JP2020084977A - Electromagnetic damper of uniaxial control magnetic bearing - Google Patents

Electromagnetic damper of uniaxial control magnetic bearing Download PDF

Info

Publication number
JP2020084977A
JP2020084977A JP2018231187A JP2018231187A JP2020084977A JP 2020084977 A JP2020084977 A JP 2020084977A JP 2018231187 A JP2018231187 A JP 2018231187A JP 2018231187 A JP2018231187 A JP 2018231187A JP 2020084977 A JP2020084977 A JP 2020084977A
Authority
JP
Japan
Prior art keywords
radial
magnetic bearing
electromagnetic damper
magnetic
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018231187A
Other languages
Japanese (ja)
Inventor
正晴 三木
Masaharu Miki
正晴 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EM OYO GIJUTSU KENKYUSHO KK
Original Assignee
EM OYO GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EM OYO GIJUTSU KENKYUSHO KK filed Critical EM OYO GIJUTSU KENKYUSHO KK
Priority to JP2018231187A priority Critical patent/JP2020084977A/en
Publication of JP2020084977A publication Critical patent/JP2020084977A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/048Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps comprising magnetic bearings

Abstract

To provide a magnetic bearing system capable of appropriately supporting change in parameters of a supported body for different supported bodies without needing design of a magnetic bearing individually, to rotate a large-sized supported body stably.SOLUTION: A magnetic bearing system is configured such that a certain basic magnetic bearing unit is set as a reference, and a radial passive magnetic bearing is set and added thereto according to change in parameters of a supported body. A radial electromagnetic damper is added to increase the damping capacity of the radial passive magnetic bearing.SELECTED DRAWING: Figure 3

Description

本発明は一軸制御型磁気軸受の電磁ダンパーに関するものである。 The present invention relates to an electromagnetic damper of a uniaxial control type magnetic bearing.

磁気軸受を応用した製品で、量産品として最も成功している例として、ターボ分子ポンプがある。それは、磁気軸受の応用として比較的簡単な仕様でありながら、従来のボールベアリングに対して、その特徴である清浄(潤滑オイル必要なし)、超低振動(ロータとステータが無接触)、高信頼性(腐食性ガスに強い)というセールスポイントをもっとも活かせるアプリケーションのためである。実際、半導体やフラットパネル等の製造用のほとんどすべてのエッチング装置に大型の磁気軸受式ターボ分子ポンプ(2,000L/S以上)が採用されている。しかしながら、磁気軸受はボールベアリングに比べて高価格なため、低価格帯の小型のターボ分子ポンプ(500L/S以下)には採用が進んでいないのが現状である。一部の高性能電子顕微鏡には磁気軸受式ターボ分子ポンプが採用されているが、普及型電子顕微鏡や質量分析機器等にはセラミック製のボールベアリングを採用した小型のターボ分子ポンプが標準採用されている。また、エッチング装置とは異なり、腐食性のガスを流さないPVD装置等には、小型のターボ分子ポンプばかりでなく、中型のターボ分子ポンプ(500L/S〜2000L/S)も価格の安いボールベアリング式ターボ分子ポンプが採用されている。 A turbo molecular pump is the most successful mass-produced product that uses magnetic bearings. It is a relatively simple application for magnetic bearings, but its features are clean (no lubrication oil required), ultra-low vibration (no contact between rotor and stator) and high reliability compared to conventional ball bearings. This is because it is an application that can make the most of the selling point of high resistance (strong against corrosive gas). In fact, large magnetic bearing type turbo molecular pumps (2,000 L/S or more) are used in almost all etching apparatuses for manufacturing semiconductors, flat panels and the like. However, since magnetic bearings are more expensive than ball bearings, the current situation is that they have not been adopted for small turbo molecular pumps (500 L/S or less) in the low price range. A magnetic bearing type turbo molecular pump is used in some high-performance electron microscopes, but a small turbo molecular pump that uses a ceramic ball bearing is standardly used in popular electron microscopes and mass spectrometers. ing. Also, unlike the etching equipment, not only small turbo molecular pumps but also medium-sized turbo molecular pumps (500L/S to 2000L/S) are used for PVD equipment that does not flow corrosive gas. Type turbo molecular pump is adopted.

