JP2020085446A - Estimation detection method of stress-induced luminescence amount - Google Patents

Estimation detection method of stress-induced luminescence amount Download PDF

Info

Publication number
JP2020085446A
JP2020085446A JP2018214226A JP2018214226A JP2020085446A JP 2020085446 A JP2020085446 A JP 2020085446A JP 2018214226 A JP2018214226 A JP 2018214226A JP 2018214226 A JP2018214226 A JP 2018214226A JP 2020085446 A JP2020085446 A JP 2020085446A
Authority
JP
Japan
Prior art keywords
amount
stress
luminescence
sample
light emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018214226A
Other languages
Japanese (ja)
Inventor
雄貴 石田
Yuki Ishida
雄貴 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Production Engineering Corp
Original Assignee
Toyota Production Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Production Engineering Corp filed Critical Toyota Production Engineering Corp
Priority to JP2018214226A priority Critical patent/JP2020085446A/en
Publication of JP2020085446A publication Critical patent/JP2020085446A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

To provide a method for estimating a desired amount of stress-induced luminescence by detecting each light separately under inevitable conditions that excitation light, fluorescence, and phosphorescence are coexisting due to continuous illumination of the excitation light.SOLUTION: An estimation detection method of stress-induced luminescence amount includes: a reference luminescence amount detection step of detecting first luminescence generated by irradiation without applying stress and second luminescence different from the first luminescence by irradiating excitation light to an application surface of a detection reference part where stress luminescent paint is applied in advance; a reference relativization ratio calculating step of calculating a reference relativization ratio value by dividing a detected amount of the second luminescence by a detected amount of the first luminescence; a sample luminescence amount detection step of detecting sample first luminescence and sample second luminescence different from the sample first luminescence generated by irradiating the excitation light to a measurement object coated with the stress luminescent paint after applying stress thereto; a luminance amount estimation step of calculating an estimated luminance amount by multiplying the detected amount of the sample first luminescence by the reference relativization ratio value; and a luminance difference calculation step of calculating a luminance difference amount from difference between the detected amount of the sample first luminescence and the estimated luminance amount.SELECTED DRAWING: Figure 5

Description

本発明は応力発光量推定検出方法に関し、特に応力発光塗料から発せられる光の波長の特性から応力発光量を推定する方法に関する。 The present invention relates to a method for estimating and detecting a stress-stimulated luminescence amount, and more particularly to a method for estimating a stress-stimulated luminescence amount from characteristics of wavelength of light emitted from a stress-stimulated luminescent paint.

構造体、部品等の計測対象に加わる応力量と、これに伴う歪み等の変形の可視化のため、応力発光材料(応力発光塗料)が計測対象に塗工されて用いられる。例えば応力発光材料として、MAl(M=Sr、CaまたはBa)に、発光中心イオンとしてEu等の希土類元素を添加した酸化物系セラミックス等が提案されている(特許文献1参照)。応力発光材料の発光に際し、応力発光材料を励起状態にするため、事前に励起光を照射する必要がある。 A stress-stimulated luminescent material (stress-stimulated luminescent paint) is applied to a measurement target in order to visualize the amount of stress applied to a measurement target such as a structure or a part and the deformation such as distortion accompanying the stress. For example, as a stress-stimulated luminescent material, oxide ceramics and the like have been proposed in which MAl 2 O 4 (M=Sr, Ca or Ba) is added with a rare earth element such as Eu as an emission center ion (see Patent Document 1). When the stress-stimulated luminescent material emits light, it is necessary to irradiate excitation light in advance in order to bring the stress-stimulated luminescent material into an excited state.

励起光の照射が十分ではなく、低い励起状態において応力が計測対象に加えられる場合、加えられた応力に対する発光量(輝度)は減少し、発光感度は低下する。このため、応力発光に基づいた定量化は難しく、連続した応力の計測はできない。 When irradiation of excitation light is not sufficient and stress is applied to the measurement target in a low excitation state, the amount of light emission (luminance) with respect to the applied stress decreases and the light emission sensitivity decreases. Therefore, quantification based on stress emission is difficult, and continuous stress cannot be measured.

さらに、応力発光材料(応力発光塗料)の励起状態を保持するため励起光を照射し続けた場合、励起光の照射量に応じて蛍光と燐光も不可避的に発生する。このような状態において発生した応力発光を検出したとしても、蛍光及び燐光の輝度が励起光と混ざり重畳された輝度として検出されてしまう。現状の手法では、肝心の応力発光の輝度のみを分離して検出することができなかった。 Furthermore, when the excitation light is continuously irradiated to maintain the excited state of the stress-stimulated luminescent material (stress-stimulated luminescent paint), fluorescence and phosphorescence are inevitably generated according to the irradiation amount of the excitation light. Even if the stress-stimulated luminescence generated in such a state is detected, the brightness of fluorescence and phosphorescence is detected as the brightness mixed with the excitation light and superimposed. With the current method, it was not possible to separate and detect only the intensity of stress-stimulated luminescence which is essential.

特開2011−127992号公報JP, 2011-127992, A

一連の経緯を踏まえ、発明者は、励起光と、蛍光、燐光の波長の違いに着目し、各光の分離及びそれらの検出に成功した。そこで、実際に取得した各光の輝度を利用して応力発光量を推定する方法を見いだした。 Based on a series of circumstances, the inventor succeeded in separating each light and detecting each light by paying attention to the difference in wavelength of excitation light, fluorescence, and phosphorescence. Therefore, we found a method of estimating the amount of stress-induced light emission by utilizing the brightness of each light that was actually acquired.

本発明は上記の点に鑑みなされたものであり、励起光の照射が連続して行われ、励起光と、蛍光、燐光の混在が不可避な条件下において、励起光と、蛍光、燐光を分離して検出することにより、所望の応力発光量を推定する方法を提供する。 The present invention has been made in view of the above points, and the excitation light, fluorescence, and phosphorescence are separated under the condition that irradiation with excitation light is continuously performed and excitation light, fluorescence, and phosphorescence are unavoidable. A method for estimating a desired stress-stimulated luminescence amount is provided.

