JP2020085556A - Metal material surface observation method and chemical conversion treatability evaluation method of metal material using the same - Google Patents

Metal material surface observation method and chemical conversion treatability evaluation method of metal material using the same Download PDF

Info

Publication number
JP2020085556A
JP2020085556A JP2018217191A JP2018217191A JP2020085556A JP 2020085556 A JP2020085556 A JP 2020085556A JP 2018217191 A JP2018217191 A JP 2018217191A JP 2018217191 A JP2018217191 A JP 2018217191A JP 2020085556 A JP2020085556 A JP 2020085556A
Authority
JP
Japan
Prior art keywords
metal material
chemical conversion
metal
observation
observing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018217191A
Other languages
Japanese (ja)
Other versions
JP7141701B2 (en
Inventor
早川 正夫
Masao Hayakawa
正夫 早川
伸夫 長島
Nobuo Nagashima
伸夫 長島
升田 博之
Hiroyuki Masuda
博之 升田
長井 寿
Hisashi Nagai
寿 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2018217191A priority Critical patent/JP7141701B2/en
Publication of JP2020085556A publication Critical patent/JP2020085556A/en
Application granted granted Critical
Publication of JP7141701B2 publication Critical patent/JP7141701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a metal material surface observation method capable of evaluating chemical conversion treatability of a metal material before reaction of a local battery occurs.SOLUTION: In a surface observation method of a metal material containing dissimilar metal particles in a parent metal, potential differences between the dissimilar metal particles and their vicinities are observed on an observation surface of the metal material whose height difference is 200 nm or less by using a Kelvin force microscope, so that chemical conversion treatability of the metal material can be evaluated before reaction of a local battery occurs.SELECTED DRAWING: None

Description

本発明は、金属材料の表面観察方法に係り、更に詳細には、母材金属中に異種金属粒子を含む金属材料の表面観察方法に関する。 The present invention relates to a method for observing a surface of a metal material, and more particularly, to a method for observing a surface of a metal material containing dissimilar metal particles in a base metal.

金属材料を用いた金属製品は、一般に耐食性などの機能向上のために、化成処理膜などによる表面処理が施されている。しかし、金属材料の化成処理性が低く表面処理に欠陥が生じると、その欠陥から鉄が腐食してしまう。
したがって、均一かつ微細で欠陥のない化成処理膜を形成できる化成処理性に優れる金属材料の開発が要望される。
A metal product using a metal material is generally surface-treated with a chemical conversion treatment film or the like in order to improve functions such as corrosion resistance. However, if the metal material has a low chemical conversion treatability and a defect occurs in the surface treatment, iron will corrode from the defect.
Therefore, there is a demand for the development of a metal material having excellent chemical conversion treatability capable of forming a uniform, fine and defect-free chemical conversion treatment film.

上記化成処理の反応は、金属材料表面の母材金属と異種金属粒子などとで形成される局部電池により駆動される。 The reaction of the chemical conversion treatment is driven by a local battery formed of the base metal on the surface of the metal material and the dissimilar metal particles.

例えば、鉄鋼の化成処理反応においては、図1に示すように、鉄鋼表面のアノード点では、下地の鉄(Fe)の溶解反応が起こることで電子が発生し、カソード点では、上記アノード点で発生した電子により酸化剤の還元反応が起こる。そして、化成処理液が酸性溶液である場合は、水素イオンが還元されて鉄鋼表面近傍のpHが上昇し、これに伴って表面に化成処理膜を形成する化合物が析出する。 For example, in the chemical conversion treatment reaction of steel, as shown in FIG. 1, at the anode point on the steel surface, electrons are generated by the dissolution reaction of the underlying iron (Fe), and at the cathode point, at the anode point. The generated electrons cause a reduction reaction of the oxidant. When the chemical conversion treatment liquid is an acidic solution, hydrogen ions are reduced to raise the pH in the vicinity of the steel surface, and along with this, a compound forming a chemical conversion treatment film is deposited on the surface.

したがって、金属材料の化成処理性を評価するには、金属材料の表面に存在するカソード点やアノード点の観察が不可欠である。 Therefore, in order to evaluate the chemical conversion treatability of the metal material, it is indispensable to observe the cathode points and the anode points existing on the surface of the metal material.