低価格の磁気軸受を実現するための先行技術をして以下のようなものがある。
Prior art for realizing a low-priced magnetic bearing includes the following.

特公平6−46036号公報 この発明は、径方向の磁気軸受の一部を制御電磁石を用いず、永久磁石を利用した受動方式としたことを特徴とする軸流分子ポンプに関するものである。
特開2010−230161 この発明は、一つの径方向受動型磁気軸受のみを被支持体のパラメータの変化に応じて設計変更することで、多様な被支持体に対応できる磁気軸受システムを特徴とする軸流分子ポンプに関するものである。
Japanese Patent Publication No. 6-46036 The present invention relates to an axial flow molecular pump characterized in that a part of a radial magnetic bearing is of a passive type using a permanent magnet without using a control electromagnet.
JP, 2010-230161, A The present invention relates to an axial flow molecular pump characterized by a magnetic bearing system capable of supporting a variety of supported objects, by changing the design of only one radial passive magnetic bearing according to changes in the parameters of the supported object. It is a thing.

この報告書は、軸方向能動型磁気軸受以外の2つの径方向磁気軸受を受動型とした場合でも、適当な受動ダンパーを付加することにより、高速回転まで安定な磁気軸受システムになりうることを実験データで説明しているものである。 This report shows that even if two radial magnetic bearings other than the axial active magnetic bearing are passive type, a magnetic bearing system that is stable up to high speed rotation can be obtained by adding an appropriate passive damper. It is explained by the experimental data.

大型のターボ分子ポンプ、コンプレッサー、その他種々の工業製品に応用されている完全能動制御型磁気軸受(一般に5軸制御型磁気軸受と呼ばれている磁気軸受)に対して、その価格低減を目的に、磁気軸受の一部に永久磁石を応用した受動型磁気軸受を採用した先行技術はあるが、その適用範囲は特定の小型ターボ分子ポンプに限定されている。その原因は2つあり、
1)完全能動制御型磁気軸受と違い、被支持体(ロータ)のパラメータ(重量、重心位置、慣性モーメント、慣性モーメント比、定常回転数、構造体の共振周波数等)の変更に対して自在に対応できず、異なる被支持体に対して、個別に磁気軸受の設計が必要となる事と
2)受動ダンパーでは、ロータの振れ回り現象への減衰能を大きくすることが困難なため、大型の被支持体を安定に回転させることが容易でない事とである。
これらの原因1)と2)を解消することが、受動型磁気軸受を利用する製品を拡大する課題となる。
Aiming to reduce the price of fully active control type magnetic bearings (generally called 5-axis control type magnetic bearings) that are used in large turbo molecular pumps, compressors, and various other industrial products. Although there is a prior art in which a passive magnetic bearing in which a permanent magnet is applied to a part of the magnetic bearing is adopted, the applicable range is limited to a specific small turbo molecular pump. There are two causes,
1) Unlike the fully active control type magnetic bearing, it is free to change the parameters (weight, center of gravity position, moment of inertia, moment of inertia ratio, steady speed, resonance frequency of structure, etc.) of the supported object (rotor). It is not possible to cope with this, and it is necessary to design the magnetic bearing individually for different supported bodies. 2) It is difficult to increase the damping capacity for whirling phenomenon of the rotor with a passive damper, so it is difficult That is, it is not easy to stably rotate the supported body.
Eliminating these causes 1) and 2) is an issue for expanding the products that use passive magnetic bearings.

上記1)の課題を解消するために、先行特許文献2に示されているように、ある基本となる磁気軸受ユニットを基準にし、それに径方向受動型磁気軸受を被支持体のパラメータの変化に応じて設定付加してゆく磁気軸受システムとすることで対応する。
上記2)の課題を解消するため、径方向受動型磁気軸受の減衰能を増大させるために、径方向受動型磁気軸受に電磁ダンパーを付加するとともに、コストアップを避けるために、その径方向電磁ダンパーを径方向位置センサーとあるいは軸方向能動型磁気軸受の軸方向電磁石と兼用できる構造とする。
In order to solve the above-mentioned problem 1), as shown in the prior patent document 2, a certain basic magnetic bearing unit is used as a reference, and a radial passive magnetic bearing is used for changing the parameter of the supported body. This will be handled by using a magnetic bearing system with additional settings depending on the situation.
In order to solve the problem of 2) above, an electromagnetic damper is added to the radial passive magnetic bearing in order to increase the damping capacity of the radial passive magnetic bearing, and in order to avoid cost increase, the radial electromagnetic The damper can be used as a radial position sensor or as an axial electromagnet of an axial active magnetic bearing.