すなわち、本発明の第1の形態の応力発光量推定検出方法は、予め応力発光塗料が塗布された検出基準部の塗布表面に応力発光塗料に対応する波長の照射励起光を照射し、検出基準部に応力を加えることなく応力発光塗料への照射励起光の照射により生じた第1発光を検出し、第1発光とは異なる応力発光塗料から生じた第2発光を検出する基準発光量検出工程と、第2発光の検出量を第1発光の検出量により除して基準相対化比値を算出する基準相対化比算出工程と、応力発光塗料が塗布された計測対象物の表面に励起光を照射し、計測対象物に応力が加えられた後に、励起光の照射により生じた試料第1発光を検出し、試料第1発光とは異なる応力発光塗料から生じた試料第2発光を検出する試料発光量検出工程と、試料第1発光の検出量に基準相対化比値を乗じて推定輝度量を算出する輝度量推定工程と、試料第1発光の検出量と推定輝度量との差より差分輝度量を算出する差分輝度算出工程とを備えることを特徴とする。 That is, the stress-stimulated luminescence amount estimation and detection method according to the first aspect of the present invention irradiates the application surface of the detection reference portion, to which the stress-stimulated luminescent coating is applied in advance, with the irradiation excitation light having the wavelength corresponding to the stress-stimulated luminescent coating. Step of detecting the first luminescence generated by irradiation of the stress-stimulated luminescent paint with irradiation excitation light without applying stress to the portion and detecting the second luminescence generated from the stress-stimulated luminescent paint different from the first luminescence And a reference relativization ratio calculating step of calculating the reference relativization ratio value by dividing the detected amount of the second luminescence by the detected amount of the first luminescence, and the excitation light on the surface of the measurement object coated with the stress-stimulated luminescent paint. Is applied to the object to be measured, and then the first light emission of the sample generated by the irradiation of the excitation light is detected, and the second light emission of the sample generated from the stress-luminescent paint different from the first light emission of the sample is detected. From the difference between the detected amount of sample first luminescence and the estimated brightness amount, a sample luminescence amount detection step, a brightness amount estimation step of calculating an estimated brightness amount by multiplying the detected amount of sample first luminescence by a reference relativization ratio value And a difference brightness calculating step of calculating a difference brightness amount.

第2の形態の応力発光量推定検出方法は、第2発光及び試料第2発光が、応力発光塗料への励起光の照射により生じた蛍光または燐光のいずれかもしくは両方を含んでいることを特徴とする。 The stress-stimulated luminescence amount estimation and detection method according to the second aspect is characterized in that the second luminescence and the sample second luminescence include either or both of fluorescence and phosphorescence generated by irradiation of the stress-stimulated luminescent material with excitation light. And

第3の形態の応力発光量推定検出方法は、計測対象物は、時間経過に伴って位置が変化することを特徴とする。 The stress-stimulated luminescence amount estimation and detection method according to the third aspect is characterized in that the position of the measurement object changes with time.

第4の形態の応力発光量推定検出方法は、第1発光及び試料第1発光と、第2発光及び試料第2発光とは、発光波長に応じて分光部により分光されることを特徴とする。 The stress emission amount estimation/detection method of the fourth aspect is characterized in that the first light emission and the sample first light emission, and the second light emission and the sample second light emission are dispersed by the spectroscopic unit according to the emission wavelength. ..

第5の形態の応力発光量推定検出方法は、分光部が、ダイクロイックミラーまたはビームスプリッタであることを特徴とする。 The stress emission amount estimation/detection method of the fifth aspect is characterized in that the spectroscopic unit is a dichroic mirror or a beam splitter.

第6の形態の応力発光量推定検出方法は、第1発光及び試料第1発光は第1カメラ部により検出され、第2発光及び試料第2発光は第2カメラ部により検出されることを特徴とする。 The stress emission amount estimation/detection method of the sixth aspect is characterized in that the first light emission and the sample first light emission are detected by the first camera unit, and the second light emission and the sample second light emission are detected by the second camera unit. And

本発明の応力発光量推定検出方法によると、励起光の照射が連続して行われ、励起光と、蛍光、燐光の混在が不可避な条件下であっても、励起光と、蛍光、燐光を分離して検出可能である。そして、基準相対化比値を用いて所望の応力発光量の推定を可能とすることができる。 According to the stress emission amount estimation and detection method of the present invention, the irradiation of the excitation light is continuously performed, and the excitation light, the fluorescence, and the phosphorescence are emitted even if the excitation light, the fluorescence, and the phosphorescence are inevitable. It can be detected separately. Then, it is possible to estimate a desired stress emission amount using the reference relativization ratio value.

基準発光量検出工程を示す工程模式図である。It is a process schematic diagram which shows a reference light emission amount detection process. 基準相対化比の算出を示すグラフである。It is a graph which shows calculation of standard relativization ratio. 試料発光量検出工程を示す工程模式図である。It is a process schematic diagram which shows a sample luminescence amount detection process. 試料発光量を示すグラフである。It is a graph which shows the light emission amount of a sample. 試料発光量と応力発光量の関係を示すグラフである。It is a graph which shows the relationship between a sample light-emission amount and a stress-luminescence amount. 分光部の近傍の装置を示す模式図である。It is a schematic diagram which shows the apparatus near a spectroscopic part. 処理部の構成を示すブロック図である。It is a block diagram which shows the structure of a process part. 応力発光量推定検出方法を説明するフローチャートである。It is a flow chart explaining a stress luminescence amount presumption detection method.

本発明の応力発光量推定検出方法の前提として、予め、使用する応力発光塗料(または応力発光材料)が用意され、当該応力発光塗料から後出の励起光を生じさせるための照射励起光が照射される。そして、応力発光塗料を用いた際の照射励起光の照射に伴う励起により生じる励起光と、それ以外の光の輝度が検出される。励起光以外の発光は、蛍光または燐光である。すなわち、本発明の特徴として、使用する応力発光塗料から生じる基準となる励起光とそれ以外の光の輝度が検出され、この励起光と、蛍光または燐光の輝度差、輝度の相対比が事後の計測対象の測定に用いられる。事前に使用する応力発光塗料毎に生じる光の種類と輝度の特徴が把握される。そして、実際に応力の発生に供された計測対象物に生じた輝度からの推定が可能となる。 As a premise of the stress-stimulated luminescence amount estimation and detection method of the present invention, a stress-stimulated luminescent coating (or stress-stimulated luminescent material) to be used is prepared in advance, and irradiation excitation light for irradiating later excitation light from the stress-stimulated luminescent coating is applied. To be done. Then, the excitation light generated by the excitation accompanying the irradiation of the irradiation excitation light when using the stress-stimulated luminescent paint and the brightness of the other light are detected. Light emission other than excitation light is fluorescence or phosphorescence. That is, as a feature of the present invention, the luminance of the excitation light and the light other than the reference that are generated from the stress-stimulated luminescent paint used is detected, and the luminance difference between this excitation light and fluorescence or phosphorescence, the relative ratio of the luminance is calculated after the fact. It is used to measure the measurement target. The characteristics of the type and brightness of the light generated for each stress-stimulated luminescent paint used in advance are understood. Then, it becomes possible to make an estimation from the brightness generated in the measurement object that is actually used for the generation of stress.