従来から、金属材料の表面形状を観察する手段として、SEM(走査型電子顕微鏡)、TEM(透過型電子顕微鏡)、AFM(原子間力顕微鏡)、光学顕微鏡などが用いられている。(例えば、非特許文献1)。 Conventionally, SEM (scanning electron microscope), TEM (transmission electron microscope), AFM (atomic force microscope), optical microscope and the like have been used as means for observing the surface shape of metal materials. (For example, nonpatent literature 1).

日本表面科学会著「表面分析図鑑」共立出版株式会社、1994年5月30日"Surface Analysis Encyclopedia" by Japan Society for Surface Science, Kyoritsu Shuppan Co., Ltd., May 30, 1994

しかしながら、金属材料の表面形状を観察する方法では、局部電池の反応が進行して金属材料中のFeなどが溶出し、金属材料の表面に上記反応の影響があらわれた後でなければ観察することができず、予め金属材料の化成処理性を知ることはできない。 However, in the method of observing the surface shape of the metal material, the observation should be performed only after the reaction of the local battery progresses and Fe or the like in the metal material is eluted and the influence of the above reaction appears on the surface of the metal material. However, the chemical conversion treatability of the metal material cannot be known in advance.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、局部電池の反応が起こる前に金属材料の化成処理性を評価できる金属材料の表面観察方法を提供することにある。 The present invention has been made in view of the above problems of the prior art, and an object thereof is to observe the surface of a metal material capable of evaluating the chemical conversion treatability of the metal material before the reaction of the local battery occurs. To provide a method.

本発明者は、上記目的を達成すべく鋭意検討を重ねた結果、金属材料表面の異種金属粒子とその周辺との電位差を直接観察することにより、上記目的が達成できることを見出し、本発明を完成するに至った。 The present inventor has conducted intensive studies to achieve the above object, and as a result of directly observing the potential difference between the dissimilar metal particles on the surface of the metal material and the periphery thereof, found that the above object can be achieved, and completed the present invention. Came to do.

すなわち、上記課題は、本発明の以下の表面観察方法によって解決される。
(1)母材金属中に異種金属粒子を含む金属材料の表面観察方法であって、
最大高低差が200nm以下である金属材料の観察面を、ケルビンフォース顕微鏡を用いて、上記異種金属粒子とその周辺との電位差を観察する表面観察方法。
(2)イオンミリングにより上記観察面を作製する工程を備えることを特徴とする上記第(1)項に記載の表面観察方法。
That is, the said subject is solved by the following surface observation methods of this invention.
(1) A method for observing a surface of a metal material containing dissimilar metal particles in a base metal, comprising:
A surface observing method of observing a potential difference between the above-mentioned dissimilar metal particles and the periphery thereof using a Kelvin force microscope on an observation surface of a metal material having a maximum height difference of 200 nm or less.
(2) The method for observing a surface according to the item (1), which comprises a step of producing the observation surface by ion milling.

また、上記課題は、本発明の金属材料の化成処理性評価方法によって解決される。
上記第(1)又は上記第(2)項に記載の表面観察方法を用いて金属材料の表面を観察し、
上記異種金属粒子とその周辺との電位差から、金属材料の化成処理性を評価する化成処理性評価方法。
Moreover, the said subject is solved by the chemical conversion treatability evaluation method of the metal material of this invention.
The surface of the metal material is observed by using the surface observation method described in the above (1) or (2),
A chemical conversion treatability evaluation method for evaluating the chemical conversion treatability of a metal material based on the potential difference between the different metal particles and the periphery thereof.

本発明によれば、金属材料表面の異種金属粒子とその周辺との電位差を観察することとしたため、局部電池の反応が起こる前に金属材料の化成処理性を評価できる金属材料の表面観察方法を提供することができる。 According to the present invention, since the potential difference between the different metal particles on the surface of the metal material and its periphery is observed, a method for observing the surface of the metal material capable of evaluating the chemical conversion treatability of the metal material before the reaction of the local battery occurs. Can be provided.