磁気軸受ユニット部の標準化が可能になり、量産効果で磁気軸受の価格を低減できる(従来型のボールベアリングに近づく)ことにより、磁気軸受の特徴である清浄(潤滑オイル必要なし)、超低振動(ロータとステータが無接触で、実効的に低剛性)、高信頼性(腐食性ガスに強い)等を必要とするが高価格では採用が困難であった応用製品、例えば、大型と小型ターボ分子ポンプの中間帯のターボ分子ポンプあるいは小型ではあるが、高ガス負荷タイプの質量分析装置用スプリットフロー型ターボ分子ポンプ等の軸受に採用可能となる。 The magnetic bearing unit can be standardized, and the price of the magnetic bearing can be reduced due to mass production effects (close to conventional ball bearings), so the magnetic bearing features clean (no lubrication oil required) and ultra-low vibration. Application products that require high reliability (strong resistance to corrosive gases), etc. (no contact between rotor and stator, effective low rigidity), but difficult to adopt at high prices, such as large and small turbo It can be used as a bearing for a turbo molecular pump in the middle zone of the molecular pump or a small-sized, high-gas load split-flow turbo molecular pump for a mass spectrometer.

本発明の実施例の径方向位置センサー兼径方向電磁ダンパー説明図An explanatory view of a radial position sensor and a radial electromagnetic damper according to an embodiment of the present invention 本発明の実施例の軸方向能動型磁気軸受兼径方向電磁ダンパー説明図Explanatory drawing of an axial active magnetic bearing/radial electromagnetic damper according to an embodiment of the present invention 本発明の実施例を応用したターボ分子ポンプの縦断面図Vertical cross-sectional view of a turbo molecular pump to which an embodiment of the present invention is applied ボールベアリング式ターボ分子ポンプの軸受構造例の説明図Explanatory drawing of a bearing structure example of a ball bearing turbo molecular pump