これより、図1の工程模式図を踏まえ本発明の応力発光量推定検出方法について順に説明する。予め応力発光塗料が塗布された塗布表面に対し、当該応力発光塗料に対応する波長の励起光が照射される。応力発光塗料(応力発光材料)は公知の入手可能な塗料であり、例えば、緑色に発光するユーロピウム(Eu)をドープし構造制御したアルミン酸ストロンチウム(SrAl)等である。これに、照射励起光(応力発光塗料を励起させるため波長域の光)として紫外線等の電磁波が照射される。 From here, the stress emission amount estimation and detection method of the present invention will be described in order based on the process schematic diagram of FIG. Excitation light having a wavelength corresponding to the stress-stimulated luminescent paint is applied to the coating surface to which the stress-stimulated luminescent paint has been applied in advance. The stress-stimulated luminescent coating material (stress-stimulated luminescent material) is a known and available coating material, and is, for example, strontium aluminate (SrAl 2 O 4 ) doped with europium (Eu) that emits green light and having its structure controlled. This is irradiated with electromagnetic waves such as ultraviolet rays as irradiation excitation light (light in the wavelength range for exciting the stress-stimulated luminescent paint).

図1(a)では、検出基準部10が用意される。検出基準部10は金属板、樹脂板等である。むろん、検出基準部10の形状、構造、材質、大きさは適宜である。後出の計測対象物11(図3参照)と同一としてもよい。図1(b)では、応力発光塗料13が検出基準部10の表面にスプレー12により塗布(塗工)される。図1(c)では、照射励起光15が塗布済みの検出基準部10に照射機14より照射される。そして、図1(d)では、照射励起光15の照射を受けた検出基準部10の応力発光塗料13から種々の波長の光が生じる。このとき生じた光は検出部16により検出され、処理部17において後述の演算処理等が実行される。図示から明らかなように、検出基準部10に対しては、応力は加えられない。応力発光塗料13から生じて検出される光は、応力発光を含まない光である。 In FIG. 1A, the detection reference unit 10 is prepared. The detection reference unit 10 is a metal plate, a resin plate, or the like. Of course, the shape, structure, material, and size of the detection reference unit 10 are appropriate. It may be the same as the measurement object 11 (see FIG. 3) described later. In FIG. 1B, the stress-stimulated luminescent paint 13 is applied (applied) to the surface of the detection reference portion 10 by the spray 12. In FIG. 1C, the irradiation excitation light 15 is applied from the irradiation device 14 to the applied detection reference portion 10. And in FIG.1(d), the light of various wavelengths generate|occur|produces from the stress-stimulated luminescent coating material 13 of the detection reference part 10 which the irradiation excitation light 15 irradiated. The light generated at this time is detected by the detection unit 16, and the processing unit 17 executes arithmetic processing and the like described later. As is clear from the drawing, no stress is applied to the detection reference portion 10. The light generated and detected from the stress-stimulated luminescent paint 13 is light that does not include stress-stimulated luminescence.

応力発光塗料への照射励起光の照射に際し検出される光は、図2のグラフの概形として示される。応力発光塗料への照射励起光の照射により、まず、照射励起光の照射により生じた第1発光(LA)が検出される。図示の第1発光(LA)は350nm付近の波長にピークを有する発光である。第1発光(LA)は検出量(DA)の輝度として検出される。さらに、当該第1発光(LA)とは異なる応力発光塗料から生じた第2発光(LB)も検出される。図示の第2発光(LB)は515nm付近の波長にピークを有する発光である。第2発光(LB)は検出量(DB)の輝度として検出される。こうして、当該応力発光塗料において特徴となる第1発光(LA)と第2発光(LB)が検出される(「基準発光量検出工程」)。 The light detected upon irradiation of the stress-stimulated luminescent material with irradiation excitation light is shown as a general shape in the graph of FIG. By irradiating the stress-stimulated luminescent paint with the irradiation excitation light, first, the first light emission (LA) generated by the irradiation with the irradiation excitation light is detected. The first light emission (LA) shown is light emission having a peak at a wavelength near 350 nm. The first light emission (LA) is detected as the brightness of the detection amount (DA). Further, the second luminescence (LB) generated from the stress-stimulated luminescent paint different from the first luminescence (LA) is also detected. The illustrated second light emission (LB) is light emission having a peak at a wavelength near 515 nm. The second light emission (LB) is detected as the brightness of the detection amount (DB). In this way, the first light emission (LA) and the second light emission (LB), which are characteristic of the stress-stimulated luminescent paint, are detected (“reference luminescence amount detection step”).

第2発光(LB)には何らの応力が加えられておらず、第2発光(LB)は単純に蛍光または燐光のいずれかの発光、もしくは蛍光と燐光の両方が混ざった発光である。第1発光(LA)と第2発光(LB)の分離、そして各発光の検出は、後述する。 No stress is applied to the second light emission (LB), and the second light emission (LB) is light emission of either fluorescence or phosphorescence, or light emission in which both fluorescence and phosphorescence are mixed. Separation of the first light emission (LA) and the second light emission (LB), and detection of each light emission will be described later.

図2のグラフから理解されるように、この例の応力発光塗料では、第1発光(LA)の輝度の検出量(DA)は、第2発光(LB)の輝度の検出量(DB)のよりも高い値である。そこで、後出の式(i)のとおり、第2発光(LB)の輝度の検出量(DB)は第1発光(LA)の輝度の検出量(DA)により除算される。この商として基準相対化比値(P)が算出される。第1発光(LA)と第2発光(LB)の波長位置とそれらのピークにおいて検出される輝度は応力発光塗料の種類毎に定まる。そうすると、基準相対化比値(P)も応力発光塗料の種類毎に定まる(「基準相対値化比算出工程」)。 As understood from the graph of FIG. 2, in the stress-stimulated luminescent paint of this example, the detected amount (DA) of the luminance of the first light emission (LA) is equal to the detected amount (DB) of the luminance of the second light emission (LB). Higher value than. Therefore, as in the following expression (i), the detected amount (DB) of the luminance of the second light emission (LB) is divided by the detected amount (DA) of the luminance of the first light emission (LA). A standard relativization ratio value (P) is calculated as this quotient. The wavelength positions of the first light emission (LA) and the second light emission (LB) and the brightness detected at their peaks are determined for each type of stress-luminescent paint. Then, the reference relativization ratio value (P) is also determined for each type of stress-stimulated luminescent paint (“reference relativity ratio calculation step”).