化成処理の反応を説明する図である。It is a figure explaining the reaction of chemical conversion treatment. 実施例1の化成処理面に対して縦断面のマイクロカソードが存在する領域のKFM像(A)とAFM像(B)である。最大高低差(図のグレースケール)は200nmである。3 is a KFM image (A) and an AFM image (B) of a region where a microcathode is present in a vertical cross section with respect to the chemical conversion treatment surface of Example 1. The maximum height difference (grey scale in the figure) is 200 nm. 実施例2の金属材料にマイクロカソードが存在する領域のKFM像(A)とAFM像(B)である。最大高低差(図のグレースケール)は100nmである。9 is a KFM image (A) and an AFM image (B) of a region where a microcathode is present in the metal material of Example 2. The maximum height difference (grey scale in the figure) is 100 nm. 実施例3の金属材料のマイクロカソードが存在する領域のSEM像(A)とその拡大図(B)、それらの同一場所におけるKFM像(D)とその拡大図(C)である。FIG. 5 is an SEM image (A) and an enlarged view (B) of a region where a microcathode of a metal material of Example 3 is present, a KFM image (D) and an enlarged view (C) of the same place. 表面研削前の化成処理膜のSEM像(A)と表面研削後の化成処理膜(B)と、表面研削前の金属材料のKFM像(C)である。(C)の観察面には(B)の化成処理前に当該する金属断面も含まれる。It is a SEM image (A) of a chemical conversion treatment film before surface grinding, a chemical conversion treatment film (B) after surface grinding, and a KFM image (C) of a metal material before surface grinding. The observation surface of (C) includes the metal cross section before the chemical conversion treatment of (B).

<表面観察方法>
本発明の表面観察方法について詳細に説明する。
上記表面観察方法は、母材金属中に異種金属粒子を含む金属材料の表面を観察する方法であり、最大高低差が200nm以下である金属材料の観察面を、ケルビンフォース顕微鏡を用いて、上記異種金属粒子とその周辺との電位差を観察する。
<Surface observation method>
The surface observation method of the present invention will be described in detail.
The surface observation method is a method of observing the surface of a metal material containing dissimilar metal particles in the base metal, and the maximum height difference is 200 nm or less, the observation surface of the metal material, using a Kelvin force microscope, Observe the potential difference between the dissimilar metal particles and their surroundings.

母材金属中に異種金属粒子が分散し、異種金属同士が接触した金属材料に電解質溶液を接触させると局部電池が形成される。 A dissimilar metal particle is dispersed in the base metal, and the electrolyte solution is brought into contact with the metal material in which the dissimilar metals are in contact with each other to form a local battery.

本発明の表面観察方法によれば、局部電池の反応が進む前に、上記局部電池の反応性を知ることができ、金属材料の化成処理性を予測することができる。 According to the surface observation method of the present invention, the reactivity of the local battery can be known before the reaction of the local battery proceeds, and the chemical conversion treatability of the metal material can be predicted.

上記ケルビンフォース顕微鏡は、探針で試料表面を走査し、励振電圧による静電気力成分の振幅がゼロとなる電圧をフィードバックし、このフィードバック電圧により試料表面の電位を計測して表面電位像を形成する顕微鏡である。 The Kelvin force microscope scans the sample surface with a probe, feeds back a voltage at which the amplitude of the electrostatic force component due to the excitation voltage becomes zero, and measures the potential of the sample surface by this feedback voltage to form a surface potential image. It is a microscope.

このようなケルビンフォース顕微鏡における、上記フィードバック電圧は、試料表面と探針との距離の変化の影響を受け易く、観察面に大きな凹凸が存在すると表面電位像がぼやけて、異種金属粒子とその周辺との電位差を充分観察することができない。 In such a Kelvin force microscope, the feedback voltage is easily affected by the change in the distance between the sample surface and the probe, and if there are large irregularities on the observation surface, the surface potential image is blurred, and the dissimilar metal particles and their surroundings. It is not possible to fully observe the potential difference with.

本発明においては、観察面の最大高低差を200nm以下にしたため、観察面の凹凸による上記フィードバック電圧の影響が小さく、鮮明な表面電位像を得ることができる。 In the present invention, since the maximum height difference of the observation surface is set to 200 nm or less, the influence of the feedback voltage due to the unevenness of the observation surface is small, and a clear surface potential image can be obtained.

上記観察面の最大高低差が100nm以下であると、より鮮明な表面電位像を得ることができ、異種金属粒子とその周辺との電位差を観察することができる。 When the maximum height difference on the observation surface is 100 nm or less, a clearer surface potential image can be obtained, and the potential difference between the different metal particles and the periphery thereof can be observed.