以下、本発明の実施例を図3に基づき説明する。
この実施例は、上部と下部に2つの径方向受動型磁気軸受があり、上部の径方向受動型磁気軸受を各被支持体(ロータ)に合わせて設計することを特徴としており、上部固定側永久磁石9と上部回転側永久磁石10は互いに反発し合う磁極配置とし、上部径方向受動型磁気軸受を構成する。その上部径方向受動型磁気軸受により、シャフト1aを軸方向下方へ引き下げる力が働くように、上部固定側永久磁9と上部回転側永久磁石10の軸方向位置を配置し、また軸方向電磁石11はアーマチャーディスク5を軸方向上方へ吸引する力を軸方向位置センサー12で検出するシャフト1aの軸方向位置により制御し、軸方向能動型磁気軸受を構成する。本実施例の特徴では、下部径方向受動型磁気軸受と軸方向能動型磁気軸受を磁気軸受ホルダー13でひとつのユニットとし、しかも磁気軸受回路14も磁気軸受ホルダー13と一体とすることにより、例えば、図4に示されているボールベアリング式ターボ分子ポンプの軸受構造のボールベアリングユニット部14と自在に交換可能に設計できることになる。また、本実施例における磁気軸受ホルダー13内の径方向受動型磁気軸受おいては、下部固定側永久磁石15の下部ホルダー16は磁気軸受ホルダー13により粘弾性体17で支持され、支持ボール18により軸方向位置は固定され、径方向に自由に動けるようになっている。ここで、下部ホルダー16の重量、粘弾性体17のばね定数、下部固定側永久磁石15と下部回転側永久磁石19との間の反発力とばね定数は、ロータ20の下部重量に合わせて最適化することにより下部径方向の最適な減衰力が得られる。しかしながら、被支持体(ロータ)のパラメータ変化に対して、支持バネ定数は上部径方向受動型磁気軸受の設計変更により対応可能であるが、上部と下部の径方向受動ダンパーだけでは、特に中型以上の被支持体(ロータ)の場合、その共振周波数での減衰能を十分に設定できなくなる。そのため、図3に示す本発明の実施例では、減衰能の設定が可能な径方向位置センサーと径方向電磁石が一体構造の径方向電磁ダンパー2を付加している。
An embodiment of the present invention will be described below with reference to FIG.
This embodiment is characterized in that there are two radial passive magnetic bearings in the upper and lower portions, and the radial passive magnetic bearings in the upper portion are designed according to each supported body (rotor). The permanent magnet 9 and the upper rotation-side permanent magnet 10 have magnetic poles arranged to repel each other to form an upper radial passive magnetic bearing. Due to the upper radial passive magnetic bearing, the axial fixed positions of the upper permanent magnet 9 and the upper permanent magnet 9 are arranged so that the shaft 1a is pulled downward in the axial direction. Controls the force for attracting the armature disk 5 axially upward by the axial position of the shaft 1a detected by the axial position sensor 12 to form an axial active magnetic bearing. The feature of this embodiment is that the lower radial passive magnetic bearing and the axial active magnetic bearing are integrated into one unit by the magnetic bearing holder 13, and the magnetic bearing circuit 14 is also integrated with the magnetic bearing holder 13, so that, for example, The ball bearing unit 14 of the bearing structure of the ball bearing type turbo-molecular pump shown in FIG. 4 can be designed to be freely replaceable. Further, in the radial passive magnetic bearing in the magnetic bearing holder 13 according to the present embodiment, the lower holder 16 of the lower fixed permanent magnet 15 is supported by the magnetic bearing holder 13 by the viscoelastic body 17 and by the support balls 18. The axial position is fixed and it is free to move in the radial direction. Here, the weight of the lower holder 16, the spring constant of the viscoelastic body 17, the repulsive force between the lower fixed permanent magnet 15 and the lower rotating permanent magnet 19 and the spring constant are optimal according to the lower weight of the rotor 20. By this, the optimum damping force in the lower radial direction can be obtained. However, although the support spring constant can be changed by changing the design of the upper radial passive magnetic bearings in response to changes in the parameters of the supported body (rotor), the upper and lower radial passive dampers alone are especially large In the case of the supported body (rotor), the damping ability at the resonance frequency cannot be set sufficiently. Therefore, in the embodiment of the present invention shown in FIG. 3, the radial electromagnetic damper 2 having a structure in which the radial position sensor and the radial electromagnet capable of setting the damping capacity are integrated is added.