ここまでのまとめは次のとおりであり、式(i)が参照される。
LA:照射励起光の照射により生じた第1発光
DA:第1発光の輝度の検出量
LB:第1発光とは異なる発光の第2発光
(蛍光または燐光、蛍光及び燐光)
DB:第2発光の輝度の検出量
P:基準相対化比値
The summary up to this point is as follows, and the formula (i) is referred to.
LA: First light emission generated by irradiation of irradiation excitation light DA: Detected amount of brightness of first light emission LB: Second light emission of light emission different from first light emission
(Fluorescence or phosphorescence, fluorescence and phosphorescence)
DB: Detected amount of luminance of second emission P: Reference relativization ratio value

Figure 2020085446
Figure 2020085446

応力発光塗料の第1発光(LA)の輝度の検出量(DA)と第2発光(LB)の輝度の検出量(DB)の関係は、あくまで、基準相対化比値(P)として成立する相対的な関係で足りる。例えば、検量線を規定するような検出値の絶対量までは必要とされない。基準相対化比値(P)は、1回の測定により検出される第1発光(LA)の輝度の検出量(DA)と第2発光(LB)の輝度の検出量(DB)から算出してもよい。あるいは、複数回の測定により検出される第1発光(LA)の輝度の検出量(DA)と第2発光(LB)の輝度の検出量(DB)から算出して平均値としてもよい。こうして、当該応力発光塗料に対応する基準相対化比値(P)が規定される。 The relationship between the detected amount (DA) of the brightness of the first light emission (LA) and the detected amount (DB) of the brightness of the second light emission (LB) of the stress-stimulated luminescent paint is established as the reference relative ratio value (P). Relative relationship is sufficient. For example, the absolute amount of the detected value that defines the calibration curve is not required. The reference relativization ratio value (P) is calculated from the detected amount (DA) of the luminance of the first light emission (LA) and the detected amount (DB) of the luminance of the second light emission (LB) detected by one measurement. May be. Alternatively, the average value may be calculated from the detected amount (DA) of the luminance of the first light emission (LA) and the detected amount (DB) of the luminance of the second light emission (LB) detected by the plurality of measurements. In this way, the reference relativization ratio value (P) corresponding to the stress-stimulated luminescent paint is defined.

第1発光(LA)の輝度と第2発光(LB)の輝度について、計測毎のぶれ等は不可避である。また、励起光の照射条件においても、生じる輝度の量にも差異が生じ得る。しかしながら、検出量(DA)と検出量(DB)の具体的な検出値ではなく、相互間の相対値とする基準相対化比値(P)が算出されることから、検出時の個別の条件の差異は無視可能となり、次述の個別の計測に利用しやすくなる。換言すると、応力発光塗料(応力発光材料)毎に「固有の比」となる基準相対化比値(P)が求まる。 With respect to the luminance of the first light emission (LA) and the luminance of the second light emission (LB), it is inevitable that each measurement is blurred. Also, the amount of generated brightness may differ even under the irradiation condition of the excitation light. However, not the specific detection values of the detection amount (DA) and the detection amount (DB), but the reference relativization ratio value (P) that is a relative value between them is calculated. The difference can be ignored, which makes it easier to use for the individual measurements described below. In other words, the reference relativization ratio value (P), which is a “specific ratio”, is obtained for each stress-stimulated luminescent paint (stress-stimulated luminescent material).

次に、個別の対象の輝度の計測となる。前出の基準相対化比値(P)の算出に用いた応力発光塗料と同一の応力発光塗料が計測対象物の表面に塗布される。そして、塗布された表面に同様に励起光が照射される。その後、当該計測対象物に対して応力が加えられる。このとき、計測対象物には、圧壊、剪断、歪み変形等が生じる。 Next, it becomes the measurement of the brightness of each individual object. The same stress-stimulated luminescent paint used for calculating the reference relativization ratio value (P) described above is applied to the surface of the measurement target. Then, the coated surface is similarly irradiated with excitation light. Then, stress is applied to the measurement object. At this time, crushing, shearing, strain deformation, etc. occur in the measurement object.

そこで、計測対象物に対して応力が加えられた後、励起光の照射により当該計測対象物から生じた試料第1発光(La)が検出される。試料第1発光(La)は輝度の検出量(Da)として検出される。併せて、当該計測対象物から生じた試料第2発光(Lb)も検出される。試料第2発光(Lb)は輝度の検出量(Db)として検出される。ここまでが、「試料発光量検出工程」である。 Therefore, after the stress is applied to the measurement target, the first light emission (La) of the sample generated from the measurement target by the irradiation of the excitation light is detected. The first light emission (La) of the sample is detected as the detected amount (Da) of luminance. At the same time, the second light emission (Lb) of the sample generated from the measurement object is also detected. The second light emission (Lb) of the sample is detected as the detected amount of brightness (Db). The process up to this point is the “sample light emission amount detection step”.

図3は試料発光量検出工程の工程模式図である。図3(a)では、計測対象物11が用意される。例えば、電子部品等を実装する基板等である。図3(b)では、応力発光塗料13が計測対象物11の表面にスプレー12により塗布(塗工)される。図3(c)では、照射励起光15が塗布済みの検出基準部10に照射機14より照射される。続いて、図3(d)では、応力Fが計測対象物11の左右から加えられる(応力印加)。 FIG. 3 is a process schematic diagram of the sample emission amount detection process. In FIG. 3A, the measurement target 11 is prepared. For example, it is a board or the like on which electronic components and the like are mounted. In FIG. 3B, the stress-stimulated luminescent paint 13 is applied (applied) to the surface of the measuring object 11 by the spray 12. In FIG. 3C, the irradiation excitation light 15 is applied from the irradiation device 14 to the applied detection reference portion 10. Subsequently, in FIG. 3D, the stress F is applied from the left and right sides of the measurement target 11 (stress application).

そして、図3(e)では、照射励起光15の照射を受けた検出基準部10の応力発光塗料13から種々の波長の光が生じる。このとき生じた光は検出部16により検出され、処理部17において後述の演算処理等が実行される。図示から明らかなように、応力Fが計測対象物11に加えられている。応力発光塗料13から生じて検出される光は、応力発光も含む光である。 And in FIG.3(e), the light of various wavelengths generate|occur|produces from the stress-stimulated luminescent coating material 13 of the detection reference part 10 which was irradiated with the irradiation excitation light 15. The light generated at this time is detected by the detection unit 16, and the processing unit 17 executes arithmetic processing and the like described later. As is clear from the drawing, the stress F is applied to the measurement object 11. The light generated from the stress-stimulated luminescent paint 13 and detected is light including stress-stimulated luminescence.

試料第2発光(Lb)は、励起光に起因する試料第1発光(La)とは異なり、蛍光または燐光のいずれかの発光、もしくは蛍光と燐光の両方が混ざった発光である。さらに、これらに応力発光も含まれた輝度として検出される。 The sample second light emission (Lb) is different from the sample first light emission (La) caused by the excitation light and is either fluorescence or phosphorescence light emission, or light emission in which both fluorescence and phosphorescence are mixed. Further, these are detected as brightness including stress emission.