上記観察面は、観察面の最大高低差を200nm以下にできれば、アルミナ粒子、ダイヤモンド粒子、コロイダルシリカなどを用いたバフによる鏡面研磨であってもよいが、イオンミリングにより上記観察面を作製することが好ましい。 The observation surface may be mirror-polished with a buff using alumina particles, diamond particles, colloidal silica or the like as long as the maximum height difference of the observation surface can be 200 nm or less, but the observation surface is prepared by ion milling. Is preferred.

イオンミリングは、収束させないアルゴンイオンビームを試料に照射し、スパッタリング現象を利用して応力をかけずに試料表面を研磨して観察面を作製する方法である。
アルゴンイオンビームを試料表面に対して斜めに照射し、アルゴンイオンビームの中心と試料回転の中心を偏心させることによって広範囲を加工して平滑な観察面を作製することができる。
Ion milling is a method of irradiating a sample with an unfocused argon ion beam and polishing the sample surface without applying stress by using a sputtering phenomenon to prepare an observation surface.
By irradiating the surface of the sample with the argon ion beam obliquely and decentering the center of the argon ion beam and the center of rotation of the sample, it is possible to process a wide range and produce a smooth observation surface.

アルゴンイオンビームの照射角度(θ)を80°以上に設定して観察面を作製することが好ましい。アルゴンイオンビームの照射角度(θ)が80°以上であると、イオンビームの照射角度が試料の加工面に対して平行に近づき、結晶方位や組成のエッチングレート差による凹凸形成を低減した平滑な観察面を作製できる。 It is preferable to set the irradiation angle (θ) of the argon ion beam to 80° or more to prepare the observation surface. When the irradiation angle (θ) of the argon ion beam is 80° or more, the irradiation angle of the ion beam approaches parallel to the processed surface of the sample, and smoothness is reduced by reducing the unevenness due to the difference in etching rate between the crystal orientation and the composition. An observation surface can be created.

<化成処理性評価方法> <Chemical conversion processability evaluation method>

本発明の金属材料の評価方法は、上記表面観察方法により金属材料の表面を観察して金属材料の化成処理性を評価する。 In the method for evaluating a metal material according to the present invention, the surface of the metal material is observed by the surface observation method to evaluate the chemical conversion treatability of the metal material.

化成処理反応は、上記のように金属材料の表面に形成される局部電池により駆動される。しかし、金属材料の表面が、粗大なカソード点で覆われていると、アノード点で発生した電子が粗大なカソード点の中央部まで行きわたらず、カソード点とアノード点との境界近傍でしか上記還元反応が起こらないため、カソード点の周縁しか化成処理膜で覆うことができず、化成処理膜に欠陥が生じ易く化成処理性が低下する。 The chemical conversion reaction is driven by the local battery formed on the surface of the metal material as described above. However, if the surface of the metal material is covered with a coarse cathode point, the electrons generated at the anode point do not reach the central portion of the coarse cathode point, and the above-mentioned problem occurs only near the boundary between the cathode point and the anode point. Since the reduction reaction does not occur, only the periphery of the cathode point can be covered with the chemical conversion treatment film, and the chemical conversion treatment film is liable to have defects and the chemical conversion treatment property is deteriorated.

したがって、上記異種金属粒子により形成されるカソード点又はアノード点との電位差から、母材金属の溶出し易さ、すなわち化成処理反応の起こり易さを評価することができ、また、上記カソード点又はアノード点を形成する異種金属粒子の粒径や、その分布状態などから、形成される化成処理膜の均一性、緻密性を評価することができる。 Therefore, it is possible to evaluate the easiness of elution of the base metal, that is, the easiness of the chemical conversion treatment reaction, from the potential difference between the cathode point or the anode point formed by the dissimilar metal particles, and the cathode point or The uniformity and denseness of the chemical conversion treatment film to be formed can be evaluated from the particle size of the dissimilar metal particles forming the anode point and the distribution state thereof.