図1でその径方向電磁ダンパー構造の一例を説明する。一般に、径方向能動型磁気軸受は径方向位置センサーと径方向電磁石とから構成されているが、この径方向電磁ダンパーは径方向位置センサーの磁気回路を径方向電磁石の磁気回路と兼用させているところに特徴がある。これは、径方向の支持力が、径方向受動型磁気軸受によりすでに対応されており、しかも電磁ダンパーはその発生力よりその位相特性が重要なため、力を発生させる磁極面21が径方向位置センサーの磁極面積程度で十分なために可能となる。1はシャフト、2aは径方向位置センサーと径方向電磁ダンパーの兼用磁気回路ステータ、3は径方向センサーコイル、4は径方向電磁石コイルである。図2の例は、この径方向電磁ダンパーの追加によるコストアップを軽減するため、軸方向能動型磁気軸受に径方向電磁ダンパー機能を持たせる発明である。径方電磁ダンパー兼軸方向電磁石6とその力を受けるコーン型アーマチャーディスク5aの磁極面をコーン型にして径方向の力成分も出せるようにしている。当然、位置センサーも軸方向と径方向の両方の信号が取れるように、±X、±Yの4ヶ所の位置センサーコイル7の信号から演算により、径方向X信号、径方向Y信号、軸方向Z信号を得る方式にしている。また8は径方向電磁ダンパー兼軸方向電磁石コイル更にこの径方向電磁ダンパー兼軸方向電磁石6とコーン型アーマチャーディスク5aには磁束変化も生じるため、渦電流の発生は軽減するため、軟磁性金属バルクよりは非磁性体コートした軟磁性粉体を固形化した素材の方が良い。 An example of the radial electromagnetic damper structure will be described with reference to FIG. Generally, a radial active magnetic bearing is composed of a radial position sensor and a radial electromagnet, and this radial electromagnetic damper makes the magnetic circuit of the radial position sensor double as the magnetic circuit of the radial electromagnet. However, there is a feature. This is because the radial support force is already supported by the radial passive magnetic bearing, and the phase characteristic of the electromagnetic damper is more important than the generated force, so that the magnetic pole surface 21 that generates the force is positioned in the radial position. This is possible because the magnetic pole area of the sensor is sufficient. 1 is a shaft, 2a is a magnetic circuit stator which also serves as a radial position sensor and a radial electromagnetic damper, 3 is a radial sensor coil, and 4 is a radial electromagnet coil. The example of FIG. 2 is an invention in which the axial active magnetic bearing has a radial electromagnetic damper function in order to reduce the cost increase due to the addition of the radial electromagnetic damper. The magnetic pole surface of the radial electromagnetic damper/axial electromagnet 6 and the cone-shaped armature disk 5a that receives the force is made cone-shaped so that a radial force component can also be produced. As a matter of course, the position sensor also receives signals in both the axial direction and the radial direction, so that the radial direction X signal, the radial direction Y signal, and the axial direction can be calculated by calculation from the signals of the four position sensor coils 7 of ±X and ±Y. The Z signal is obtained. Further, 8 is a radial electromagnetic damper/axial electromagnet coil, and since a magnetic flux change also occurs in the radial electromagnetic damper/axial electromagnet 6 and the cone-type armature disk 5a, the generation of eddy current is reduced, so that the soft magnetic metal A material obtained by solidifying a soft magnetic powder coated with a non-magnetic material is better than a bulk material.

大型のターボ分子ポンプばかりでなく、中型のターボ分子ポンプや高負荷ガス流量に対応する小型のターボ分子ポンプにも、信頼性が不十分な従来のボールベアリング式に代わり、磁気軸受を採用できるようになる。また、ターボ分子ポンプのように、軽負荷で回転軸の位置精度がきびしくない仕様の製品、例えば、回転ファンあるいは高速回転のビームチョッパーのような製品にも応用できる。 Magnetic bearings can be used not only for large turbo molecular pumps, but also for medium-sized turbo molecular pumps and small turbo molecular pumps that can handle high-load gas flow rates, instead of the unreliable conventional ball bearing type. become. Further, the present invention can be applied to products such as turbo molecular pumps, which have specifications that the position accuracy of the rotating shaft is not severe under a light load, such as products such as a rotating fan or a high-speed rotating beam chopper.

1,1a シャフト
2 径方位置センサーと径方向電磁石が一体構造の径方向電磁 ダンパー
2a 径方向位置センサーと径方向電磁ダンパーの兼用磁気回路 ステータ
3 径方向センサーコイル
4 径方向電磁石コイル
5 アーマチャーディスク
5a コーン型アーマチャーディスク
6 径方向電磁ダンパー兼軸方向電磁石
7 位置センサーコイル
8 径方向電磁ダンパー兼軸方向電磁石コイル
9 上部固定側永久磁石
10 上部回転側永久磁石
11 軸方向電磁石
12 軸方向位置センサー
13 磁気軸受ホルダー
14 磁気軸受回路
15 下部固定側永久磁石
16 下部ホルダー
17 粘弾性体
18 支持ボール
19 下部回転側永久磁石
20 ロータ
21 磁極面
22 ボールベアリングユニット部
1,1a Shaft 2 Radial electromagnetic damper with integrated structure of radial position sensor and radial electromagnet 2a Magnetic circuit for both radial position sensor and radial electromagnetic damper Stator 3 Radial sensor coil 4 Radial electromagnetic coil 5 Armature disc 5a Cone type armature disk 6 Radial electromagnetic damper and axial electromagnet 7 Position sensor coil 8 Radial electromagnetic damper and axial electromagnet coil 9 Upper fixed permanent magnet 10 Upper rotating permanent magnet 11 Axial electromagnet 12 Axial position sensor 13 magnetic bearing holder 14 magnetic bearing circuit 15 lower fixed permanent magnet 16 lower holder 17 viscoelastic body 18 support ball 19 lower rotating permanent magnet 20 rotor 21 magnetic pole surface 22 ball bearing unit