図4は試料第1発光(La)及び試料第2発光(Lb)を示す模式グラフである。応力発光塗料が塗布された計測対象物の表面に励起光が照射され、その後当該計測対処物に応力が加えられ試料第1発光(La)及び試料第2発光(Lb)が検出された状態である。この例の応力発光塗料は同一であるため、試料第1発光(La)は350nmにピークがあり、試料第2発光(Lb)は515nmにピークがある。そこで、試料第1発光(La)の輝度は検出量(Da)として検出される。同様に、試料第2発光(Lb)の輝度は検出量(Db)として検出される。 FIG. 4 is a schematic graph showing sample first light emission (La) and sample second light emission (Lb). Excitation light is applied to the surface of the measurement object to which the stress-stimulated luminescent coating is applied, stress is then applied to the measurement object, and the sample first emission (La) and sample second emission (Lb) are detected. is there. Since the stress-stimulated luminescent coating material in this example is the same, the sample first emission (La) has a peak at 350 nm, and the sample second emission (Lb) has a peak at 515 nm. Therefore, the luminance of the first light emission (La) of the sample is detected as the detection amount (Da). Similarly, the luminance of the second light emission (Lb) of the sample is detected as the detection amount (Db).

このグラフから理解されるように、輝度の検出量(Db)には、応力発光も含まれている。輝度の検出量(Db)にあっては、どこまでが蛍光または燐光の発光に起因する輝度であり、どこからが応力発光に起因する輝度であるのか、既に混ざって検出されるため個々に分離することは不可能である。 As can be understood from this graph, the amount of detected luminance (Db) also includes stress emission. In the detected amount of brightness (Db), the extent to which the brightness caused by the emission of fluorescence or phosphorescence and the brightness caused by the stress emission are detected. Is impossible.

この点に鑑み、応力発光量の推定のため、試料第1発光(La)の検出量(Da)に、前出の基準相対化比値(P)が乗算される。すると、試料第1発光(La)の検出量(Da)に応じた推定輝度量(Di)が算出される(「輝度量推定工程」)。式(ii)が参照される。すなわち、推定輝度量(Di)とは、応力発光塗料が塗布された計測対象物の表面に励起光が照射され、何らの応力が加えられなかったと仮定した場合の試料第2発光(Lb)の輝度の検出量(Db)となる。 In view of this point, the detection amount (Da) of the first light emission (La) of the sample is multiplied by the reference relativization ratio value (P) described above in order to estimate the stress light emission amount. Then, the estimated luminance amount (Di) corresponding to the detected amount (Da) of the first light emission (La) of the sample is calculated (“luminance amount estimation step”). Reference is made to formula (ii). That is, the estimated brightness amount (Di) is the second light emission (Lb) of the sample when it is assumed that the stress of the stress-stimulated luminescent material is applied to the surface of the measurement object and the stress is not applied. It becomes the detected amount (Db) of brightness.

そして、試料第1発光(Lb)の検出量(Db)と推定輝度量(Di)との差より差分輝度量(Dd)が算出される(「差分輝度算出工程」)。試料第1発光(Lb)の検出量(Db)から推定輝度量(Di)が引かれて差分輝度量(Dd)が求められる。式(iii)が参照される。こうして算出された差分輝度量(Dd)が、応力発光に起因する発光の輝度量と見なされる。 Then, the difference brightness amount (Dd) is calculated from the difference between the detected amount (Db) of the sample first light emission (Lb) and the estimated brightness amount (Di) (“difference brightness calculation step”). The estimated luminance amount (Di) is subtracted from the detected amount (Db) of the first light emission (Lb) of the sample to obtain the differential luminance amount (Dd). Reference is made to formula (iii). The difference brightness amount (Dd) thus calculated is regarded as the brightness amount of the light emission due to the stress light emission.

ここまでのまとめは次のとおりであり、式(ii)及び式(iii)が参照される。
La:試料第1発光
Da:試料第1発光の輝度の検出量
Lb:試料第2発光
(蛍光または燐光、蛍光及び燐光と、応力発光の混在)
P:基準相対化比値
Di:推定輝度量
Dd:差分輝度量
The summary up to this point is as follows, and the formula (ii) and the formula (iii) are referred to.
La: First emission of sample Da: Detected amount of luminance of first emission of sample Lb: Second emission of sample
(Fluorescence or phosphorescence, mixed fluorescence and phosphorescence, and stress emission)
P: reference relativization ratio value Di: estimated brightness amount Dd: difference brightness amount

Figure 2020085446
Figure 2020085446

Figure 2020085446
Figure 2020085446

この様子については図5のグラフとして示される。試料第2発光(Lb)の輝度の検出量(Db)は、前述の説明のとおり応力発光に起因する発光の輝度量も包含する。そこで、この検出量(Db)より、単純に蛍光、燐光の発光に起因する輝度量が差し引かれる。そのための便宜として、基準相対化比値(P)から導き出される推定輝度量(Di)が用いられる。それゆえ、たとえ検出量(Db)のみしか判明していないとしても、推定輝度量(Di)を用いて差分輝度量(Dd)が算出される。従前では応力発光に起因する輝度量が他の輝度量中に埋没して測定が困難であるとしても、間接的に差分量としての分離が可能となる。よって、同一の応力発光塗料を使用する限り、簡便に応力発光に起因する輝度量を把握することができ、当該輝度量より、計測対象物に加えられた応力の荷重を推定することができる。 This situation is shown as a graph in FIG. The detected amount (Db) of the luminance of the second light emission (Lb) of the sample also includes the amount of luminance of the light emission caused by the stress light emission as described above. Therefore, the amount of luminance caused by fluorescence or phosphorescence is simply subtracted from the detected amount (Db). As a convenience for that purpose, the estimated brightness amount (Di) derived from the reference relativization ratio value (P) is used. Therefore, even if only the detection amount (Db) is known, the difference luminance amount (Dd) is calculated using the estimated luminance amount (Di). Even if the amount of luminance due to stress emission is buried in another amount of luminance and measurement is difficult in the past, it is possible to indirectly separate as a difference amount. Therefore, as long as the same stress-stimulated luminescent paint is used, the amount of brightness caused by stress-stimulated luminescence can be easily grasped, and the load of the stress applied to the measurement object can be estimated from the amount of brightness.

このように、本発明の応力発光量推定検出方法を使用すると、計測対象物に対し励起光を連続して照射する場合であっても、肝心の試料第2発光(Lb)の輝度の検出量(Db)の検出は可能であり、しかも推定輝度量(Di)も判明していることから、容易に応力発光に起因する差分輝度量(Dd)が算出可能である。 As described above, when the stress luminescence amount estimation/detection method of the present invention is used, even if the measurement object is continuously irradiated with the excitation light, the detection amount of the luminance of the sample second light emission (Lb) is important. Since (Db) can be detected and the estimated brightness amount (Di) is known, the difference brightness amount (Dd) due to stress emission can be easily calculated.

そうすると、時間経過に伴って計測対象物の位置が変化する場合であっても、計測対象物に対する照射励起光の照射は計測対象物に対して追従可能である。例えば、電子基板が他の部品にねじ等により固定されて搬送される際、搬送中の当該電子基板の固定箇所における応力の影響把握に好都合である。 Then, even when the position of the measurement target changes with time, the irradiation of the irradiation excitation light with respect to the measurement target can follow the measurement target. For example, when the electronic board is fixed to another component with screws or the like and conveyed, it is convenient for grasping the influence of stress at the fixing position of the electronic board during conveyance.