化成処理性は、金属材料の種類や、化成処理の反応条件などにもよるが、例えば、カソード点となる異種金属粒子の最大粒径が2μm以下であると、カソード点が化成処理膜で覆われ易く、また、上記異種金属粒子が、800個/mm以上200,000個/mm以下であると均一かつ緻密な化成処理膜を形成できる。 The chemical conversion treatment property depends on the kind of the metal material and the reaction conditions of the chemical conversion treatment, but for example, when the maximum particle size of the dissimilar metal particles serving as the cathode point is 2 μm or less, the cathode point is covered with the chemical conversion treatment film. If the dissimilar metal particles are 800 pieces/mm 2 or more and 200,000 pieces/mm 2 or less, a uniform and dense chemical conversion treatment film can be formed.

上記化成処理としては、リン酸被膜処理や、メッキなど鋼材の耐食性を向上させる処理を挙げることができる。 Examples of the chemical conversion treatment include a phosphoric acid coating treatment and a treatment such as plating for improving the corrosion resistance of the steel material.

以下、本発明を実施例により詳細に説明するが、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the following Examples.

[実施例1]
金属材料の表面をイオンミリングしで観察面を作製し、該観察面の同一視野をケルビンフォース顕微鏡(株式会社日立ハイテックサイエンス製:マルチ対応小型プローブ顕微鏡ユニットAFM5200S)と原子間力顕微鏡を用いて観察した。化成処理面に対して縦断面のKFM像を図2(A)、AFM像を図2(B)に示す。
[Example 1]
The surface of the metal material is ion-milled to create an observation surface, and the same field of view of the observation surface is observed using a Kelvin force microscope (Hitachi High-Tech Science Co., Ltd.: Multi-compatible small probe microscope unit AFM5200S) and an atomic force microscope. did. A KFM image of a vertical section with respect to the chemical conversion treatment surface is shown in FIG. 2(A), and an AFM image is shown in FIG. 2(B).

図2(A)のKFM像では、周辺より電位が高くカソード点となる箇所が黒く写っており、異種金属を母材金属との電位差を観察することができた。また、図2(B)のAFM像では最大高低差(図のグレースケール)は200nmであった。 In the KFM image of FIG. 2A, a portion having a higher potential than the surroundings and serving as a cathode point is shown in black, and the potential difference between the dissimilar metal and the base metal can be observed. In the AFM image of FIG. 2B, the maximum height difference (gray scale in the figure) was 200 nm.

[実施例2]
金属材料の表面をイオンミリングで観察面を作製し、該観察面の同一視野をケルビンフォース顕微鏡と原子間力顕微鏡を用いて観察した。KFM像を図3(A)、AFM像を図3(B)に示す。
[Example 2]
An observation surface was prepared by ion milling the surface of the metal material, and the same field of view of the observation surface was observed using a Kelvin force microscope and an atomic force microscope. A KFM image is shown in FIG. 3(A) and an AFM image is shown in FIG. 3(B).

図3(A)のKFM像では、周辺より電位が高くカソード点となる箇所が、図2(A)のKFM像よりも黒く鮮明に写っており、異種金属と母材金属との電位差を観察することができた。また、図3(B)AFM像では最大高低差(図のグレースケール)は100nmであった。 In the KFM image of FIG. 3(A), a portion having a higher potential than the surroundings and serving as a cathode point is shown more clearly and darker than the KFM image of FIG. 2(A), and the potential difference between the dissimilar metal and the base metal is observed. We were able to. In the AFM image shown in FIG. 3B, the maximum height difference (gray scale in the figure) was 100 nm.

[実施例3]
また、イオンミリングした金属材料の観察面の同一視野を走査電子顕微鏡とケルビンフォース顕微鏡とを用いて観察した。SEM像を図4(A)、該図4(A)の拡大画像を図4(B)、KFM像を図4(D)、該図4(D)の拡大画像を図4(C)に示す。
[Example 3]
The same field of view of the ion milled metallic material was observed using a scanning electron microscope and a Kelvin force microscope. An SEM image is shown in FIG. 4(A), an enlarged image of FIG. 4(A) is shown in FIG. 4(B), a KFM image is shown in FIG. 4(D), and an enlarged image of FIG. 4(D) is shown in FIG. 4(C). Show.

図4より、KFM像ではSEM像で異種粒子が確認された位置は電位が異なる部分であることが確認され、また、電位が異なる部分の明度が異なっており、異種粒子の電位によって、周囲との電位差が異なることが確認された。 From FIG. 4, it was confirmed in the KFM image that the position where different particles were confirmed in the SEM image was a portion where the potentials were different, and the brightness of the portion where the potentials were different was different, and the potential was different from the surroundings due to the potential of the different particles. It was confirmed that the potential difference between the two was different.