Claims (4)

二組の径方向受動型磁気軸受と一組の軸方向能動型磁気軸受と一組の径方向電磁ダンパーからなる磁気軸受システムを利用した軸流分子ポンプAxial flow molecular pump utilizing a magnetic bearing system consisting of two radial passive magnetic bearings, one axial active magnetic bearing and one radial electromagnetic damper. 一組の径方向電磁ダンパーが径方向位置センサーと径方向電磁石が一体となる構造の請求項1記載の軸流分子ポンプThe axial flow molecular pump according to claim 1, wherein a set of radial electromagnetic dampers has a structure in which a radial position sensor and a radial electromagnet are integrated. 一組の径方向電磁ダンパーが軸方向能動型磁気軸受と一体となる構造の請求項1記載の軸流分子ポンプThe axial flow molecular pump according to claim 1, wherein a set of radial electromagnetic dampers is integrated with an axial active magnetic bearing. 電磁ダンパーのステータヨークとアーマチャーディスクを軟磁性紛を固形化した素材を利用した請求項2、3記載の径方向電磁ダンパーを構成要素にもつ請求項1記載の軸流分子ポンプThe axial flow molecular pump according to claim 1, wherein the stator yoke and the armature disk of the electromagnetic damper are made of a material obtained by solidifying soft magnetic powder, and the radial electromagnetic damper according to claim 2 or 3 is used as a component.
JP2018231187A 2018-11-22 2018-11-22 Electromagnetic damper of uniaxial control magnetic bearing Pending JP2020084977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018231187A JP2020084977A (en) 2018-11-22 2018-11-22 Electromagnetic damper of uniaxial control magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018231187A JP2020084977A (en) 2018-11-22 2018-11-22 Electromagnetic damper of uniaxial control magnetic bearing

Publications (1)

Publication Number Publication Date
JP2020084977A true JP2020084977A (en) 2020-06-04

Family

ID=70907132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018231187A Pending JP2020084977A (en) 2018-11-22 2018-11-22 Electromagnetic damper of uniaxial control magnetic bearing

Country Status (1)

Country Link
JP (1) JP2020084977A (en)

Similar Documents

Publication Publication Date Title
TWI402436B (en) Axial hybrid magnetic bearing, method for operation thereof, and structure for rotor thereof
JP3121819B2 (en) Magnetic bearing device with permanent magnet that receives radial force applied to the shaft
JPH0646036B2 (en) Axial flow molecular pump
US20080213104A1 (en) Motor
JPH04219493A (en) Turbo-molecular pump
US7755239B2 (en) Magnetic repulsion type bearing
JP4352170B2 (en) Exhaust gas turbocharger
JPS645161B2 (en)
EP2422100B1 (en) A magnetic bearing, a rotary stage, and a reflective electron beam lithography apparatus
JP2020084977A (en) Electromagnetic damper of uniaxial control magnetic bearing
JP2009192041A (en) Thrust force generation device, electromagnetic machine applying thrust force generation device
JP2007146911A (en) Vibration suppressing device
JP2005273802A (en) Magnetic bearing device and turbo molecular pump mounted with magnetic bearing device
JP2010230161A (en) Magnetic bearing system
JP2004316756A (en) Five-axis control magnetic bearing
US20220336133A1 (en) A magnetic actuator for a magnetic suspension system
Kanematsu et al. Analysis and control of one-axis active magnetic bearing using single side electromagnetic drive
JP2010216458A (en) Turbo-molecular pump system
TWI494514B (en) Axial passive magnet bearing system
JPS598010Y2 (en) magnetic bearing
JP2002257135A (en) Magnetic bearing device
JPH05344674A (en) Bearing device for motor
Crane Magnetic bearings for high speed turbo molecular pumps
JPH0640953Y2 (en) Turbo molecular pump
JPS59731B2 (en) How to avoid resonance of magnetic bearing support rotating body