第1発光(LA)及び試料第1発光(La)と、第2発光(LB)及び試料第2発光(Lb)は、一連の説明及び図示から明らかであるように、発生要因の相違から、それぞれ異なる波長帯に存在する。そこで、発光波長に応じて分光部20により、各波長に分光される。ここで、分光部20には、ダイクロイックミラー、または、ビームスプリッタ等の公知の分光用の光学機器が用いられる。 The first light emission (LA) and the sample first light emission (La), and the second light emission (LB) and the sample second light emission (Lb) are different from each other in the generation factors, as is apparent from the series of descriptions and drawings. They exist in different wavelength bands. Therefore, the light is split into each wavelength by the spectroscopic unit 20 according to the emission wavelength. Here, as the spectroscopic unit 20, a known spectroscopic optical device such as a dichroic mirror or a beam splitter is used.

図6からわかるように、塗布後の応力発光塗料へ励起光が照射され、当該応力発光塗料から発光が生じる。生じた発光は分光部20により、発光波長に応じて分光される。例えば、分光部20がダイクロイックミラーの場合、「青〜紫〜紫外線」の波長帯の発光がダイクロイックミラーにより反射される。それら以外の発光は当該ダイクロイックミラーを透過する。ビームスプリッタの場合であっても、特定の発光波長に応じて、反射と透過が制御される。 As can be seen from FIG. 6, the stress-stimulated luminescent paint after application is irradiated with excitation light, and the stress-stimulated luminescent paint emits light. The emitted light is split by the spectroscopic unit 20 according to the emission wavelength. For example, when the spectroscopic unit 20 is a dichroic mirror, the light emission in the wavelength band of "blue-purple-ultraviolet" is reflected by the dichroic mirror. Light emission other than those is transmitted through the dichroic mirror. Even in the case of a beam splitter, reflection and transmission are controlled according to a specific emission wavelength.

ダイクロイックミラーにより反射される発光波長は、第1発光(LA)及び試料第1発光(La)に対応する。そこで、図示のとおり、第1発光(LA)及び試料第1発光(La)は第1カメラ部31により検出される。同時に、第2発光(LB)及び試料第2発光(Lb)は第2カメラ部32により検出される。第1カメラ部31と第2カメラ部32の両方が備えられることにより同時に相互の発光が検出され、処理効率が高まる。第1カメラ部31と第2カメラ部32には、公知のパーソナルコンピュータ等の処理装置(図示せず)が接続され、前述の各種の演算が実行される。 The emission wavelength reflected by the dichroic mirror corresponds to the first emission (LA) and the sample first emission (La). Therefore, as illustrated, the first light emission (LA) and the sample first light emission (La) are detected by the first camera unit 31. At the same time, the second light emission (LB) and the sample second light emission (Lb) are detected by the second camera unit 32. Since both the first camera unit 31 and the second camera unit 32 are provided, mutual light emission is detected at the same time, and the processing efficiency is improved. A processing device (not shown) such as a known personal computer is connected to the first camera unit 31 and the second camera unit 32, and the above-described various calculations are executed.

これより、図7のブロック図を用い処理部17の構成を説明する。処理部17は、ハードウェア的にCPU、ROM、RAM、記憶部により構成される。その他にメインメモリ、LSI等も含まれる。またソフトウェア的に、メインメモリにロードされた応力発光量推定検出プログラム等により実現される。処理部17は、パーソナルコンピュータ(PC)、メインフレーム、ワークステーション、クラウドコンピューティングシステム等、種々の電子計算機(計算リソース)を用いて実現できる。また、後出の他の装置内への組み込み可能な装置としても設計される。 Now, the configuration of the processing unit 17 will be described with reference to the block diagram of FIG. 7. The processing unit 17 is composed of a CPU, a ROM, a RAM, and a storage unit in terms of hardware. In addition, main memory, LSI, etc. are also included. Further, it is realized by software by a stress emission amount estimation/detection program loaded in the main memory. The processing unit 17 can be realized by using various electronic computers (computation resources) such as a personal computer (PC), a mainframe, a workstation, and a cloud computing system. It is also designed as a device that can be incorporated into other devices described later.

処理部17の各機能部をソフトウェアにより実現する場合、処理部17は各機能を実現するソフトウェアであるプログラムの命令を実行することで実現される。このプログラムを格納する記録媒体は、「一時的でない有形の媒体」、例えば、CD、DVD、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、このプログラムは、当該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して処理部17等のコンピュータに供給されてもよい。 When each functional unit of the processing unit 17 is implemented by software, the processing unit 17 is implemented by executing a program instruction that is software that implements each function. As a recording medium for storing this program, a “non-transitory tangible medium”, for example, a CD, a DVD, a semiconductor memory, a programmable logic circuit, or the like can be used. The program may be supplied to a computer such as the processing unit 17 via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.

処理部17における各種の記憶部は、ROM102、RAM103であり、HDDまたはSSD等の公知の記憶装置(図示せず)である。また、演算処理を実行する各機能部はCPU101等の演算素子である。処理部17は、詳細には、基準発光量検出部110、基準相対化比算出部120、試料発光量検出部130、輝度量推定部140、差分輝度算出部150を備える。さらに、処理部17は入力部104、出力部105、表示部106等を備える。表示部106は、公知のディスプレイ(液晶表示装置、有機EL表示装置等)である。 The various storage units in the processing unit 17 are the ROM 102 and the RAM 103, which are known storage devices (not shown) such as HDD or SSD. Each functional unit that executes arithmetic processing is an arithmetic element such as the CPU 101. In detail, the processing unit 17 includes a reference light emission amount detection unit 110, a reference relativization ratio calculation unit 120, a sample light emission amount detection unit 130, a brightness amount estimation unit 140, and a difference brightness calculation unit 150. Further, the processing unit 17 includes an input unit 104, an output unit 105, a display unit 106 and the like. The display unit 106 is a known display (a liquid crystal display device, an organic EL display device, etc.).

入力部104と出力部105は通信(送受信)用のインターフェース、バッファ等である。第1カメラ部31及び第2カメラ部32が検出した検出信号は入力部104に入力される。その後、D/A変換回路(図示せず)を経て、CPU101、RAM103に送信される。出力部105からは、ディスプレイ等の表示装置である表示部106へ、CPU101による演算処理の結果等が表示される。 The input unit 104 and the output unit 105 are a communication (transmission/reception) interface, a buffer, and the like. The detection signals detected by the first camera unit 31 and the second camera unit 32 are input to the input unit 104. After that, it is transmitted to the CPU 101 and the RAM 103 via a D/A conversion circuit (not shown). From the output unit 105, the result of arithmetic processing by the CPU 101 is displayed on the display unit 106 which is a display device such as a display.