[実施例4]
実施例2の金属材料をリン酸マンガン処理し、形成された被膜を観察した。この被膜のSEM像を図5(A)に示す。
また、実施例2の金属材料の表面を研削してカソード点を除去した後、リン酸マンガン処理し、形成された被膜を観察した。この被膜のSEM像を図5(B)に示す。研削後では被膜が十分に形成されていない。また、表面研削前の金属材料のKFM像を図5(C)に示す。破線左側が研削された金属材料でカソード点が観察されるのに対して、破線右側の研削除去後の金属材料ではカソード点が観察されない。
[Example 4]
The metal material of Example 2 was treated with manganese phosphate, and the formed film was observed. An SEM image of this coating is shown in FIG.
In addition, the surface of the metal material of Example 2 was ground to remove the cathode spots, followed by manganese phosphate treatment, and the formed film was observed. An SEM image of this coating is shown in FIG. The coating is not sufficiently formed after grinding. Further, a KFM image of the metal material before surface grinding is shown in FIG. Cathode points are observed on the ground metal material on the left side of the broken line, whereas no cathode points are observed on the metal material after grinding removal on the right side of the broken line.

図5より、KFM像で周辺電位差を観察することで、金属材料の化成処理性を評価できることが確認された。 From FIG. 5, it was confirmed that the chemical conversion treatability of the metal material can be evaluated by observing the peripheral potential difference in the KFM image.

Claims (3)

母材金属中に異種金属粒子を含む金属材料の表面観察方法であって、
最大高低差が200nm以下である金属材料の観察面を、ケルビンフォース顕微鏡を用いて、上記異種金属粒子とその周辺との電位差を観察する表面観察方法。
A method for observing a surface of a metal material containing dissimilar metal particles in a base metal,
A surface observing method of observing a potential difference between the above-mentioned dissimilar metal particles and the periphery thereof using a Kelvin force microscope on an observation surface of a metal material having a maximum height difference of 200 nm or less.
イオンミリングにより上記観察面を作製する工程を備えることを特徴とする請求項1に記載の表面観察方法。 The surface observation method according to claim 1, further comprising a step of producing the observation surface by ion milling. 請求項1又は2に記載の表面観察方法を用いて金属材料の表面を観察し、
上記異種金属粒子とその周辺との電位差から、金属材料の化成処理性を評価する化成処理性評価方法。
Observing the surface of the metal material using the surface observing method according to claim 1 or 2,
A chemical conversion treatability evaluation method for evaluating the chemical conversion treatability of a metal material based on the potential difference between the different metal particles and the periphery thereof.
JP2018217191A 2018-11-20 2018-11-20 Evaluation method for chemical conversion treatability of metal materials using surface observation method for metal materials Active JP7141701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018217191A JP7141701B2 (en) 2018-11-20 2018-11-20 Evaluation method for chemical conversion treatability of metal materials using surface observation method for metal materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018217191A JP7141701B2 (en) 2018-11-20 2018-11-20 Evaluation method for chemical conversion treatability of metal materials using surface observation method for metal materials

Publications (2)

Publication Number Publication Date
JP2020085556A true JP2020085556A (en) 2020-06-04
JP7141701B2 JP7141701B2 (en) 2022-09-26

Family

ID=70907543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018217191A Active JP7141701B2 (en) 2018-11-20 2018-11-20 Evaluation method for chemical conversion treatability of metal materials using surface observation method for metal materials

Country Status (1)

Country Link
JP (1) JP7141701B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329564A (en) * 2002-05-14 2003-11-19 National Institute For Materials Science METHOD AND APPARATUS FOR MEASURING VALUE OF pH INSIDE THIN FILM ON SURFACE OF METAL
JP2007162078A (en) * 2005-12-14 2007-06-28 Nippon Steel Corp High strength steel sheet and production method
EP2416165A1 (en) * 2010-08-04 2012-02-08 FEI Company Method of forming a 3D reconstruction of a sample using a scanning probe microscope
WO2015011743A1 (en) * 2013-07-22 2015-01-29 株式会社日立製作所 Metal corrosion resistance evaluation method and evaluation device using in-liquid potential measurement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329564A (en) * 2002-05-14 2003-11-19 National Institute For Materials Science METHOD AND APPARATUS FOR MEASURING VALUE OF pH INSIDE THIN FILM ON SURFACE OF METAL
JP2007162078A (en) * 2005-12-14 2007-06-28 Nippon Steel Corp High strength steel sheet and production method
EP2416165A1 (en) * 2010-08-04 2012-02-08 FEI Company Method of forming a 3D reconstruction of a sample using a scanning probe microscope
WO2015011743A1 (en) * 2013-07-22 2015-01-29 株式会社日立製作所 Metal corrosion resistance evaluation method and evaluation device using in-liquid potential measurement

