ approach
JP5905191B2 (en) Flotation processing system
AU2016368685B2 (en) System and method for determining concentration
JP2017170413A (en) Partition plate position controller and partition plate position controlling method in table specific gravity concentrator and table specific gravity concentration system equipped with partition plate position controller
JP6252449B2 (en) Gold density area image processing apparatus, gold color area image processing method, and gold density area image processing apparatus provided with gold density area image processing apparatus
JP2020085775A (en) Floss bubble diameter measurement device, flotation machine using the same, and floss bubble diameter measurement method
AU2017368919B2 (en) Analysis of bubbles in a pulp phase of a flotation cell
US20220074965A1 (en) Froth bubble moving speed measuring device and method of measuring froth bubble moving speed, flotation apparatus and flotation method using same
JP7424148B2 (en) Froth foam color measuring device, floss foam color measuring method, and flotation device and flotation method using the same
JP2020199487A (en) Apparatus for measuring moving direction of froth, method for measuring moving direction of froth, and flotation ore dressing apparatus and flotation ore dressing method using these
JP6488820B2 (en) Partition plate position control device, partition plate position control method and table specific gravity sorting system provided with partition plate position control device in table specific gravity sorter
JP2013096922A (en) Beverage liquid foreign substance inspection device and beverage liquid foreign substance inspection method
US6727990B1 (en) Method and apparatus for monitoring and analyzing the surface of floated material
Grau An investigation of the effect of physical and chemical variables on bubble generation and coalescence in laboratory scale flotation cells
CA2653376C (en) Device and method for detecting the frothing ability of a fluid
Bhondayi A study of flotation froth phase behaviour
JP6613629B2 (en) Table gravity separation system
JP2016068035A (en) Gold wire area imaging device in table gravity concentrator, control method thereof, and table gravity beneficiation system including gold wire area imaging device
JP6935706B2 (en) Sample holder and flotation test method using it
Młynarczykowska et al. Analysis of the gas phase in flotation process. Part 1, Experimental determination of the volume of air bubbles in the pneumo-mechanical flotation machine
Dunn Development of a video-based slurry sensor for on-line ash analysis
Zambrano Palomares Hydrodynamic characterization of frothers in tap and sea water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221129

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221129

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221208

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230220

R150 Certificate of patent or registration of utility model

Ref document number: 7245415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150