次に、図8のフローチャートを用い処理部17における応力発光量推定検出方法の流れを説明する。本発明の応力発光量推定検出方法の処理は、基準発光量検出ステップ(S110)、基準相対化比算出ステップ(S120)、試料発光量検出ステップ(S130)、輝度量推定ステップ(S140)、差分輝度算出ステップ(S150)の順に処理が進む。
基準相対化比値(P)、推定輝度量(Di)、差分輝度量(Dd)等の各ステップにおいて取得されたデータ、算出、演算等の結果はRAM103に記憶される。
Next, the flow of the stress luminescence amount estimation and detection method in the processing unit 17 will be described using the flowchart of FIG. The process of the stress emission amount estimation/detection method of the present invention includes a reference emission amount detection step (S110), a reference relativization ratio calculation step (S120), a sample emission amount detection step (S130), a luminance amount estimation step (S140), and a difference. The process proceeds in the order of the brightness calculation step (S150).
The data obtained in each step such as the reference relativization ratio value (P), the estimated brightness amount (Di), the difference brightness amount (Dd), and the results of calculation, calculation, etc. are stored in the RAM 103.

基準発光量検出部110及び基準発光量検出ステップ(S110)における処理は、基準発光量検出工程の説明に対応する。基準相対化比算出部120及び基準相対化比算出ステップ(S120)における処理は、基準相対化比算出工程の説明に対応する。試料発光量検出部130及び試料発光量検出ステップ(S130)における処理は、試料発光量検出工程の説明に対応する。輝度量推定部140及び輝度量推定ステップ(S140)における処理は輝度量推定工程の説明に対応する。差分輝度算出部150及び差分輝度算出ステップ(S150)における処理は、差分輝度算出工程の説明に対応する。なお、各部並びに各ステップにおける具体的な処理は、前述の各工程に対応するため、詳細を省略する。 The processing in the reference light emission amount detection unit 110 and the reference light emission amount detection step (S110) corresponds to the description of the reference light emission amount detection step. The processing in the reference relativization ratio calculation unit 120 and the reference relativity ratio calculation step (S120) corresponds to the description of the reference relativity ratio calculation step. The processing in the sample emission amount detection unit 130 and the sample emission amount detection step (S130) corresponds to the description of the sample emission amount detection step. The processing in the brightness amount estimating unit 140 and the brightness amount estimating step (S140) corresponds to the description of the brightness amount estimating step. The processing in the difference brightness calculation unit 150 and the difference brightness calculation step (S150) corresponds to the description of the difference brightness calculation step. It should be noted that specific processing in each unit and each step corresponds to each of the above-described steps, and thus detailed description thereof will be omitted.

本発明の応力発光量推定検出方法は、励起光の照射が連続して行われ、励起光と、蛍光、燐光の混在が不可避な条件下において各発光の分離と検出を可能にしたため、より正確に応力発光に相当する輝度を推定できる。そこで、従来、困難とされた応力発光に相当する輝度の検出が可能となり、作業効率の向上に寄与できる。 The method for estimating and detecting the amount of stress-induced luminescence of the present invention is more accurate because the irradiation of the excitation light is continuously performed and the separation and detection of each luminescence are possible under the condition that the mixture of the excitation light, fluorescence and phosphorescence is unavoidable. The luminance corresponding to stress emission can be estimated. Therefore, it becomes possible to detect the luminance corresponding to the stressed light emission, which has been conventionally difficult, and it is possible to contribute to the improvement of work efficiency.

LA 第1発光
DA 第1発光の輝度の検出量
LB 第2発光
DB 第2発光の輝度の検出量
P 基準相対化比値
La 試料第1発光
Da 試料第1発光の輝度の検出量
Lb 試料第2発光
Db 試料第2発光の輝度の検出量
Di 推定輝度量
Dd 差分輝度量
10 検出基準部
11 計測対象物
12 スプレー
13 応力発光塗料
14 照射機
15 照射励起光
16 検出部
17 処理部
20 分光部
31 第1カメラ部
32 第2カメラ部
101 CPU
102 ROM
103 RAM
104 入力部
105 出力部
106 表示部
LA 1st light emission DA 1st light emission luminance detection amount LB 2nd light emission DB 2nd light emission luminance detection amount P Reference relativization ratio value La Sample 1st light emission Da sample 1st light emission luminance detection amount Lb Sample light 2 Luminous emission Db Detected amount of luminance of second luminescence Di Estimated luminance amount Dd Difference luminance amount 10 Detection reference part 11 Measurement object 12 Spray 13 Stress luminescent paint 14 Irradiator 15 Irradiation excitation light 16 Detecting part 17 Processing part 20 Spectral part 31 1st camera section 32 2nd camera section 101 CPU
102 ROM
103 RAM
104 input unit 105 output unit 106 display unit

Claims (6)