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PAN, T: "Corrosion behavior of a duplex stainless steel under cyclic loading:a scanning Kelvin probe force mi", JOURNAL OF APPLIED ELECTROCHEMISTRY, vol. 42, no. 12, JPN6016045684, December 2012 (2012-12-01), US, pages 1049 - 1056, XP035137929, ISSN: 0004764661, DOI: 10.1007/s10800-012-0479-0 *
SABABI, M. ET AL.: "Microstructure influence on corrosion behavior of a Fe-Cr-V-N tool alloy studied by SEM/EDS, scannin", CORROSION SCIENCE, vol. 66, JPN6022016455, 21 September 2012 (2012-09-21), pages 153 - 159, ISSN: 0004764660 *
第31回NBCI-NIMS合同連携セミナー, JPN6022016454, May 2018 (2018-05-01), ISSN: 0004764659 *
船津恵介 ほか: "Mg合金中の微視的異材界面における表面電位差が初期ガルバニック腐食現象へ及ぼす影響", 日本機械学会論文集A編, vol. 78, no. 794, JPN6013045900, 25 October 2012 (2012-10-25), pages 1432 - 1445, ISSN: 0004764658 *

Also Published As

Publication number Publication date
JP7141701B2 (en) 2022-09-26

Similar Documents

Publication Publication Date Title
JP5142240B2 (en) Charged beam apparatus and charged beam processing method
Brodusch et al. Scanning electron microscopy versus transmission electron microscopy for material characterization: a comparative study on high-strength steels
Winkelmann et al. Improving EBSD precision by orientation refinement with full pattern matching
Isakov et al. Structure and properties of chromium-nanodiamond composite electrochemical coatings
JP4890373B2 (en) Sample preparation method
JP2013542153A5 (en)
Sato et al. Low damage lamella preparation of metallic materials by FIB processing with low acceleration voltage and a low incident angle Ar ion milling finish
Schultze et al. Corrosion and passivation in nanoscopic and microscopic dimensions: the influence of grains and grain boundaries
JP2020085556A (en) Metal material surface observation method and chemical conversion treatability evaluation method of metal material using the same
Li Advanced techniques in TEM specimen preparation
Proust et al. Characterization of ultra-fine grained and nanocrystalline materials using transmission Kikuchi diffraction
Cairney et al. Characterisation of TiN and TiAlN thin films deposited on ground surfaces using focused ion beam milling
JP6044786B2 (en) Method for coating an AFM tip, AFM tip, and use of an AFM tip
WO2012077554A1 (en) Charged particle beam apparatus and method of irradiating charged particle beam
JP7440309B2 (en) Composite material evaluation method
Hayashida et al. Three dimensional accurate morphology measurements of polystyrene standard particles on silicon substrate by electron tomography
Dolmatov et al. Electrochemical chromium-diamond coating
JP2987417B2 (en) In-situ preparation and observation method of thin film sample for transmission electron microscope and its apparatus
US11227742B1 (en) Electron microscopic specimen, and methods for preparing and performing microscopic examination of the same
Zhong et al. Automated 3D Block Preparation Procedure for Focused Ion Beam 3D Analyses
JP2021056098A (en) Method of manufacturing test piece and method for testing precipitates in steel
Bocker et al. Replica extraction method on nanostructured gold coatings and orientation determination combining SEM and TEM techniques
Hunter et al. Techniques Used in Electron Microscopy of Aluminum Alloys
Presser et al. Applications of focused ion beam machining to the characterization of carbide, nitride and oxide films
Asahina et al. A High quality EBSD pattern from a steel cord prepared with Cross Section Polisher: a newly developed cross-sectioning apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220905

R150 Certificate of patent or registration of utility model

Ref document number: 7141701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150