予め応力発光塗料が塗布された検出基準部の塗布表面に前記応力発光塗料に対応する波長の照射励起光を照射し、前記検出基準部に応力を加えることなく前記応力発光塗料への前記照射励起光の照射により生じた第1発光(LA)を検出し、前記第1発光(LA)とは異なる前記応力発光塗料から生じた第2発光(LB)を検出する基準発光量検出工程と、
前記第2発光(LB)の検出量(DB)を前記第1発光(LA)の検出量(DA)により除して基準相対化比値(P)を算出する基準相対化比算出工程と、
前記応力発光塗料が塗布された計測対象物の表面に前記照射励起光を照射し、前記計測対象物に応力が加えられた後に、前記照射励起光の照射により生じた試料第1発光(La)を検出し、前記試料第1発光(La)とは異なる前記応力発光塗料から生じた試料第2発光(Lb)を検出する試料発光量検出工程と、
前記試料第1発光(La)の検出量(Da)に前記基準相対化比値(P)を乗じて推定輝度量(Di)を算出する輝度量推定工程と、
前記試料第1発光(Lb)の検出量(Db)と前記推定輝度量(Di)との差より差分輝度量(Dd)を算出する差分輝度算出工程と
を備えることを特徴とする応力発光量推定検出方法。
Irradiation excitation light of a wavelength corresponding to the stress-stimulated luminescent material is applied to the coating surface of the detection reference portion coated with the stress-stimulated luminescent material in advance, and the irradiation excitation of the stress-stimulated luminescent material is performed without applying stress to the detection reference portion. A reference luminescence amount detecting step of detecting a first luminescence (LA) generated by light irradiation and detecting a second luminescence (LB) generated from the stress-stimulated luminescent paint different from the first luminescence (LA);
A reference relativization ratio calculation step of calculating a reference relativity ratio value (P) by dividing the detected amount (DB) of the second light emission (LB) by the detected amount (DA) of the first light emission (LA),
Sample first light emission (La) generated by irradiation of the irradiation excitation light after irradiating the irradiation excitation light on the surface of the measurement object coated with the stress-stimulated luminescent paint and applying stress to the measurement object And a sample luminescence amount detection step of detecting a sample second luminescence (Lb) generated from the stress-stimulated luminescent paint different from the sample first luminescence (La).
A brightness amount estimating step of calculating an estimated brightness amount (Di) by multiplying the detected amount (Da) of the first light emission (La) of the sample by the reference relativization ratio value (P);
A difference luminance calculation step of calculating a difference luminance amount (Dd) from a difference between the detected amount (Db) of the sample first light emission (Lb) and the estimated luminance amount (Di). Estimated detection method.
前記第2発光(LB)及び前記試料第2発光(Lb)が、前記応力発光塗料への前記照射励起光の照射により生じた蛍光または燐光のいずれかもしくは両方を含んでいる請求項1に記載の応力発光量推定検出方法。 The second emission (LB) and the second emission (Lb) of the sample include either or both of fluorescence and phosphorescence generated by the irradiation of the stress-stimulated luminescent material with the irradiation excitation light. Method for estimating and detecting the amount of stress-induced luminescence. 前記計測対象物は、時間経過に伴って位置が変化する請求項1または2に記載の応力発光量推定検出方法。 The stress emission amount estimation and detection method according to claim 1, wherein the position of the measurement object changes with time. 前記第1発光(LA)及び前記試料第1発光(La)と、前記第2発光(LB)及び前記試料第2発光(Lb)とは、発光波長に応じて分光部により分光される請求項1ないし3のいずれか1項に記載の応力発光量推定検出方法。 The first light emission (LA) and the first light emission (La) of the sample, and the second light emission (LB) and the second light emission (Lb) of the sample are dispersed by a spectroscopic unit according to an emission wavelength. The stress-stimulated luminescence amount estimation and detection method according to any one of 1 to 3. 前記分光部が、ダイクロイックミラーまたはビームスプリッタである請求項4に記載の応力発光量推定検出方法。 The stress emission amount estimation and detection method according to claim 4, wherein the spectroscopic unit is a dichroic mirror or a beam splitter. 前記第1発光(LA)及び前記試料第1発光(La)は第1カメラ部により検出され、前記第2発光(LB)及び前記試料第2発光(Lb)は第2カメラ部により検出される請求項1ないし5のいずれか1項に記載の応力発光量推定検出方法。 The first light emission (LA) and the sample first light emission (La) are detected by a first camera unit, and the second light emission (LB) and the sample second light emission (Lb) are detected by a second camera unit. The stress emission amount estimation/detection method according to any one of claims 1 to 5.
JP2018214226A 2018-11-14 2018-11-14 Estimation detection method of stress-induced luminescence amount Pending JP2020085446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018214226A JP2020085446A (en) 2018-11-14 2018-11-14 Estimation detection method of stress-induced luminescence amount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018214226A JP2020085446A (en) 2018-11-14 2018-11-14 Estimation detection method of stress-induced luminescence amount

Publications (1)

Publication Number Publication Date
JP2020085446A true JP2020085446A (en) 2020-06-04

Family

ID=70907439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018214226A Pending JP2020085446A (en) 2018-11-14 2018-11-14 Estimation detection method of stress-induced luminescence amount

Country Status (1)

Country Link
JP (1) JP2020085446A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198079A (en) * 2000-01-19 2001-07-24 Fuji Photo Film Co Ltd Fluorescent diagnostic device
JP2003506698A (en) * 1999-08-06 2003-02-18 ユニバーシティ・オブ・フロリダ Luminescent brittle coatings in strain analysis
WO2017094188A1 (en) * 2015-12-04 2017-06-08 株式会社日立製作所 Skin glycation inspection device, skin glycation inspection device system, and skin glycation inspection method
CN108680288A (en) * 2018-03-27 2018-10-19 天津大学 A method of utilizing the mechanical response of organic mechanoluminescence material tests mechanical part

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003506698A (en) * 1999-08-06 2003-02-18 ユニバーシティ・オブ・フロリダ Luminescent brittle coatings in strain analysis
JP2001198079A (en) * 2000-01-19 2001-07-24 Fuji Photo Film Co Ltd Fluorescent diagnostic device
WO2017094188A1 (en) * 2015-12-04 2017-06-08 株式会社日立製作所 Skin glycation inspection device, skin glycation inspection device system, and skin glycation inspection method
CN108680288A (en) * 2018-03-27 2018-10-19 天津大学 A method of utilizing the mechanical response of organic mechanoluminescence material tests mechanical part

Similar Documents

Publication Publication Date Title
JP6654159B2 (en) Distortion amount calculation device, distortion amount calculation method, and distortion amount calculation program
CA2897690C (en) Systems and methods for detecting crack growth
TWI391645B (en) Differential wavelength photoluminescence for non-contact measuring of contaminants and defects located below the surface of a wafer or other workpiece
Fries et al. Statistical treatment of photoluminescence quantum yield measurements
EP2820398B1 (en) Apparatus for time-resolved fluorescence imaging and pulse shaping
JP6122953B2 (en) System and method for residual analysis of images
RU2012114864A (en) METHOD FOR LIGHT DISTRIBUTION MANAGEMENT IN A SPACE INCLUDING MULTIPLE INSTALLED LIGHT SOURCES AND AN EXTERNAL LIGHT SOURCE
Kubrin Nanophosphor coatings: Technology and applications, opportunities and challenges
JP2018163083A (en) Strain measuring device, method for strain measurement, and strain measuring program
JP2020085446A (en) Estimation detection method of stress-induced luminescence amount
JP2019002702A (en) Distortion amount calculation device, distortion amount calculation method, and distortion amount calculation program
CN114424046A (en) Inspection method, program, and inspection system
JP6651480B2 (en) Measuring system, measuring method and measuring program
US8933402B2 (en) Sample analysis apparatus and sample analysis program
US8481973B2 (en) Fluorescent estimating apparatus, fluorescent estimating method, and fluorescent measuring apparatus
JP2848086B2 (en) Flux residue measurement method on luminescent printed circuit board
KR20200080289A (en) Determining the specific gravity of the sample
US11733503B2 (en) System and a method for generating output image data and a microscope
JP7282307B2 (en) Mechanoluminescent data processing device, mechanoluminescent data processing method, mechanoluminescent measuring device, and mechanoluminescent test system
JP2020176903A (en) Device for measuring background data, device for measuring stress light emission and method for measuring background data
Dubrovin et al. Positive streamers in air of varying density: experiments on the scaling of the excitation density
Glover et al. Improved threat identification using tonemapping of high-dynamic-range X-ray images
JP7345939B2 (en) State identification device, state identification method, and state identification program
JPWO2020059727A1 (en) Substance identification device, substance identification method and substance identification program
JP2020187093A (en) Imaging method and imaging system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230307